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GEOMETRY OF THE RECURSION OPERATORS FOR CAUDREY-
BEALS-COIFMAN SYSTEM IN THE PRESENCE OF MIKHAILOV
TYPE ZP REDUCTIONS
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Presented by Alexandar B. Yanovski

Abstract. We give geometric picture for the Recursion Operators related to the

Caudrey-Beals-Coifman linear problem and the Nonlinear Evolution Equations as-

sociated to it in the presence of Zp reductions of Mikhailov type.

1. Introduction

It is well known that the characteristic property of the nonlinear evolution equa-

tions (NLEEs) of soliton type is that they admit the so called Lax representation

[L,A] = 0. In the last expression L,A are linear operators on ∂x, ∂t depending

also on a family of functions qα(x, t), 1 ≤ α ≤ s (called ‘potentials’) and a spec-

tral parameter λ. Since the Lax equation [L,A] = 0 must be satisfied identically

in λ it is equivalent to a system (in case A depends linearly on ∂t) of the type

(qα)t = Fα(q, qx, ...), where q = (qα)1≤α≤s (1)

which is the NLEE (soliton equation) associated with A and L. Usually one fixes

the linear problem Lψ = 0 (auxiliary linear problem) and considers all the NLEEs

(of certain form) that can be obtained changing the operator A. There are various

schemes used to find exact solutions to a given soliton equation but the essential

is that the Lax representation permits to pass from the original evolution defined

by the equations (1) to the evolution of some spectral data related to the problem

Lψ = 0. Since finding the evolution on the spectral data is easy, the principal

difficulty is then to recover from the spectral data the potentials, a process called

Inverse Scattering Method, see the monograph books [4, 8].

The Caudrey-Beals-Coifman system (CBC system), [2], called also the General-

ized Zakharov-Shabat system in the case when the element J is real, is one of the

best known auxiliary linear problems. It can be written as follows

Lψ = (i∂x + q(x)− λJ)ψ = 0. (2)
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Originally it has been assumed that J is a fixed complex n×n diagonal matrix and

q(x) is a matrix function taking values in the space of the off-diagonal matrices.

Soon however it has been understood that the theory can be developed for the case

when q(x) and J belong to a fixed simple Lie algebra g in some finite dimensional

irreducible representation. The element J should be regular, that is the kernel of

adJ (adJ(X) ≡ [J,X],X ∈ g) is the Cartan subalgebra h ⊂ g. The potential q(x)
belongs to the orthogonal complement h⊥ = ḡ of h with respect to the Killing form

〈X,Y 〉 = tr(adXadY ), X, Y ∈ g (3)

and therefore q(x) =
∑

α∈Δ qαEα where Eα are the root vectors and Δ is the root

system of g. The scalar functions qα(x) (the ‘potentials’) are defined on R, are

complex valued, smooth and tend to zero as x→ ±∞. We shall suppose that they

are Schwartz-type functions. The classical Zakharov-Shabat system is obtained for

g = sl(2,C), J = diag(1,−1).

Remark 1. We assume that the basic properties of the semisimple Lie algebras
are known and we do not give definitions to all the notions related to them. All our
definitions and normalizations coincide with those made in [13].

The spectral theory of L is of a primary importance for the development of the

inverse scattering techniques for L and has been object of many studies. We men-

tion [7], in which it is proved the completeness of the so-called adjoint solutions of

L when L is considered in arbitrary faithful representation of the algebra g. With-

out going into details we remind briefly the main facts. First, the adjoint solutions

of L are functions of the type w = mXm−1 where X is a constant element from

g and m is fundamental solution of Lm = 0. Suppose we denote by wa and wd

the orthogonal projection (with respect to the Killing form) of w over h⊥ and h

respectively. If one denotes the orthogonal projector on h⊥ by π0 then of course

wa = π0w and wd = (id − π0)w. One of the most important facts from the the-

ory of CBC system is that if a suitable set of adjoint solutions (wi(x, λ)) is taken

then, roughly speaking, for λ on the spectrum of L the functions wa
i (x, λ) form a

complete set in the space of potentials. If one expands the potential over the sub-

set of the adjoint solutions as coefficients one gets the minimal scattering data for

L. Thus passing from the potentials to the scattering data can be considered as a

sort of Fourier Transform, called Generalized Fourier Transform. For it wa
i (x, λ)

play the role the exponents play in the Fourier Transform. This interpretation of

the Inverse Scattering Transform has been given for the first time in [1] and after

that has been developed in a number of works, see for example the monograph

books [8,16] for complete study of sl(2,C)-case and comprehensive bibliography,

and [2, 7] for more general situations.
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One of the ways the Recursion Operators (Generating Operators, Λ-operators)

can be found is motivated by the desire to find operators for which the functions

wa
i (x, λ) are eigenfunctions. One can see that for the Generalized Fourier Trans-

form such operators play the same role as the differentiation operator in the usual

Fourier Transform method. Because of that property the Recursion Operators are

so important in the theory of soliton equations - it is a theoretical too which apart

from explicit solutions can give most of the information about the NLEEs, [8, 30].

