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IS THE LIGHT TOO LIGHT?
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Abstract. The gravitational interaction of light is analyzed considering its dual

characteristic nature, i.e. as an (electromagnetic) wave or as a particle (photon).

Considered as an electromagnetic wave, the light can be source of gravitational

waves belonging to the larger class of exact solutions of Einstein field equations

which are invariant for a non-Abelian two-dimensional Lie algebra of Killing fields.

It is shown that in the would be quantum theory of gravity they correspond to

spin−1 massless particles.

1. Introduction

As described in Quantum Electrodynamics (QED), photon-photon scattering can

occur through the creation and annihilation of virtual electron-positron pairs and

may even lead to collective photon phenomena. Photons also interact gravitation-

ally but the gravitational scattering of light by light has been much less studied.

Purely general relativistic treatments of electromagnetic wave interactions have

been made resulting in exact solutions [12, 13], but these calculations are differ-

ent from pure scattering processes and do not address the interaction at single

photon level. It is not clear to what extent, calculations of the gravitational cross-

section using Quantum Filed Theory (QFT) methods are consistent with classical

General Relativity (GR). First studies go back to Tolman, Ehrenfest and Podol-

sky [25] and, later, to Wheeler [27] who analysed the gravitational field of light

beams and the corresponding geodesics in the linear approximation of Einstein

equations. They discovered that null rays behave differently according whether

they propagate parallel or antiparallel to a steady, long, straight beam of light,

but they did not provide a physical explanation of this fact. Later, Barker, Bathia

and Gupta [2], following a previous analysis of Barker, Gupta and Haracz [4],

analyzed in QED the photon-photon interaction through the creation and anni-

hilation of a virtual graviton in the center-mass system and they found that the
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interaction have eight times the “Newtonian” value plus a polarization dependent

repulsive contact interaction and also obtained the gravitational cross sections for

various photon polarization states. Results of Tolman, Erhenfest, Podolsky (TEP)

and Wheeler were clarified in part by Faraoni and Dumse [11], in the setting of

classical pure General Relativity, using an approach based on a generalization to

null rays of the gravitoelectromagnetic Lorentz force of linearized gravity. They

also extended the analysis to the realm of exact PP-wave solutions of the Ein-

stein equations. After Barker, Bathia and Gupta, photon-photon scattering due

to self-induced gravitational perturbations on a Minkowski background has been

analyzed by Brodin, Eriksson and Marklund [2, 4] solving the Einstein-Maxwell

system perturbatively to third order in the field amplitudes and confirming the

dependence of differential gravitational cross section on the photon polarizations.

Since the problem of the gravitational interaction of two photons is still unsolved,

it appears necessary to take into full account the nonlinearity of Einstein’s equa-

tions, just as in the case of gravitational waves generated by strong sources [9,24].

This is the case, for example, when the source is a coalescing binary from which

a secondary wave (called the Christhodoulu memory) is generated via the non

linearity of Einstein’s field equations. The memory seems to be too weak to be

detected from the present generation of interferometers (even if the frequency

� is in the optimal band for LIGO/VIRGO1 interferometers). However, the

Christodoulou memory is of the same order as the linear effects related to the same

source, thus stressing the relevance of the nonlinearity of the Einstein’s equations

also from an experimental (LIGO/VIRGO) point of view.

2. Linearized Einstein Theory

A gravitational field g = gμν (x) dxμdxν is said to be locally weak if there exists

a (harmonic) coordinates system and a region M ′ ⊂ M of space-time M in which

the following conditions hold

gμν = ημν + hμν , |hμν | << 1, |hμν,α| << 1. (1)

As it is known, in the weak field approximations in a harmonic coordinates system

the Einstein field equations read

�hμν = 0. (2)

1LIGO is the Laser Interferometer Gravitational Wave Observatory (the name of USA Laser
Inerferometer) and VIRGO is the name of Italian Laser Interferometer
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The choice of the harmonic gauge plays a key role in deriving equation (2) and

no other special assumption either on the form or on the analytic properties of

the perturbation h has been done. For globally square integrable solutions of

the wave-equation (2) (that is, solutions which are square integrable everywhere

on M ), with a suitable gauge transformation preserving the harmonicity of the

coordinate system and the “weak character” of the field, one can always kill the

“spin-0” and “spin−1” components of the gravitational waves. However, in the

following we will meet some interesting solutions which do not belong to this

class.

