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Abstract. We consider the recursion operator approach to the soliton equations

related to a generalized Zakharov-Shabat auxiliary linear system in pole gauge on

the Lie algebraA2 = sl(3,C) and show that the recursion operator can be identified

with the dual to a Nijenhuis tensor for a Poisson-Nijenhuis structure on the manifold

of potentials.

1. Introduction

The soliton equations or completely integrable equations have been object of in-

tense study since their discovery. Their most essential property is that they admit a

Lax representation [L,A] = 0. In it L,A are linear operators on ∂x, ∂t depending

also on some functions qi(x, t), 1 ≤ i ≤ s (‘potentials’) and a spectral parameter λ.

The equation [L,A] = 0 should be satisfied identically in λ and in this way the Lax

equation [L,A] = 0 is equivalent to a system of partial differential equations for

qi(x, t). Usually one fixes the linear problem Lψ = 0 (auxiliary linear problem)

and considers all the evolution equations (of certain form of course) one can obtain

changing the operator A. These equations are called nonlinear evolution equations

(NLEEs) associated (related) with L (or with the linear system Lψ = 0). There

are several different schemes to resolve them but the essential point is that the Lax

representation permits to pass from the original evolution defined by the equation

to the evolution of some spectral data related to the problem Lψ = 0 which is lin-

ear and consequently easily found. From this data the potentials can be recovered

by a process called Inverse Scattering Method, see the monographs [5, 8].

The Generalized Zakharov-Shabat (GZS) system presented below is a paradigm of

auxiliary linear problem. It can be written as follows

Lψ = (i∂x + q(x)− λJ)ψ = 0. (1)

Here q(x) and J belong to some fixed simple Lie algebra g in some finite dimen-

sional irreducible representation. The element J is regular, that is the kernel of adJ
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(adJ(X) ≡ [J,X], X ∈ g) is the Cartan subalgebra h ⊂ g. The potential q(x)
belongs to the orthogonal completion h⊥ of h with respect to the Killing form

〈X,Y 〉 = tr(adXadY ), X, Y ∈ g. (2)

Therefore q(x) =
∑

α∈Δ qαEα where Eα are the root vectors and Δ is the root

system of g. The scalar functions qα(x) defined on R, are complex valued, smooth

and rapidly vanishing for x→ ±∞ and we can assume that qα(x) are of Schwartz

type. The functions qα are called also ‘potentials’ and we shall consider q(x) as a

point in an infinite dimensional manifold - the manifold of potentials. The classical

Zakharov-Shabat system is obtained for g = sl(2,C), J = diag(1,−1).

Remark 1. We assume that the basic properties of the semisimple Lie algebras
(real and complex) are known. All definitions and normalizations we use coincide
with those made in [13] and are almost universally accepted.

Remark 2. When Generalized Zakharov-Shabat systems on different algebras are
involved we say that we have Generalized Zakharov-Shabat g-system to underline
that it is on the algebra g, but when we work on a fixed algebra its symbol is usually
omitted.

Referring for the details to [12] we simply remind that the adjoint solutions of GZS

operator L are functions of the type w = mXm−1 where X is a constant element

from g and m is a fundamental solution of Lm = 0. Let us denote by wa and wd

the orthogonal projection (with respect to the Killing form) of w over h⊥ and h

respectively. If one denotes the orthogonal projector on h⊥ by π0 then of course

wa = π0w and wd = (1 − π0)w. One of the most important fact from the theory

of GZS system is that if a suitable set of adjoint solutions (wi(x, λ)) is taken then

roughly speaking for λ belonging to the spectrum of L the functions wa
i (x, λ) form

a complete sets in the space of potentials. If one expands a potential over the subset

of the adjoint solutions as coefficients one gets the minimal scattering data for L.

Thus passing from the potentials to the scattering data can be considered as a sort

of Fourier transform, called a generalized Fourier transform. For this transform

the functions wa
i (x, λ) play the role the exponents play in the usual Fourier trans-

form. This interpretation was given for the first time in [1] and after that has been

developed in a number of works (see for example the monographs [8,15] for com-

prehensive study of sl(2,C)-case and bibliography and [2, 12] for more general

situations).