Indeed, through them can be obtained

i) The hierarchies of the nonlinear evolution equations solvable through L

ii) The conservation laws for these NLEEs

iii) The hierarchies of Hamiltonian structures for these NLEEs.

It is not hard to get that the Recursion Operators related to L have the form

Λ±(X(x)) =

ad−1
J

⎛
⎝i∂xX + π0[q,X] + iadq

x∫
±∞

(id − π0)[q(y), X(y)]dy

⎞
⎠ (4)

where of course adq(X) = [q,X] and X is a smooth, fast decreasing function

with values in h⊥ = ḡ. We call the above operators the Recursion Operators for

the CBC system in general position.

The name Recursion Operators has the following origin and gives an alternative

definition for them. Suppose we are looking for the NLEEs that have Lax repre-

sentation [L,A] = 0 with L given in (2) and A of the form

A = i∂t +
n∑

k=0

λkAk (5)

An ∈ h, An = const, An−1 ∈ h⊥ = ḡ.

Then from the condition [L,A] = 0 we first obtain An−1 = ad−1
J [q, A] and for

0 < k < n− 1 the recursion relations

π0Ak−1 = Λ±(π0Ak) (6)

(id − π0)Ak = i(id − π0)

x∫
±∞

[q, π0Ak](y)dy. (7)
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This leads to the fact that the NLEEs related to L can be written into one of the

following equivalent forms

a) iad−1
J qt + Λn

+

(
ad−1

J [An, q]
)
= 0

(8)

b) iad−1
J qt + Λn

−
(
ad−1

J [An, q]
)
= 0.

Remark 2. Strictly speaking the above is not the general form of the equations
solvable through L. Considering the right-hand side of the equations of the type
ad−1

J qt = Fn(q) as vector fields in order to obtain the general form of the NLEEs
associated with L one must take arbitrary finite linear combination F of the vector
fields Fn with constant coefficients and write ad−1

J qt = F(q). We refer to (8) as
the general form of the equations solvable through L for the sake of brevity.

The Recursion Operators have also interesting geometric interpretation (their ad-

joint operators can be interpreted as Nijenhuis tensors on the manifold of poten-

tials). The present article is dedicated to this subject, more precisely, what happens

with the geometry of the Recursion Operators in the presence of Mikhailov-type

reductions. The implications of the Mikhailov-type reductions on the theory of Re-

cursion Operators been considered recently in several papers, [10–12, 27, 29] but

they rather treat the case of the CBC system in pole gauge and from the viewpoint

of the recursion relations and spectral theory. The CBC system in canonical gauge

(the one we shall discuss) subject to reductions has been considered much earlier.

For example, in [14, 15] were investigated the implications to the scattering data.

In [9] the Recursion Operators has been considered from spectral theory viewpoint.

In the present article we give a treatment from geometric viewpoint, similar to that

given [28] for the CBC in pole gauge in general position.

At the beginning let us briefly outline the reduction procedures for the CBC system

and the NLEEs related to it.

2. The Mikhailov-Type Zp Reductions

2.1. General Remarks

Consider the linear problems of the type (2) in which the potential function q(x)
and the element J obey some special requirements. These requirements result

from Mikhailov-type reductions, see [22–24]. The reduction problem naturally

appears for example if we want to consider real potentials instead of complex ones

or if we want drastically to decrease the number of the scalar equations in the

integrable equation (system) that is related to a CBC system which we consider
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defined on a simple complex Lie algebra g. We shall consider reductions related

with automorphisms of g of order p - Zp reductions. We shall assume that the

automorphisms leave invariant the Cartan subalgebra h ⊂ g to which the element

J in the CBC system belongs. As natural examples for automorphisms of fixed

order we consider the Coxeter automorphisms.

Suppose K is an automorphism of g of order p, that is Kp = id , Kh ⊂ h. (In

case K is Coxeter automorphisms p is called the Coxeter number). The Coxeter

automorphisms are internal, that is, each K can be represented as K = Ad(K),
K belonging to the corresponding group G with algebra g. Thus K can be ‘inte-

grated’ to act on G by K(g) = KgK−1. Arbitrary automorphism needs not to be

internal but to each automorphism K of finite order corresponds automorphism of

the corresponding Lie group G which we shall denote by the same letter. Also,

we remind also that automorphisms leave the Killing form invariant, a fact that we

shall use constantly.

The algebra g splits into a direct sum of eigenspaces of K, that is

g = ⊕p−1
s=0g

[s] (9)

where for each X ∈ g[s] we have KX = ωsX , ω = exp 2πi
p and the spaces

g[s], g[k] for k �= s are orthogonal with respect to the Killing form. Because K is

an automorphism of g leaving h invariant, it leaves invariant also the orthogonal

complement ḡ of h. Thus each g[s] splits into ḡ[s] ⊕ h[s] and

ḡ = ⊕p−1
s=0 ḡ

[s], h = ⊕p−1
s=0h

[s]. (10)

For different k and s the spaces g[k] and g[s] are orthogonal with respect to the

Killing form and the spaces ḡ[k] and h[s] are orthogonal for arbitrary k and s. Fur-

ther, if we denote the orthogonal projections onto g[k] by 1
[k] we shall have that

ζ [k] = 1
[k](1 − π0) are the projections onto h[k] and 1

[k]π0 = π
[k]
0 are the orthog-

onal projector onto ḡ[k].

