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ABELIAN CONNECTION IN FEDOSOV DEFORMATION
QUANTIZATION
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Communicated by Martin Schlichenmaier

Abstract. General properties of an Abelian connection in Fedosov deformation
quantization are investigated. The definition and the criterion of being a finite
formal series for an Abelian connection are presented. Examples of finite and
infinite Abelian connections are given.

1. Introduction

Deformation quantization of the phase space R
2n was invented in the middle of the

previous century. Making use of the results obtained by Weyl [9], Wigner [10] and
Groenewold [5] Moyal [7] presented quantum mechanics perceived as a statistical
theory.

The first successful generalization of Moyal’s results in case of a phase space
different from R

2n appeared in 1977 when Bayen et al. [1] proposed an axiomatic
version of the deformation quantization. In those articles quantum mechanics
gained a new aspect – as a deformed version of the classical physics.

One of the realizations the quantization programme of Bayen et al. is the so called
Fedosov deformation quantization [2, 3]. The Fedosov construction is algebraic
and can be applied easily for example to solve the harmonic oscillator or to find
momentum and position eigenvalues and Wigner eigenfunctions on a 2-D sym-
plectic space with constant curvature tensor [4]. A great advantage of that method
is the fact that computations may be done by computer programmes.

In Fedosov quantization we work with formal series. There is no general method
to write these series in a compact form. Series of compact form appear for ex-
ample when they contain finite number of terms. In that case the ∗-product of
functions can be calculated exactly.

Fedosov deformation quantization is based on two recurrent equations. The first
one is the formula defining an Abelian connection, the second – a relation in-
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troducing a series representing an observable. We deal only with the Abelian
connection.

The text is based on our paper [8]. In all formulas in which summation limits are
obvious we use Einstein summation convention.

2. Foundations of Fedosov Deformation Quantization

Let (M, ω) be a 2n-dimensional symplectic manifold. Since we work only with
symplectic manifolds, in our paper we will denote a manifold (M, ω) just byM.

Definition 1. A symplectic connection Γ on M is a torsion free connection lo-
cally satisfying conditions ωij;k = 0, 1 ≤ i, j, k ≤ 2n.

In Darboux coordinates the coefficients Γijk
def
= Γl

jkωli are symmetric with respect
to indices {i, j, k}.

Definition 2. A symplectic manifold M equipped with a symplectic connection
Γ is called a Fedosov manifold (M,Γ).

Let � denote some positive parameter and X1
p
, . . . ,X2n

p
components of an arbi-

trary vector Xp belonging to the tangent space TpM at the point p. The compo-

nents X1
p
, . . . ,X2n

p
are written in the natural basis

(
∂

∂qi

)
p

determined by the chart

(Uz, φz) such that p ∈ Uz. In the point p we introduce a formal series

a
def
=

∞∑
k=0

∞∑
l=0

�
kak,i1...ilX

i1
p

. . . Xil
p
. (1)

By ak,i1...il we denote components of a covariant tensor symmetric with respect
to indices {i1 . . . , il} taken in the basis dqi1  . . . dqil .

The part of the series a standing at �
k and containing l components of the vec-

tor Xp will be denoted by a[k, l] so that a =
∑

∞

k=0

∑
∞

l=0
�

ka[k, l]. The degree
deg(a[k, l]) of the component a[k, l] is the sum 2k + l. The degree of the series a
is the maximal degree of its nonzero components a[k, l].

Let P ∗
p
M[[�]] be the set of all elements a of the kind (1) at the point p.

Definition 3. The product ◦ : P ∗
p
M[[�]] × P ∗

p
M[[�]] → P ∗

p
M[[�]] of two ele-
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ments a, b ∈ P ∗
p
M[[�]] is the mapping

a ◦ b
def
=

∞∑
t=0

1

t!

(
i�

2

)t

ωi1j1 · · ·ωitjt
∂ta

∂Xi1
p . . . ∂Xit

p

∂tb

∂Xj1
p . . . ∂Xjt

p

· (2)

The tensor ωij and the symplectic form ωjk are related by ωijωjk = δi
k. The pair

(P ∗
p
M[[�]], ◦) is a noncommutative associative algebra called the Weyl algebra.

Definition 4. A Weyl bundle is a triplet (P∗M[[�]], π,M), where P∗M[[�]]
def
=⋃

p∈M
(P ∗

p
M[[�]], ◦) is a differentiable manifold called the total space, M is the

base space and π : P∗M[[�]] →M the projection.

