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Communicated by Gregory L. Naber

Abstract. The compact classical Lie groups can be regarded as groups of n × n
matrices over the real, complex, and quaternion fields R, C, and Q that satisfy

metric- and volume-conserving conditions. These groups, SO(n,R),SU(n,C), and

Sp(n,Q), are not all independent. Homomorphisms exist among some of these

groups for small dimension. We review these relations by describing the Lie alge-

bras of the compact forms and their complex extensions. Other noncompact real

forms of these Lie algebras are constructed by systematic methods. The relations

among all distinct real forms is presented.
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1. Introduction

A number of isomorphisms and homomorphisms exist among the low-dimensional

Lie groups. These relations are classical – they have been known for a long

time [9]. The best-known of these is the 2 : 1 relation between the unitary group

SU(2) and the orthogonal group SO(3) [57]. In one direction all irreducible rep-

resentations of SU(2) are tensor representations of degree 2j = 0, 1, 2, · · · and

dimension 2j + 1. Those with j integer are also tensor representations of SO(3).
In the reverse direction, SO(3) has irreducible tensor representations of degree l
and dimension 2l + 1. There are also spinor “representations” of SO(3). These

are in fact representations of the covering group ˜SO(3) � SU(2) of SO(3). These

spin representations were mysterious to physicists until the relation between the

two compact Lie groups SO(3) and SU(2) was well-understood [56, 57].
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There are a number of other isomorphisms and homomorphisms among simple

Lie groups of low dimension. These are most easily explored in terms of the re-

lations among their Lie algebras. In this work we review the relations among the

low-dimensional complex Lie algebras. This comparison is facilitated by identify-

ing the low-dimensional groups and algebras by their dimension and rank [37,56].

Among the simple complex Lie algebras we find A1 = B1 = C1, B2 = C2, and

D3 = A3. For convenience, we include also the semisimple case D2 = A1 ⊕ A1.

The real forms of all these complex Lie algebras are identified and related to each

other. We also include a list, for each, of the fundamental irreducible represen-

tations and discuss the existence of “spinor” representations for the orthogonal

groups: SO(n), n = 3, 4, 5, 6. The spinor representations are fundamental repre-

sentations of these orthogonal algebras and defining representations (or their com-

plex conjugates) of real forms of related Lie algebras: for example SU(4) � A3

has two inequivalent four dimensional fundamental representations that are com-

plex conjugates of each other. Therefore SO(6) � D3 has two inequivalent four-

dimensional spinor representations that are complex conjugates of each other.

2. Classical Results

The complete list of all simple Lie algebras over the complex field consists of four

infinite series An, Bn, Cn, Dn, together with five exceptional algebras: G2, F4, E6,
E7, E8 [9, 26, 37, 56]. More accurately, these structures are root spaces: sets of

vectors in Euclidean spaces Rn whose roots describe the commutation relations of

the basis vectors in the Lie algebra. The classical algebras are closely associated

with the algebras of classical matrix groups as shown in Table 1. The subscript

n identifies the rank of the algebra: this is the maximum number of independent

simultaneously commuting operators that can be constructed in the algebra. The

unitary groups U(n) are defined by a metric-preserving condition U†InU = In and

their special unitary subgroups SU(n) satisfy in addition the volume-preserving

condition det(U) = +1. The orthogonal matrix groups O(n) are real subgroups

of the complex matrix groups U(n) and the special subgroups SO(n) ⊂ SU(n)
which obey in addition the volume-preserving condition. The symplectic groups

have been defined in a number of ways. Following in the footsteps of the spe-

cial orthogonal and unitary groups SO(n) and SU(n), which are compact groups

of n × n matrices over the real and complex fields, we can define the symplectic

group Sp(n,Q) of n×n quaternion-valued matrices that obey a metric-preserving

condition as well as a volume-conserving condition. This group is compact. Al-

ternatively, we can define symplectic groups Sp(2n,R) as real 2n × 2n matrix

groups that preserve a real nonsingular antisymmetric matrix A, such as occurs in
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Table 1. Classical Lie groups associated with simple matrix groups with their

dimensions and defining conditions. Lie algebras associated with these Lie

groups are denoted su(n), so(2n), so(2n+ 1), sp(2n,R), respectively.

Root Classical
Space Matrix Group Dimension Defining Conditions

An−1 SU(n) n2 − 1 U†InU = In det U = 1

Dn SO(2n) n(2n− 1) OtI2nO = I2n det O = 1

Bn SO(2n+ 1) n(2n+ 1) OtI2n+1O = I2n+1 det O = 1

Cn Sp(2n,R) n(2n+ 1) MtAM = A det M = 1

the Hamilton-Jacobi equations of motion, viz:

[
0n In

−In 0n

]
. This matrix group is

noncompact. The compact group Sp(n,Q) and the noncompact group Sp(2n,R)
have the same complex extension Lie algebra whose root space is Cn [26].

A Lie algebra is first and foremost a linear vector space on which an additional

compositional structure exists. It is useful to choose a convenient set of basis vec-

tors in this space. For simple algebras of rank n, it is possible to find n basis

operators Hi, 1 ≤ i ≤ n that mutually commute, i.e., [Hi, Hj ] = 0. These op-

erators can be chosen to be simultaneously diagonal in any matrix representation.

Each of the remaining basis vectors (shift operators) is associated with a root α

of a secular equation: Eα. The roots α are vectors in the root space, which is an

n-dimensional linear vector space with Euclidean metric. The commutators of the

diagonal operators with the shift operators have the form [9, 37, 56]

[Hi, Eα] = αiEα . (1)

In other words, under commutation the shift operators are eigenoperators of the

diagonal operators.

The nonzero roots for the classical Lie algebras can be chosen in the following

convenient way in terms of a set of vectors ek that are orthonormal (ei · ej = δij)
[26, 37]

An−1 ±(ei − ej), 1 ≤ i < j ≤ n

Dn ±ei ± ej , 1 ≤ i < j ≤ n

Bn ±ei ± ej , ±ek, 1 ≤ i < j ≤ n, 1 ≤ k ≤ n

Cn ±ei ± ej , ±2ek, 1 ≤ i < j ≤ n, 1 ≤ k ≤ n.

(2)
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Within each of these vector spaces it is convenient to choose a set of natural basis

vectors. The choice for rank-three Lie algebras is [17]

A3 e1 − e2, e2 − e3, e3 − e4

D3 e1 − e2, e2 − e3, e2 + e3

B3 e1 − e2, e2 − e3, 1e3

C3 e1 − e2, e2 − e3, 2e3.

(3)

The restriction to lower-rank algebras, or extension to higher-rank classical alge-

bras, is straightforward. This choice has two virtues

Lie algebra: Every nonzero root for a Lie algebra can be expressed as a linear

combination of the natural basis roots with integer coefficients. Further, the

nonzero integers in this decomposition are either all positive (for positive
roots) or all negative [17, 37].

Representations: Every tensor product representation of the Lie algebra/group

can be expressed in terms of integers related to this choice of basis [56].

3. Relations Among Low-Dimensional Algebras

Several equivalences exist among the low-rank Lie algebras [26,37]. Two algebras

can be equivalent only if they have the same rank and dimension. All rank-one

(complex) algebras are equivalent: A1 = B1 = C1. A rank-two orthogonal and

the symplectic algebra are equivalent: B2 = C2 and a rank-three orthogonal al-

gebra and the unitary algebra are equivalent: D3 = A3 [26, 37]. The rank-two

orthogonal algebra D2 has four nonzero roots ±e1 ± e2, which split into two mu-

tually orthogonal pairs, indicating that D2 is the direct sum of two simple rank-one

Lie algebras: D2 � A1 ⊕ A1. D2 is not simple: it is semisimple. These equiva-

lences are summarized in Table 2.

4. Real Forms

An element in a complex Lie algebra has the general form
∑n

i h
iHi+

∑
α�=0 e

αEα,

where the coefficients hi and eα are complex [26, 29, 37]. Complex Lie algebras

have several different real forms. They are obtained by imposing specific reality

conditions on these coefficients. It is always possible to find a real form that is com-

pact: it is the Lie algebra for a compact group. The compact groups are the orthog-

onal groups SO(2n) and SO(2n+1) (Dn and Bn series), the unitary groups SU(n)
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Table 2. Equivalences among the classical complex Lie algebras. D2 is

semisimple. There is a 1 : 1 correspondence between root spaces and com-

plex simple Lie algebras.

Rank Algebras

1 A1 = B1 = C1

2 D2 = A1 ⊕A1

2 B2 = C2

3 A3 = D3

(An−1) and the corresponding matrix groups over the quaternion field Sp(n,Q)
(Cn). Another inequivalent real form can also always be constructed. It is the least
compact real form, obtained by restricting the complex coefficients hi and eα to

be real. The distinct real forms are distinguished by an index, χ. This is the differ-

ence of the dimensions of two subspaces in the real form, χ = dn.c. − dc, where

dc is the dimension of the maximal compact subspace in the real form of the alge-

bra and dn.c. is the dimension of its complement, which is noncompact. Since the

dimension of a real Lie algebra is dim(g) = dn.c. + dc, χ(g) = 2dn.c. − dim(g).

Cartan transformed the search for real forms to a simple and elegant linear vector

space problem – in fact, a simple problem of matrices [9, 37]. He searched for a

mapping T of the algebra to itself that obeyed T 2 = Id (involutive automorphism).

Under such an automorphism the linear vector space g splits into two eigenspaces,

one associated with each of the eigenvalues of T

g = k+ p

T (k) = +k

T (p) = −p

=⇒
[k, k] ⊆ k

[k, p] = p

[p, p] ⊆ k .
(4)

If p �= 0, the substitution p → p′ = ip maps the original real form to a different

real form.

If g is the Lie algebra for a compact Lie group G, then k and p are compact, p′ is

noncompact, and χ(g′) = dim(p) − dim(k). Starting from the maximal compact

Lie algebra g it is then possible, by using one of three types of involutive automor-

phisms, to construct all possible real forms of all the simple (and semisimple) clas-

sical Lie algebras. The three types of involutive automorphisms are summarized

here [26, 29, 37]. They will be applied to the compact real forms of the matrices

that define the Lie groups and their algebras. The character of a real form ranges

from −dim (g) for the compact real form to +rank (g) for the least compact real

form of a complex Lie algebra.
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4.1. Block Matrix Decomposition

The matrix Lie algebras for the special orthogonal, special unitary, and symplectic

groups SO(n,R), SU(n,C), and Sp(n,Q) have the form of traceless antihermitian

matrices over the real, complex, and quaternion fields [26,29]. Define the diagonal

matrix Ip,q =

[
Ip 0
0 −Iq

]
with p+ q = n. Then the block diagonal involution is the

mapping g → Ip,q g Ip,q. Under this involution we find

g = k+ p =

[
Ap B

−B† Aq

]
T=Ip,q−−−−→

[
Ap B

+B† Aq

]
= k+ ip = k+ p′ = g′. (5)

For the compact real form the block diagonal submatrices Ap, Aq are antihermitian

A†
p = −Ap and tr (Ap + Aq) = 0. The dimension of the noncompact subspace

of g′ is dn.c. = pq × dim F , where dim F = 1, 2, 4 for the real, complex, and

quaternion fields. The characters of the noncompact real forms are

χ(so(p, q)) = 1
2

[
(p+ q)− (p− q)2

]
χ(su(p, q)) = 1− (p− q)2

χ(sp(p, q;Q)) = −(p+ q)− 2(p− q)2 .