If as before the orthogonal projector g �→ ḡ is denoted by π0 we shall have

π0 =

p−1∑
k=0

π
[k]
0 , π

[l]
0 π

[s]
0 − π

[s]
0 π

[l]
0 = 0 (11)

1− π0 =

p−1∑
k=0

ζ [k], ζ [l]ζ [s] − ζ [s]ζ [l] = 0 (12)

π
[k]
0 + ζ [k] = 1

[k], ζ [l]π
[s]
0 = π

[s]
0 ζ

[l] = 0. (13)
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Let us consider Mikhailov reduction group G0 is generated by one element, which

we denote by H . On the fundamental solutions ψ of the CBC system it acts as

H(ψ(x, λ)) = K(ψ(x, ω−1λ)) (14)

where ω = exp 2πi
p . Since Hp = id the reduction group G0 is isomorphic to Zp.

Let us assume that the set of fundamental solutions for the spectral problem (2) is

invariant under G0, that is, H(ψ(x, λ)) is a fundamental solution corresponding to

the same value of λ. Then as it is easy to see that we must have

K(J) = ωJ, Kq = q (15)

that is, J ∈ g[1], q(x) ∈ g[0]. In fact, suppose we have a Lax representation

[L,A] = 0 where A has the form

A = i∂t +
n∑

k=0

λkAk (16)

An ∈ h, An = const, An−1 ∈ ḡ.

If the set of the mutual fundamental solutions for Lψ = 0, Aψ = 0 is invariant

under G0 then we also have

K(As) = ωsAs, s = 0, 1, 2, . . . n. (17)

The above reductions are compatible with the evolution in the sense that if at the

moment t = 0 we have (15, 17) we have the same relations at arbitrary moment t.

The invariance of the set of the fundamental solutions has important implications

on the spectral theory of the CBC system and of the Recursion Operators but in

this article we are not going to address this matter. We shall only mention that in

case of reductions there are relations between the fundamental analytic solutions

mν(x, λ) defined on the closures of the sectors of analyticity Ων , ν = 1, 2, . . . h.

The sectors Ων are obtained splitting the complex plane by the straight lines

lα = {λ ; Im(λα(J)) = 0}, α ∈ Δ (18)

where Im denotes imaginary part. Of course, one obtains the same line for α and

−α but it can happen that α �= β and lα = lβ . Also, the number of the sectors

depends on the order of the automorphism.

Let us recall that since K preserves the Cartan subalgebra h its dual map K∗ pre-

serves h∗. For H ∈ h we define K̂ : h �→ h by K̂ = (K∗)−1. For K that is in-

ternal (of the form X �→ KXK−1) one of course has K̂(α)(H) = α(K−1HK).
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The map K̂ defines the coadjoint action of K on h∗. Naturally K̂p = id and for

ξ ∈ h∗, H ∈ h one has

〈K̂ξ,KH〉 = 〈ξ,H〉. (19)

It can be shown, see [13], that for all roots we have KEα = q(α)EK̂α, where

q(α) = ±1 and q(α)q(−α) = 1 and from the map K̂ one can completely recover

the automorphism K.

2.1.1. Coxeter Automorphisms

As an example consider reductions that arise using Coxeter automorphisms. In

fact when K is a Coxeter automorphism the situation is quite simple because the

requirement for J determines it up to a constant nonzero multiplier, that is g[1] ∩
h is one-dimensional. In order to see it we shall make some preparations. We

remind that the Coxeter automorphisms are the automorphisms for which K̂ =
Sα1

Sα2
. . . Sαr

where Sαi
are the Weyl reflections corresponding to the simple

roots α1, α2, . . . , αr of g (we assume that the Cartan subalgebra h is fixed and a

system of simple roots is fixed too).

If we need only the action of K̂ on the root system it is easier to work in h∗ than in h.

Then it is natural to consider instead of J the element J ∗ in h∗ such that J∗(H) =
〈J,H〉, H ∈ h. As the Cartan-Killing form is invariant under the automorphisms,

K̂(J∗)(H) = 〈J,K(H)〉 and the condition K(J) = ωJ is equivalent to K̂(J∗) =
ω̄J∗. Now, from the definition of the coadjoint action of the automorphism K,

taking into account that J =
∑r

i=1 aiHαi
, where 〈Hαi

, H〉 = αi(H) for H ∈ h,

we obtain that for β ∈ Δ

β(J) =

r∑
i=1

aiβ(Hαi
) =

r∑
i=1

ai(β, αi) = (J∗, β)

where J∗ =
r∑

i=1
aiαi. Then α(KJK−1) = (K̂α)(J) = (K̂α, J∗). If in addi-

tion KJK−1 = ωJ then K−1JK = ω̄J , where ω̄ = ω−1 = exp
−2πi

p
. As a

consequence

(K̂α, J∗) = ω̄α(J) = ω̄(α, J∗), α ∈ Δ.

