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Abstract. An arbitrary section of the canonical projection of a group onto the
cosets modulo a subgroup is associated with a binary operation on the cosets. We
provide sufficient conditions for obtaining a left loop, a left gyrogroup or a gy-
rocommutative gyrogroup in such a way. The non-positively curved sections in
Lie groups allow a scalar multiplication, which turns them into quasi left Lie gy-
rovector spaces. The left invariant metrics on homogeneous spaces turn out to be
compatible with the gyro-structure. For instance, their geodesics are gyro-lines;
the associated distance to the origin is a gyro-homogeneous norm, satisfying gyro-
triangle inequality; etc. The work establishes infinitesimal criteria for a homoge-
neous space to bear a left Lie gyrovector space or a Lie gyrovector space structure.
It characterizes the Cartan gyrovector spaces and works out explicitly the example
of the upper half-plane.

1. Introduction

Based on Einstein’s velocity addition law and the relativistic Thomas precession,
the second named author has developed in a series of articles (e.g., [13], [14],
[15], [17], 5], 3], [4], etc.) and the monograph [16] the theory of gyrogroups
and gyrovector spaces. It introduces the so called Thomas gyration, which mea-
sures the deviation of the addition of the relativistically admissible velocities from
being associative. From mathematical point of view, one of the most important
results of this theory is the proof of the fact that the gyro-semidirect product of
a gyrogroup(L, @) with a gyroautomorphism groufl C Aut(L,®) is a group

G (cf. Theorem 2.23 from [16]). Thus, the Thomas gyrations of a gyrogroup
(L, ®) appear to be a sort of "extension cocycles’lofvith values inAut(L, &).
Therefore, Thomas gyrations techniques can be applicable for transmitting the
classification of the finite simple grougs to finite groupsG > H, in which H

are of comparatively small indd& : H]. On the other hand, ideas, similar to the
gyro-formalism have proved to be quite fruitful for studying affine connections on
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manifolds in the works of Sabinin [12], Nagy and Strambach [11], Kikkawa [9]
and others.

Based on the identificatio = G/H for any gyrogroup(L, @), the present arti-

cle studies the operations, : (G/H) x (G/H) — G/H, (1H) ®, (92H) :=
o(g1H)o(g2H)H on the left coset spagg/H, induced from the group multipli-
cation inG via a sectiono : G/H — G with o(H) = 1g. Our idea to work

with sections emerge prior to the appearance of Nagy and Strambach’s book [11].
Moreover, our Lemma 2 characterizes the sectionsG/H — G, associated

with left loops(G/H, @, ) , while the starting point of [11] are the loops and the
corresponding necessary and sufficient conditions are quite different (cf. the
remark after Lemma 2). Combining the notions of a left loop and a gyrovector
space, studied in previous works of Ungar, Definition 6 introduces the term quasi
left gyrovector spacéV, @, ®). In the next Proposition 7 we establish thatif H

is a homogeneous space for a Lie grad@ndo : G/H — G is a real analytic
section, whose exponential méjxp : T}R;o(G/H) — o (G/H) is a global
diffeomorphism, ther, and®,, induced from the multiplication by real num-
bers on the tangent spa@fﬁga (G/H) turn G/ H into a quasi left Lie gyrovector
space.

In Section 3 the invariant metrics on quasi left Lie gyrovector spaces are stud-
ied. Itis proved that if the image of the sectien: G/H — G is closed under

the inversion of elements df, then a Riemannian metric ofi/H is left G-
invariant if and only if it is invariant under the adjoint action dfand under left
@,-translations (cf. Lemma 11). The central result of this section, Corollary 14
establishes that for quasi left Lie gyrovector spa@@sH, &, ®,) with com-

plete simply connected (G/H) C G of non-positive sectional curvature with
respect to somé/-invariant metric, the geodesics are exactly the gyro-lines and
all Thomas gyrations are isometries.

Section 4 is devoted to left gyrogroups and left gyrovector spaces. It provides a
simple specific example of two different sectionsr on one and a same coset
spacei,/H,, such tha{G,/H,, ®,) is a group andG,/H,, ®,) is barely a left
gyrogroup. Lemma 19 gives sufficient conditions for a sectionG/H — G

to be associated with a left gyrogroup'/H, @,) . Along the lines of Ungar’s
Theorem 2.23 from [16], Proposition 21 shows that any left gyrogrofipb)

is isomorphic to soméG/H, &, ). The concluding Corollary 26 delivers suf-
ficient condition for a non-positively curved analytic section: G/H — G

of a homogeneous spacg/ H to be associated with a left Lie gyrovector space
(G/H,®q,®) -

Section 5 deals with gyrogroups and gyrovector spaces. Lemma 29 specifies suf-
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ficient conditions for a sectiom : G/H — G to be associated with a gyro-
commutative gyrogroup. A similar result for the Lie gyrovector spaces is Corol-
lary 31. Corollary 32 verifies that the Cartan decomposition on the Lie algebra
of a noncompact semisimple Lie grodp provides a section, associated with a
Lie gyrovector space. The last Corollary 33 characterizes the Cartan gyrovec-
tor spaces, proving sufficient infinitesimal conditions for a Lie gyrovector space
(G/H,®.,®,) of a non-positively curved real analytic sectien G/H — G to

arise from the Cartan decomposition bz (G).

The concluding Section 6 illustrates the results from the previous sections on the
example of the upper half-plarfé = SL(2,R)/SO(2). More precisely, Propo-
sition 35 gives explicit formulae for the operatioss and®,, of the Cartan gy-
rovector spacéH, &, ®, ), while Corollary 36 specifies the gyro-norm.

2. Left Loopsand Quasi Left Lie Gyrovector Spaces

For an arbitrary groug: and its normal subgrouff C G, the coset spac€'/H
inherits the group structure ¢f. Conversely, arbitrary grougsandH are normal

in their direct productz = T" x H andT is isomorphic to the quotient group
G/H. Before generalizing this well known situation, let us uncover the relevant
construction in terms of a section of the canonical projectiodainto the set
G/ H of left cosets.

A sectiono : G/H — G of r : G — G/H is a map withro = Id /5 and
o(H) = 1¢. In the case of a normal subgroip C G, an arbitrary section allows
the group operation aff to be descended into a group operatiominA,

(G/H) x (G/H) — G/H
(1 H)(g2H) = m (0(91H)o(92H)) = 0(g1 H)o (92 H ) H.

We claim that(g1 H)(g2H) = g192H. More precisely, ifo; := o(g;H) then
o;H =mo; =7o(g;H) = g;H,i.e.,0; = g;h; forsomeh; € H,i = 1,2. Thus,

(91H)(g2H) = 0102H = g192(g5 ' h1ga)hoaH = g1g2H
sinceg, ' higo € H, so that(g; ' higo) ho € H. Consequently,

(gH)H = gH = H(gH)
(gH)(g'H) =H = (g7 'H)(gH)
[(91H)(92H)](93H) = [(9192)93]H = [91(9293)|H = (91 H)[(92H) (g3 H)].
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In such a way(=/H turns out to be endowed with a group structure, independent
of o, andw : G — G/H appears to be a group homomorphism,

m(g192) = 9192 H = (g1 H)(92H) = 7(g1)7(g2).

More generally, even if{ is not normal inG, an arbitrary sectiow : (G/H) —
G induces an operation

®,: (G/H) x (G/H) — G/H
(1 H) ©o (92H) := m(o(g1H)o(92H)) = (g1 H)o(g2H)H.
It is straightforward that
H &, (gH) = n(oc(H)o(9H)) = n(lo(9H)) = no(gH) = gH
(9H) &g H = w(0(gH)o(H)) = 7(0(9H)1) = mo(gH) = gH

for VgH € G/H, so thatH is a two-sided neutral element with respectfip
FurthermoreH € G/H is unique with this property. Indeed, according to

o(gH)H = no(9H) = gH 1)
one can represent(gH) = gh by someh € H. Then
(91 H) &5 (92H) = 0(91H)o(92H)H = (g1 H)ga2ho H = (91 H) g2 1

forVg1H,goH € G/H. If (9H) ®, (9,H) = gH for someg,H € G/H and all
gH € G/H, then

gH = o(gH)(g90.H) = ghgoH
for someh € H implies thatH = hg,H, so thatg, € H andg,H = H.

The equation(aH) @, (xH) = bH possesses a unique solution for arbitrary
aH,bH € G/H. Indeed,

(aH) ®g {[o(aH)] 'bH} = o(aH)[o(aH)|"'bH = bH

so that[o(aH)]"'bH is a solution. Arbitrary solutions; H, zoH satisfy the
equalities

o(aH)x1H = (aH) @y (x1H) =bH = (aH) &, (xoH) = o(aH)x2H.