I. The recursion operators (generating operators, Λ-operators) are the operators for

which the functions wa
i (x, λ) are eigenfunctions and therefore for the generalized

Fourier transform they play the same role as the differentiation operator plays in
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the usual Fourier transform method. Their explicit form can be found in a number

of articles, and books (see for example [8]). For the above reasons the recursion

operators Λ± (usually one says just recursion operator) play an important role in

the theory of soliton equations - it is a theoretical tool which apart from explicit

solutions can give most of the information about the NLEEs, [8, 26]. In particular,

through them can be obtained

i) the hierarchies of the nonlinear evolution equations solvable through L

ii) the conservation laws for these NLEEs

iii) the hierarchies of Hamiltonian structures for these NLEEs.

There is another important trend in the theory of the recursion operators and it is re-

lated with the study of the recursion operators related to gauge-equivalent systems.

Taking as example the GZS system, assume that we make a gauge transformation

of the type ψ �→ ψ−1
0 ψ = ψ̃ where ψ0 is a fundamental solution to GZS system

corresponding to λ = 0. Then if we denote S = ψ−1
0 Jψo and the orbit of the

coadjoint representation of the Lie group G corresponding to g by OJ we shall

obtain that ψ̃ is a solution of the following linear problem

L̃ψ̃ = i∂xψ̃ − λSψ̃ = 0, S ∈ OJ . (3)

One can choose different fundamental solutions and one will obtain different be-

havior for S when x �→ ±∞ but usually ψ0 is taken to be the Jost solution that

satisfies limx→−∞ ψ0 = 1. The system (3) is called GZS system in pole gauge in

contrast to the system (1) which is called GZS system in canonical gauge.

The theory of the NLEEs related with the GZS auxiliary problem in canonical

gauge (L) is in direct connection with the theory of the NLEEs related with the

GZS auxiliary problem in pole gauge (L̃). The NLEEs for both systems are in

one-to-one correspondence and are called gauge-equivalent equations. This beau-

tiful construction has been discovered for the first time in the famous work of Za-

kharov and Takhtadjan [25] in which there has been proved the gauge-equivalence

of two famous equations - the Heisenberg ferromagnet equation and the nonlinear

Schrödinger equation.

In fact the constructions for the systemL and its gauge equivalent L̃ are in complete

analogy. Instead of the fixed Cartan subalgebra h = keradJ we have ‘moving’

Cartan subalgebra hS(x) = keradS(x), ‘moving’ space h⊥S (x) orthogonal (with

respect to the Killing form) to hS(x) (and consequently moving projector πS(x))

etc. We have the corresponding adjoint solutions w̃ = ψ̃Xψ̃−1 where ψ̃ is a

solution of L̃ψ̃ = 0 and X is a constant element in g. If we denote by w̃a and m̃d
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the projections of w̃(x) on h⊥S (x) and hS(x) respectively then the corresponding

recursion operators are constructed using the fact that the functions w̃a must be

eigenfunctions for them.

Let us make the following agreement. Though the Cartan subalgebra hS(x), its

orthogonal space h⊥S (x) and the projector πS(x), depend on x we shall not write

it explicitly unless there is a posibility of confusion. So for example in the case

of a function X(x) that is defined on R and such that X(x) ∈ h⊥
S (x) we shall

write simply X ∈ h⊥S , for two functions X(x) and Y (x) we shall write instead of

X(x) = Y (x) simply X = Y and so on.

For GZS system in pole gauge everything is easily reformulated and the only real

difficulty is to calculate all the quantities that are expressed through q and its deriv-

ative through S and its derivatives. There is a clear procedure how to achieve that

goal but in each particular case it requires new calculations. The procedure has

been developed in detail in our PhD thesis [23], outlined in [9,10] (for the sl(2,C)
case) and in more general cases in [11]. In the case of sl(3) the procedure has been

carried out in detail in [24] - for all these references see also [8].