But (K̂α, J∗) = (α, K̂J∗) and we deduce that the requirement KJK−1 = ωJ is

equivalent to

K̂J∗ = ω̄J∗. (20)

This equation is more convenient in order to calculate the coefficients ai and going

on all the simple Lie algebras one can check that J is defined up to a nonzero
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multiplier. As an example, consider the series Cn ∼ sp(n,C). The root space is

realized as subset of an Euclidean space spanned by vectors εi, 1 ≤ i ≤ n such

that:

(εi, εj) =
δij

4(n+ 1)
· (21)

The simple roots are αi = εi − εi+1, 1 ≤ i ≤ n− 1, αn = 2εn and the set of roots

Δ consists of εi − εj , i �= j, εi + εj , 1 ≤ i, j ≤ n. We easily check that

K̂ε1 = ε2, K̂ε2 = ε3, . . . , K̂εn−1 = εn, K̂εn = −ε1 (22)

and as a consequence

K̂α1 = α2, K̂α2 = α3, . . . , K̂αn−1 =

n∑
i=1

αi, K̂
n∑

i=1

αi = −α1. (23)

So the Coxeter number is p = 2n and ω = exp
2πi

2n
= exp

πi

n
. We easily get that

J∗ = a
n∑

i=1

(ωi−1εi), a = const. (24)

3. Recursion Operators and Zp Reductions

Let us see now what happens with the Recursion Operator when Zp reductions are

present. As we have seen the Recursion Operator for the system in general position

(without reductions) can be written as

Λ±X = ad−1
J

{
i∂xX + π0[q,X] + iadq(1− π0)∂

−1
x [q,X]〉} . (25)

Now assume that we have Zp reduction. Then the algebra splits in a direct sum,

see (9), and q ∈ g[0] while J ∈ h[1]. In particular, this means that

adJ(ḡ
[s]) ⊂ ḡ[s+1], ad−1

J (ḡ[s]) ⊂ ḡ[s−1]. (26)

Here and below we shall understand the superscripts of the spaces and the sub-

scripts of the operators modulo p. Also, if X ∈ ḡ[s] then ∂xX ∈ ḡ[s], ∂−1
x X ∈ ḡ[s],

[q,X] ∈ ḡ[s] and

Λ±X = ad−1
J {i∂xX + π0[q,X] + adq∂

−1
x (1− π0)[q,X]} ∈ ḡ[s−1]. (27)

If we use the notation introduced in (11) the above expression can also be written

as

Λ±X = ad−1
J {i∂x + π0adq + adq∂

−1
x (1− π0)adq}π[s]0 X. (28)
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Let us denote the right-hand side of this equality by Λ±;sX . As easily seen it

defines an operator Λ±;s acting on the space F(ḡ) consisting of smooth, rapidly

decreasing functions with values in ḡ. The spaces F(ḡ[s]) consisting of rapidly

decreasing smooth functions X(x) with values in ḡ[s] are moved one into another

by Λ± and are invariant under the action of Λp
±. Naturally

Λ±
∣∣∣F(ḡ[s]) = Λ±;s

∣∣∣F(ḡ[s]) , Λ±;sF(ḡ
[s]) ⊂ F(ḡ[s−1]). (29)

Also

Λp
±
∣∣∣F(ḡ[s]) = Λ±;p−s+1 . . .Λ±;s−1Λ±;s (30)

in which the indices are understood modulo p here. In particular

Λp
±
∣∣∣F(ḡ[0]) = Λ±;1 . . .Λ±;p−2Λ±;p−1Λ±;p. (31)

Let us recall now that the Recursion Operators arise. Suppose we are looking for

the NLEEs that have Lax representation [L,A] = 0 with L being the CBC system

operator and A is the form (5). Then from the condition [L,A] = 0 we first obtain

An−1 = ad−1
J [q, A] and next for 0 < k < n− 1 the recursion relations (6, 7) from

which follow the NLEES (8) related to L. Let us assume now that we have a Zp

reduction of the type we discussed. Then we have q ∈ ḡ[0], J ∈ h[1]. Next from

(17) we see that we must have K(As) = ωsAs. Assume that An ∈ h[n]. Then

An−1 ∈ ḡ[n−1] and from the equations (6), (7) we see that As ∈ g[s]. Therefore the

reduction requirements will be satisfied automatically when we choose An ∈ h[n].

Since n is a natural number let us write it into the form n = kp+m where k, p,m
are natural numbers and 0 ≤ m < p. Then

Λn
±ad

−1
J [An, q] = Λkp

± Λm
±ad−1

J [An, q]

= (Λ±;0 . . .Λ±;p−1)
k Λ±;0 . . .Λ±;m−1ad

−1
J [An, q]. (32)

Starting from the work Fordy and Gibbons [5, 6] it is frequently said that when re-

ductions are present the Recursion Operator becomes of higher order in the deriva-

tive and factorizes into first order differential operators. The formula (32) also

is used in order to claim that the Recursion Operators R± in the presence of Zp

reduction factors

R± = Λ±;0 . . .Λ±;p−2Λ±;p−1. (33)

This of course is true but in fact in our case the Recursion Operator is a power of the

Recursion Operator for the CBC system in general position and the “factors” Λ±;s

are restrictions of the Recursion Operator in general position on some subspaces

Λ±;0 Λ±;p−1 Λ±;1

F(ḡ[p]) = F(ḡ[0]) → F(ḡ[p−1]) → . . . → F(ḡ[0]) = F(ḡ[p]).
(34)
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Though simple, the above remarks about the “factorization” will be crucial for the

geometric picture.