(6)

4.2. Subfield Restriction

Matrices that describe the Lie algebra su(n) are traceless and antihermitian and

can be expressed as the sum of two n × n matrices: a real antisymmetric matrix

A = −At and i times a real symmetric traceless matrix B = Bt

su(n) = A+ iB . (7)

Under complex conjugation A → +A and iB → −iB. The image of su(n) under

this involution is the real matrix A+ B. This describes the Lie algebra of the real

special linear group sl(n,R). The dimension of the noncompact subspace in this

algebra is dn.c. = n(n+ 1)/2− 1.

A similar decomposition can be carried out on the symplectic group Sp(n,Q). It

has a matrix representation in terms of quaternion-valued traceless antihermitian

n × n matrices. We can perform the same type of involution using quaternions as

done above using complex numbers under the decomposition [26, 29]

q0 + q1I + q2J + q3K T−→ q0 + q1I − q2J − q3K . (8)
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However, an alternative procedure is more economical. First we replace each

quaternion by a 2× 2 complex matrix

q0 + q1I + q2J + q3K →
[
q0 + iq3 iq1 + q2
iq1 − q2 q0 − iq3

]
. (9)

When each quaternion in sp(n,Q) is replaced by a 2×2 complex matrix we obtain

a complex 2n× 2n matrix

sp(n,Q)
equation (9)−−−−−−−→ ou(2n,R) + [usp(2n,C)− ou(2n,R)] . (10)

In this expression ou(2n,R) is a 2n × 2n real matrix representation of n × n
unitary matrices u(n,C), and usp(2n,C) is a 2n × 2n complex representation of

the quaternion valued n × n matrix sp(n,Q). Now the involution used above in

equation (7) is used to map sp(n,Q) = usp(2n,C) to its related noncompact form

sp(2n,R).

The characters of the noncompact real forms obtained through this involution are

χ(sl(n,R)) = n− 1, χ(sp(2n,R)) = n. (11)

These real forms are the least compact real forms of the complex Lie algebra since

these values are the rank of the complex extension algebras An−1, Cn.

4.3. Field Embeddings

The third useful matrix involution involves the reverse process. The Lie algebra

so(2n) of antisymmetric matrices contains as a subalgebra the set of matrices

ou(2n), obtained by representing the antihermitian n × n matrices of u(n,C) as

real 2n× 2n matrices. This leads to a simple decomposition

so(2n) = ou(2n) + [so(2n)− ou(2n)]
(12)

→ ou(2n) + i [so(2n)− ou(2n)] = so∗(2n).

The Cartan process is followed by multiplying the complement of ou(2n) by i,
leading to a real form labeled so∗(2n).
Following the same procedure we find

su(2n) = usp(2n,C) + [su(2n)− usp(2n,C)]
(13)

→ usp(2n,C) + i [su(2n)− usp(2n,C)] = su∗(2n).

The characters of the noncompact real forms obtained through this involution are

[26]

χ(so∗(2n)) = −n, χ(su∗(2n)) = −2n− 1. (14)
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Table 3. Equivalences among the real forms of the rank-one Lie algebras

B1 = A1 = C1.

B1 A1 C1 χ

so(3) su(2) sp(1,Q) −3
so(2, 1) su(1, 1) = sl(2,R) sp(2,R) 1

Table 4. Equivalences among the real forms of the rank-two Lie algebras

D2 = A1 ⊕A1.

D2 A1 ⊕A1 χ

so(4) su(2)⊕ su(2) −6
so∗(4) su(2)⊕ su(1, 1) −2
so(3, 1) sl(2, c) 0
so(2, 2) su(1, 1)⊕ su(1, 1) 2

5. Equivalences of Real Forms

The complex Lie algebras A1, B1, C1 are equivalent, so their various real forms

must be equivalent. The equivalences are shown in Table 3. The equivalences

among the real forms of the semisimple Lie algebra D2 and the direct sum A1⊕A1

are shown in Table 4. In the same way, the equivalences among the real forms of

B2 = C2 are shown in Table 5, while those for D3 = A3 are shown in Table 6.

6. Fundamental Representations

Every simple Lie algebra of rank n has n fundamental irreducible representa-

tions [17, 56]. Every irreducible representation of the Lie algebra can be con-

structed as a tensor product from these fundamental irreducible representations.

These representations are defined by their highest weights. These weights have the

Table 5. Equivalences among the real forms of the rank-two Lie algebras B2

and C2.

B2 C2 χ

so(5) sp(2,Q) = usp(4,C) −10
so(4, 1) sp(1, 1;Q) −2
so(3, 2) sp(4,R) 2
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Table 6. Equivalences among the real forms of the rank-two Lie algebras D3

and A3.

D3 A3 χ

so(6) su(4) −15
so(5, 1) su∗(4) −5
so∗(6) su(3, 1) −3
so(4, 2) su(2, 2) 1
so(3, 3) sl(4,R) 3

Table 7. Highest weights F for the fundamental irreducible representations

of low-rank Lie algebras. For A3 the abbreviation (a, b, c) is shorthand for

a(e1 − e2) + · · · . The dimensions of these representations are listed in the

appropriate column. In the column Topology, s.c. indicates the exponential of

the representation is simply connected and 2 indicates it is doubly connected.

Algebra Natural ri Fundamental Fi Dimension Topology

A1 e1 − e2
1
2(e1 − e2) 2 s.c.

B1 e1
1
2e1 2 s.c.

C1 2e1 e1 2 s.c.
D2 e1

1
2e1 2 s.c.

e2
1
2e2 2 s.c.

B2 e1 − e2 e1 5 2
e2

1
2(e1 + e2) 4 s.c.

C2 e1 − e2 e1 4 s.c.
2e2 e1 + e2 5 2

D3 e1 − e2 e1 6 2
e2 − e3

1
2(e1 + e2 − e3) 4 s.c.

e2 + e3
1
2(e1 + e2 + e3) 4 s.c.

A3 e1 − e2
1
4(3, 2, 1) 4 s.c.

e2 − e3
1
4(2, 4, 2) 6 s.c.

e3 − e4
1
4(1, 2, 3) 4 s.c.

following orthonormality properties with respect to the n fundamental roots of the

root space [17]

2
(Fi, rj)

(rj , rj)
= δij (15)
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where r1, r2, · · · , rn are the n natural basis roots for the Lie algebra (cf equation

(3)) and F1,F2, · · · ,Fn are the highest weights for the first, second, · · · , nth-

fundamental irreducible representation. The highest weights of the fundamental

representations of the Lie algebras described above are collected in Table 7.

7. Dimensions of Irreducible Representations

Weyl [56] has given us an expression for the dimensions of the irreducible repre-

sentations of the simple Lie algebras that is breathtaking in its elegance and sim-

plicity.

First, every irreducible representation can be constructed as a tensor product over

powers of the fundamental irreducible representations: (F1)
⊗m1 ⊗· · ·⊗(Fn)

⊗mn .

This tensor product is reducible. It contains many irreducible representations, but

the representation with the highest weight in this tensor product has weight Λ given

by [17, 41, 49, 56]

Λ =
n∑

i=1

miFi . (16)

Conversely, given an irreducible representation of highest weight Λ, its compo-

sition in terms of the fundamental irreducible representations can be determined

using the inner product properties of the natural basis vectors of the algebra with

the highest weights of the fundamental irreducible representations

mi = 2
(Λ, ri)

(ri, ri)
· (17)

Weyl’s expression for dimension involves the positive root vectors α, half the

sum over the positive root vectors R = 1
2

∑
α>0α, and the highest weight Λ =∑

imiFi

Dim(Λ) = Πα>0
(Λ+R,α)

(0+R,α)
· (18)

Example 1. For the 15-dimensional Lie algebra A3 there are six positive roots
(1,−1, 0, 0), (0, 1,−1, 0), (0, 0, 1,−1), (1, 0,−1, 0), (1, 0, 0,−1), (0, 1, 0,−1). The
first three are the natural basis. Half the sum of all positive roots is 1

2(3, 1,−1,−3).
The first fundamental irreducible representation has highest weight 1

4(3, 2, 1)

→ 1
4(3,−1,−1,−1). The dimension is

Dim(
3

4
,−1

4
,−1

4
,−1

4
) =

2× 1× 1× 3× 4× 2

1× 1× 1× 2× 3× 2
= 4 . (19)
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In this expression the order of the factors corresponds to the order of the positive
roots listed above. The dimensions of the other two fundamental representations of
A3 are Dim(F2) = 6 and Dim(F3) = 4. The dimensions of the all fundamental
representations for the all low-rank Lie algebras described above are listed in
Table 7.

8. Unitary Irreducible Representations

The compact simple Lie groups all have finite-dimensional unitary irreducible rep-

resentations that are tensor products based on the set of fundamental irreducible

representations [56]. The representations of their Lie algebras consist of complex

antihermitian matrices. All the matrix elements for the diagonal and select shift

operators in these representations of the compact unitary (SU(n)) [18] and orthog-

onal (SO(2n + 1), SO(2n)) [19] groups have been written down by Gel’fand and

Tsetlein. This calculus has later been extended to representations of the Lie alge-

bras of compact symplectic groups [20,23]. These matrix elements are determined,

up to a scale factor, by the branching rules of an irreducible representation under

canonical group-subgroup reductions: SU(n) ↓ SU(n − 1) ↓ SU(n − 2) · · · ,

SO(n) ↓ SO(n − 1) ↓ SO(n − 2) ↓ SO(n − 3) · · · , and USp(2n) ↓ · ↓
USp(2n − 2) ↓ · ↓ USp(2n − 4) · · · [26, 41, 49, 56]. For the special unitary and

orthogonal groups the downarrow (↓) means “group-subgroup reduction”. For the

symplectic groups the double downarrows (↓ · ↓) also indicates a group-subgroup

reduction, treated as if there were an intermediate group between USp(2n) and

USp(2n− 2). There is not, but the branching rules for irreducible representations

act as if that were true [20, 23].

Noncompact real forms are related to compact real forms by analytic continuation.