II. The recursion operators for GZS have also beautiful geometric meaning. It can

be shown that their adjoint operators can be interpreted as Nijenhuis tensors on the

manifolds of ‘potentials’ where the evolution defined by [L,A] = 0 occurs. The

point is that one of characteristic properties of the soliton equations is that they are

not simply Hamiltonian but they are Hamiltonian with respect to two different com-

patible Poisson structures. This property is known as bi-Hamiltonian property of

the NLEEs solvable through the corresponding linear problem. A Poisson structure

on a manifoldM is a field of linear mapsm �→ Pm : T ∗
m(M) �→ Tm(M) such that

for any two smooth functions f, g the expression {f, g}(m) = 〈dgm, Pm(df)m〉 is

a Poisson bracket. (Here 〈 , 〉 is the canonical pairing between Tm(M) and T ∗
m(M)

- the tangent and cotangent spaces at m ∈ M). Compatible Poisson structures are

called such Poisson structures P,Q for which their linear combination aP + bQ
(where a, b are constants) is also a Poisson tensor. It turns out that compatible

Poisson structures give rise to Nijenhuis tensors in case one of it is invertible.

Indeed, if Q is invertible, then one can define N = P ◦Q−1 and N is a field of lin-

ear mapsm �→ Nm : Tm(M) �→ Tm(M) such that the so called Nijenhuis bracket

[N,N ] ofN is zero. Then the manifold of potentials is endowed with a very special

geometric structure - Poisson-Nijenhuis (P-N) structure of coupled Poisson tensor

and a Nijenhuis tensor. The properties of the P-N structure are responsible for the

fact that the symmetries of the soliton equations have ‘hereditary’ properties and

that there are infinitely many Hamiltonian structures for the corresponding NLEEs.

This interpretation was found by F. Magri in his pioneer works [16, 17], one can
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see all details of the theory in [4] or in [8] and we shall assume that it is known and

shall not describe it again here.

As a matter of fact there is a nice picture of the relation of the P-N structures on the

manifold of potentials for the GZS system in the canonical gauge, the manifold of

potentials of the same system in pole gauge and the manifold of the corresponding

Jost solutions, see [6, Ch. 15].

Together with the possibility to calculate the recursion operators for GZS system

in pole gauge through the gauge transformation, there exists another option - to

calculate directly the P-N structure on the manifold of potentials using the com-

patible Poisson structures and then to find the conjugate to the Nijenhuis tensor.

In this work we shall use it and then shall compare our result with the Recursion

Operator already known in the case sl(3,C), see [24]. Our motivation comes from

the fact that there has been some renewed interest in the GZS system in pole gauge

and its reductions recently, see [6, 7]. In the second of these works have been cal-

culated the Recursion Operators in the case where some reductions are imposed on

the sl(3,C)-GZS system in pole gauge using the usual technique and a technique

developed in [14]. We intend to address this issue elsewhere, as here we shall

concentrate on the sl(3,C)-GZS system in pole gauge in general position.

2. P-N Structure for GZS Pole Gauge Hierarchy. The sl(3, C) Case

Consider the GZS pole gauge sl(3,C)-system in general position - that is the

smooth function S(x) with domain R, see (3), is subject only to the require-

ments that S(x) ∈ OJ and S(x) tends fast enough to some constant values when

x �→ ±∞. For J we shall assume that J = diag(λ1, λ2, λ3),
∑

i λi = 0, where

all λi �= 0. Of course J must be regular, so that keradJ coincides with the Cartan

subalgebra of the diagonal matrices in sl(3,C).

Let us consider a more general case then in the above when the algebra g is arbi-

trary simple algebra. Let S(x) is smooth, have values in g and when x→ ±∞ the

function S(x) tends fast enough to constant values. Functions of this type form an

infinite dimensional manifold which we shall denote byM. Then it is reasonable

to assume that the tangent space TS(M) at S consists of all the smooth functions

X : R �→ g vanishing fast enough when x �→ ±∞. We denote that space by

F(g). We shall also assume that the ‘dual space’ T ∗
S(M) is equal to F(g) and if

α ∈ T ∗
S(M), X ∈ TS(M) then

α(X) = 〈〈α,X〉〉 ≡
+∞∫

−∞

〈α(x), X(x)〉dx (4)



102 Alexandar B. Yanovski

where 〈 , 〉 is the Killing form of sl(3,C).

Remark 3. We identify T ∗
S(M) and TS(M) using the bi-linear form 〈〈 , 〉〉. We do

not want to make the definitions more precise, since we will speak rather about a
geometric picture then about precise results. Such results can be obtained only
after profound study of the spectral theory of L and L̃. In particular, we put
dual space in quotation marks because it is clearly not equal to the dual of F(g).

We mention however that the term ‘allowed’ functional H means that
δH

δS
∈

T ∗
S(M) ∼ TS(M).