Remark 3. Of course, if one writes explicitly the projections onto the spaces g[s] it
might be a little difficult to recognize that Λ±;s are just the restrictions of Λ±, see
[9], where these operators have been calculated in the case of the simple algebras
Bn and Cn.

4. Geometry of the Recursion Operators

4.1. Poisson-Nijenhuis Structures Related to CBC Sysem

Let us remind first the essentials of the geometric picture related to the Recursion

Operators in general position. We just outline here the theory assuming that all the

important notions such as Poisson structure and Poisson-Nijenhuis structure on a

manifold (P-N structure) are known. The missing details and proofs can be found

in [8] from where we reproduce some of the facts for the Recursion Operators for

CBC system in general position.

The P-N manifolds arise usually if one has compatible Poisson tensor fields P,Q
on a manifold M. Of course for q ∈ M

Pq, Qq : T
∗
q (M) �→ Tq(M)

where by Tq(M) and T ∗
q (M) are denoted the tangent and the cotangent spaces at

q. The fact that P,Q are compatible means that P +Q is also a Poisson tensor. In

fact it is known that in this case we have even a family of Poisson tensors aP + bQ
(a, b are constants). Then in case Q is invertible (q �→ Q−1

q exists and is smooth)

we can define a tensor field N = PQ−1

Nq : Tq(M) �→ Tq(M).

Then the pair (Q,N) endows M with a P-N structure. This result is due to F.

Magri who was the first to understand the relevance of the P-N structure to the

soliton equations theory, see [17,18] and [8] where there is extensive bibliography.

Finally, if we have some manifold M we shall denote by the same symbol the

two-forms ωq at q ∈ M and the corresponding fields ω̄q : Tq(M) �→ T ∗
q (M) of

linear maps such that

ωq(ξ, η) = 〈ω̄q(ξ), η〉0, ξ, η ∈ Tq(M).

Here by 〈 , 〉0 is denoted the canonical pairing between a linear space and its dual.

Thus two-forms and Poisson tensor fields will appear as fields of operators.
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Since very frequently the Poisson tensors are not invertible for performing the

above construction it becomes important to restrict them on submanifolds where

they are invertible. The question how to restrict a Poisson structure on a subman-

ifold has been given complete solution in [21], see also [25, 26]. We shall use a

simplified version of the results obtained in these papers which has been introduced

in [19, 20] and we shall call it First Restriction Theorem

Theorem 4. Let M be Poisson manifold with Poisson tensor P and M̄ ⊂ M be
a submanifold. Let us denote by j the inclusion map of M̄ into M, by X ∗

P (M̄)m
the subspace of covectors α ∈ T ∗

m(M) such that

Pm(α) ∈ djm(Tm(M̄)) = im(djm), m ∈ M̄ (35)

where im denotes the image and by T⊥(M̄)m - the set of all covectors at m ∈
M vanishing on the subspace im(djm), m ∈ M̄ (also called the annihilator of
im(djm) in T ∗

m(M)). Let the following relations hold

X ∗
P (M̄)m + T⊥(M̄)m = T ∗

m(M), m ∈ M̄ (36)

X ∗
P (M̄)m ∩ T⊥(M̄)m ⊂ ker(Pm), m ∈ M̄. (37)

Then there exists unique Poisson tensor P̄ on M̄, j-related with P , that is

Pm = djm ◦ P̄m ◦ (djm)∗, m ∈ M̄. (38)

The proof of the theorem is constructive, one takes β ∈ T ∗
m(M̄), then represents

(j∗β)m as α1 + α2 where α1 ∈ X ∗
P (M̄)m, α2 ∈ T⊥(M̄)m and puts P̄m(β) =

Pm(α1) (we identify m and j(m) here).

Let g be the semisimple Lie algebra on which the CBC system is defined. For a

subspace a ⊂ g let us denote by F(a) the set of smooth, fast decreasing functions

f : R → g. We have for example the set of functions F(h) with values in the Cartan

subalgebra h ⊂ g and the set of functions F(ḡ) of the functions with values in the

orthogonal complement of h. Clearly, F(g) and F(h) are Lie algebras too if we

define the Lie bracket of two functions f, g point-wise, that is we put

[f, g](x) = [f(x), g(x)], x ∈ R.