Following left multiplication by[o(aH)]™' € G, we haver;H = xoH. Thus,
for arbitrarya H,bH € G/H the equationaH) @, (xH) = (bH) possesses a
unique solutiono(aH )]~ 'bH.
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Let us suppose, moreover, thataH)]~! € o (G/H) and define
Og(aH) = [o(aH)| ' H 2

for the unique solution ofaH) @, (tH) = H. Then the unique solution of
(aH) @, (xH) = (bH) can be expressed as (aH) ®, (bH).

Definition 1. A groupoid (£, ®) is a non-empty set £ with a binary operation
@:Lx L — L. Aléeftloop (£, ®) isa groupoid, possessing the following two
properties:

i) thereisa unique neutral element ¢ € £, such that

o®r=xdo=x forVxelLl 3)

i) for any a, b € L the equation a © = = b has the unique solution = = (Sa) ® b,
where ©a isthe unique solution of a & ¢ = 6.

Summarizing the above considerations, we have the following

Lemma?2. Let G be a group, H be a subgroup of G and o : G/H — G be
asectionof r : G — G/H, i.e, o = ldg/y and o(H) = 1. If the image
S := o0 (G/H) of o isclosed under inversion, g € S = g~ € S, then the binary
operation

& ¢ (G/H) x (G/H) — G/H
(aH) ®, (bH) := o(aH)o(bH)H = o(aH)bH 4)

introduces a structure of a left loop on G/ H.

Aleftloop (£, @), in which the equation: & a = b has a unique solution is called

a loop. In [11] Nagy and Strambach present necessary and sufficient conditions
on a sectiorv : G/H — G of a setG/H of left cosets to be associated with a
loop (G/H, ®.) . We have just observed that an arbitrary sectianG/H — G,
whose image (G/H) is closed under inversion, induces a left ld@p/ H, &) .
Nagy and Strambach establish t&t/ H, &, ) is a loop if and only if the image

o (G/H) of the section generatésand acts transitively with trivial stabilizers on
G/H.

Our Definition 1 of a left loop£, &) corresponds to Kreuzer and Wefelscheid’s
notion of a right loop with left inverse property, given in [10]. More precisely,
they define thatL, @) is a right loop if there is a unique two-sided neutral element
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o € L for @ and the equation®x = b has the unique solutian € L for arbitrary
a,b € L. The left inverse property asserts that far € £ there existsoa € £
with (6a) & (a ® b) = bfor Vb € L.

On an arbitrary left loog L, &), consider the left translations
L, L— L
Ly(z):=a®x

by a € L. According to the property (ii) of Definition 1, all, are invertible and
L;1(b) = Lo (b) for ¥b € L. Consequently,

a®{(0a) ®a} = LoLoa(z) = LyL, (z) =2 forVz e L.
Definition 3. For any pair of elements a, b of a left loop (£, @), the Thomas gy-
ration gyr [a, b] is defined as the bijective map

gyt [a,b] = Lg(agpyLaly : L — L. (5)

Kiechle’s considerations in [7] imply that a left lodg, @) is a group if and only
if its gyrationsgyr [a, b] = Id ¢, are trivial forVa,b € L.

Lemmad4. a) Let (£,®) be a left loop with Thomas gyrations gyr [a,b] =
Ls(agp)LaLy for a,b € L. Then

)a® (bdc)=(a®b)® gyra,blcfor Va,b, c € L (left gyroassociative law);
i) gyr [a, ©a] = 1d ~ for Va € L (weak loop property);

iif) theuniqueright inverse ca of a € L isthe unique left inverse of a with respect
to @.

b) Let G be a group, H C G be a subgroup and o : G/H — G be a section of
the canonical projection 7 : G — G/H with [c(zH)] ' € o (G/H) for VzH €
G/H. Then for arbitrary a = o(aH) and b = o(bH) the Thomas gyration

gyr [aH,bH|(zH) = (Ad y(a)(x)) H (6)
acts as a conjugation by
h(ab) := [o(abH)] "t ab € H.

Proof: a) i) The associativity of the composition law for the bijectiafis— £
implies the left gyroassociative law

(a®b) @ gyr [a,blc = Lagp Lo (agp) Lals(c) = a® (b c)
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for arbitrarya, b, c € L.
ii) By Definition 3 of a Thomas gyration one has

gyr [a7 @CL] = L@[a@(@a)]LaLGa = L@éLaLea = LaL(;l =Id..
i) Let a; be the unique right inverse efa. Then by i) and ii) we have
a=a®{(Ga)®ar} ={a® (Sa)} ®gyr|a,Sala = ay.

Consequently(©a) @ a = 6 andSa is a left inverse ofi. Any other left inverse
as € L of a satisfiesas ® a = 6. According to the uniqueness of the solution
of ay & x = o there followsz = Saz = a. One more application of the left
gyroassociative law and the weak loop property implies

ay = a2 {a® (Sa)} = (a2 B @) ® gyr [az, a] (Sa) = gy [az, Saz)(©a) = Sa
justifying the uniqueness, = ©a of the left inverse of an arbitrary € L.
b) On the one hand,
{(aH) & (VH)} ®o { [Ad pap)(z)] H} = (abH) &4 {[Ad (o) (z)] H}
= O'(CLbH) [Ad h(ab) (x)] H.
On the other hand,

(aH) &, {(bH) &, (zH)} = (aH) &, (bxH) = a(bx)H

ab)xH = O'(CLbH)h(CLb).’EH

o(abH)h(ab)z [h(ab)] " H
( z)]

abH) [Ad h ab)

/_\/_\

H

o
whereas

{(aH) &5 (bH)} G0 { [Ad papy(z)] H} = (aH) ®o {(bH) @0 (xH)}.
Combining with the left gyroassociative law

{(aH) &5 (bH)} &5 {gyr [aH,bH|(zH)} = (aH) ®o {(bH) ®o (zH)}
and acting on the left byJ(‘aﬁH)@a(bH), one infers

[Ad j(ap) ()] H = gyr [aH,bH](zH) Q.E.D.
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Definition 5. If GG is a connected Lie group, H C G isa closed connected sub-
groupof Gand o : G/H — G isareal analytic section of 7 : G — G/H with
[0 (G/H)| ™' = o (G/H), then (G/H,®,) iscalled aleft Lieloop.

Let G be a connected Lie grouf C G be a closed connected subgroup and
o : G/H — G be a real analytic section of the canonical projection G —
G/H. Suppose that the exponential magp : Lie (G) — G restricts to a global
diffeomorphism
Exp ZT{R;O'(G/H)—)O'(G/H). (7)
Since(do)s : T3 (G/H) — Ti.0(G/H) is a linear isomorphism and re-
stricts to a diffeomorphism : ¢ (G/H) — G/H, inverting o, the assumption is
equivalent to the fact that
7Exp (do)s : TR (G/H) — G/H (8)
is a diffeomorphism. For any € o (G/H) it is straightforward that
! = Exp (—Exp ~!(z)) € 0 (G/H)
as far as the tangent spa@%ccr (G/H) is invariant under multiplication by-1 €
R. Therefore(G/H, ®,) is a left Lie loop.
Let us define a scalar multiplication by real numbers
®, : R x (G/H) — G/H
t ®, (Exp (u)H) := Exp (tu)H forVt € R,Yu € T}.0 (G/H). (9)
It is immediate that
1®y (Exp(u)H) = Exp (u)H forVu e T{R;a (G/H)
(rs) ®q (Exp (u)H) = Exp (rsu)H = r ®, (Exp (su)H)
=rQ, [s ¥y (Exp (u)H)]
and
(rs) ®, (Exp (u)H) = Exp (sru)H = s ®, (Exp (ru)H)
=5 Q, [r @y (Exp (u)H)]
forvr, s € Randvu € T}, 0 (G/H). Taking into account thaxp (v)Exp (w) =
Exp (v + w) for arbitrary commuting), w € ﬂﬂia (G/H), [v,w] = 0, one ob-
serves that
[r ®q (Exp (u)H)] ®5 [s @5 (Exp (u)H)] = (Exp (ru)H) &, (Exp (su)H)
=Exp (ru)Exp (su)H = Exp (ru + su)H = Exp ((r + s)u)H
=(r+s) ®, (Exp (u)H)
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forvr,s € R andvu € T, o (G/H) . Further, from Lemma 4 (b) one has

gyr [Exp (u)H, Exp (v) H](Exp (w)H) = Ad p(xp (u)bxp () (Exp (w)) H
where

h(Exp (u)Exp (v)) := [o(Exp (u)Exp (v)H)] ™" Exp (u)Exp (v)
Yu,v,w € Ti,o (G/H). In particular, forr,s € R, u € 1,0 (G/H), the
commutingru andsu satisfy
Exp (ru)Exp (su) = Exp ((r + s)u) € o (G/H)

whereas
o(Exp (ru)Exp (su)H) = Exp (ru)Exp (su) and h(Exp (ru)Exp (su)) = 1.
Consequently,

gyr [r ©o (Exp (u)H), s @ (Exp (u)H)] = gyr [Exp (ru)H, Exp (su) H]
= Ad h(Exp (ru)Exp (su)) — Ad lg — Id G/H-

For arbitraryu, v, w € T{R;a (G/H) andt € R, one has also

gyt [Exp (u)H, Exp (v) H|{t ®, (Exp (w)H)}
= [Ad p(mxp (w)Bep (o)) (Bxp (tw)) ]| H = Exp (tAd y(isp (u)mep (o)) (W) H
=t ®0 (Exp (Ad hmxp (w)xp ) (W) H)
=t ®o {Ad p(Exp (u)Exp (v) (Exp (w))H}
=t ®, {gyr [Exp (v)H, Exp (v) H](Exp (w)H)}.