2.1. Gravitoelectromagnetism

A slightly different point of view, which is useful in clarifying the nature of spin

of gravitational waves is provided by the gravitoelectromagnetism (GEM), (see,

e.g., [14]). In this scheme one tries to exploit as much as possible the similarities

between the Maxwell and the linearized Einstein equations. To make this analogy

evident it is enough to write a weak gravitational field fulfilling conditions (1) in

the GEM form (see, e.g. [14, 18])

ds2 = c2(1 + 2
Φ(g)

c2
)dt2 +

4

c
(A(g) · dx)dt − (1 − 2

Φ(g)

c2
)δijdxidxj (3)

with

h00 =
4Φ(g)

c2
, h0i = −4A

(g)
i

c2

(in this section the speed of light c will be explicitly written). Hereafter the spatial

part of four-vectors will be denoted in bold and the standard symbols of three-

dimensional vector calculus will be adopted. In terms of Φ(g) and A
(g) the har-

monic gauge condition reads

1

c

∂Φ(g)

∂t
+

1

2
∇ · A(g) = 0 (4)

and, once the gravitoelectric and gravitomagnetic fields are defined in terms of

GEM potentials, as

E
(g) = −∇Φ(g) − 1

2c

∂A
(g)

∂t
, B

(g) = ∇∧ A
(g) (5)

one finds that the linearized Einstein equations resemble the Maxwell equations.

Consequently, being the dynamics fully encoded in Maxwell-like equations, the
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GEM formalism describes the physical effects of the vector part of the gravita-

tional field. The situations which are usually described in this formalism are, typ-

ically, static: in fact, when this assumption is dropped, GEM gravitational waves

are also possible.

Then, the gravitoelectric and the gravitomagnetic components of the metric are

given by

E(g)
μ = F

(g)
μ0 , B(g)μ = −εμ0αβF

(g)
αβ /2

where

F (g)
μν = ∂μA(g)

ν − ∂νA
(g)
μ , A(g)

μ = −h0μ/4 = (−Φ(g),A(g))

• The first order geodesic motion for a massive particle in the light beam

gravitational field is determined by the force

f
(g) = −2E(g) − 4u ∧ B

(g)

where u is the velocity of the particle.

• The first order geodesic motion for a photon propagating, in the light beam

gravitational field, parallel(anti) to z-axis (uj = ±δj3) is slightly different

f
(g) = −4

(
E

(g) + u ∧ B
(g)
)

.

3. Strong Gravitational Fields

In previous papers ([5–7, 19–21]) a family of exact solutions g of Einstein field

equations, representing the gravitational wave generated by a beam of light, has

been explicitly written

g = 2f(dx2 + dy2) + μ
[
(w (x, y) − 2q)dp2 + 2dpdq

]
(6)

where μ = AΦ+B with A, B ∈ R, Φ(x, y) is a non constant harmonic function,

f = (∇Φ)2
√|μ|/μ, and w (x, y) is a solution of the Euler-Darboux-Poisson

equation
Δw + (∂x ln |μ|) ∂xw + (∂y ln |μ|) ∂yw = ρ

where Δ is the Laplace operator in the (x, y)−plane and Tμν = ρδμ3δν3 is the

energy-momentum tensor.
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It is invariant for the non Abelian Lie agebra G2 of Killing fields, generated by

X =
∂

∂p
, Y = exp (p)

∂

∂q

with [X, Y ] = Y , g (Y, Y ) = 0 and whose orthogonal distribution is integrable.

In the particular case s = 1, f = 1/2 and μ = 1, the above metrics are locally

diffeomorphic [7] to a subclass of the vacuum Peres solutions [16, 23] and, by

using the transformation

p = ln |u| , q = uv

can be written in the form

g = dx2 + dy2 + 2dudv +
w

u2
du2. (7)

The above metric is of the Kerr-Schild form

gμν = ημν + V kμkν , kμkμ = 0

and represents a perturbation of Minkowski metric η = dx2 + dy2 + 2dudv =
dx2+dy2+dz2−dt2, where u = (z−t)/

√
2 v = (z+t)/

√
2, with perturbation

given by

h := h00 = h33 = −h03 = −h30 =
w

(z − t)2
·

Therefore we have

E(g) = −1

4
(wx, wy,

w

u
)u−2, B(g) =

1

4
(wy,−wx,

w

u
)u−2.