Admitting some lack of rigor we shall identify F(g) with F(g)∗ using the bilinear

form

〈〈X,Y 〉〉 =
+∞∫

−∞
〈X(x), Y (x)〉dx, X, Y ∈ F(g) (39)

where 〈ξ, η〉 = tr(adξ ◦ adη), ξ, η ∈ g is the Killing form of the algebra g.
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Now, taking into account the conventions and identifications we made, we note that

as it is well known for the equations that can be solved with the help of auxiliary

linear problem (2) we have the following compatible Poisson tensors (one can

obtain this fact as a consequence from some general algebraic construction, see for

example [3, 8]

Q0
q(ξ) = −adξJ, q(x), ξ(x) ∈ F(g)

P 0
q (ξ) = −adξq + i∂xξ, q(x), ξ(x) ∈ F(g). (40)

To see that these tensors, which are defined on the manifold M = F(g)∗, are

tensors of the type we want, we note that since M is linear space the tangent space

at each point coincides with F(g)∗ and the cotangent space with F(g)∗∗. Due to

the convention we have made to identify vectors and covectors through (39), we

can assume that both these spaces coincide with F(g). Then in (40), q ∈ F(g)∗,

ξ ∈ Tq(M) ∼ F(g). It is easy to notice that the tensor Q0 is not kernel free and

therefore we cannot find (Q0)−1. Fortunately one can restrict Q on some integral

leaf of the distribution im(Q0) and then the restricted tensor will be nondegenerate.

So we applying the construction of the Restriction Theorem (4) to the tensor Q0.

Considering the distribution

q → im(Q0)q = im(adJ) (41)

(where im denotes the image) we see that he elements of im(adJ) are the functions

belonging to F(g) taking values in the orthogonal complement g of the Cartan

subalgebra h ⊂ g with respect to the Killing form (recall that J is regular). We

shall denote the subspace of this elements by F(ḡ). Then the integral leaves of the

distribution (41) are the submanifolds

Mc = {q ; q = c+ ξ, c− fixed, c, ξ ∈ F(ḡ)}. (42)

Let us choose the leaf

Mc|c=0 = M0 = F(ḡ) (43)

and let j : M0 �→ F(g) be the inclusion map. Clearly Tq(M0) = F(ḡ) and having

in mind the pairing (39) we can also assume that T ∗
q (M0) = F(ḡ). If α ∈ T ∗

q (M)
then π0α = α, where π0 is the orthogonal projector (with respect to the Killing

form) onto the space g. Due to the identifications we have made dj = π0 and

[dj]∗ = π0. All this means that we can write [dj]∗α = α and then the Restriction

Theorem means that

Q(α) = Q0([dj]∗α) = Q0(α). (44)

Thus Q = adJ . Note that now the tensor Q is nondegenerate, since on the space g

there exists the inverse of adJ – the operator ad−1
J .
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To restrict P 0 we again invoke the Restriction Theorem (4). We have seen that in

order to perform the restriction on the submanifold M0 the following conditions

must hold

χ∗
P 0(M0)q + T⊥(M0)q = T ∗

q (M), q ∈ M0 (45)

χ∗
P 0(M0)q ∩ T⊥(M0)q ⊂ ker(Pq), q ∈ M0. (46)

A simple calculation shows that

T⊥(M0)q = {α ; α ∈ T ∗
q (M), 〈〈α, ξ〉〉 = 0, ξ ∈ F(ḡ)}. (47)

In other words, T⊥(M0)q consists of functions taking values in h and it is natural

to denote the space of these functions by F(h).

From the other hand

χ∗
P 0(M0)q = {α ; α ∈ T ∗

q (M), i∂xα+ [q, α] ∈ F(ḡ)}. (48)

Therefore α ∈ χ∗
P 0(M0)q exactly when

(1− π0)(i∂xα+ [q, α]) = 0. (49)

If α ∈ χ∗
P 0(M0)q ∩ T⊥(M0)q, then [h, g] ⊂ g shows that ∂xα = 0. Since we

have lim
x→±∞

α(x) = 0 we get α = 0. Thus we have proved that

T⊥(M0)q ∩ χ∗
P 0(M0)q = {0} (50)

and the requirement (46) of the Restriction Theorem is fulfilled.

In order to prove that (45) is also true, let us remark that the condition (49) can be

cast into the form

(1− π0)α = i(1− π0)

x∫
−∞

[q(y), α(y)]dy +A(α, q) (51)

where A(α, q) is some constant in x which in general can depend on α and the

potential q. Since limx→±∞ α(x) = 0, we must have

A(q, α) = i(1− π0)

+∞∫
−∞

[q(y), α(y)]dy = 0 (52)

or equivalently

〈〈[H, q], α〉〉 = 0, H ∈ h. (53)
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The above relations impose implicit restrictions on the cotangent vectors on M0.

Actually, if we choose a basis {Hi}r1 in h then (53) is equivalent to r equations

〈〈[Hi, q], α〉〉 = 0, i = 1, 2 . . . , r. If we want to continue with the geometric

constructions we are forced to assume that the (53) is fulfilled. In order to stress
that for our potentials we need to have the relations (53) in what follows we shall
denote the manifold of potentials by M0.

One can prove that M0 is dense in M0, but we shall not go into this matter. We

simply want to prove that (45), (46) are true for the manifold M0 instead of M0.