In order to formulate the above considerations in a concise manner, we give the
following

Definition 6. A quasi left gyrovector space (V, @, ®) isaleft loop (V, @) with a
scalar multiplication
R :RxV —V
subject to the properties:
Nluv=vforYveV
i (rs)@v=re(suv)=sx(reuv)forvrsc R, YveV
i) (r+s)@v=(rev)d(sv)forvrsecR,YveV



12 Azniv Kasparian and Abraham A. Ungar

V) gyr[r@v,s @v] =1Idy for Vr,s e R, Vo € V

V) gyr [a,b](r @ v) = r ® (gyr [a, bjv) for Va,b,v € V.

If (V, @) isa left Lie loop and the scalar multiplication is a real analytic map,
then (V, @, ®) iscalled a quasi |eft Lie gyrovector space.

Proposition 7. Let G be a connected Lie group with exponential map Exp
Lie (G) — G, H C G be a closed connected subgroup and o : G/H — G bea
real analytic section of = : G — G/H, such that (8) is a global diffeomorphism.
Then

(Exp (u)H) @, (Exp (v)H) := Exp (u)Exp (v)H for Vu,v € T{R;a (G/H)
(10)
and (9) defines a quasi left Lie gyrovector space (G/H, &, Q) -

The construction of a quasi left gyrovector space on an analytic left (6op)
is similar to Sabinin’s leflR-odules from [12]. In his terminology, a leR-odular
structure on a smooth logiL, @) is a scalar multiplication

Q:RxL— L

satisfying the properties i), ii) and iii) from Definition 6.
Comparing Definition 6 with the definition of an ordinary real vector space, one
observes that our considerations omit the vector distributive law

re(adb)=(r®a)®(reb) forreRanda,beV.

The following Proposition 8 reveals that on a quasi left Lie gyrovector space, this
property is a specific feature of the integral curves of commuting vector fields.

Proposition 8. Let G be a connected Lie group with exponential map Exp :
Lie (G) — G and faithful representation p : G — GL(n,R), H C G bea
closed connected subgroup and o : G/H — G be a real analytic section of
m : G — G/H. Suppose that (8) is a global diffeomorphism and consider the
operations (10), (9) Then

t @5 [(Exp (u)H) @0 (Exp (0)H)] = [t @5 (Exp (u)H)] @0 [t @5 (Exp (v)(hlql)
for vt € Rifand only if u,v € T{R*Go (G/H) commute, [u,v] = 0.

Proof: The injective group homomorphism : G — GL(n,R) induces an
embedding of the Lie algebrdslp), , : Lie (G) — gl(n,R). Arbitrary u,v €
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T# 0(G/H) with [u,v] = 0 are transformed into commuting matric&s :=
(dp)igw, V := (dp)1,v € gl(n,R). Therefore

Exp (tu)Exp (tv) = p~* (Exp (tU)Exp (tV))

- ((E5) ()

=t : k! i ki
=7 (ZH<ZO¢!(k—¢)!UV ))

for all ¢ € R. That allows to derive that
[t ©o (Exp (u)H)] &0 [t @ (Exp (v)H)] = Exp (tu)Exp (tv) H
=Exp (t(u+v))H =t ®, (Exp (u+v)H)
=t ®, (Exp (u)Exp (v)H) =t ®, [(Exp (v)H) &, (Exp (v)H)] .
Conversely, suppose that (11). #f := Exp'o(Exp (u)Exp (v)H) then
Exp (w)H = Exp (u)Exp (v)H. DenotingU := (dp)i,u, V := (dp)1,v, W :=
(dp)1(w), one can express the assumption in the form
Exp (tW)A = p (Exp (tw)a) = p (Exp (tu)Exp (tv)) = Exp (tU)Exp (tV)

for vt € R and some fixed € H, A := p(a) € GL(n,R). Since the exponential
map ofgl(n,R) is given by the exponential series, one concludes that

otk =t = tm
(ZHW>A:<ZX:EU Z%v for vVt € R.

m=0

In particular, att = 0 there followsA = I,,. Then, by comparing the derivatives
on both sides at = 0, we have

ot (E ) (E0) (S5
=0 =0

m=0

>t d (St
+ (lz: ﬁUl> ‘tzoa (Z ﬁv > ‘t:O =U+V.
=0

m=0
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Consequently,
HEUJFV Z T;OEV for vt € R.

Equating the second derivativestat 0, one concludes that

2 [ > Lk
U+ UV +VU+ V2= (U+V)2 = % <;O%(U+V)k> o
oo tm "
- (S5 (S 5
m=0
d (S d [ t"
+2E (lz(; l_'Ul> ‘tZOE Z_:O%V ) ‘t:O
> 4 42 > ¢ "
T (Z llUl> ‘t:o@ (Z m! ) ‘t=0
=U?4+20V +V?
whereas
VU =UV.
As a result,

[U, V] = |(dp)y, u, (dp)y, v| = (dp)y, [u, 0] = 0.
Due to the injectiveness @lp), , : Lie (G) — gl(n, R), there follows[u, v] = 0,
Q.E.D.

3. Left Invariant Metricson Quasi L eft Gyrovector Spaces

Definition 9. If f : M — N isa smooth map of manifolds and g isa Riemannian
metric on N then the metric f*g, given by

(f*g) (Up, UP) - gf ((df)pupa (df)pvp) fOf vupavp S T;EQM and Vp € M
is called the pull-back of g by f.

Definition 10. A Riemannian metric g on a manifold M isinvariant under a dif-
feomorphism f : M — M if the pull-back f*¢g = ¢ coincides with g.
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A Riemannian metric g isinvariant with respect to a group G of diffeomorphisms
of M if g isinvariant under any element of G.

ARiemannian metric g onaleft Lieloop (G/ H, &, ) issaid to beleft &, -invariant
if g isinvariant under the left trandations L,y : G/H — G/H, Lou(zH) =
(aH) @y (xH) for VaH € G/H.

Let G be a connected Lie groug/ C G be a closed connected subgroup;
G/H — @G be an analytic section of : G — G/H andg be a Riemannian
metric onG/H. If g is invariant under leftG-multiplications onG/H, theng is
left ©,-invariant andAd (H )-invariant. Indeed,

Log(xH) = o(aH)xH
acts as a left multiplication by(«H) € G and
Ady(zH) := Ady(x)H = hah ™ H = haH

reduces to a left multiplication by € H. Converselyro = Idg,y implies that

o(zH)H = zH, whereash, := [o(xzH)] "'z € H for Yz € G. If a Riemannian

metric g on G/H is left @,-invariant andAd (H)-invariant theng is invariant

under the left multiplication by (z H) andh,. Consequentlyy is invariant under
the left multiplication by an arbitrary = o(zH)h, € G. Thus, we have proved
the following

Lemmall. Let (G/H, &, ) bealeft Lieloop, associated with an analytic section
c:G/H - Gofr : G — G/H with [0 (G/H)]"! = ¢(G/H) and ¢ be
a Riemannian metric on G/H. Then g is left G-invariant if and only if g is left
@o-invariant and Ad (H)-invariant.

Proposition 12. Let G be a connected Lie group with exponential map Exp :
Lie (G) — G and M C G be a complete, simply connected, real analytic sub-
manifold through 1.