As a result it is possible to construct unitary representations of noncompact real

forms by constructing analytic continuations of the Gel’fand-Tsetlein expressions

for the matrix elements of the compact real forms. These expressions involve only

square root functions of ratios of products of differences. The square root expres-

sions have been treated as master analytic representations: functions of the labels

that describe basis vectors for the representations in the standard group-subgroup

reduction scheme. To extend to noncompact forms, some terms in the difference

factors must be replaced to maintain antihermiticity. An example of how this is car-

ried out in the analytic continuation of unitary representations of SU(2) to unitary

representations of SU(1, 1) can be found in [29].
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9. Isomorphisms and Homomorphisms

The Lie algebra for the matrix group SU(2) consists of the Pauli spin matrices

Sj =
i
2σj

S1 =
i

2

[
0 1
1 0

]
, S2 =

i

2

[
0 −i

+i 0

]
, S3 =

i

2

[
1 0
0 −1

]
(20)

and the Lie algebra for the matrix group SO(3) consists of the three 3× 3 angular

momentum matrices Lj

Lx =

⎡⎣ 0 0 0
0 0 1
0 −1 0

⎤⎦ , Ly =

⎡⎣ 0 0 −1
0 0 0
1 0 0

⎤⎦ , Lz =

⎡⎣ 0 1 0
−1 0 0
0 0 0

⎤⎦ . (21)

These two Lie algebras have isomorphic commutation relations

[Si, Sj ] = −εijkSk, [Li, Lj ] = −εijkLk . (22)

As a result the algebras are isomorphic and their Lie groups are locally isomorphic.

In order to obtain the global relations among these Lie groups we map the algebras

to the corresponding groups using the Exponential mapping. This takes the point

with (spherical) coordinates θ = (n̂, θ) into the SU(2) matrix

Exp

(
i

2
n̂·σθ

)
= cos

θ

2
I2 + i sin

θ

2
n̂·σ (23)

and the same point into the SO(3) rotation matrix

cos θI3 + sin θn̂ · L+ (1− cos θ)
[
n̂1 n̂2 n̂3

] ⎡⎣ n̂1

n̂2

n̂3

⎤⎦ . (24)

This formula, originally due to Rodrigues [50], is simply derived by geometric

considerations. A vector v is decomposed into components parallel and perpen-

dicular to the rotation axis: v = v‖ + v⊥. The component v‖ is unaffected by the

rotation while the perpendicular part v⊥ is rotated through the angle θ.

There is a two-to-one (2 : 1) relation between these groups. One way to see this

is to note that the sphere (n̂, 2π) maps into −I2 ∈ SU(2) and to +I3 ∈ SO(3).
Two matrices in SU(2) that differ in sign (i.e., multiplied by −I2) correspond to a

single group operation in SO(3). Another way to see the global difference between

the two Lie groups is to observe that SU(2) is simply connected: every closed
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path starting and ending at a point in the parameter space, the Lie algebra, can be

continuously deformed to a point. On the other hand SO(3) is doubly connected.

Antipodal points on the surface of a sphere of radius π in the Lie algebra – (n̂, π)
and (−n̂, π) – map to the same matrix in SO(3). It is therefore impossible to

deform a path in the Lie group to a point if the path in the Lie algebra cuts the

sphere surface once, or an odd number of times. Yet another way to see the 2 :
1 nature of the relation between the groups SU(2) and SO(3) is to follow the

exponential of a diagonal operator in the Lie algebras’ canonical form

Exp

(
i
2

[
+θ 0
0 −θ

])
=

[
eiθ/2 0

0 e−iθ/2

]

Exp

⎛⎝⎡⎣+iθ 0 0
0 0 0
0 0 −iθ

⎤⎦⎞⎠ =

⎡⎣ e+iθ 0 0
0 1 0
0 0 e−iθ

⎤⎦ .

(25)

The relation between the diagonal matrices presents the arguments above in their

most elementary form. It is an approach we will use below to describe the homo-

morphisms among the other classical Lie groups.

These results are different aspects of a beautiful theorem by Cartan. Lie groups

with isomorphic Lie algebras are locally isomorphic. There is a 1 : 1 correspon-

dence between Lie algebras and simply connected Lie groups. Every other Lie

group with an isomorphic Lie algebra is isomorphic to the quotient of the simply

connected Lie group by one of its discrete invariant subgroups.

Since the Lie algebras su(2) and so(3) of SU(2) and SO(3) are isomorphic, the

groups are locally isomorphic. Since SU(2) is simply connected it covers all Lie

groups with this Lie algebra. The maximal discrete invariant subgroup of SU(2)
consists of all unimodular matrices that commute with SU(2) by Schur’s Lemma:

cI2. The unimodular condition requires c2 = +1, so c = ±1. By Cartan’s theorem,

SO(3) = SU(2)/ {I2,−I2} and therefore SO(3) is doubly connected.

The fundamental representation of su(2) (A1) has highest weight 1
2(e1 − e2) and

is two-dimensional (cf Table 7). All representations of SU(2) can be constructed

by exponentiating tensor representations of su(2) with highest weight (j,−j),
j = 0, 1/2, 1, 3/2, · · · . The (Wigner) representations Dj [SU(2)] are faithful for

j half-integer and 2 : 1 representations if j = l = integer. On the other hand the

fundamental representation of so(3) (B1) has highest weight 1
2e1 and is also two-

dimensional. It exponentiates to matrices that are not representations of SO(3).

Rather, they are faithful representations of the covering group ˜SO(3) = SU(2) of

SO(3). Only half of the tensor representations of this fundamental representation
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of SO(3), i.e., those representations Dj [SU(2)] with j = l = integer, are faithful

representations of SO(3).

Similar relations hold among the other low-dimensional Lie groups and their alge-

bras. For the compact real forms of the root spaces B2 and C2, the vectors in the

root spaces, and those (weights) in the two fundamental representations, are

Fundamental Reps.
Root Space First Second

B2 ±e1 ± e2,±e1,±e2,0,0 ±e1,±e2,0
1
2(±e1 ± e2)

C2 ±e1 ± e2,±2e1,±2e2,0,0 ±e1,±e2 ±e1 ± e2,0.

(26)

The first fundamental representation of B2 = SO(5) is five dimensional and the

second is four-dimensional. Exponentiating diagonal operators in these two fun-

damental representations leads to 5× 5 and 4× 4 matrices

Exp(φ1H1 + φ2H2)
1st−−−→

⎡⎢⎢⎢⎢⎣
eiφ1

0 e−iφ1 0 0 0
0 0 1 0 0
0 0 0 eiφ2 0
0 0 0 0 e−iφ2

⎤⎥⎥⎥⎥⎦
(27)

Exp(φ1H1 + φ2H2)
2nd−−−→

⎡⎢⎢⎢⎣
e

i

2
(+φ1+φ2)

0 e
i

2
(+φ1−φ2) 0 0

0 0 e
i

2
(−φ1+φ2) 0

0 0 0 e
i

2
(−φ1−φ2)

⎤⎥⎥⎥⎦ .

If φ1 → φ1 + 2π the first fundamental representation maps to itself while the

second maps to its negative. Similarly for the increase φ2 → φ2 + 2π. The first

fundamental representation is a faithful representation of SO(5) while the sec-

ond fundamental representation is a faithful representation of its covering group

USp(4,C) = ˜SO(5). The covering group is a double cover of SO(5).

For the first fundamental representation, points on the boundary (±π, φ2)∪(φ1,±π)
map to identical points in the group and distinct interior points map to different op-

erations in the group generated by these two commuting operators. As a result

the square with edge length 2π (cf Fig. 1) parameterizes this abelian group. By

contrast, points in the interior of the region | ± φ1 ± φ2| < 2π map to distinct

operations in the second fundamental representation of B2 (cf Fig. 2), and points

on the boundary map to −I4, in complete analogy with the j = 1 and j = 1/2
representations of SU(2). That the second fundamental representation of B2 is a



16 Robert Gilmore

2 : 1 cover of the first is clear because the area of the diamond in Fig. 2 is twice

the area of the square in Fig. 1.

Figure 1. The interior of the square of
edge length 2π maps onto the abelian
subgroup of the first fundamental repre-
sentation F1 of SO 5 . The two points
identified by a triangle map to the same
group operation, as do the two points la-
beled by a cross.

Figure 2. A square of twice the area
maps onto the abelian subgroup of the
second fundamental representation F2

of SO 5 . The two points identified by
a square map to the same group opera-
tion, as do the two points labeled by a
plus sign. F1 is a 2 to 1 image of F2.

Identical relations hold for the two representations of C2. The first fundamental

representation is four dimensional and exponentiates to a faithful representation of

USp(4,C). The second is five dimensional. Its exponential is a 2 : 1 homomorphic

image of USp(4,C) that is isomorphic to SO(5). The 2 : 1 relation between the

first and second fundamental representations of these two groups/algebras can also

be determined directly from the weights of the two fundamental representations.

Two basis weights for the first fundamental representation are e1 and e2. The

other two weights are linear combinations of these roots with integer coefficients.

The area enclosed by these weights is e1 ∧ e2. By contrast, two basis weights

in the second fundamental representation are +e1 + e2 and +e1 − e2, and the

area enclosed by these weights is (e1 + e2) ∧ (e1 − e2) = 2e1 ∧ e2. The ratio

of these areas is 1/2. Since the phase angle parameter space φ is the dual, or

reciprocal, space to that of the operators, the ratio of areas in the space of φ1 − φ2

cordinates is 2/1. That is, the first representation is a two to one cover of the

second. The first representation is also simply connected and faithful.
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10. A3 and D3

Similar arguments apply to the three fundamental representations of D3 and A3.

The two rank-three root spaces A3 and D3 are equivalent. This means that the com-

plex extension Lie algebras associated with these two root spaces are isomorphic.

There is a 1:1 correspondence among the five real forms (Table 6) of these Lie

algebras. Since the root spaces are rank three, each real form Lie algebra has three

fundamental irreducible representations. These representations are of dimension 4,

6, 4. They are unitary only for the compact real forms of these Lie algebras: su(4)
and so(6). We will compute the three fundamental irreducible representations for

the root spaces (complex extension Lie algebras) A3 and D3 and then apply reality

restrictions to determine the fundamental unitary irreducible representations of the

compact real form algebras.

10.1. Equivalence Mapping

We begin by constructing a mapping between the two root spaces. The root space

for the rank-three Lie algebra A3 is most conveniently described in a three-dimens-

ional subspace of a four-dimensional space with orthogonal basis vectors ei, i =
1, 2, 3, 4. The nonzero roots in the root space are ei − ej , 1 ≤ i �= j ≤ 4. All

nonzero roots are orthogonal to the vector R = e1 + e2 + e3 + e4.