A Weyl bundle is a vector bundle in which the typical fibre is also an algebra.

Definition 5. An m-differential form with value in the Weyl bundle is a form
written locally

a =

∞∑
k=0

∞∑
l=0

�
kak,i1...il,j1...jm

(q1, . . . , q2n)Xi1 . . . Xildqj1 ∧ · · · ∧ dqjm (3)

where 0 ≤ m ≤ 2n. Now ak,i1...il,j1...jm
(q1, . . . , q2n) are components of smooth

tensor fields on M and C∞(TM) � X

locally
= Xi ∂

∂qi is a smooth vector field.

Let Λm be a smooth field of m-forms on the symplectic manifold M. Forms of
the kind (3) are smooth sections of P∗M[[�]] ⊗ Λ

def
= ⊕2n

m=0(P∗M[[�]] ⊗ Λm).
The projection σ(a) of a ∈ C∞(P∗M[[�]]⊗ Λ0) means a|X=0.

For simplicity we will omit the variables (q1, . . . , q2n).

Definition 6. The commutator of the forms a and b a ∈ C∞(P∗M[[�]]⊗Λm1),
b ∈ C∞(P∗M[[�]] ⊗ Λm2) is the form [a, b] ∈ C∞(P∗M[[�]]
⊗ Λm1+m2)

[a, b]
def
= a ◦ b− (−1)m1·m2b ◦ a. (4)

A form a ∈ C∞(P∗M[[�]] ⊗ Λ) is called central, if for every other form
b∈C∞(P∗M[[�]] ⊗ Λ) the commutator [a, b] vanishes. Only forms not contain-
ing Xi’s are central.

Definition 7. The antiderivation operator

δ : C∞(P∗M[[�]]⊗ Λm)→ C∞(P∗M[[�]] ⊗ Λm+1)

is defined by δa
def
= dqk ∧ ∂a

∂Xk ·



96 Jaromir Tosiek

Definition 8. The operator

δ−1 : C∞(P∗M[[�]] ⊗ Λm) → C∞(P∗M[[�]]⊗ Λm−1)

is

δ−1a =

⎧⎨
⎩

1
l+m Xk ∂

∂qk !a for l + m > 0

0 for l + m = 0
(5)

where l is the degree of a in X i’s, i.e., the number of X i’s.

The Hodge decomposition is described by the following formula.

Theorem 1. ([2, 3]) For every a ∈ C∞(P∗M[[�]]⊗ Λ)

a = δδ−1a + δ−1δa + a00 (6)

where a00 is a smooth function on the symplectic manifold M.

Definition 9. The exterior covariant derivative ∂γ of the form a ∈ C∞

(P∗M[[�]]⊗Λm) determined by a connection one-form γ ∈ C∞(P∗M[[�]]⊗Λ1)
is the linear operator

∂γ : C∞(P∗M[[�]]⊗ Λm)→ C∞(P∗M[[�]] ⊗ Λm+1)

defined in a Darboux chart by the formula

∂γa
def
= da +

1

i�
[γ, a]. (7)

In the case of a symplectic connection, we use the symbol Γ instead of γ and put
Γ = 1

2
ΓijkX

iXjdqk.

The curvature form Rγ of a connection one-form γ in a Darboux chart can be
expressed by the formula

Rγ = dγ +
1

2i�
[γ, γ] = dγ +

1

i�
γ ◦ γ. (8)

A crucial role in the Fedosov deformation quantization is played by an Abelian
connection Γ̃. By an Abelian connection we mean a connection Γ̃ whose curva-
ture form R

Γ̃
is central so that ∂

Γ̃
(∂

Γ̃
a) = 0 for every a ∈ C∞(P∗M[[�]]⊗ Λ).

The Abelian connection proposed by Fedosov is of the form

Γ̃ = ωijX
idqj + Γ + r. (9)
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Its curvature is

R
Γ̃

= −1

2
ωj1j2dqj1 ∧ dqj2 + RΓ − δr + ∂Γr +

1

i�
r ◦ r. (10)

The requirement that the curvature two-form R
Γ̃

= −1
2
ωj1j2dqj1 ∧ dqj2 must be

central means that r must satisfy the equation

δr = RΓ + ∂Γr +
1

i�
r ◦ r. (11)

Theorem 2. ([2, 3]) The equation (11) has a unique solution

r = δ−1RΓ + δ−1

(
∂Γr +

1

i�
r ◦ r

)
(12)

fulfilling the additional conditions

δ−1r = 0, 3 ≤ deg(r). (13)

We work only with the Abelian connection of the form (9) with the correction r
defined by (12) and fulfilling (13).