Then the following are equivalent:

i) Exp : T{RE;M — M isaglobal analytic diffeomorphism;

i) M has non-positive sectional curvatures with respect to any left G-invariant
metric g on G;

iif) M has non-positive sectional curvatures with respect to some left G-invariant
metric g on G.
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Proof: Towards the proof of i}= ii), let us suppose thdixp : TIRGM — Misa

global diffeomorphism and for some left-invariant metricg on G there exists a

pointp € M and tangent vectors,, w, € TEM, such that the sectional curvature
_ Gp(Rp(up, wp)wp, up)

K (Spang(up, wp)) = Area(u, V wp) -

Here R stands for the curvature tens& : V x V x V — V of the Levi-
Civita connection ofg, acting on the analytic vector fieldg on G, R, is the
restriction of R atp € M, andu, V w, denotes the parallelogram, spanned by
up, wp. Let A1 = X,-1 : G — G be the left multiplication by~ € G and
(dX\,1), : T,°G — Ti,,G be its differential ap. Consider the totally geodesic
surface

Y = X(up, wp) := {Exp [w(d)\;l)pup —I—y(d)\;l)pwp} ; r,yeRYC M CG.
Its tangent bundle is leff-invariant and
1,5 = ()1 T Y = (dXp);, Spanr{(dA, )pup, (dA, )pwy}
= Span r{up, wp}.

Let U,V be the leftG-invariant analytic vector fields with}, = wu,, W), = w,,.
ThenU, W are parallel vector fields, generating the tangent bufidie — %

at all the points ob.. The areas of the parallelograrbsVv W;, ¢t € X, as well

as the corresponding valués(U,, W)W, of the curvature tensor and the metric
gt(Re(U, W)Wy, Uy) are constant. Consequently,has constant sectional (i.e.,
Gaussian) curvature. As a diffeomorphic imagerBfy: ~ R?, the manifold:

is contractible. Thus, the surfa¢e with constant positive sectional curvatures
is simply connected and, therefore, isometric to the spl&rén particular, S
turns out to be topologically trivial, which is an absurd (emg(S?) = 7).

Concerning iii)= i), let g be a leftG-invariant metric orG andl; € M C Gbea
complete, simply connected submanifold, whose sectional curvatures with respect
to g are non-positive. Then according to Cartan-Hadamard Theorem (cf. [1]), the
exponential mapsxp, : T°M — M at all the pointsz € M are diffeomor-
phisms. In particulargxp, , = Exp : T{R*GM — M is a global diffeomorphism,
Q.E.D.

Definition 13. Let G bea connected Liegroup and H C G be a closed connected
subgroup. The analytic sectiono : G/H — G of 7 : G — G/H issaid to be
non-positively curved if itsimage o (G/H) C G is a complete simply connected
manifold of non-positive sectional curvature with respect to some (and therefore
all) G-invariant metricson G.
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According to Proposition 12, an analytic section G/H — G is hon-positively
curved exactly when the exponential méagp : Lie (G) — G of G restricts to a
global analytic diffeomorphism (7). In Section 1 we have already explained that
it is equivalent to (8) being a diffeomorphism. Thus, an arbitrary non-positively
curved analytic section : G/H — G is associated with a quasi left Lie gyrovec-
tor spaceG/H, &, ®,) (cf. Proposition 7).

Corallary 14. Let (G/H,®,,®,) be a quasi left Lie gyrovector space, associ-
ated with a non-positively curved real analytic section o : G/H — G and let g
be aleft G-invariant metric on G/H. Then:
i) the g-geodesics ~, 5 (t) through v, 5(0) = a and ~, (1) = b coincide with the
gyro-lines

Yab(t) = a @y {t @ (Coa Dy b)}, tER (12)

ii) the Thomas gyrations gyr [a, b] are isometries of ¢ for Va,b € G/H.

Proof: i) According to Theorem 1V.3.3 (iii) from Helgason’s book [6], for an ar-
bitrary v € Lie (G) the g-geodesic fromd = H € G/H, tangent ta(dr),, (u) €
TR (G/H) is Exp (tu)H, wheret € R. In particular, forVa,b € G/H and
u:=Exp '0(6,a @, b) € T}, 0 (G/H) the real analytic curvess, (Sq,a g

b) =t ®, (Exp (u)H) = Exp (tu)H, Vt € R areg-geodesics. Further, Lemma
11 reveals that the metrig is left @&, -invariant. Therefore, the left translations
L, : G/H — G/H, L,(xz) = a ®, x are isometries foy and transform the
geodesics ®, (6,0 ®, b) into the geodesics (12) through,(0) = a @, 0 = a
andy, (1) = a @5 (65a G4 b) = 0.

Conversely, ify,, : R — G/H is ag-geodesic through, ;(0) = a andy, (1) =
bthenu(t) := Lo, a(van(t)) is ag-geodesic through(0) = o and (1) =
©ea @, b. As far as the metrig on G/ H is complete and non-positively curved,
the geodesiq(t) throughu(0) = 0 and (1) = S,a &, b is unique. Thus,
,U/(t) = G0 Q¢ Va,b(t) = Exp (tEXp 710’(6065 Do b))H =1Qq (@UCL Do b)7
whereas (12).

i) Lemma 4 b) has established that fgu,b € G/H the Thomas gyrations
gyr [a, b] act as conjugations by, := [o(a ®, b)] " o(a)o(b) € H. On the
other hand, by Lemma 11, the left-invariant metricg on G/H is Ad (H)-
invariant. Therefore, thé/-conjugations and, in particular, the gyratians [a, b]
are isometries fog, Q.E.D.

Corollary 15. Suppose that G/ H is a homogeneous space with left G-invariant
metric g and (G/H, &,, ®,) isaquas left Lie gyrovector space, associated with
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a non-positively curved analytic sectiono : G/H — Gofn : G — G/H. Let

||z|| == [g5((dm)1,Exp “lo(x), (dr)1,Exp _lcr(x))]% for Ve € G/H. (13)

Then:
i) the distance function d of g satisfies

d(z,y) = ||z Boyll forVa,y € G/H
i) ||z|]| > 0 with ||z|| =0ifandonlyifz =06
iil) ||t @ z|| = |t|||x|| for Vt € R, V2 € G/H

V) |z @0 yl| < ][ +[ly[ for Va,y € G/H
V) [|[Bxp (Exp ~'o(2) + Exp ~'o(y)) HI| < ||z]] +||yl| for Yo,y € G/H.

Proof: i) According to Lemma 11, the left translatiods, , : G/H — G/H,
Lo, .(y) = S,x @, y are isometries for the lef-invariant metricg. Therefore,

d(z,y) = d(0,0,x ®oy) forve,ye G/H
and it suffices to justify the equality
d(o,x) = ||z|| forVx e G/H.
To this end, let us recall from Corollary 14 i) that
Y(t) =t @y x = Exp (tExp "lo(z))H

is the unique geodesic fron(0) = oto~(1) = x. The distancel(o, x) equals the
length of the geodesic segmerit) for ¢ € [0, 1]. By the definition of a geodesic,

the tangent vector fiel%'y(t) is parallel along itself, so that the lengths

i (5570 570) =0 (590 501,
= g5 ((dﬂ')lGEXp _1U($), (dm)1,Exp _1U(x))

are constant for all € [0, 1]. Consequently,

100 = [ [o (320, 590))] g

= [g5 ((dm)1,Exp ~to(2), (dm)1,Exp ~'o(z))]

=

1
/ dt = |||
0
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ii) By the definition of a Riemannian metrig, its restrictiong to the tangent
space at the origin is a positive definite symmetric bilinear form

g5 : TR(G/H) x T} (G/H) — R.

Thereforeg,(¢,€) > 0 for V¢ € TX (G/H) andgs(€,€) = 0 only when¢é = 0.
Putting¢ := (dr);,Exp ~lo(z) for an arbitraryz € G/H, one gets||z|| >
0 with ||z|| = 0 if and only if z = o 'Exp(do)sé = o 'Exp(do);0 =
o 'Exp (0) = 07 (1g) = 6.

iii) For arbitraryt € R andz € G/H one hag ®, r = Exp (tExp ~lo(z))H.
Sincegs( , ) is bilinear, one concludes that

=

1t @ ]| = [ga(Hdm) 1 Exp o (2), t(dr)1,Bxp ~Lo(2))]
= [Pg5((Am) 16 Bxp o (), (dm)i o Bxp o)) * = o]
iv) The triangle inequality for the distance provides
d(©,x,y) < d(©yz,6) +d(0,y) forVz,y € G/H.