The nonzero roots for the rank-three Lie algebra D3 have the form ±fi ± fj , 1 ≤
i �= j ≤ 3. A simple way to construct an equivalence between these two root

spaces is to construct a transformation that maps R into a vector proportional to

f4, which is orthogonal to all nonzero roots in D3. Such a transformation is given

by the rotation matrix

R =
1

2

⎡⎢⎢⎣
1 −1 −1 1

−1 1 −1 1
−1 −1 1 1
1 1 1 1

⎤⎥⎥⎦ . (28)

Under this transformation we find

e1 − e2 → f1 − f2, e4 − e3 → f1 + f2
e1 − e3 → f1 − f3, e4 − e2 → f1 + f3
e2 − e3 → f2 − f3, e4 − e1 → f2 + f3.

(29)
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10.2. Nonzero Matrix Elements

If we define the nonzero weights in an irreducible representation as |β〉 and the

shift operators by Eα, then

〈β′|Eα|β〉 = 0 if β′ �= α+ β and 〈β′|Eα|β〉 �= 0 if β′ = α+ β. (30)

The values of the matrix elements depend on the number of nonzero roots that have

the form β′ = β + nα. For the fundamental representations that we work with

below the integer n = ±1, 0 and all nonzero matrix elements of the shift operators

are equal.

10.3. Fundamental Representations of A3

The Lie algebra A3 has three fundamental irreducible representations. Two are

four-dimensional and one is six-dimensional. For the compact real form su(4),
the four-dimensional representations are complex conjugates of each other and the

six-dimensional representation is equivalent to a real representation.

From Table 7 the highest root of the first fundamental representation F1 is 1
4(3, 2, 1)

= 3
4(e1 − e2) +

2
4(e2 − e3) +

1
4(e3 − e4) = e1 − 1

4R. The four weights of this

fundamental representation are |i〉 = ei − 1
4R. By similar arguments the four

weights in the other four-dimensional fundamental irreducible representation F3

are 1
4R− e4,

1
4R− e3,

1
4R− e2,

1
4R− e1.

The images of the operator hiHi +AijEei−ej
in these two representations are

hiHi +AijEei−ej

F1−−−−−→

⎡⎢⎢⎣
h1 − λ A12 A13 A14

A21 h2 − λ A23 A24

A31 A32 h3 − λ A34

A41 A42 A43 h4 − λ

⎤⎥⎥⎦

hiHi +AijEei−ej

F3−−−−−→

⎡⎢⎢⎣
λ− h4 A34 A24 A14

A43 λ− h3 A23 A13

A42 A32 λ− h2 A12

A41 A31 A21 λ− h1

⎤⎥⎥⎦ .

(31)

For both representations λ = 1
4(h1 + h2 + h3 + h4). The diagonal elements

indicate the basis vectors for the corresponding rows and columns. For example,

in the fundamental representation F1, h1 − λ indicates that the weight for the first

row/column is e1 − 1
4R.
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For the six-dimensional fundamental irreducible representation the highest weight

is 1
4(2, 4, 2) =

1
2(+e1+e2−e3−e4). The 6 =

(
4
2

)
weights in this representation

each have two positive and two negative coefficients. In this representation the

image of the general operator in the Lie algebra is

hiHi +AijEei−ej

F2−−−−−→

⎡⎢⎢⎢⎢⎢⎢⎣

1
2D11 A23 A24 A13 A14 0
A32

1
2D22 A34 A12 0 A14

A42 A43
1
2D33 0 A12 A13

A31 A21 0 1
2D44 A34 A24

A41 0 A21 A43
1
2D55 A23

0 A41 A31 A42 A32
1
2D66

⎤⎥⎥⎥⎥⎥⎥⎦ . (32)

Once again, the diagonal matrix elements Dii, I = 1, ..., 6, are

D11 =
1

2
(h1 + h2 − h3 − h4), D44 =

1

2
(−h1 + h2 + h3 − h4)

D22 =
1

2
(h1 − h2 + h3 − h4), D55 =

1

2
(−h1 + h2 − h3 + h4)

D33 =
1

2
(h1 − h2 − h3 + h4), D66 =

1

2
(−h1 − h2 + h3 + h4).

10.4. Fundamental Representations of D3

From Table 7 the highest weight of the first fundamental irreducible representation

F1 is f1. The set of six weights for this representation consists of ±fi, i = 1, 2, 3.

The image of the operator hiHi+BijE±fi±fj
in this six-dimensional representation

is

hiHi +BijE±fi±fj

F1−→

⎡⎢⎢⎢⎢⎢⎢⎣

h1 B(+−0) B(+0−) B(+0+) B(++0) 0

B(−+0) h2 B(0+−) B(0++) 0 B(++0)

B(−0+) B(0−+) h3 0 B(0++) B(+0+)

B(−0−) B(0−−) 0 −h3 B(0+−) B(+0−)

B(−−0) 0 B(0−−) B0−+) −h2 B(+−0)

0 B(−−0) B(−0−) B(−0+) B(−+0) −h1

⎤⎥⎥⎥⎥⎥⎥⎦ .

(33)

In this matrix B(+0+) is the coefficient of E+f1+f3
. As usual, the diagonal matrix

elements are markers for the weights in this representation.

The highest weight of the second fundamental irreducible representation F2 is
1
2(f1 + f2 − f3). The four weights in this representation are 1

2(±f1 ± f2 ± f3),
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with an odd number of minus signs. For the third fundamental irreducible repre-

sentation F3 the set of four weights is similar, but with an even number of minus

signs [21].

The image of the operator hiHi +BijE±fi±fj
in the four-dimensional representa-

tion F2 is

hiHi +BijE±fi±fj

F2−−−−−→

⎡⎢⎢⎢⎣
B2

11 B(0+−) B(+0−) B(++0)

B(0−+) B2
22 B(+−0) B(+0+)

B(−0+) B(−+0) B2
33 B(0++)

B(−−0) B(−0−) B(0−−) B2
44

⎤⎥⎥⎥⎦ (34)

where

B2
11 =

1

2
(h1 + h2 + h3), B2

22 =
1

2
(h1 − h2 + h3)

B2
33 =

1

2
(−h1 + h2 + h3), B2

44 =
1

2
(−h1 − h2 − h3)

while in the other four-dimensional representation F3 it is

hiHi +BijE±fi±fj

F3−−−−−→

⎡⎢⎢⎣
B3

11 B(0++) B(+0+) B(++0)

B(0−−) B3
22 B(+−0) B(+0−)

B(−0−) B(−+0) B3
33 B(0+−)

B(−−0) B(−0+) B(0−+) B3
44

⎤⎥⎥⎦ (35)

with

B3
11 =

1

2
(h1 + h2 + h3), B3

22 =
1

2
(h1 − h2 + h3)

B3
33 =

1

2
(−h1 + h2 + h3), B3

44 =
1

2
(−h1 − h2 − h3).

10.5. Unitary Representations of Compact Groups

In order for the matrices in equations (31-35) to exponentiate to unitary represen-

tations of the compact groups SU(4) and SO(6) the matrices must be antihermi-

tian. This condition places constraints on the complex coefficients: h∗
i = −hi

and A∗
ij = −Aji for su(4) and similarly for the coefficients in the Lie algebra

so(6). Using these constraints it is possible to show that the two four-dimensional

fundamental irreducible representations of su(4) are related to each other by com-

plex conjugation and the six-dimensional representation is equivalent to a real an-

tisymmetric representation of the Lie algebra. This is true also for the two four-

dimensional ‘spinor’ representations of so(6). The six-dimensional representation
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is equivalent to the Lie algebra of real antisymmetric matrices obtained by lin-

earization of the Lie group SO(6) about the identity, which consists of real anti-

symmetric infinitesimal matrices. For all representations of these Lie algebras the

trace is zero: this condition exponentiates to the condition that the determinant of

the corresoponding group operation is +1.

11. Computational Simplifications

Relations among the low-dimensional Lie groups and their algebras can sometimes

be used to simplify computations. The general idea is to construct a global param-

eterization of the Lie group by exponentiating points in the Lie algebra, and then

use matrix multiplication to construct an analytic expression for the composition

of two group operations [26]. The group composition law is matrix multiplication,

which is already very simple, so there is not much room for further simplification.

For semisimple groups consisting of n×n matrices with n > 2 the results are gen-

erally uninstructive. However, when the Lie group is locally isomorphic to a 2× 2
matrix Lie group some elegant results are possible. Two cases occur that are of par-

ticular interest in physical applications: SU(2) ↓ SO(3) and SL(2,C) ↓ SO(3, 1).

11.1. Rotations and SU(2)

The homomorphism that exists between SU(2) and SO(3) has already been dis-

cussed Section 9. It is possible to describe the composition of two rotation group

operations by mapping each (nonuniquely) to an SU(2) counterpart, constructing

the product of these 2 × 2 matrices, and then mapping the resulting operation in

SU(2) back to SO(3) (uniquely). To be specific, we map the rotations represented

by (n̂1, θ1) and (n̂2, θ2) to their SU(2) counterparts and compute the product(
cos

θ1
2
I2 + i sin

θ1
2
n̂1·σ

)(
cos

θ2
2
I2 + i sin

θ2
2
n̂2·σ

)
= cos

θ

2
I2 + i sin

θ

2
n̂·σ.

(36)

Expanding the equation on the left yields simple expressions for the rotation angle

θ and axis n̂

cos
θ

2
= cos

θ1
2
cos

θ2
2

− sin
θ1
2
sin

θ2
2
n̂1 · n̂2 (37a)

sin
θ

2
n̂ = sin

θ1
2
cos

θ2
2
n̂1 + sin

θ2
2
cos

θ1
2
n̂2 − sin

θ1
2
sin

θ2
2
n̂1×n̂2. (37b)

This result can be expressed in a somewhat more symmetric way as follows
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tan
θ

2
n̂ =

tan θ1
2 n̂1 + tan θ2

2 n̂2 − tan θ1
2 tan

θ2
2 n̂1×n̂2

1− tan θ1
2 tan

θ2
2 n̂1·n̂2

(37c)

or in a yet more memorable way

c =
a+ b− a× b

1− a · b , c = tan
θ

2
n̂, a = tan

θ1
2
n̂1, b = tan

θ2
2
n̂2. (37d)

The information in equations (37) then defines the product of rotations in SO(3) –

(n̂1, θ1) · (n̂2, θ2) = (n̂, θ).

The rotation group SO(3) can be parameterized in many different ways. Each dif-

ferent parameterization leads to its own unique analytic expression for the group

composition law. In principle all parameterizations are equivalent. These remarks

are valid for all Lie groups. Among various parameterizations of any Lie group

one is more equal than others. This is the exponential parameterization. This is the

parameterization obtained by mapping the Lie algebra onto the Lie group using the

exponential mapping. The analytic expression in equation (37) is obtained using

this unique parameterization. Analytic reparameterizations of the group compo-

sition law due to various alternative parameterizations of the Lie group will be

discussed in Section 12 for Lie groups in general, and Subsection 12.4 for SO(3)
in particular.