First we note that the operators

α �→ P (X) = i∂xα, α ∈ T ∗
S(M) (5)

α �→ Q(α) = adS(α), S ∈M. (6)

It is a fact from the general theory that these Poisson tensors are compatible, see

[6, Ch. 15]. In other words P + Q is also a Poisson tensor. Let us also mention

that the tensor Q is the canonical Kirillov tensor which acquires the above form

because the algebra is simple and the coadjoint and the adjoint representation are

equivalent.

Now let OJ be the orbit of the coadjoint representation of G (the group that cor-

responds to g) passing through J . Let us consider the set of smooth functions

f : R �→ OJ such that when x → ±∞ they tend fast enough to constant values.

The set of this functions is denoted byN and clearly can be considered as subman-

ifold ofM. If S ∈ N the tangent space TS(N ) consists of all smooth functions

X , tending to zero fast enough when x �→ ±∞ and such that X(x) ∈ TS(x)(OJ)
(Recall thatOJ is a smooth manifold in the classical sense.) We assume again that

T ∗
S(N ) ∼ TS(N ) and that these spaces are identified via 〈〈 , 〉〉.

The Poisson tensors P and Q can be restricted fromM to N . The question how

to restrict a Poisson tensor on submanifold has been considered in detail in the

literature, see for example [20–22]. We shall use a simplified version of the results

obtained in these papers, proved in [18, 19]. We call it first restriction theorem.

Theorem 4. LetM be Poisson manifold with Poisson tensor P and M̄ ⊂ M be
a submanifold. Let us denote by j the inclusion map of M̄ intoM, by X ∗

P (M̄)m
the subspace of covectors α ∈ T ∗

m(M) such that

Pm(α) ∈ djm(Tm(M̄)) = Im(djm), m ∈ M̄. (7)

Here Im denotes the image and T⊥(M̄)m – the set of all covectors at m ∈M
vanishing on the subspace Im(djm), m ∈ M̄ is called also the annihilator of
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Im(djm) in T ∗
m(M). Let the following relations hold

X ∗
P (M̄)m + T⊥(M̄)m = T ∗

m(M), m ∈ M̄ (8)

X ∗
P (M̄)m ∩ T⊥(M̄)m ⊂ ker(Pm). (9)

Then there exists unique Poisson tensor P̄ on M̄, j-related with P , that is

Pm = djm ◦ P̄m ◦ (djm)∗. (10)

The proof of the theorem is constructive. First, one takes β ∈ T ∗
m(M̄), then

represents (j∗β)m as α1 + α2 where α1 ∈ X ∗
P (M̄)m, α2 ∈ T⊥(M̄)m and finally

puts P̄m(β) = Pm(α1) (we identify m and j(m) here).

Restricting the Poisson tensor Q is easy, one readily get that the restriction Q̄ is

given by the same formula as before

α �→ Q̄(α) = adS(α), S ∈ N , α ∈ T ∗
S(N ). (11)

The tensor P is a little harder to restrict. The restriction we present below has been

preformed in various works in the simplest case g = sl(2,C), see for example [19].

We do it now in the case g = sl(3,C), in other words starting from here the Lie

algebra g will be sl(3,C).

First, let us introduce some facts and notation. Since J is a regular element from

the Cartan subalgebra h then each element S from the orbit OJ is also regular,

hS(x) = keradS(x) is a Cartan subalgebra of sl(3,C) and we have

sl(3,C) = hS(x)⊕ h⊥S (x). (12)

If X ∈ TS(N ) = h⊥S then X(x) ∈ h⊥S (x) (we recall that these spaces depend on

the point x) but in addition X is smooth and vanishes rapidly when x �→ ±∞.

We shall denote the set of these functions by F(h⊥
S ). So according to our notation

X ∈ h⊥S and X ∈ F(h⊥S ). Using the same logic, for X ∈ F(h⊥S ) we write adS(X)

which means the function adS(x)X(x) belonging to F(h⊥S ).

We have some facts about J that we introduce in the propositions below. For the

proofs see [24].

Proposition 5. The matrices J and J1 = J2 − 1
3tr(J2)1 span the Cartan subal-

gebra h = keradJ .