According to i) andS,z = (—1) ®, z, one can expres§(S,z,y) = ||z Bs yll,
d(&sx,0) = ||z||, d(o,y) = ||y||- Thus, the aforementioned triangle inequality
takes the form

|z @6 yll < [l + [yl

V) The triangle inequality in the Euclidean inner product vector space
(TX (G/H),gs) states that

N
N[
N

[95(& +m,& +m)]? < [95(£ )12 + [95(n, )]

for arbitrary¢, n € TX(G/H).
If ¢ := (dn)1,Exp ~lo(x) andn := (dr)1,Exp ~lo(y) then
[95 (7)1, (Exp ~'o(x)
+Exp ~lo(y)), (dm)1. (Bxp o (x) + Exp 'o(y)))]

Applying omExp (¢) = omo(Exp (()H) = o(Exp(()H) = Exp (¢) to the
tangent vectot = Exp ~'o(z) + Exp ~o(y), one expresses

1
2

<l +[lyll

(dm)1 (Bxp ~'o(x) + Exp o (y))
= (dm)1,Exp g [Exp (Exp 710’(m) + Exp 710(y))H]
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for arbitraryz,y € G/H, Q.E.D.

Let us conclude the section, observing that the straightforward application of
Corollary 1.13.2 from Helgason’s book [6] yields the following:

Corollary 16. Let 0 : G/H — G be a non-positively curved analytic section of
7 : G — G/H, associated with a quasi |eft Lie gyrovector space (G/H, &, R )
and g be a left G-invariant metric on G/H with distance function d : (G/H) x
(G/H) — G/H. Define the normof = € G/H by (13) and put

95((dm)1,Bxp ~to(x), (dm)1, Bxp ~'o(y))

<(z,y) := arccos
’ [yl

for the angle between the geodesic rays from o through « € G/H andy € G/H.
Then for arbitrary a, b, c € G/H there holds

i) d*(a,b) > d*(a,c)+d?(b,c)—2d(a, c)d(b, ¢) cos < (Bt By @, Ouc By b)
i) << (G5 By b, Opt By ¢) + < (b By ¢, Opb By a)
+ < (65Cc By a, O5c By b) < T

4. Left Gyrogroupsand Left Lie Gyrovector Spaces

Definition 17. Aleft loop (£, @), subject to the gyro-automor phism property
gyr [a,b](z @ y) = (gyr [a,b]z) & (gyr[a,b]y) forVa,bz,y e L (14)
is called a left gyrogroup.

The left gyrogroups are introduced and studied by A. Ungar in a series of articles,
starting with [13], where they are initially called weakly associative groups.

The following example provides two different sectionso of the same space
G,/H, of left cosets, such thais,/H,,®,) is a group andG,/H,, ®,) Iis a
non-group left gyrogroup. More precisely, 65 = Sym (3) be the symmetric
group, acting on the sdtl, 2,3}. Denote by(i, ..., i) the cycle, transforming

i1 N dg, 4o N i3, €tC.,ix_1 iN 4 andiy in i1. Then fix the cyclic subgroupl, :=
((1,2)) C Sym (3) of order 2. For

T = (17273)7 T2 = (17372) = (1’273)2
o1 = (2,3), o2 := (1,3)
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there are disjoint decompositions into unions of left cosets
G,=H,UunH,UnH,=H,Uo1H,Uo9H,

with ;H, = o;H, for i = 1, 2. For convenience, introducg = o¢ := Id {1 5 3
and define the sections
7:Go/Hy — G,
T(rHy) =1, 1=0,1,2

and

o:G,/H, — G,
o(o;Hy) :==0;, 1=0,1,2.
Since the image (G,/H,) = {{; i =0,1,2} of 7 is the alternative groups,
consisting of the even permutationsio®, 3, the operation
©r : (Go/Hy) x (Go/H,) — Go/H,
(1:H,) @, (1;Hy) := mim;Hy = 7, 7 H,,

turnsG,/H, into a cyclic group of order 3.

Theimager (Go/H,) = {Id {123}, (2,3), (1,3)} of o is closed under inversion,
as far agi, j)~! = (4, j) for any transpositiorfi, j). Therefore,

@y : (Go/H,) x (Go/H,) — G,/H,
(0iH,) ®¢ (0;H,) == 0i0;H,

is a left loop operation o7,/ H,. In order to examine the truth of (14), note the
equalitiesgyr [H,, 0:Ho| = gyt [0:Ho, Ho| = 1d 11 5 3y andgyr [0:H,, 0:H,| =

Id g1 2,3y forall 0 <4 < 2. It suffices to study the action @fyr [o1H,, 09H,| =
Ad jy(5,0,) @NdgyT [02H,, 01H,] = Ad j(550,)- Making use ofoy o2 = 02(1,2),
o901 = 01(1,2), one obtains that

h(o109) := [0(010’2H0)]71 o109 = 05102(1,2) =(1,2)

h(og01) := [0(0201H0)]71 0901 = af101(1,2) = (1,2).
According toAd (1 9)00 = 00, Ad (1,2y01 = 02, Ad (1 2y02 = 01, ONe can write
Ad (4 9y0; = o_; for the congruence classés—: modulo3. On the other hand,
observe that it-(o;07H,) = om theno(o_to_;H,) = o_s. This is clear when
k =0orl =0, aswellasinthe case &f= [. For(k,l) = (1,2) or (k,l) = (2,1)
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one hass(op07H,) = oy ando(o_yo_;H,) = o(ojopH,) = o = 0_;. As a
result, ifo ((o7H,) ®o (07H,)) = omH, then
Ad (1,2) {(O'EHO) @0— (UZHO)} = Ad (1,2) (O'W)HO = U_mHO
=0 30 iH, = (0_3H,) @5 (0_1Ho)
= {Ad (1,2) (O'E)Ho} Do {Ad (1,2) (O-Z)Ho}
forVk, 1 € {0,1,2}. Verifying the gyro-automorphism property (14), we establish
that(G,/H,, ®,) is a left gyrogroup.

Definition 18. The bijections £ — £ of a set £ forma group B = B(L) with
respect to the composition.

The automor phism group Aut(L£, ®) of a groupoid (£, &) consists of the bijec-
tions p € B(L), preserving the operation &, i.e.,

pla®b) = p(a) ® @) forVa,be L.

Thus, a left gyrogroup is a left loopZ, @), whose gyrationgsyr [a, b] are ®-
automorphisms fova, b € L.

Lemma19. Let G beagroup, H C G beasubgroupand o : G/H — G bea
sectionof 7 : G — G/H. Suppose that S := ¢ (G/H) isclosed under inversion,
s—l=g (15)

and the discrepancies
d"(w) 1= Ad s { [o(Ad(2) H)] ! Ad () | (16)

belong to Nger (9Hg ™) =Nyes (yHy ') for Vo€ S,Vhe H. Then (G/H, ®,)
is a left gyrogroup with respect to the induced operation (4).

Proof: According to Lemma 2(G/H, @, ) is a left loop, provided (15).
For arbitrarya = o(aH), b= o(bH), x = o(xH), andy € G, there holds
gyr [aH,bH){(xH) ®o (yH)} = gyr [aH,bH](xyH) = [Ad p(ap) (ry)] H
= Ad h(ab) (.’E)Ad h(ab) (y)H
whereh(ab) := [o(abH)] "' ab € H. On the other hand,
{gyr [aH,bH|(xH)} @, {gyr [aH,bH|(yH)}

= {[Ad () (©)] H} ®6 {[Ad pary(v)] H}
=0 (Ad pap) () Ad pyar) () H.
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Therefore, the gyro-automorphism property (14) is satisfied if and only if
[0 (Ad yap) (2)H) | T Ad n(av) () belongs to the stabilizer

Stab (Ad pp) (W) H) == {9 € G ; gAd ) (Y)H = Ad ) (y)H } .
Since
Stab (Ad p(ap)(¥)H) = Ad pap) (Y) H [Ad jap) (3/)]71 = Ad papAdyH

the aforementioned condition is equivalentit&®) (z) € Ad ,(H) forall y € G.
Thus,d"(@) (z) € Nyee (yHy™?) for Va,b,€ G/H is necessary and sufficient
for (G/H,®,) to be a left gyrogroup. Since an arbitrayye G can be written in
the formy = o(yH)h, for someh, € H andyHy ' = o(yH)H [o(yH)] ",
we also have e (yHy ') = Nyes (vHy '), Q.E.D.

Here is an example of a left loofx /H1, ®,) , which is not a left gyrogroup.