Definition 10. P∗M[[�]]
Γ̃
⊂ C∞(P∗M[[�]] ⊗ Λ0) denotes the subalgebra con-

sisting of flat sections, i.e., sections such that ∂
Γ̃
a = 0.

Theorem 3. ([2, 3]) For any a0 ∈ C∞(M) there exists a unique smooth section
a ∈ P∗M[[�]]

Γ̃
such that σ(a) = a0.

Applying the operator δ−1 it follows from the Hodge decomposition (6) that

a = a0 + δ−1
(
∂Γa +

1

i�
[r, a]
)
. (14)

Using the one-to-one correspondence between P∗M[[�]]
Γ̃

and C∞(M) we in-
troduce an associative star product ‘∗’ of functions a0, b0 ∈ C∞(M)

a0 ∗ b0
def
= σ(σ−1(a0) ◦ σ−1(b0)). (15)

The ∗-product (15) satisfies the axioms of a star product in deformation quantiza-
tion and is interpreted as quantum multiplication of observables.
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3. Properties of the Abelian Connection

Let P∗M[[�]] be a Weyl algebra bundle equipped with some connection deter-
mined by the one-form γ. We do not assume that γ is an Abelian or symplectic.

Proposition 1. Every connection γ ∈ C∞(P∗M[[�]] ⊗ Λ1) such that δγ = 0
satisfies δRγ = 0.

A consequence of Proposition 1 and decomposition (6) is the following corollary.

Corollary 1. If the connection form γ fulfills the condition δγ = 0 then its cur-
vature Rγ = δδ−1Rγ .

Let us apply the above corollary to the symplectic connection represented by the
one-form Γ. Since the coefficients Γijk are symmetric in indices {i, j, k}, we ob-
tain that δΓ = 0. From Corollary 1 we conclude

Proposition 2. Two symplectic curvature forms RΓ and RΓ′ defined by symplec-
tic connections Γ and Γ′ respectively, are equal if and only if δ−1RΓ = δ−1RΓ′ .

From Proposition 2 we see that the geometry of a symplectic space can be char-
acterized by a tensor RΓ or, equivalently, by a tensor δ−1RΓ.

Let us consider the structure of equation (12). Its solution fulfilling conditions
(13) can be found by the iteration method [2,3]. The component of r of the lowest
degree is δ−1RΓ and deg(δ−1RΓ) = 3. From Proposition 2 we conclude that if
RΓ �= RΓ′ then the corrections r determined by connections Γ and Γ′ respectively
are different. From (12) we deduce that each component of r contains one or more
X’s. Moreover, the product r ◦ r generates only odd powers of �. Therefore,

r = δ−1RΓ +
∞∑

z=4

[
z−1

4
]∑

k=0

�
2k rm[2k, z − 4k]dqm. (16)

By [ z−1

4
] we denote the maximal integer number not bigger than z−1

4
.

In the case when deg(r) = d, d ∈ N we say that r is a finite formal series. For
deg(r) =∞ we deal with an infinite series.

If in an arbitrary chart the term rm[2k, z − 4k]dqm for fixed k and z does not
disappear, the same happens in any other chart. Moreover, at an arbitrary point
p ∈M the fact that the series r is finite does not depend on the chart.
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We are ready to present a necessary and sufficient condition for an Abelian con-
nection to be a finite formal series. By r[z] we will denote the component

r[z]
def
=
∑[

z−1

4
]

k=0
�

2krm[2k, z − 4k]dqm, 3 ≤ z of r of the degree z.

We start from formulas defining r[z], 3 ≤ z. As proved in [6] one has

r[3] = δ−1RΓ

r[z] = δ−1
(
∂Γr[z − 1] +

1

i�

z−2∑
j=3

r[j] ◦ r[z + 1− j]
)
, 4 ≤ z. (17)

From Proposition 2 we see that for curvature RΓ �= 0 it must hold that δ−1RΓ �= 0.
So on any nonflat Fedosov manifold (M,Γ) the term r[3] is different from 0.