11.2. Lorentz Transformations and SL(2,C)

Lorentz transformations leave invariant the quadratic form x2 + y2 + z2 − (ct)2.

Lorentz transformations are elements in the Lie group O(3, 1), consisting of four

disconnected components. The component connected to the identity, I4, is locally

isomorphic to the group of 2 × 2 complex matrices SL(2,C). A general element

in the Lie algebra so(3, 1) has the form

θiLi + wjBj =

⎡⎢⎢⎣
0 θ3 −θ2 −w1

−θ3 0 θ1 −w2

θ2 −θ1 0 −w3

−w1 −w2 −w3 0

⎤⎥⎥⎦
(38)

[Li, Lj ] = −εijkLk, [Li, Bj ] = −εijkBk, [Bi, Bj ] = +εijkLk.

The commutation relations of the generators Li, Bj are given on the right in equa-

tion (39).
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The interpretation of the boost operators can be obtained by computing the action

of any one of them on the coordinates (x, y, z, ct)⎡⎢⎢⎣
x′

y′

z′

ct′

⎤⎥⎥⎦ = Exp(w3B3)

⎡⎢⎢⎣
x
y
z
ct

⎤⎥⎥⎦

=

⎡⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 coshw3 − sinhw3

0 0 − sinhw3 coshw3

⎤⎥⎥⎦
⎡⎢⎢⎣
x
y
z
ct

⎤⎥⎥⎦ =

⎡⎢⎢⎣
x
y

γ(z − βct)
γ(ct− βz)

⎤⎥⎥⎦ .

(39)

The boost Exp(w3B3) transforms from one frame to another moving with parallel

axes and with velocity (0, 0, v) with respect to the first frame. In these expressions

γ = coshw3, γβ = sinhw3, β = v/c, γ = 1/
√
1− β2.

The relation between the groups SO(3, 1) and SL(2,C) is obtained using the com-

mutation relations of the Pauli spin matrices [σi, σj ] = 2iεijkσk. From this we see

the correspondence

L ↔ i

2
σ, B ↔ 1

2
σ. (40)

In this representation the boost is given by

Exp(w ·B) = Exp

(
1

2
wŵ·σ

)
= cosh

w

2
I2 + sinh

w

2
ŵ·σ (41)

where w = wŵ. A general element in SO(3, 1) can be written as an element in

the coset SO(3, 1)/SO(3), which is a boost, together with a rotation

SO(3, 1) = Exp(w ·B)Exp(θ·L) → SL(2,C)
(42)

=
(
cosh

w

2
I2 + sinh

w

2
ŵ·σ

) (
cos

θ

2
I2 + i sin

θ

2
n̂·σ

)
.

Any 2 × 2 matrix m ∈ SL(2,C) can be written in the form defined by this coset

decomposition. One way is to multiply out the product given in equation (43) into

the form M =
∑3

μ=0Mμσu and compare these complex components Mμ with

those of m. Another procedure is to construct the boost directly through

mm† = Exp(w ·B)Exp(θ·L)Exp(θ·L)†Exp(w ·B)†
(43)

= (Exp(w ·B))2 = Exp(2w ·B).
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The value of 2w, and therefore w, can be determined directly from equation (41).

In order to illustrate the convenience of this procedure we compute the product of

two boosts (w1, ŵ1) · (w2, ŵ2) = (w, ŵ) · (θ, n̂). This is done by multiplying out

the representatives of the boosts in SL(2,C)

Exp(w1 ·B)Exp(w2 ·B)

=
(
cosh

w1

2
I2 + sinh

w1

2
ŵ1·σ

) (
cosh

w2

2
I2 + sinh

w2

2
ŵ2·σ

)
(44)

and comparing with the terms in equation (43). We find

ŵ · n̂ = 0, a = tanh
w1

2
ŵ1

tan
θ

2
n̂ =

a× b

1 + a · b , b = tanh
w2

2
ŵ2

coshw = (1 + a · b)2 + (a+ b) · (a+ b) + (a× b) · (a× b)

ŵ � a+ b+
(a+ b)× (a× b)

2(1 + a · b) ·

(45)

In the nonrelativistic limit w = wŵ = v/c and we find to first order

θ =
1

2

v1

c
×

v2

c
,

v

c
=

v1

c
+

v2

c
· (46)

In particular, if one of the boosts is infinitesimal (β2 → δβ2), then the rotation

angle is also infinitesimal and is

δΘ =
1

2
β1×δβ2 . (47)

This angular precession is called the Thomas precession [54].

11.3. SO(3,C) and SL(2,C)

The compact simple Lie group SO(3,R) has a complex extension SO(3;C) in

which each of the real parameters in SO(3,R) is replaced by a complex number.

At the level of the Lie algebra of 3 × 3 matrices, the three compact generators

are the 3 × 3 angular momentum matrices L defined in equation (21). The three

noncompact generators can be chosen as B = iL (B are not to be confused with

the operators B defined in equation (39)). The commutation relations are
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[Li, Lj ] = −εijkLk,

[Li, Bj ] = −εijkBk,

[Bi, Bj ] = +εijkLk,

[si, sj ] = −εijksk

[si, bj ] = −εijkbk

[bi, bj ] = +εijksk.

(48)

The globally homomorphic and locally isomorphic Lie group SU(2) also has a

complex extension, obtained the same way. The six infinitesimal generators for

the Lie algebra sl(2,C) can be taken as sj =
i
2σj and bj = i i

2σj . The commuta-

tion relations among these six infinitesimal generators are given above in equation

(48). The commutation relations for these two Lie algebras are those of the homo-

geneous Lorentz group SO(3, 1) given in equation (39).

There are two ways to create isomorphisms between so(3;C) and sl(2,C). These

are
I L ↔ s, B ↔ +b

II L ↔ s, B ↔ −b .
(49)

The Exponential map can be used to construct a mapping from the Lie algebras

back to the Lie groups. For SO(3,C) we find

Exp( θ·L+ γ·B) = Exp ((θ + iγ)iLi)
(50)

= I3 + sin(θ + iγ)·L(θ + iγ) + (1− cos(θ + iγ)) ((θ + iγ)·L)2 .

This result is a simple extension of equation (24). It results from exploiting the

Cayley-Hamilton theorem: every matrix satisfies its secular equation.

The exponentiation of the Lie algebra sl(2,C) to the Lie group SL(2,C) follows

the same procedure

Exp(θ · s+ γ·b) = Exp (i(θ + iγ)jσj/2)
(51)

= cos
θ + iγ

2
I2 + i sin

θ + iγ

2
· (θ̂ + iγ).

In the event that (θ+ iγ) · (θ+ iγ) = 0 the expansion equation (51) for SO(3,C)
terminates at the third (quadratic) term and that for SL(2,C) terminates at the

second (linear) term.

The topological properties of these Lie groups are easily determined. For semisim-

ple Lie groups g with maximal compact subalgebra k and Cartan decomposition

g = k+ p, [k, k] = k, [k, p] = p, [p, p] = (−) k (52)
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the exponential from the algebra to the group can be parameterized by a coset de-

composition: Exp(g) → G = K ∗P . The space P = Exp(p) is simply connected

and topologically equivalent to Rn for some appropriate n = dim(p), n = 3 in

the current cases. The connectivity of G is therefore the same as the connectivity

of the maximal compact subgroup K = Exp(k). In the present cases the maximal

compact subgroups are SO(3,R) ⊂ SO(3,C), which is doubly connected, and

SU(2)) ⊂ SL(2,C), which is simply connected.

The composition law for operations in these two groups can be computed in the

exponential parameterization. Since the two groups are homomorphic it is suffi-

cient to construct the group composition law in the double cover group: SL(2,C).
This is done by composing 2× 2 matrices of the form given in equation (52). For

all practical purposes this has already been done in equations (36) and (37). The

following substitutions effect this group composition law

θ = (n̂, θ) → θ + iγ =

(
θ + iγ

|θ + iγ| , |θ + iγ|
)

where (53)

|θ + iγ| =
√
(θ + iγ) · (θ + iγ).

The vectors a,b parameterizing the two operations in SU(2) are to be replaced

by the corresponding complex three-vectors parameterizing the two operations in

the group SL(2,C), and their product is given by the complex three-vector corre-

sponding to c in equation (37).

11.4. D2 = A1 ⊕A1

The Lie algebras with rank-two root space D2 have two diagonal operators H1, H2

and four nonzero roots ±e1 ± e2. The root space is semisimple: it describes

two mutually commuting rank one Lie algebras of type A1 = B1 = C1 with three

operators each: H1+H2, E±(e1+e2) and H1−H2, E±(e1−e2). If we describe these

two three-dimensional Lie algebras as A and B then the commutation relations can

be summarized as follows

A×A = −A, B×B = −B, A×B = 0. (54)

The two Lie algebras can be constructed from the six infinitesimal generators of

the matrix group SO(4): these consist of antisymmetric 4× 4 matrices that can be
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taken as

θ·J =

⎡⎢⎢⎣
0 θ3 −θ2 0

−θ3 0 θ1 0
θ2 −θ1 0 0

0 0 0 0

⎤⎥⎥⎦ , γ·K =

⎡⎢⎢⎣
0 0 0 γ1
0 0 0 γ2
0 0 0 γ3

−γ1 −γ2 −γ3 0

⎤⎥⎥⎦ . (55)

The operators Ji,Kj satisfy the commutation relations

[Ji, Jj ] =− εijkJk, [Ji,Kj ] =− εijkKk

[Ki, Jj ] =− εijkKk, [Ki,Kj ] =− εijkJk
(56)

which can be written in simplified vector notation as

J× J = −J, J×K = −K, K× J = −K, K×K = −J. (57)

The two three-dimensional Lie algebras A,B can be expressed in terms of the

matrices Ji,Kj as follows

A = 1
2(J+K), B = 1

2(J−K)

A×A = −A, B×B = −B, A×B = 0.
(58)

11.5. Laboratory and Body System Rotations: SO(4)

The rotational properties of molecules can be described by rotation operators J
in either the laboratory (inertial) coordinate system or rotational operators L in a

body-fixed (noninertial) coordinate system. The two sets of operators are related

by a rotation matrix

Lα = 〈eα|ei〉Ji = 〈α|i〉Ji . (59)

Here ei are orthonormal basis vectors in a laboratory fixed coordinate system, eα
are orthonormal basis vectors in a body-fixed frame, and 〈eα|ei〉 = 〈α|i〉 are ma-

trix elements (i.e., direction cosines) in an orthogonal transformation from one

system to the other and 1 ≤ i, j, k ≤ 3, 1 ≤ α, β, γ ≤ 3. Klein observed [40]

that the commutation relations among the angular momentum operators Ji in the

laboratory-fixed coordinate system were opposite those of the operators Lα in the

body-fixed frame, that the two sets commuted with each other, and that the total

angular momentum was the same in both coordinate systems. An extensive dis-

cussion of the properties of these operators was given in Casimir’s thesis [10]. The

relationship among these operators was later reviewed by van Vleck [55] from a

slightly different viewpoint.
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The relations among the operators J and L are (� = 1)

L · L =
∑
α

L2
α = (〈α|i〉Ji)t(〈α|j〉Jj) = JiδijJj =

∑
i

J2
i = J · J (60)

and

[Ji, Jj ] = iεijkJk, [Lα, Lβ] = −iεαβγLγ , [Ji, Lβ ] = 0. (61)

The commutation properties of the body-fixed operators with themselves and with

the laboratory-fixed operators are obtained from the following relations among the

direction cosines 〈α|i〉 and the operators J

[〈α|i〉, Jj ] = iεijk〈γ|k〉, εijk〈α|i〉〈β|j〉 = εαβγ〈γ|k〉. (62)

Using these relations it is a straightforward if tedious exercise [55] to show that the

commutation relations of J with J and of L with L have opposite signs and that

J and L commute, as stated in equation (61). These operators together span a Lie

algebra of type so(4) = su(2)⊕ su(2).