Let G; := A4 be the alternative group, consisting of the even permutations of
1,2,3,4 andHy := ((1,2,3)) be its cyclic subgroup of order 3, generated by the
cycle(1,2,3). One can represent as a disjoint union

G1=H, U (2,3,4)H; U (2,4,3)H; U (1,4)(2,3)H;
and define the section
0:G/H — o (G1/H1) = {Id 1254},(2,3,4),(2,4,3),(1,4)(2,3) } .
Asfaras|(1,4)(2,3)] " = (1,4)(2,3), (2,3,4)"! = (2,4,3), the setr (G /H})
is closed under inversion arids, / H1, @, ) is a left loop. Under a multiplication
from left to right, note tha{2, 3,4)(1,4)(2,3) = (1,4, 3) and
h=[o((1,4,3)H1)] " (1,4,3) = [(1,4)(2,3)] ' (1,4,3) = (1,3,2)

so that the gyration

gyr[(2,3,4)H1, (1,4)(2,3)H1] = Ad (13,2

acts as a conjugation ky, 3,2) € H;. On the one hand,

gyr [(27 3, 4)H17 (17 4)(27 3)H1] {((27 3, 4)H1) Do ((27 3, 4)H1)}
= Ad(152)((2,4,3)H1 = (1,3,4)H; = (2,3,4)H,.
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On the other hand,

{eyr[(2,3,4)Hy, (1,4)(2,3)H1](2,3,4)H1}
©o {eyr[(2,3,4)Hy, (1,4)(2,3)H1](2,3,4)Hy }
= {Ad (132)((2,3,4))H1 } ®5 {Ad (132)((2,3,4))H, }
= ((1,4,3)H1) ®s ((1,4,3)H;)
= ((1,4)(2,3)H1) @, ((1,4)(2,3)H1) = Hi.

Therefore, the gyro-automorphism law (14) is violated &ad/ H1, @, ) is not a
left gyrogroup.

In an interesting paper [2] on left gyrogroups, Feder studies the following ques-
tion: Suppose thaf is a subset of a finite grou@, 15 € T, and forva, ax, ay €

T there exists: from the commutator of the group, generatedahy, such that
x4y = zyz € T. The problem is to obtain sufficient conditions fer T, ©,)

to be left gyrogroups fova € T.

Definition 20. The groupoids (£, ®1) and (Ly, ®2) areisomorphic if thereisa
bijective map
p: Ly — Lo
with
p(x®1y) = p(x) B2 p(y) forVa,y € Ly.

The following result is proved by Ungar in [15]. We provide here the argument
for the sake of completeness.

Proposition 21. For any left gyrogroup (£, @) there exists a group G, a subgroup
H Cc Gandasectiono : G/H — G of r: G — G/H with

[c(G/H) ' =0 (G/H) and ho (G/H)h™' Co(G/H) forVhe H
such that (£, @) isisomorphicto (G/H, ®,) .
Proof: Let(L,®) be aleft loop andd, be any subgroup of the grouput(L, @)

of the @-automorphisms of, that contains all the gyrationgr [a,b], a,b € L.
On the set7 := £ x H, consider the operation

(z, ) o (y,8) = (z ® a(y), gyr [z, a(y)]aB). 17)
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One checks straightforwardly that := (0,1d ) is a two-sided neutral element
for o, i.e.,

(#,0)0 (6,14 ) = (¢ @ a(6).yr [r,0(0)]0) = (x © 6. gyr v, o) = (x.0)

(67 Idﬁ) o (.T,CU) = (6 Dz, gyr [67 .%']OZ) = (.T, )
bearing in mind that(o) = ¢ for Vo € H, = Aut(L£,®) and gyr [x,0] =
gyr [0, z] = Id . Making use ofgyr [z,0x] = Id for Vx € L, one verifies
that

Q

(z,a) 0 (a7 (E2),a7!) = (z ® (©2),gyr [z, 2]l ) = (6,1d )
(e H(ex),a™) o (z,)
= ((ea Hz)) ® a ' (2),gyr [©a (z),a  (z)]Id ) = (6,1d z).
In other words,
(z,a)" ! = (oz_l(@a?),oé_l) (18)

is a two-sided inverse dfr, o) € G.

The associativity ob will be derived by constructing an injective homomorphism

T2 (G,O) - (Ba)

in the group(B, .) of the bijectionsC — L. Namely, forV(z,a) € G = L x H,
let us define

o(x,a) : L— L
oz, a)(y) ==z ® aly).
According to
p (a7l (0x),a7) plz,a)(y) = ¢ (a” ' (Oz),a7") (z @ ay))
=ca () e {a M@)oy} =y
p(z,@)p (o' (0x),a™") (y) = p(z,a) (0™ (z) ® a™ (y))
=zderdy =y

all p(x, o) are invertible andlp(z, o))t =¢ (a1 (62), a~1). Thereforep(xz, o)
€ B.
Towards the verification of the injectivenessyaflet us suppose that(z, o) =
o(y, B) for some(z, ), (v, 5) € G. Then
6 =1d£(6) = [p(z,a)] " p(y, B)(6) = ¢ (a7 (x),a7") (y ® B(0))
=y (@ (), 0 ) (y) =a (Or)@aT (y) =a Sz BY)
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impliescz @ y = a(0) = 0, so thatr = y. Further, forvz € £ the identities
2 =1dc(2) = [p(z, )] " o(2, B)(2) = ¢ (o (S2),a7!) (z @ B(2))
=a () @a (2@ B(2) = [Cr @ (e ®B(2))] = a” B(2)

reveal thatv= !5 =1d ., i.e.,a = Bandy : G — B is injective.

Next, ¢ is claimed to be a homomorphism with respect to the binary operation
of G and the group multiplication if3. Namely,

¢ ((z,0) 0 (y,0)) = p(z,a)p(y, B) forV(z,a),(y,8) € G=L x H,.
For arbitraryz € L, let us observe that
o((z,a) o (y,0))(2) = ¢z & aly), gyr [z, a(y)]eb)(z)
= (@ ay)) & (gyr [z, a(y)]af(2)).

Then the left gyroassociative law implies

(z @ aly)) ® (gyr [z, a(y)]ab(z)) = = & [aly) © aB(2)].

Consequently,

p((z, )o(y, B))(2) =20 afy@B(2)} = p(2,a)(y®S(2)) = p(z, a)p(y, B)(2)-

Now, the associative law for the group multiplicationBnprovides

©((g1092)093) = {w(91)¢(92) }o(g3) = w(91){(g92)¢(g3)} = ©(g10(g2093))
for Vg1, 92, g3 € G. Putting together with the injectiveness of one derives the
associative law

(g1092) 093 =g10(g2°93)
establishing thatG, o) is a group.
One can identifyH, with H := {(6,a); o € H,} C G and observe that
(6,01 = (@ 1(€0),07) = (a1(8).a7) = (6,071, (3,0) o (6,8) =
(0® a(0), gyr [0, a(0)]aB) = (0,aB). ThereforeH is a subgroup of. Taking
into account that

(z,a) 0 H = (z,a)0 (6,a ) o H = (z ® a(0), gyr [z, a(o ]aa‘l) oH
= (x,gyr[z,0])o H = (z,Idz) o H

forV(z,a) € G = L x H,, one represents

G/H ={(z,Jdz)oH ; z€L}.
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Further,(x,Id ) o H = (y,1d 1) is equivalent to

)i
(z,1d ) 0 (0,a) = (x, gyr [, o)) = (2,0) = (y,1d )
for somea € H,. Thus,(z,Id £) o H # (y,1d ») o H for x # y. The injection

0:G/H={(x,ldg)oH ; €L} — G=LxH,,
o (2,14 £) o H) = (1,1d 1)

is a section of the canonical projection

m:G=LxH,— G/H
r(e,0) = (2,1d ) o H
asfarasr(H) = o((6,I1dz) o H) = (0,Id ) = 1¢ and7o ((z,Id ) o H) =
m(2,1d ) = (z,1d z) o H for V(z,1d z) o H € G/H. Moreover,(z,1d ;)~! =

(ex,1d ) for Vo € L reveals thatr (G/H) = {(z,Idz); x € L} is closed
under inversion. One checks straightforwardly that

(0,a) 0 (z,Id z) 0 (6,a) "t = (a(x), gyr [0, a(2)]) 0 (6, ) = (a(z),Id ¢)

forVz € £,Va € H,. Thereforeg (Ad,(s)H) = Ad,(s) and the discrepancies
d"(s) = Ady-1(1g) = 1g for Yh € H,Vs € o (G/H). According to Lemma
19, the operation
®,:(G/H) x (G/H) — G/H
((a,1d ) o H) @y ((b,Id ) o H) = (a,Id z) o (b,Id ) o H
= (a®b,gyr[a,b]) o H
= (a®b,Id ) o H.

turnsG/H into a left gyrogroup.
The bijective map

V:L—G/H
U(a) := (a,Id ) o H

is an isomorphism ofC, ©) onto (G/H, &, ) , because

U(a®b) = (a®bIds)oH
= ((a,1d 2) o H) @, ((b,1d z) 0 H) = ¥(a) @y U(b)

forVa,b € £, Q.E.D.
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Definition 22. If G isa connected Lie group, H C G isa closed connected sub-
groupof Gando : G/H — G isareal analytic section of 7 : G — G/H, induc-
ing a left gyrogroup operation &, : (G/H) x (G/H) — G/H, then (G/H, ®,)
is called a left Lie gyrogroup.