Let us consider now the requirement (45). For arbitrary α ∈ T ∗
q (M0) we put

γ(α) = −i(1− π0)

x∫
−∞

[q(y), π0(α)(y)]dy. (54)

It is not difficult to notice that

π0(α)− γ(α) ∈ χ∗
P 0(M0)q.

For that reason the identity

α = (π0(α)− γ(α)) + ((1− π0)α+ γ(α)) (55)

shows that

χ∗
P 0(M0)q ⊕ T⊥(M0)q = T ∗

q (M). (56)

Thus the conditions of the Restriction Theorem hold and P 0 allows restriction on

M0. Let us denote this restriction by P . Now we are going to calculate it. Let

α ∈ T ∗
q (M0). As before [dj]∗α = α and according to the restriction procedure we

must put

P (α) = P 0(α− γ(α)).

It is easy to calculate that

P (α) = i∂xα+ π0([q, α]) + [q, i(1− π0)

x∫
−∞

[q, α](y)dy ]

(57)

π0(α) = α ∈ T ∗
q (M0).

Now it is possible to obtain the Nijenhuis tensor N = P ◦Q−1 = PQ−1

N = [i∂x + π0adq + iadq(1− π0)

x∫
−∞

adq . dy](adJ)
−1. (58)
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We would like also to note that as a consequence from the condition (53) in the

lower bound of the above integral we could write +∞ instead of −∞ without

changing the value of the expressions for P and N , for this reason frequently

instead of the integral is written ∂−1
x .

We also can put the above in an equivalent form

N = [i∂x + π0adq + iadq(1− π0)∂
−1
x adq]ad

−1
J . (59)

Now the tensor fields P and N endow M0 with a P-N structure. The adjoint of N

is easily found

N∗ = (PQ−1)∗ = (Q∗)−1P ∗ = Q−1P = Q−1(PQ−1)Q = Q−1NQ.

Now, after all this geometric theory, the comparison shows thatN ∗ is exactly equal

to the generating operators Λ± for the CBC system. We can also write

N∗ =
1

2
(Λ+ + Λ−) = Λ. (60)

The geometric theory however is incomplete without the possibility to calculate

the fundamental fields of the P-N structure. One can show, see [8], that the vector

fields

XH : q → XH(q) = [H, q], H ∈ h (61)

are fundamental fields. The corresponding fundamental forms are

αH : q → αH(q) = ad−1
J [H, q]. (62)

(Recall that from the results of part I it follows that the forms ad−1
J [H, q] and

Λ±ad−1
J [H, q] are closed.) In addition, from the relation

[XH1
, XH2

] (q) = X[H1,H2](q) (63)

it follows that ifH1, H2 ∈ h then the Lie bracket of the fieldsXH1
andXH1

is zero,

or equivalently, that the forms αH1
and αH2

are in involution. Then the properties

of the P-N structure easily lead to

Proposition 5. Let all quantities be as defined in the above. Then

• The vector fields NnXH , n = 0, 1, . . ., H ∈ h commute.

• The equations
iad−1

J qt + Λnad−1
J [H, q] = 0

are Hamiltonian with respect to the hierarchy of symplectic structures: Ωn =
Λn(Q0)−1 = Λnad−1

J .

This proposition gives geometric interpretation of the Recursion Operators for the

CBC system in general position.
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4.2. Poisson-Nijenhuis Structures for CBC System with Reductions

When there is a Zp reduction defined by the automorphism K of finite order p the

manifold of potentials is restricted as described in the above. The eigenvalues of K
are ωs, s = 0, 1, . . . , p − 1, ω = exp 2πi

p and to them correspond the eigenspaces

g[s]. Since for K the spaces h and ḡ are invariant the eigenspace g[s] splits into

ḡ[s] ⊕ h[s], ḡ[s] ⊂ ḡ, h[s] ⊂ h so that ḡ = ⊕p−1
s=0 ḡ

[s], h = ⊕p−1
s=0h

[s]

We have that J ∈ h[1] and q ∈ F(ḡ[0]) so

adJ(ḡ
[s]) ⊂ ḡ[s+1], ad−1

J (ḡ[s]) ⊂ ḡ[s−1], adq(g
[s]) ⊂ g[s]. (64)

The superscripts are understood modulo p. It also means that now the manifold of

potentials is restricted from F(ḡ) to N = F(ḡ[0]). Since N is a vector space we

identify its tangent spaces at some q with F(ḡ[0]). As before, using the nondegen-

eracy of the form 〈〈 , 〉〉 we identify with F(ḡ[0]) also the cotangent spaces.

Looking at the expression (59) we see that for X ∈ F(ḡ[s])

NX = [i∂xX + π0adq + iadq(1− π0)∂
−1
x adq]ad

−1
J X ∈ F(ḡ[s−1])

so that

NF(ḡ[s]) ⊂ F(ḡ[s−1]), adJF(ḡ
[s]) = F(ḡ[s−1]). (65)

In particular,

N(Tq(N )) = NF(ḡ[0]) ⊂ F(ḡ[p−1]).