As a consequence, for S ∈ OJ the matrices S and S1 = S2 − 2
31 span the Cartan

subalgebra hS of sl(3,C). On h⊥S the operator adS is invertible.
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Proposition 6. The matrix J satisfies the equation

J3 =
1

2
C2J +

1

3
C31, C2 = λ2

1 + λ2
2 + λ2

3, C3 = λ3
1 + λ3

2 + λ3
3. (13)

Proposition 7. If S ∈ OJ = {X̃ ; X̃ = gJg−1, g ∈ SL(3,C)} then S satisfies
(13), that is S3 = 1

2C2S + 1
3C31. If in addition for all λi, λi �= 0 the inverse is

also true, that is any S that satisfies the equation S3 = 1
2C2S + 1

3C31 belongs to
the orbit.

The Killing form of sl(3,C) is equal to 6trXY and one has the following useful

identities

〈J, J〉 = 6C2, 〈J1, J1〉 = C2
2 , 〈J, J1〉 = 6C3. (14)

The Killing form is invariant with respect to the adjoint action, so we also have

〈S, S〉 = 6C2, 〈S1, S1〉 = C2
2 , 〈S, S1〉 = 6C3. (15)

The Gram matrix

T =

( 〈J, J〉 〈J, J1〉
〈J1, J〉 〈J1, J1〉

)
=

(
6C2 6C3

6C3 C2
2

)
(16)

has determinant d1 = 6(C3
2 − 6C2

3 ). Of course d1 �= 0. One can show that

d1 = 12(λ1 − λ2)
2(λ2 − λ3)

2(λ1 − λ3)
2 ≡ 12d. (17)

Therefore

T−1 =
1

12d

( 〈J1, J1〉 −〈J, J1〉
−〈J1, J〉 〈J, J〉

)
=

1

12d

(
C2

2 −6C3

−6C3 6C2

)
. (18)

Now we are in position to perform the restriction of P on N . For S ∈ N we have

X ∗
P (N )S = {α ; i∂xα ∈ F(h⊥)} (19)

T⊥(N )S = {α ; 〈〈α,X〉〉 = 0, X ∈ F(h⊥S )}. (20)

We see that T⊥(N )S is the set of smooth functions α(x) such that α ∈ hS tends to

zero fast enough when x �→ ±∞. We shall denote this space by F(hS). Naturally,

F(hS) ⊂ F(hS)0, where the space F(hS)0 consists of all smooth functions X(x)
such that X ∈ h and such that X tends to some constant values when x �→ ±∞.

Since S and S1 span hS , we have that S, S1 ∈ F(hS)0 and

F(hS)0 = {X ; X = a(x)S(x) + b(x)S1(x), a(x), b(x)− smooth
(21)

a(x), b(x) tend to some constant values when x �→ ±∞}
F(hS) = {X ; X = a(x)S(x) + b(x)S1(x), a(x), b(x)− smooth

(22)
lim

x→±∞
a(x) = lim

x→±∞
b(x) = 0}.
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Let us consider now X ∗
P (N )S ∩ T⊥(N )S . It consists of the elements

α = a(x)S(x) + b(x)S1(x)

such that i∂xα ∈ F(h⊥S ). But

i∂xα = ia(x)Sx + ib(x)(S1)x + iaxS(x) + ibxS1(x)

so we must have 〈i∂xα(x), S(x)〉 = 〈i∂xα(x), S1(x)〉 = 0. Now, let us note that

from (15) follows that

〈S(x), Sx(x)〉 = 〈S1(x), (S1)x(x)〉 = 0, 〈S1(x), Sx(x)〉 = −〈(S1)x(x), Sx(x)〉.

Next

〈S1, Sx〉 = 6tr(SxS
2) = 2tr(S3)x.

Using Proposition 7 we get that 〈S1, Sx〉 is proportional to trSx = 0. In this way

we see that Sx, (S1)x belong to F(h⊥S ) and therefore ax = bx = 0. Then a and b
can be only identically zero and

X ∗
P (N )S ∩ T⊥(N )S = {0} ⊂ kerPS .