Definition 23. A left gyrogroup (£, @) is said to be analytic if its underlying set
L isareal analytic manifold and its operations

G:LXxL— L, 6:L—L
(a,b) — a® b, a+— Oa

are real analytic maps.

Corollary 24. i) Any left Lie gyrogroup (G/H, &, ) isan analytic left gyrogroup.
ii) Any analytic left gyrogroup (£, @) is analytically isomorphic to a left Lie gy-
rogroup (G/H,®,) .

Proof: i) The quotientG/H of a connected Lie grou@ by a closed connected
subgroupH C G is an analytic manifold. The operation (4) depends analytically
onaH,bH € G/H, as far ass and the group multiplication 6 are analytic.
The analyticity of the multiplication and inversion in the Lie gratpimplies the
analyticity of (¢H) — ©,(gH) = g~ ' H.

ii) The groupAut® (L, @) of the analytic automorphisms £, @) is a Lie group

as a closed subgroup of the group of the analytic diffeomorphi8ms L. The
left translationsZ, : £ — L (a € L), are analytic diffeomorphisms, so that the
gyrationsgyr [a, b] € Aut” (L, ®) for Va,b € L. Repeating verbally the proof of
Proposition 21, one constructs the graup= L x H, for an arbitrary subgroup
Ho of Aut¥(L, @), containing all the gyrationgyr [a,b] € Hy, Ya,b € L. The
operation (17) and the inversion (18) are analytic in all arguments. Thergfore
is a Lie group andH := {(0,a); o € Hy} is a closed subgroup @. Further,
0:G/H— G,o((x,a) oH) = (x,1d ) is an analytic section af : G — G/H
and

v:L— G/H,
U(z):= (z,Idg)oH
turns to be an analytic isomorphism 6f,®) with the left Lie gyrogroup
(G/H,®,), Q.E.D.

Definition 25. If (V,®,®) isa quas left gyrovector space and (V, @) is a left
gyrogroup then (V, @, ®) iscalled a left gyrovector space.
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Corollary 26. Let G be a connected Lie group, H C G be a closed connected
subgroup and ¢ : G/H — G be a non-positively curved analytic section of
m: G — G/H with

Lie (H), TE o (G/H)] CTE o (G/H).

Then (G/H, ®,,®,) isaleft Lie gyrovector space with respect to the operations
(10) and (9).

Proof: According to Proposition 1,G/H, &,, ®.) is a quasi left Lie gyrovector
space.

Note that any» € H is of the formh = Exp (&) for some (not necessarily unique)
¢ € Lie (H). Sinceo is non-positively curved, for any € S := o (G/H) there
exists a uniquer := Exp ~!(z) € T{RgSwith x = Exp (u). By assumptionTlﬂis

is ad ¢-invariant forv¢ € Lie (H). In particular,ad’g(u) € T S for vk € N and
Vu € Tt.,S. Consequently,

Adp(z) = Adp(Exp (uv)) = Exp (Ad ,(u)) = Exp (Ad Exp (€) (u))

> ad ¥ (u
= Exp (exp(ad ¢)(u)) = Exp (Z li'( )> € Exp (T&S) = 5.

In other wordsg(Ad ,(z)) = Ad,(x), and the discrepancie# (z), defined by
(16) equalls for Vh € H, Yz € S. Applying Lemma 19, one concludes that
(G/H,®,) is a left gyrogroup, so thatG/H, @, ®,) is a left Lie gyrovector
space, Q.E.D.

5. Gyrocommutative Gyrogroups, Gyrovector Spaces, Cartan
Gyrovector Spaces

Definition 27. A gyrogroup (respectively, a Lie gyrogroup or an analytic gy-
rogroup) (£, ®) isa left gyrogroup (respectively, a left Lie gyrogroup or an ana-
lytic left gyrogroup), which possesses the |eft loop property

gyr[a,b] = gyr[a @ b,b] for Va,b e L. (19)

Let us observe that the left gyrogrodg,/H, = Sym (3)/((1,2)),®, ), dis-
cussed below Definition 17 is not a gyrogroup. On the one handgfoe
(2,3), o2 = (1,3), one hasgyr [01H,,00H,] = Adj(5,6,) = Ad(12). On
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the other hand(o1 H,) ®, (02H,) = o109H, = 02H,, SO thatgyr [(01H, ®,
(09H,),09H,| = gyr [02H,,00H,| = Id {1 2,33- Consequently,

gyr [o1Ho, 02 Ho| # gyr[(01Ho) o (02H,), 02 H]

and(G,/H,,®,) is not a gyrogroup.

Definition 28. A gyrogroup (respectively, a Lie gyrogroup or an analytic gy-
rogroup) (£, ®) issaid to be gyrocommutative if it satisfies the gyrocommutative
law

a®b=gyra,bl(bda) forVa,be L. (20)

A (gyrocommutative) gyrogroup is a natural extension of the (commutative) group
notion. It first arose in the study of Einstein addition of relativistically admissible
velocities [14], where it was recognized that Einstein addition is a gyrocommu-
tative gyrogroup operation, in full analogy with the common vector addition of
Newtonian velocities, which is a commutative group operation.

For examples of finite and infinite non-gyrocommutative gyrogroups, we refer the
reader to Foguel and Ungar’s article [4].

Lemma29. Let G beagroup, H C G beasubgroupand o : G/H — G be
asection of 7 : G — G/H withimage S := o (G/H) . Suppose the following
conditions hold:

i) S = S~1isclosed under inversion

ii) the discrepancies (16) belong to Nye; (9Hg ™)

i)y o(z~ty 'H) = [o(ayH)] " for Va,y € S

iv) zyx € S for Vx,y € S (twisted group property —cf. [3]).
Then (G/H, ®,) isa gyrocommutative gyrogroup.

Proof: According to Lemma 19, i) and ii) suffice fqiG/H, &,) to be a left
gyrogroup. We claim that i) and iii) imply the automorphic inverse property

So{(zH) ®o (yH)} = {So(xH)} B0 {So(yH)} (21)
for arbitraryx = o(xH), y = o(yH). Indeed, ifS is closed under inversion then
S (0(gH)H) = [0(gH)| ' H forgH € G/H
and

S0 {(zH) &5 (yH)} = Sp(vyH) = Sg[o(xyH)H] = [U(xyH)]_l H
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equals
{So(zH)} ®o {So(yH)} = (27 H) @y (y 'H) =2~ 'y"'H
=0 (xilyle) H

provided thafo (zyH)| ™" = o(z~ 1y 1 H).

In an arbitrary left gyrogroug L, @), the automorphic inverse property (21) is
known to force the gyrocommutative law (20) by Theorem 2.39 from Ungar's
book [16]. For the sake of completeness we present the proofGlet L x
Aut(L, @) be the gyro-semidirect product gfwith its gyro-automorphism group
Aut(L, ®). Recall from the proof of Proposition 21 the group operation (17) and
the inverse (18). Then the equality

[(z,a)0 (y,B)] " = (y,8) ' o (z,0)7"
implies
(@8 a gyr [z, a(y)]) Hz @ aly), 5 o eyr [z,a(y)]) )

= (687 y),87") o (ea(x),a")
= (@ o Ha(y) @ 2), gyr[087 (y), 08 o (@) ta ).

By comparison of the corresponding entries, one obtains
(gyr[z,z]) H(z@2) =202 and (22)
sl gyr e, 2) Tt = gyr (o aT (2), 00 e (@)™t (23)
for z = a(y). Since for arbitraryu, b, c € L, v € Aut(L, @), there holds
v(gyr [a,ble) = vLg(amp) Lali(c) = Lor(a)arym) V(LaLs(c))
= Lo (y(a)@r 1) Ly(a) Ly@)v(e) = gyr [v(a), v(B)]v(c)
(23) implies the identity
(gyr[z,2]) ! = gyr[©z,02] forVa,z € L. (24)
Further, the automorphic inverse property and the left gyroassociative law provide

{6(a®b)} & gyra,bl(cc) = {(a®b) & gyr|a,blc} ={ad® (bDc)}
= (Sa) ® {(6b) & (8¢)} = {(6a) ® (8b)} & gyr [©a, Sb|(S¢)
={S(a®b)} & gyr [Sa, Sb|(Ec)
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whereas
gyr [a,b] = gyr [Sa,0b] forVa,b e L. (25)

Putting together (22), (24) and (25), one derives the gyrocommutative law
gyr(z,z|(z@z)=2@x forVe,ze L

thus obtaining the result of Ungar’s Theorem 2.39 from [16].