Thus, gravitational force acting over a massles particle is given by

f(g) = −[wx(1 − vz)i + wy(1 − vz)j + (wxvx + wyvy)k]/4u2.

The velocity of photons is determined by the null geodesics equation

(h − 1) − 2hvz + (h + 1)v2
z = 0

which has two solutions

vz = 1, vz =
h − 1

h + 1
=

w − u2

w + u2
·
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If the photon propagates parallel to the light beam, v = (0, 0, 1), then

f(g) = 0

and there is not attraction or repulsion.

If the photon propagates antiparallel to the light beam v = (0, 0, (h − 1)/(h + 1))
with

f(g) = −∇w/2
(
w + u2

)
the force turns out to be attractive.

4. Physical Properties

4.1. Wave Character

The wave character and the polarization of these gravitational fields can be ana-

lyzed in many ways. For example, we could use the Zel’manov criterion [28] to

show that these are gravitational waves and the Landau-Lifshitz pseudo-tensor to

find their propagation direction [5, 6]. However, the algebraic Pirani criterion is

easier to handle since it determines the wave character of the solutions and the

propagation direction both at once. Moreover, it has been shown that, in the vac-

uum case, the two methods agree [6]. To use this criterion the Weyl scalars must

be evaluated according to the Petrov-Penrose classification [15, 17].

To perform the Petrov-Penrose classification, one has to choose a tetrad basis with

two real null vector fields and two real spacelike (or two complex null) vector

fields. Then, according to the Pirani’s criterion, if the metric belongs to type N
of the Petrov classification, it is a gravitational wave propagating along one of the

two real null vector fields. Since ∂u and ∂v are null real vector fields and ∂x and

∂y are spacelike real vector fields, the above set of coordinates is the right one to

apply for the Pirani’s criterion.

Since the only nonvanishing components of the Riemann tensor, corresponding to

the metric (7), are

Riuju = −∂2
ij∂uϕ, i, j = x, y

this gravitational fields belong to Petrov type N [8, 28]. Then, according to the

Pirani’s criterion, the metric (7) does indeed represent a gravitational wave prop-

agating along the null vector field ∂u.

It is well known that linearized gravitational waves can be characterized entirely

in terms of the linearized and gauge invariant Weyl scalars. The non vanishing
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Weyl scalar of a typical spin−2 gravitational wave is Ψ4. The metrics (7) also

have as non vanishing Weyl scalar Ψ4.

4.2. Spin

A transparent method to determine the spin of a gravitational wave is to look

at its physical degrees of freedom, i.e., the components which contribute to the

energy [10]. One should use the Landau-Lifshitz (pseudo)-tensor tμ
ν which, in the

asymptotically flat case, agrees with the Bondi flux at infinity [6].

It is worth to remark that the canonical and the Landau Lifchitz energy-momentum

pseudo-tensors are tensors for Lorentz transformations. Thus, any Lorentz trans-

formation will preserve the form of these tensor and this allows to perform the

analysis according to the Dirac procedure. A globally square integrable solution

hμν of the wave equation is a function of r = kμxμ with kμkμ = 0. With the

choice kμ = (1, 0, 0,−1), we get for the energy density t00 and the energy mo-

mentum t30 the following result

16πt00 =
1

4
(u11 − u22)

2 + u2
12, t00 = t30

where uμν ≡ dhμν/dr. Thus, the physical components which contribute to the

energy density are h11 − h22 and h12. Following the analysis of [10], we see that

they are eigenvectors of the infinitesimal rotation generator R, in the plane x− y,
belonging to the eigenvalues ±2i. The components of hμν which contribute to the

energy thus correspond to spin−2.

In the case of the prototype of spin−1 gravitational waves (7), we have

τ0
0 ∼ c1(h0x,x)2 + c2(h0y,x)2, t00 = t30

where c1 e c2 constants, so that the physical components of the metric are h0x and

h0y. Following the previous analysis one can see that these two components are

eigenvectors of iR belonging to the eigenvalues ±1. In other words, metrics like

(7), which are not pure gauge since the Riemann tensor is not vanishing, represent

spin−1 gravitational waves propagating along the z−axis at light velocity.