Assume that r is a finite formal series of the degree m− 1, 4 ≤ m. Hence, from
(17) and applying the fact that according to Theorem 2 the series r is the only
solution of equation (11) we see that (for details see [8])

∂Γr[m− 1] +
1

i�

m−2∑
j=3

r[j] ◦ r[m + 1− j] = 0 (18a)

m−1∑
j=3

r[j] ◦ r[m + 2− j] = 0 (18b)

...

r[m− 1] ◦ r[m− 1] = 0. (18c)

Conversely, let the components r[z], 3 ≤ z ≤ m−1, where 4 ≤ m of the Abelian
correction r fulfill the system of equations (18a - 18c). Then, applying formula
(17) to (18a) we see that r[m] = 0. Substituting this result and relation (18b) in
(17) we obtain r[m + 1] = 0. Repeating this procedure we find that r[z] = 0 for
any m ≤ z. Hence deg(r) ≤ m− 1 so r is a finite formal series. To conclude,

Theorem 4. An Abelian connection Γ̃ = ωijX
idqj +Γ+r of the symplectic cur-

vature two-form RΓ �= 0 is a finite formal series if there exists a natural number
4 ≤ m such that the components r[z], 3 ≤ z ≤ m − 1, of r fulfill the system of
equations (18a–18c).

Hence, a sufficient condition for the series r to be infinite is that for every 3 ≤ z
the product r[z] ◦ r[z] �= 0.
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Example 1. Assume that in some Darboux chart (U , φ) onM nonzero symplectic
connection coefficients Γl1 l2 l3(q

l4 , . . . , qls), 1 ≤ l1, . . . , ls ≤ dimM are only
these which Poisson brackets {qli , qlj}P = 0, 1 ≤ i, j ≤ s. Such connection can
be curved only if 4 ≤ dimM. In the considered case all the products r[z] ◦ r[k],
3 ≤ z, k disappear. Applying (17) we see that r[z] = (δ−1∂Γ)z−3δ−1RΓ. From
Theorem 4 for RΓ �= 0 a sufficient and necessary condition for r to be a finite
series is that for some z

(∂Γδ−1)z−3RΓ = 0.

The minimal number z for which the above relation holds, is the degree of r.

4. An Abelian Connection on a 2-D Phase Space

In this final section we prove that every Abelian connection on any curved 2-D
Fedosov space (M,Γ) is an infinite formal series.

Proposition 3. Let (M,Γ) be a 2-D Fedosov manifold and the two-form F ∈
C∞(P∗M[[�]]⊗Λ2) contains only terms of the same degree and only even powers
�

2k. Then δ−1F ◦ δ−1F = 0 iff F = 0.

The proof of Proposition 3 is rather technical and can be found in [8].

As it has been said in the previous section, on a 2-D Fedosov manifold (M,Γ)
the relation RΓ �= 0 yields r[3] �= 0. Hence r[3] = δ−1RΓ, from Proposition 3 we
obtain that r[3] ◦ r[3] �= 0. Using Theorem 4 we conclude that there exists at least
one nonzero component r[z] of the correction r of degree 3 < z. Remembering

that (see (17)) r[z] = δ−1(F [z−1]), where F [z−1]
def
= ∂Γr[z−1]+ 1

i�

∑z−2

j=3
r[j]◦

r[z+1−j], and applying Proposition 3 to r[z], we see that r[z]◦r[z] �= 0. Hence,
from Theorem 4 there exits r[z1] �= 0 such that z < z1. The formula (17) for r[z1]
plus Proposition 3 guarantees that r[z1] ◦ r[z1] �= 0. Hence, by Theorem 4 it must
hold z1 < deg(r). Following this pattern we arrive at the following

Theorem 5. On 2-D phase space with nonvanishing symplectic curvature two-
form RΓ every Abelian connection is an infinite series.

We stress that Theorem 5 holds for 2-D real symplectic manifolds with the cor-
rection r determined by formula (12) fulfilling (13).
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5. Conclusions

The Fedosov quantization method is based on the recurrent formulas (12) and
(14). The first one defines the correction r to the Abelian connection and the sec-
ond defines a flat section a ∈ P∗M[[�]]

Γ̃
representing a quantum observable a0.

There is no general rule saying in which cases the flat section a or the ∗-product
of functions a0 ∗ b0 can be written in a compact form. Such situation happens for
example when both iterations (12) and (14) generate finite formal series.

We have considered the question, when the Abelian connection on a Fedosov
manifold (M,Γ) described in Theorem 2 is a finite formal series. We have found
a system of equations determining a sufficient and necessary condition for r to be
finite.

Then we have applied the result quoted above to the case of 2-D phase space with
nonvanishing curvature. We have shown that the series r on such spaces is always
infinite.
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