Consider now arbitrary α ∈ T ∗(N )S . We want to represent it as α1 + α2, where

α1 ∈ X ∗(N )S , α2 ∈ T⊥(N )S . Therefore, α2 = A(x)S(x) + B(x)S1 with

A(x), B(x) vanishing when x �→ ±∞. In addition, we must have

i∂xα = i∂xα1 + iA(x)Sx + iB(x)(S1)x + iAxS(x) + iBxS1 (23)

where i∂xα1 ∈ F(h⊥S ). Taking the Killing form with S and S1 we get the system

〈∂xα, S(x)〉 = Ax〈J, J〉+Bx〈J, J1〉 (24)

〈∂xα, S1(x)〉 = Ax〈J, J1〉+Bx〈J1, J1〉 (25)

and therefore (
Ax
Bx

)
= T−1

( 〈∂xα, S(x)〉
〈∂xα, S1(x)〉

)
(26)

where T is the Gram matrix introduced earlier. So we obtain(
A
B

)
= T−1

(
∂−1
x 〈∂xα, S(x)〉

∂−1
x 〈∂xα, S1(x)〉

)
. (27)
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Remark 8. Usually in all theory of the recursion operators and their geometric
interpretation the expressions on which the operator ∂−1

x acts are total deriva-
tives. Thus the same results will be obtained choosing for ∂−1

x any of the following
operators

x∫
−∞

. dy,

x∫
+∞

. dy,
1

2

⎛⎝ x∫
−∞

. dy +

x∫
+∞

. dy

⎞⎠ . (28)

However, one uses more frequently the third expression when one writes the corre-
sponding Poisson tensors in order to make them explicitly skew-symmetric.

Returning to our task, for α ∈ T ∗(N )S let us put

α1= α− α2 (29)

α2= (S, S1)T
−1

(
∂−1
x 〈∂xα, S(x)〉

∂−1
x 〈∂xα, S1(x)〉

)
. (30)

One checks that α1, α2 lie in the spaces X ∗(N )S , T
⊥(N )S respectively. Thus the

conditions of the first restriction theorem are fulfilled. Noting that for β ∈ T ∗
S(N )

we have dj∗Sβ = πS(β) we find that the restriction P̄ of P on N has the form

P̄ (β) = iπS∂xβ − i (Sx, (S1)x)T
−1

(
∂−1
x 〈∂xβ, S(x)〉

∂−1
x 〈∂xβ, S1(x)〉

)
. (31)

The Poisson tensor Q̄ is invertible on N , so one can construct a Nijenhuis N =
P̄ ◦ ad−1

S tensor which evaluated at X ∈ F(h⊥S ) gives

N(X) = iπS∂x(ad−1
S X)− i (Sx, (S1)x)T

−1

(
∂−1
x 〈∂x(ad−1

S X), S(x)〉
∂−1
x 〈∂x(ad−1

S X), S1(x)〉
)
. (32)

Taking into account that 〈ad−1
S (X), S〉 = 〈ad−1

S (X), S1〉 = 0 the above can be

cast into the equivalent form

N(X) = iπS∂x(ad−1
S X) + i (Sx, (S1)x)T

−1

(
∂−1
x 〈ad−1

S X)Sx(x)〉
∂−1
x 〈ad−1

S X, (S1)x(x)〉
)
. (33)

From the general theory of the compatible Poisson tensors now follows

Theorem 9. The Poisson tensor field Q̄ and the Nijenhuis tensor field N endow
the manifold N with a P-N structure.
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The final step is to calculate the dual of the tensor N with respect to the pairing

〈〈 , 〉〉. A quick calculation, taking into account that adS is skew-symmetric with

respect to the Killing form, gives for α ∈ F(h⊥
S )

N∗(α) = iad−1
S

[
πS∂xα+ (Sx, (S1)x)T

−1

(
∂−1
x 〈αSx(x)〉

∂−1
x 〈α, (S1)x(x)〉

)]
(34)

or equivalently

N∗(α) = iad−1
S

[
πS∂xα− (Sx, (S1)x)T

−1

(
∂−1
x ∂x〈αS(x)〉

∂−1
x 〈∂xα, S1(x)〉

)]
. (35)

But if we write the above in components we shall see that these are the recursion

operators Λ̃± for the GZS system in pole gauge, see [24]. Thus our results confirm

the idea that the recursion operators and the Nijenhuis tensors are dual objects.

The theory will not be complete if we are not able to present the hierarchies of

integrable equations. Geometrically, they are the vector fields for the P-N struc-

ture, that is such that LZQ̄ = 0, LZN = 0 where LZ denotes the Lie derivative.