The hermitian operators J and L can be related to the antisymmetric operators A
and B in equation (58) as follows

J = −iA, L = −iB. (63)

The two independent Lie algebras spanned by J and L, or A and B, have repre-

sentations indexed by quantum numbers ja, jb, with 2ja = 0, 1, 2, · · · and 2jb =
0, 1, 2, · · · (incoherent). However, the requirement that J · J = L · L restricts the

class of representations to the subset ja = jb in studies of the rotational properties

of molecules.

12. Analytic Reparameterizations

The operations in a Lie group are identified with points in a manifold. There are

as many ways to parameterize Lie group operations as there are ways to introduce

coordinate systems on a manifold, viz: infinite. Some parameterizations are more

useful than others. One among them is unique: the exponential parameterization

maps points in the Lie algebra to elements in the Lie group in a locally 1:1 way

and in a globally many to one way. The group composition and inversion laws

are expressed in terms of analytic functions. Different parameterizations require

different analytic functions. The construction of analytic functions that represent

group composition and inversion laws can be a nightmare. As a particular example,

if A and B are elements in the Lie algebra of some Lie group, then eA and eB are
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operations in the Lie group. Therefore eA · eB is a group operation that we can

represent in the form eC , for some possibly nonunique element C = C(A,B) in

the Lie algebra. The computation of C is the famous Baker-Campbell-Hausdorff

problem [5,8,35]. A formal solution to this problem was given by Dynkin [14,15].

It is as elegant mathematically as it is useless computationally.

The purpose of this Section is to introduce a simple trick (i.e., theorem) that re-

duces this computation to a simple algorithm [27, 29]. In short: 1) find a faithful

matrix representation of the Lie algebra; 2) carry out the exponentiations using this

representation; 3) carry out the group multiplications using these matrices; 4) de-

termine the element in the matrix Lie algebra that gives this result; 5) Viola! This

result is true in the abstract Lie group as well as in all its matrix representations.

This algorithm will be illustrated first by applications to the Heisenberg alge-

bras/groups, which are not simple and have therefore not been discussed previously

in this work. It will then be applied to SU(2) in two different ways. We close this

Section with an application to SU(4).

12.1. Heisenberg Nilpotent Group

The Heisenberg group H3 is a three-dimensional nilpotent Lie group. A basis in the

Lie algebra h3 that is very useful in the Quantum Theory consists of the creation

and annihilation operators a† = 1√
2
(x−D) (where D = d/dx) and a = 1√

2
(x+D)

and their commutator
[
a, a†

]
= I . These operators act in an infinite-dimensional

Hilbert space whose basis vectors are traditionally chosen as the number states |n〉,
n = 0, 1, 2, · · · , with a|n〉 = |n − 1〉√n, a†|n〉 = |n + 1〉√n+ 1, and I|n〉 =
1|n〉. The algebra h3 acts on the Hilbert space through an infinite-dimensional

representation.

The algebra has many other representations. One of them consists of 3×3 matrices

[27, 29], with

Γf (La+Ra† +DI) =

⎡⎣ 0 L D
0 0 R
0 0 0

⎤⎦ . (64)

The 3 × 3 matrix representatives of the basis operators satisfy the same commu-

tation relations as the operators (
[
Γf (a),Γf (a†)

]
= Γf (

[
a, a†

]
) = Γf (I)) and

provide a faithful matrix representation of this algebra.

For many purposes it is useful to be able to reparameterize a group operation of the

form eαa
†+βa in such a way that all the annihilation operators act first and all the
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creation operators act last

eαa
†+βa ?

= eα
′a† ed

′I eβ
′a. (65)

The result on the right is an element in the Lie group, and requires the presence of

the additional group operation ed
′I . The exponentials are easily carried out in the

faithful three-dimensional representation

Exp
(
Γf (La+Ra† +DI)

)
→ Exp

⎛⎝⎡⎣ 0 L D
0 0 R
0 0 0

⎤⎦⎞⎠=

⎡⎣ 1 L D + 1
2LR

0 1 R
0 0 1

⎤⎦ . (66)

Computing the expressions on the left and the right of equation (65) in this repre-

sentation, we find⎡⎣ 1 β 1
2αβ

0 1 α
0 0 1

⎤⎦ =

⎡⎣ 1 0 0
0 1 α′

0 0 1

⎤⎦ ⎡⎣ 1 0 d′

0 1 0
0 0 1

⎤⎦ ⎡⎣ 1 β′ 0
0 1 0
0 0 1

⎤⎦ =

⎡⎣ 1 β′ d′

0 1 α′

0 0 1

⎤⎦ . (67)

By comparing the expressions on the left and the right, matrix element by matrix

element, we conclude: α′ = α, β′ = β, d′ = 1
2αβ. Formally, we have done the

following [27, 29]

eΓ
f (αa†+βa) = eαΓ

f (a†) e
1

2
αβΓf (I) eβΓ

f (a) ⇔ eαa
†+βa = eαa

†

e
1

2
αβ I eβa. (68)

To illustrate how disentangling formulas of this type are useful, we observe that

x,D = d/dx, I span h3, so that we can use the method above to construct the

formula

et(x−D) = etxe−t2/2e−tD. (69)

This can be applied to the Gaussian function e−x2/2 in two different ways

et(x−D)e−x2/2 = e−x2/2
∑
n=0

tnHn(x)

n!
· (70)

This is a Rodrigues’ expression for Hermite polynomials [1]. An alternative appli-

cation is

etxe−t2/2e−tDe−x2/2 = etxe−t2/2e−(x−t)2/2 = e2xt−t2 . (71)

The disentangling theorem for h3 leads in a simple way to the generating function

for Hermite polynomials [1].
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12.2. Heisenberg Solvable Group

The Heisenberg group H4 is a four-dimensional solvable Lie group [29]. The four

basis operators in h4 include besides those of h3 the so called number operator

n̂ = 1
2(aa

† + a†a), with two additional nonzero commutators:
[
n̂, a†

]
= +a†

and [n̂, a] = −a. This algebra also acts in the infinite-dimensional Hilbert space

described above. It also has a faithful 3× 3 matrix representation [29]

Γf (Nn̂+ La+Ra† +DI) =

⎡⎣ 0 L D
0 N R
0 0 0

⎤⎦ . (72)

The exponential of this matrix representation is a bit more complicated

Exp
(
Γf (Nn̂+ La+Ra† +DI)

)
→ Exp

⎛⎝⎡⎣ 0 L D
0 N R
0 0 0

⎤⎦⎞⎠

=

⎡⎣ 1 L
N (eN − 1) D + LR eN−1−N

N2

0 eN R
N (eN − 1)

0 0 1

⎤⎦ . (73)

This expression can be used to construct all sorts of disentangling results with

relative ease.

It happens often that thermal expectation values 〈O〉 need to be constructed. These

can be constructed from generating function 〈eλO〉 = F (H, λ)/F (H, 0), where

F (H, λ) = tr e−βHeλO, by taking derivatives

〈On〉 = dn

dλn
〈eλO〉|λ=0 . (74)

It happens often under suitable approximations that the operators O are elements

in a finite-dimensional Lie algebra and the Hamiltonian H is also a linear element

in the Lie algebra. In such cases the product e−βHeλO is an element in a Lie group

and the theorem described above becomes very useful.

In order to illustrate how this works, suppose we needed to compute thermal expec-

tation values of x2, p2, or xp+ px in a harmonic oscillator potential under thermal

equilibrium conditions. Then H = �ωn̂ and we can choose O = Ra† + La and

attempt to compute e−β�ωn̂eλ(Ra†+La). In the infinite-dimensional representation

this would be a nightmare but in the 3 × 3 faithful matrix representation it is not

overly difficult

e−β�ωn̂eλ(Ra†+La) →
⎡⎣ 1 0 0
0 e−β�ω 0
0 0 1

⎤⎦ ⎡⎣ 1 λL 1
2λ

2LR
0 1 λR
0 0 1

⎤⎦ . (75)
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Furthermore, there are a few extra tricks that greatly simplify the computation.

The first is that the trace of a matrix is invariant under a similarity transformation.

The second is that n̂ and I are diagonal in the infinite-dimensional representation

of use in Quantum Theory, even if I is not diagonal in the faithful 3 × 3 finite-

dimensional representation. (Recall: Being diagonal or unitary is a property of the

representation of the group/algebra, not of the group/algebra itself.) Therefore it

would be useful to hunt for a similarity transformation that transforms the product

in equation (75) to the exponential of just the two operators n̂ and I . Introduce the

group operation S =

⎡⎣ 1 b 0
0 1 c
0 0 1

⎤⎦ and its inverse and apply it to find

S

⎡⎣ 1 0 0
0 e−β�ω 0
0 0 1

⎤⎦ ⎡⎣ 1 λL 1
2λ

2LR
0 1 λR
0 0 1

⎤⎦S−1

(76)

=

⎡⎣ 1 b(−1 + e−β�ω) + λL ∗∗
0 e−β�ω c(1− e−β�ω) + e−β�ωλR
0 0 1

⎤⎦ .

The values of b and c are now chosen to zero out the coefficients of the creation

and annihilation operators, and ∗∗ evaluates to

∗∗ =
1

2
λ2LR coth(

�ω

2kT
). (77)

This disentangling result is now used in the infinite-dimensional representation,

giving

F (H, λ) = tr e−β�ωn̂+∗∗ = e
1

2
λ2LR coth( �ω

2kT
) tr e−β�ωn̂

(78)

= e
1

2
λ2LR coth( �ω

2kT
)〈n̂〉T .