It follows that N does not allow restriction on N . However, as easily seen N p

allows such a restriction and is of course a Nijenhuis tensor on N . Similarly, one

sees that the Poisson tensor field Q = adJ restricted on N reduces to zero. Of

course then one can try to restrict P . Looking at it, we see that α ∈ F(ḡ) =
T ∗
q (M0) will belong to X ∗

P (N )q (the notation we use here is that of the First

Restriction Theorem) if

P (α) = i∂xα+ π0([q, α]) + [q, i(1− π0)∂
−1
x [q, α](y) ] ∈ T ∗

q (N ) = F.(ḡ[0])

Next,

T⊥(N )q = {α ; α ∈ F(ḡ), 〈〈α, ξ〉〉 = 0, ξ ∈ F(ḡ[0])}. (66)

It is not hard to establish that X ∗
P (N )q = F(ḡ[0]) and T⊥(N )q = F(⊕p−1

s=1 ḡ
[s]) so

one sees that

X ∗
P (N )q + T⊥(N )q = Tq(M0), X ∗

P (N )q ∩ T⊥(N )q = {0}. (67)

Thus applying the First Restriction Theorem we we get that P can be restricted

and the restriction P̄ has the same form.
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Since P allows a restriction on N one can apply the following simple results from

the general theory of the P-N manifolds and from the restriction theory of these

manifolds, see [8, 19, 20]

Theorem 6. If M is a P-N manifold endowed with Poisson structure P and Ni-
jenhuis tensor N then for k, s = 1, 2, . . . each pair (N kP = (N∗)kP,N s) also
endows M with P-N structure.

Theorem 7. Let M be a P-N manifold endowed with Poisson tensor P and Ni-
jenhuis tensor N . Let M̄ ⊂ M be a submanifold of M and suppose that we
have

i) P allows restriction P̄ on M̄, that is P̄ is a Poisson tensor such that if
j : M̄ �→ M is the inclusion map then P̄ is j-related with P

Pm = djm ◦ P̄m ◦ (djm)∗, m ∈ M̄. (68)

ii) The tangent spaces of M̄, considered as subspaces of the tangent spaces of
M are invariant under N , so that N allows a natural restriction N̄ to M̄,
that is N̄ is j-related with N .

Then (P̄ , N̄) endow M̄ with a P-N structure.

We call the above theorem Second Restriction Theorem.

As a result, we have that on N = F(ḡ[0]) the tensors P given by (57) and N p,

where N is given by (59), allow restriction. They do not change their form and

endow N with P-N structure. It is also immediate to see that (N p)∗ = Λp
±.

The last thing that remains to be done is to calculate the integrable equations (fun-

damental fields) related with the P-N structure we just introduced. Clearly not all

the fields from the hierarchies generated by the fields XH = [H, q], H ∈ h (see

(61)) will be tangent to the submanifold N so we must find which of the fields

from the hierarchies ’survive’ the reduction. It is obvious that in order that XH

be tangent to N one needs H ∈ h[0]. Then if we assume that from the hierarchy

NkXH , k = 0, 1, 2, . . . ’survive’ only the members N pnXH , n = 0, 1, 2, . . . and

these fields because they are fundamental for the tensors P andN are fundamental

for the P-N structure on N . But these are not the only fields from the hierarchy

in general position that should be taken. As a matter of fact one easily sees that if

H ∈ h[s], s = 0, 1, . . . p − 1 then N sXH ∈ F(ḡ[0]), that is, this field is tangent to

N . We arrive therefore to the result that the hierarchies of fundamental fields are

Nkp+sXH , H ∈ h[s], s = 0, 1, . . . p− 1, k = 0, 1, 2, . . . . (69)
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(In fact the general hierarchies are obtained taking finite linear combinations of

these fields with constant coefficients but this is the usual way the things are de-

scribed.) Taking into account that the new Nijenhuis tensor is now N p we see that

its action on the fields

N sXH , H ∈ h[s] (70)

generates the fundamental fields of the P-N structure on N . Remembering that

N = adJ ◦ Λ ◦ ad−1
J we arrive at the hierarchy of equations

iad−1
J qt = ΛkpΛsad−1

J [H, q], H ∈ h[s]. (71)

The coefficient “i” is put here in order to have consistency with the formulae ob-

tained through the Lax representation. Thus we have

Theorem 8. For the CBC system subject to Zp reduction the Recursion Operator
is equal to Λp

± where Λ± is the recursion operator for the CBC system in general
position. The operator Λp

± allows the usual geometric interpretation - it is the dual
of Nijenhuis operator for some P-N structure and the corresponding NLEEs have
the usual interpretation - they are the fundamental fields of this structure.

5. Conclusion

We have seen that the observed factorization of the Recursion Operators for the

CBC system in the presence of Zp reductions in fact means that the role of the

Recursion Operator is played now by the p-th power of the Recursion Operator for

the CBC system in general position. This allows clear and simple geometric inter-

pretation in terms of Poisson-Nijenhuis structures since each power of a Nijenhuis

tensor is also a Nijenhuis tensor.
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