Fortunately, from the general theory, see [8], we have that the hierarchies of the

soliton equations are generated by the fields

Xa,b
k = Nk[S, aJ + bJ2], a, b = const, k = 0, 1, 2, . . . . (36)

Thus the last thing that remains to be done is to express the operator ad−1
S through

S. For this let us note that if all the eigenvalues of J are different then the opera-

tors adJ and ad−1
J (adS and ad−1

S respectively) are semisimple and have common

eigenvectors. One then can apply the spectral decomposition theorem for the oper-

ator adS . The procedure is described in details in [24], and here we shall give the

final result

ad−1
S = l(adS) (37)

where l(λ) is the polynomial

l(λ) =
λ

d

(
λ2 − 3

2
C2

)2

(38)

and

d = (λ1 − λ2)
2(λ2 − λ3)

2(λ1 − λ3)
2. (39)

Let us make an important observation. As l(λ) is of the form λl0(λ), where l0
is another polynomial, then we have l(adS) = l0(adS)adS . Therefore we have

l(adS)π̃0 = l(adS). The formula for ad−1
S is true irrespective of the choice of

the representation. However, we are working in a fixed representation and can
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simplify (37) using the fact that S3 = 1
2C2S + 1

3C31. Each time we have S3 we

can substitute it with 1
2C2S + 1

3C31 and get expressions whose degree in S is at

most 2. Thus finally we obtain

ad−1
S X̃ =

1

d

{
C2

2 [S, X̃] +
3

2
C2S[S, X̃]S − 3C3[S

2, X̃]

}
, X̃ ∈ h⊥S . (40)

In order to express everything in (36) through S and its derivatives we need to

calculate ad−1
S Sx and ad−1

S (S1)x. We have

ad−1
S Sx = −3C3[S

2, Sx] + C2
2 [S, Sx] +

3

2
C2S[S, Sx]S

ad−1
S (S1)x = C2

2 [S2, Sx]− 2C2C3[S, Sx]− 3C3S[S, Sx]S.

(41)

Since d = C2
2/2− 3C2

3 from this system we get two simple formulae

ad−1
S

[
C2

2
(S2)x + C3Sx

]
= [S2, Sx] (42)

ad−1
S

[
C2

2

3
Sx + C3(S

2)x

]
=

2C2

3
[S, Sx] + S[S, Sx]S. (43)

These relations were obtained also in [24], but actually they were obtained earlier

in a different way and in a different form in [3]. For example, in [3] in the right

hand side of (43) instead of the expression (2/3)C2[S, Sx] + S[S, Sx]S stands

[S, {S, {S, Sx}}] +
1

6
C2[S, Sx] (44)

where {, }means anticommutator. However, it is not difficult to check that because

of the relation S3 = (1/2)C2S − (1/3)C31, these expressions are equal.

The equations from the two-parameter hierarchy (36) are rather complicate for cal-

culation and are calculated up to the equations involving second order derivatives

in x. Some simplification can be achieved using (42), see [24]. Two particular

cases can be selected

∂tS = −ia
(
[S2, Sxx] + [S, S2

x]
)
, a = const (45)

St = −ib

(
2

3
C2[S, Sxx] + Sx[S, Sx]S + S[S, Sxx]S

)
, b = const. (46)

If one prefers the equation (46) can be cast in the equivalent form

St = −ib

(
1

6
C2[S, Sxx] + [S, {S, (S2)xx}]

)
. (47)
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According to [3], when iS belongs to the compact real form su(3) of sl(3,C) the

equations (45) - (46) describe the dynamics of spin systems with spin 1. Imposing

iS ∈ su(3) does not affect any of the relations we have already. Indeed, if J † = J ,

q† = q (that is, if iJ ∈ su(3), iq ∈ su(3)) then ψ0 belongs to the group SU(3) and

therefore iS = iψ−1
0 Jψ0 ∈ su(3). In other words the requirements iJ ∈ su(3),

iq ∈ su(3) impose algebraical restriction compatible with all our constructions.

3. Conclusion

In this article we have found the P-N structure on the manifold of potentials N
for the GZS system in pole gauge on the Lie algebra sl(3,C) obtaining geomet-

ric interpretation of the Recursion Operators and the corresponding hierarchies of

soliton equations.
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