As usual 〈n〉T = 1
2 + 1

eβ�ω−1
and the final generating function is

〈eλ(Ra†+La)〉 = e
1

2
λ2LR coth( �ω

2kT
). (79)

Various choices of the coefficients L,R allow computation of the moments of var-

ious powers of x, p, xp+px. For example, with L = R = 1/
√
2, (Ra†+La) = x

so that 〈eλx〉 = e
1

4
λ2 coth( �ω

2kT
). It is clear that the odd moments of x vanish (by

symmetry) and the first even moment is 〈x2〉 = 1
2 coth(

1
2β�ω) [26].
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12.3. SU(2) Coherent State Parameterization

Coherent states for the harmonic oscillator were first introduced by Schrödinger

in 1926 in his attempt to understand the relation between his new creation, Quan-

tum Mechanics (Wave Mechanics) and Classical Mechanics [51]. They were later

rediscovered by many people. In the early 1960s they were used by Glauber

[30, 31] to create a profoundly powerful foundation for the field of Quantum Op-

tics, spurred by the recent development of masers and lasers.

Masers and lasers involve atoms and fields interacting in useful ways. The Glauber-

Schrödinger coherent states were applied to describe the field part of these devices.

In the late 1960s the question was raised whether something like coherent states

could also be formulated to describe the atomic side of these devices. Specifically,

could coherent states be constructed for atoms involved in lasing transitions? In

effect the question was directed at describing the atomic part of the transition in-

duced by a single frequency mode of the electromagnetic field, which coupled two

atomic levels. Such atomic transitions could be described by two shift operators,

describing transitions from the lower ground to the higher excited state (σ+) and

in the reverse direction (σ−), as well as two operators describing the two energy

eigenstates, 1
2(I2 ± σ3). The dynamics of a two-level atom could be described by

the operators of the unitary algebra u(2).

When N atoms are present each atom is described by operators σ
(i)
±,3,0. When all

atoms act coherently the individual atomic operators can be summed over to give

angular momentum operators and the identity: J±,3,0 =
∑N

i=1 σ
(i)
±,3,0. These col-

lective operators obey the usual commutation relations [J3, J±] = ±J±, [J+, J−]
= 2J3, with IN+1 commuting with the three collective angular momentum opera-

tors.

Since the field coherent states for a single mode involved four operators n̂, a†, a, I
and the collective atomic states were also described by four operators with anal-

ogous but somewhat different properties, it was felt that it could be possible to

create atomic coherent states that shared a similar spectrum of properties as the

field coherent states [3]. In fact, the four field operators can be obtained by a

certain contraction limit from the four atomic operators [3, 26].

Field coherent states for a single mode could be defined from three different start-

ing points [30, 31]

1. As minimum uncertainty states.

2. As eigenstates of the annihilation operator.

3. By applying a group transformation from H4 to the ground state.
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These three approaches were equivalent because of the structure of the Lie algebra

h4. Neither of the first two approaches could be used to create coherent states for

a finite number of two-level atoms. This is directly due to the fact that the atomic

Hilbert space is finite dimensional. In the case that N atoms are present, all initially

in their ground state, the Hilbert space is defined by J = 1
2N and the ground state

is |ground〉 = | J
−J

〉
Atomic coherent states were developed using the construction of field coherent

states as a model [3]. On the field side the ground state |0〉 is left invariant (effec-

tively unchanged, multiplied by a phase factor) by exponentials of the number and

identity operators. On the atomic side the ground state is multiplied by a phase

factor under action by exponentials of the operators J3, I2J+1. In summary

eγn̂+δI |0〉 = phase× |0〉, eγJ3+δI2J+1 | J
−J

〉 = phase× | J
−J

〉. (80)

The field coherent states are created by a rotation using the two remaining operators

and the atomic coherent states could be similarly created as follows

|α〉 = eαa
†−α∗a|0〉, |θ, φ〉 = e−iθ(Jx sinφ−Jy cosφ)| J

−J
〉. (81)

The field coherent states could be expressed in terms of the number (Fock) states

|n〉 using a distentangling theorem; so also could the atomic coherent states be ex-

pressed in terms of eigenstates | J
M

〉 of J3. The comparison is more direct by mak-

ing the change of variables e−iθ(Jx sinφ−Jy cosφ) = eζJ+−ζ∗J− with ζ = (θ/2)e−iφ

U(α) = eαa
†−α∗a = eαa

†

e−α∗α/2Ie−α∗a

(82)
U(θ, φ) = eζJ+−ζ∗J− = eτJ+eln(1+τ∗τ)J3e−τ∗J−

where τ and ζ are projectively related and τ = e−iφtan1
2θ. By applying the dis-

entangled operators in equation (83) to the ground states, the coherent states are

obtained as linear combinations of the eigenstates of n̂ and J3

|α〉 = U(α)|0〉 = e−α∗α/2
∞∑
n=0

αn

√
n!
|n〉

(83)

|θ, φ〉 = U(θ, φ)| J
−J

〉 =
M=+J∑
M=−J

(
2J

J +M

)1/2 τJ+M

(1 + τ∗τ)J
| J
M

〉.
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Using these expansions it is possible to compute many useful propeerties, for ex-

ample overlaps

〈α|β〉 = e−(|α|2+|β|2−2α∗β)/2, 〈θ, φ|θ′, φ′〉 =
(

(1 + τ∗τ ′)2

(1 + |τ |2)(1 + |τ ′|2)
)J

(84)

and their absolute squares

|〈α|β〉|2 = e−|α−β|2 , |〈θ, φ|θ′, φ′〉|2 = cos4J
1

2
Θ (85)

where the angle Θ is defined in the usual way as the distance between two points

on a unit sphere with coordinates (θ, φ) and (θ′, φ′), i.e., cosΘ = cos θ cos θ′ +
sin θ sin θ′ cos(φ− φ′).
Since the development of atomic coherent states depends on the properties of

groups, their representations, and analytic reparameterizations, it has become pos-

sible to construct coherent states for any group. The prescription is standard and

follows the algorithm presented above.

12.4. Rotation Group Parameterizations

Many different parameterizations of the rotation group SO(3) have been intro-

duced in the past [6, 46, 48]. These have often been tailored to specific needs in

widely different fields. As a result there is a wide – possibly confusing – array

of representations of the group composition law. Carried out correctly, they are

all equivalent. Often it is difficult to see their equivalences or the relations among

them.

The rotation group has been parameterized by Euler angles, Rodrigues vectors,

Cayley-Klein parameters, Fedorov-Gibbs vectors, Cayley transformations as well

as the exponential map [2, 7, 11, 13, 16, 33, 34, 38, 39, 42–45, 47, 52, 53, 58]. The

disentangling theorem is a useful means to create analytic mappings among the

large variety of different analytic parameteriztions of the rotation group.

To begin, it is useful to adopt the smallest faithful matrix representation of this

group. This is the 2 × 2 spinor representation, which is not only faithful, but a

double cover of the rotation group. We use the exponential of elements in the Lie

algebra as a Rosetta stone for comparing the myriad different analytic descriptions

of this group. A rotation about an axis n̂ in R3 through an angle θ is represented

by the 2× 2 matrix

ein̂·σθ/2 =

[
cos(θ/2) + in3 sin(θ/2) (in1 + n2) sin(θ/2)
(in1 − n2) sin(θ/2) cos(θ/2)− in3 sin(θ/2)

]
. (86)
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Euler-angle type parameterizations are characterized by a succession of three suc-

cessive nonparallel rotation axes. For example, an Euler-angle parameterization

of type 3-1-2 involves a succession of rotations, first around the second axis (Y ),

followed by a rotation around the first axis, concluding with a rotation about the

Z-axis. Suppose we want to describe a rotation in terms of a 3-1-3 Euler param-

eteriztion [32] RZ(φ2)RX(ψ)RZ(φ1). The spinor representation of this sequence

of rotations is[
eiφ2/2 0

0 e−iφ2/2

] [
cos(ψ/2) i sin(ψ/2)
i sin(ψ/2) cos(ψ/2)

] [
eiφ1/2 0

0 e−iφ1/2

]
(87)

=

[
ei(φ2+φ1)/2 cos(ψ/2) ei(φ2−φ1)/2i sin(ψ/2)

ei(−φ2+φ1)/2i sin(ψ/2) ei(−φ2−φ1)/2 cos(ψ/2)

]
.

The analytic transformation between the exponential parameterization in equation

(86) and the Euler 3-1-3 parameterization of equation (88) is obtained simply by

comparing these 2 × 2 matrices, matrix element by matrix element. This is a

two-way street. Either triplet of parameters (n̂, θ) or (φ2, ψ, φ1) can be expressed

analytically in terms of the other. For example, if the exponential parameterization

is known and it is desired to determine the sequence of Euler rotations leading to

this particular group operation, it is sufficient to solve the equations

tan(12(φ2 + φ1)) = n3tan
1
2θ

tan(12(φ2 − φ1)) = −n2/n1

cos(ψ/2) =
√
cos2(θ/2) + (n3 sin(θ/2))2.

(88)

12.5. SU(4) Coherent States

The dynamics of an ensemble of identical four-level atoms driven by a classical

field can be described by SU(4) coherent states. These are constructed following

the algorithm described above for atomic (or SU(2)) coherent states [4, 24, 25,

28]. For simplicity we construct U(4) coherent states, which differ from SU(4)
coherent states by an unimportant overall phase factor.

First, assume that each atom has four states of interest, |k〉, k = 1, 2, 3, 4, with

|1〉 being the ground state. Also assume that at some time all N atoms are in their

respective ground states. Then in the future the collective state will be a linear

combination of states of the form |n1, n2, n3, n4〉, with n1 + · · · + n4 = N . The

total number of states of this type is

(
N + 3

3

)
= (N+3)(N+2)(N+1)/6. This



Relations Among Low-dimensional Simple Lie Groups 37

is the dimensionality of the symmetric N th order tensor product of the defining

matrix representation F1 of SU(4).

It is useful to define the 16 infinitesimal generators in the Lie algebra u(4) as

Xji = b†jbi, where Xji shifts an excitation from state i to state j. The operators

Xii are “energy operators”: they determine the number of atoms in the ith state.

The U(4) coherent states are obtained by applying a general U(4) transforma-

tion on the ground state |ground〉 = |N, 0, 0, 0〉. It is clear that the U(3) sub-

group of operators of the form Exp(
∑

rs αrsb
†
rbs), with 2 ≤ r, s ≤ 4, leave

the ground state invariant. The rotations that produce U(4) coherent states are

drawn from the coset U(4)/U(3)× U(1). These group operations have the form

Exp
(∑

r(ζrb
†
rb1−ζ∗r b

†
1br)

)
. A disentangling theorem of the form

eζrb
†
rb1−ζ∗r b

†
1
br = eτrb

†
rb1eαrsb

†
rbs+α11b

†
1
b1e−τ∗r b

†
1
br (89)

could then be used to construct the U(4) coherent states

eζrb
†
rb1−ζ∗r b

†
1
br |N, 0, 0, 0〉 = eτrb

†
rb1eNα11 |N, 0, 0, 0〉. (90)

The three operators in the exponential on the right hand side commute, so they can

be applied independently. Carrying out this expansion, we find

|ζ〉 =
∑
n2

∑
n3

∑
n4

(
N !

n1!n2!n3!n4!