Summarizing: globally square integrable spin−1 gravitational waves propagat-
ing on a flat background are always pure gauge. Spin−1 gravitational waves
which are not globally square integrable are not pure gauge.

What truly distinguishes spin−1 from spin−2 gravitational waves is the fact that

in the spin−1 case the Weyl scalar has a non trivial dependence on the transverse

coordinates (x, y) due to the presence of the harmonic function. This could led
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to observable effects on length scales larger than the characteristic length scale
where the harmonic function changes significantly. Indeed, the Weyl scalar enters

in the geodesic deviation equation implying a non standard deformation of a ring

of test particles breaking the invariance under rotation of π around the propagation

direction. Eventually, one can say that there should be distinguishable effects of

spin−1 waves on suitably large length scales.

It is also worth to stress that the results of [1] suggest that the sources of as-

ymptotically flat PP–waves (which have been interpreted as spin−1 gravitational

waves [5, 6]) repel each other. Thus, in a field theoretical perspective, “PP-

gravitons” must have spin−1 .

5. Quantum Field Theory

Quantum Field Theory is needed when we confront simultaneously two great

physics innovations of the last century of the previous millennium: special rel-
ativity and quantum mechanics. A fast moving rocket ship, close to light velocity,

needs special relativity, not quantum mechanics! A slow moving electron scat-

tering on a proton needs quantum mechanics, not special relativity! Particles can

come to life and particles can die. It is this matter of birth, life and death that re-

quires the development of a so called quantum field theory. In quantum mechanics

the uncertainty principle tells us that energy can fluctuate wildly over a small in-

terval of time. According to special relativity, energy can be converted into mass

and viceversa. With quantum mechanics and special relativity, the wildly fluctu-

ating energy can metamorphose into mass, that is in new particles not previously

present.

5.1. The Partition Function

It is known from Quantum Field Theory that a consequence of spin−1 messen-

gers is that particles with the same orientation repel and particles with opposite

orientation attract. Indeed, path integral formalism describing a massive vector

field theory Aμ makes use of the partition function defined by

Z (J) =< 0| exp[− i

�
H (J)T ]|0 >

where � is the Planck constant, H the Hamiltonian, J the source and T the inter-

action time.
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It can be represented by using the Feynman path integral

Z (J) =

∫
DA exp[

i

�
S (A, J)]

where

S (A, J) =

∫
d4x

(
Aμ

[(
∂2 + m2

)
gμν − ∂μ∂ν

]
Aν + JμAμ

)
is the classical action.

We also have

Z (J) = exp[
i

�
W (J)]

with

W (J) = −1

2

∫
d4xd4yJμ (x) Dμν (x − y) Jν (y)

where Dνλ (x) is the Green function defined by[(
∂2 + m2

)
gμν − ∂μ∂ν

]
Dνλ (x) = δμ

λδ(4) (x) .

Taking the Fourier transform, we get

W (J) = −1

2

∫
d4kJ∗ (x)Dμν (k) Jν (k)

where

Dμν (k) =
−gμν + kμkν

k2 − m2

is called the propagator for the massive vector field Aμ.

A simple calculation shows that the potential energy between like charges is given

by

U =
W

T
=

exp (−mr)

4πr

so that dU/dr < 0 and the force between like charges turns out to be repulsive,

as we already know from electrodynamics.
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Conclusions

Thus, the apparent lacking of attraction found by TEP and Faraoni-Dunse must

be ascribed to the linear approximation since, according to our results, photons

generate spin−1 gravitational waves and, as a consequence, two photons with

same helicity must repel one another. This repulsion turns out to be very weak

and cannot be certainly observed in the Laboratory but it could play a relevant at

cosmic scale.

Therefore, one may postulate the existence, together with gravitons, of spin-1

gravitophotons and spin-0 graviscalar. Through coupling to fermions, they might

give forces depending on the barion number. These fields might give two (or

more) Yukawa type terms of different signs [22], corresponding to repulsive grav-

itophoton exchange and attractive graviscalar exchange (range » 200m).
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