)1/2

eNα11τn2

2 τn3

3 τn4

4 |n1, n2, n3, n4〉 (91)

with n1 + n2 + n3 + n4 = N and ni ≥ 0.

It only remains to determine the analytical relation between the initial coherent

state parameters ζ and the disentangling parameters τ, α11. This is carried out by

matrix multiplication in the defining 4×4 matrix representation of u(4). Explicitly,

we compute

Exp

⎡⎢⎢⎣ 0 ζ

−ζ† 0

⎤⎥⎥⎦ = Exp

⎡⎢⎢⎣ 0 τ

0 0

⎤⎥⎥⎦Exp

⎡⎢⎢⎣ M(3) 0

0 M(1)

⎤⎥⎥⎦Exp

⎡⎢⎢⎣ 0 0

−τ † 0

⎤⎥⎥⎦ . (92)

In these expressions τ is a 3× 1 column vector
(
τ4 τ3 τ2

)t
and M(1) is a 1× 1

matrix. Carrying out the indicated computations provides the desired relations

|ζ| =
√
ζ†ζ , M(1) = eα11 = cos |ζ| , τ =

tan|ζ|
|ζ| ζ. (93)



38 Robert Gilmore

The inner product is

〈ζ|ζ ′〉 → 〈τ |τ ′〉 =
(

(1 + τ †τ ′)
(1 + τ †τ )1/2(1 + τ ′†τ ′)1/2

)N

. (94)

The construction of U(4) coherent states for other than the symmetric class of

representations is also possible [24, 27]. However, it involves more work and is

less important, as the enlarged class of representations do not contain the natural

physical ground state.

13. Invariant Operators

Invariant operators are functions of the generators of a Lie group that commute

with all operators in the Lie algebra. A typical example of an invariant operator is

the square of the total angular momentum J · J for SU(2). If F (X) is an invariant

operator, [X,F (X)] = 0 for all operators X in the Lie algebra.

Alternatively, an invariant operator commutes with all operations in the Lie group:

gF (X)g−1 = F (X). The equivalence is easily seen by writing g = g(λ) = eλX

and then taking the limit of eλXF (X)e−λX → F (X) + λXF (X) − F (X)(λX)
+higher order terms = F (X).

13.1. Casimir Invariants

A systematic way for constructing quadratic invariant operators for semisimple Lie

algebras was devised by Casimir [10]. For a semisimple Lie algebra the structure

constants C k
ij are defined in terms of the commutation relations by [Xi, Xj ] =

C k
ij Xk. The structure constants are components of a third order tensor, first or-

der contravariant and second order covariant. It is antisymmetric in the covariant

indices. A covariant second order symmetric tensor can be constructed by double

cross contraction

Gij =
∑
r,s

C s
ir C

r
js = Gji. (95)

This tensor is nonsingular if and only if the underlying Lie algebra is semisimple

[26]. Its inverse, Gij , gives a second order invariant operator when contracted

against the operators Xi

F (X) = GijXiXj , [Xr, F (X)] = 0. (96)

The proof is straightforward and depends on the antisymmetry of the structure

constants with two contravariant indices: C rs
i + C sr

i = 0.
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It is useful to investigate the invariance of this Casimir operator under group trans-

formations

g(GijXiXj)g
−1 = Gij(gXig

−1)(gXjg
−1) = GijΓreg

ir (g)XrΓ
reg
js (g)Xs . (97)

Here Γreg(g) is the regular matrix representation of the Lie group/algebra. It con-

sists of n×n matrices, where n is the dimension of the group/algebra. The regular

representation is usually neither irreducible nor fundamental but is easy to con-

struct in terms of the structure constants for the Lie algebra: Γreg
jk (Xi) = C k

ij .

Since GijXiXj is invariant under g, equation (97) requires

GijΓreg
ir (g)Γreg

js (g) = Grs, Γreg t(g)GΓreg(g) = G . (98)

The regular representation of a semisimple Lie group is a metric-preserving repre-

sentation. It preserves the Cartan-Killing metric.

13.2. Casimir Covariants

If Γa and Γb are two representations of a semisimple Lie algebra and its Lie group,

the operator constructed on the tensor product of the spaces carrying these two

representations is also an invariant operator

gF (X; a, b)g−1 = GijΓa(gXig
−1)Γb(gXjg

−1)

(99)

= GijΓreg
ri (g)Γa(Xr)Γ

reg
sj (g)Γb(Xs) = GrsΓa(Xr)Γ

b(Xs).

The last equation used the metric-preserving condition established in equation (98).

Such operators are called Casimir covariants.

13.3. Other Invariant Operators

Simple Lie groups of rank r have r functionally independent invariant operators.

The product of the orders of these invariant operators is equal to the order of the

Weyl group of the Lie algebra [56]. This is the discrete group of operations that

maps the root vectors onto themselves.

The invariant operators can be determined in a number of simple ways [22, 26].

One is to compute the secular equation for a general element of the Lie algebra in

the regular representation. For a general element in so(3) (cf equation (21))

θ·L →
⎡⎣ 0 θ3 −θ2
−θ3 0 θ1
θ2 −θ1 0

⎤⎦ sec. equation−−−−−−−−→ (−λ)3 + (−λ)(θ21 + θ22 + θ23) . (100)
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The substitution θi → Li transforms each functional coefficient in the secular

equation into an invariant operator.

This calculation can be simplified by taking a page from the reparameterization

algorithm discussed in Section 12. That is, the secular equation for the smallest

faithful matrix representation of the Lie aglebra provides this information. As

an example, the spinor representation of the Lorentz group, given in equation

(40), yields a quadratic coefficient with real part leading to one quadratic invari-

ant F1(L,B) = L · L−B ·B and imaginary part leading to another independent

quadratic invariant F2(L,B) = L ·B+B · L.

The general invariant operator can be expressed in the form

F k(X) = Gi,j,...,kXiXj . . . Xk. (101)

The kth order tensor Gi,j,...,k is symmetric. Covariant operators can be constructed

from this invariant in an obvious way

F k(X; a, b, . . . , c) = Gi,j,...,kΓa(Xi)Γ
b(Xj) . . .Γ

c(Xk). (102)

The most familiar of the covariant operators is the spin-orbit coupling operator

L · S, widely used in the study of atomic spectroscopy.

14. Discussion

Before Quantum Mechanics was developed, Physicists were conversant with the

rotation group SO(3) and even the tensor representations based on the defining

three-dimensional representation acting on r, the coordinates of a vector in R3.

The rank-l irreducible tensors had dimension 2l + 1 and were widely known. The

discovery of spin came like a thunderbolt, as the spinor representations of SO(3)
had not been known (to Physicists). At the level of the Lie algebra, so(3) = su(2)
and the spin representations of SO(3) are the vector representations of SU(2). The

representations (Dj(SO(3)) in Wigner’s notation [57]) were tensor representations

of SU(2) of rank 2j, 2j = 0, 1, 2, · · · and dimension 2j + 1. For j = l (integer)

these Wigner rotation matrices could be made real but for j half-integer they are

essentially complex and cannot be constructed as tensor products of representations

based on three-vectors r alone.

The relation among the simple Lie algebras of low rank and their fundamental

irreducible representations has reduced the level of mystery surrounding the so-

called spinor representations of higher rank groups. For D2 = A1 ⊕ A1 there are

two fundamental irreducible representations, each of dimension two, one for each



Relations Among Low-dimensional Simple Lie Groups 41

copy of A1. Any real form of d2 has two distinct, inequivalent spinor represen-

tations. One of the real forms is so(3, 1), the Lorentz group. One should there-

fore expect that these two spinor representations might enter relativistic physics

in interesting and exciting ways. It has been customary to represent the tensor

product as Fj1
1 ⊗ Fj2

2 � D(j1,j2). Then D( 1
2
, 1
2
) � SO(3, 1) and the Dirac wave-

function, a column spinor with 4 = 2+2 components, carries the representation

D( 1
2
,0) + D(0, 1

2
) = D( 1

2
,0)+(0, 1

2
) [36]. The components of the spinors belonging

to F1 were distinguished from those belonging to F2 by placing a dot over the

indices of the latter (hence, dotted spinors [12]). The components E,B of the

electromagnetic field carry the representation D(1,0)+(0,1).

For SO(5) the first fundamental representation is five-dimensional. The pth or-

der tensor products based on this representation offer no surprises. Their highest

weights are pe1 (p integer) and all can be made real. However, its second funda-

mental representation is four dimensional and cannot be made real. The qth or-

der tensor products based on this representation have highest weights q
2(e1 + e2).

When q is odd all weights in this representation have half-integer values. In

this sense F2 is the spinor representation of SO(5) and all its real forms. For

Sp(4,R) � C2 the first fundamental representation F1 is four-dimensional and

therefore the spin representation of B2. The second fundamental irreducible rep-

resentation F2 of C2 is five-dimensional and therefore equivalent to the vector

representation of B2.

For SU(4) � A3 the first fundamental representation is four dimensional. A ba-

sis vector for this representation is a complex four-component vector in the four-

dimensional Hilbert space on which SU(4) acts. The third fundamental repre-

sentation is also four-dimensional. This representation is the complex conjugate

of the first fundamental representation. The second fundamental representation is

six-dimensional. It acts on an antisymmetric second order tensor based on four-

vectors. This representation can be made real.

On the orthogonal side of the equivalence A3 = D3 the first fundamental rep-

resentation of SO(6) is six-dimensional and can be made real. The two other

fundamental representations are both four-dimensional. They are two inequivalent

spinor representations of SO(6). Each of these representations is equivalent to

one of the four-dimensional representations of SU(4). The two spinor representa-

tions of SO(6) are complex conjugates of each other. The Lie group SO(6) and

its noncompact real forms appear in Physics in many different ways [26, 29]. For

this reason it is useful to understand the relation between the real forms of SO(6)
and those of SU(4), as well as the relations among their fundamental irreducible

representations.
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Lie groups can be parameterized in many different ways. This is particularly no-

ticeable for the rotation group, which has seen physical and engineering applica-

tions for over two hundred years. Each different parameterization induces a differ-

ent analytic representation for the group multiplication and inversion rules. Relat-

ing different parameterizations, and their composition and inversion laws, can be

somewhat of a nightmare. A simple algorithm for carrying out all such compu-

tations was introduced and applied to a number of useful cases. We have closed

by introducing invariant and covariant operators, and shown how to compute them

using the reparameterization trick.
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