We will derive the left loop property from the automorphic inverse property and
the assumption (iv). For arbitrary,y € S recall thatyx = o(yxH)h(yx) and
express

x(yx) = xo(yrH)h(yx) = o(xo(yrH)H)h(xo(yzH))h(yx) € S.

Thereforeh(zo(yzH)) = [h(yz)]"" . The presence of the automorphic inverse
property implies
(gyr [yH,zH])™" = gyr [vH, yH]

by combining (24) with (25). Sincgyr [aH,bH]| = Ad 4 for Va,b € S, there
follows

gyr [zH, (yH) ©o (zH)|=gyr [zH, o (yzH)H|=Ad 20 (yar)) =Ad [0y -1
= [Ad pyey] " = (gyr [yH, zH)) ™! = gyr [¢H, yH],
whereas
eyt [(yH) &y (xH),xH] = (gyr [¢H, (yH) &, («H)]) ™
= (gyr [¢H,yH))™" = gyr [yH, zH].

Thus, the assumptions (i)-(iv) imply that:/ H, &, ) is a gyrocommutative gyro-
group, Q.E.D.

Definition 30. If (V, @, ®) isaleft gyrovector space and (V, &) isa gyrocommu-
tative gyrogroup then (V, @, ®) is called a gyrovector space.

The theory of gyrogroups and gyrovector spaces is developed in Ungar’s book
[16].

Corollary 31. Let G be a connected Lie group, H C G be a closed connected
subgroup and o : G/H — G be a non-positively curved analytic section of
m: G — G/H. Assumethat S := o (G/H) issubject to the following properties:

a) [Lie (H), T}, S] C Tt S
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b) [T, S, TE, S| C Lie (H)
c) thereisan anti-involution 7 : G — G, whose fixed point set Fiz(7) = S.
Then the operations (10) and (9) turn G/ H into a Lie gyrovector space.

Proof: By Corollary 26, a non-positively curved sectien: G/H — G, subject

to a) determines a left Lie gyrovector space/ H, &,, @, ).

It suffices to verify that the infinitesimal assumptions a)-c) imply the sufficient
conditions iii) and iv) from Lemma 29 fofG/H, @) to be a gyrocommutative
gyrogroup.

First, we infer iii) from a) and b). More precisely, fofu,v € T{R;S there
exists a uniquev € T} S, such thato(Exp (u)Exp (v)H) = Exp (w), i.e.,
Exp (—w)Exp (u)Exp (v) € H. Recall that the Campbell-Hausdorff map

F : Lie (G) x Lie (G) — Lie (G)

defined byExp (x)Exp (y) = Exp (F(z,y)) for z,y € Lie (G), is given by the
series

f(l‘,y) = Z

m kil

(_1)m+k1+l1+---+km+lmad émad ’xfm . adgjad gl_l(l-)

(26)

where the summation is over all the natural numberand all the non-negative
integersk;, I; with k; +1; > 0. Each of the termad imad ¥~ ... ad Jad k171 (z) is
considered to be of total degréet11 +. . . + &k, +1,,, with respect ta: andy. Let

us denote byF(—w, F(u,v))]o the sum of the terms of (—w, F(u, v)), which

are of even total degree with respectta, w. Similarly, put[F(—w, F(u,v))}h

for the sum of the terms of odd total degree. The conditions a), b) imply that
[F(—w, F(u,v))]o € Lie (H) and[F(—w, F(u,v)))1 € TT, S for arbitraryu, v,

w E T{R;S. Therefore F(—w, F(u,v)) = [F(—w, F(u,v))]o+[F(—w, F(u,v))]1
belongs tdLie (H) if and only if [F(—w, F(u,v)); = 0. If so, then a simultane-
ous change of the signs of v andw yields

[F(w, F(=u, —v))]o = [F(=w, F(u,v))]o, [F(w, F(=u, —v))]x
= —[F(—w, F(u,v))]; = 0.
Thus, F(—w, F(u,v)) € Lie (H) forcesF(w, F(—u,—v)) € Lie (H). Equiva-
lently, Exp (—w)Exp (u)Exp (v) € H suffices forExp (w)Exp (—u)Exp (—v)
€ H, provided (a) and (b). As a result,
o (Bxp (w)Exp () )] ™! = [Exp ()]~ = Bxp (—w)
— o(Exp (—u)Exp (—v)H) = Exp (—w)
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for Vu,v € T{RES.

Next, note that (c) suffices for (iv). More precisely, an anti-involutionG — G
is a bijection withr? = Id ¢ andr(ab) = 7(b)7(a) for Va,b € G. If Fiz(t) = S
then arbitraryr, y € S satisfy the twisted group propertfzyzx) = 7(z)7(y)7(x)
=ayx € 5, Q.E.D.

Let (G/H,®,,®,) be a quasi left Lie gyrovector space, subject to the automor-
phic inverse property, (S, @, y) = = 6, y for Vo, y € G/H andg be a left
G-invariant metric onz/H. Then combining (i) and (iii) from Corollary 15, one
concludes that

d(z,y) = ||z S0 yl|

for the distance functiod, associated witly and the norm (13).

Let G be a noncompact semisimple Lie group &id- G be a maximal compact
subgroup. By means of the faithful (i.e., injective) adjoint representation

ad : Lie (G) — End(Lie (G))
ad ;(y) := [x,y] forVz,y € Lie (G)

one introduces a non-degenerate bilinear form

B : Lie (G) x Lie (G) — Lie (G)
B(z,y) :=Tr (ad zad )

and considers the orthogonal complement
p={zeLie(G) ; Tr (ad,ad k) =0}
of Lie (K). There is a direct sum Cartan decomposition
Lie (G) = p + Lie (K)
associated with a Cartan involution

6 : Lie (G) = p + Lie (K) — p + Lie (K) = Lie (G)
(u+a):=—-u+a forVuep, Va € Lie(K).

By Lemma VI.1.2. [6], the bilinear form

By : Lie (G) x Lie (G) — R
By(z,y) := —B(z,0(y)) = —Tr (ad zad g,)) for Vz,y € Lie (G)
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is symmetric and positive definite. The l&ftinvariant metric onz, whose re-
striction onT{RéG = Lie (G) coincides withBy, is called Killing form of G.

The homogeneous spac¥ K is a Riemmanian symmetric space of noncompact
type, associated with'. The Riemmanian structure @/ K is given by the left
G-invariant metricg with 7* g5 = By.

In [8] Krammer and Urbantke have constructed a gyrocommutative gyrogroup
structure on any Riemannian symmetric sp&tgs of noncompact type. This
result is extended by the following

Corollary 32. Let G be a noncompact semisimple Lie group with exponential
map Exp : Lie(G) — G and Cartan decomposition Lie (G) = p + Lie (K).
Then the Riemannian symmetric space G /K of noncompact type admits a non-
positively curved analytic section

oc:G/K — G, o(Exp(u)K):=Exp(u)for Vu € p = Tlﬂio'(G/K),

whose associated operations (10) and (9) determine a Lie gyrovector space
(G/K,®0,®) .

We name these gyrovector spaces after Cartan, because their associated sections
o arise from the Cartan decompositions.

Proof of Corollary 32: According to Theorem VI.1.1 iii) [6], the composition
mExp :p — G/K

of the exponential mapxp : p — S := Exp (p) C G and the canonical projec-
tion
m:5— (SK)/K =G/K

is a global analytic diffeomorphism. Therefore
G/K = {nExp (u) = Exp (uv)K ; u € p}.
The restrictiongZxp |, 7|s are analytic diffeomorphisms. Thus,
o := Exp (7Exp) ™"

is a global analytic diffeomorphism @f/K ontoo (G/K) = Exp (p) = S with
mo = (nExp) (nExp)~' =1d g/ ando(K) = Exp (0) = 1. In other words,
o : G/K — Gis an analytic section of : G — G /K. Moreover, the exponential
map ofG restricts to a global diffeomorphism

Exp :p:T{R;S—nS’:a(G/K)
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so thato is non-positively curved (cf. Proposition 12 and Definition 13).
The proof will be completed by checking the assumptions a), b), c) from Corollary
31. The inclusions

[Lie (K),p] S p, [p,p] C Lie(K)

are well known properties of the Cartan decomposifion(G) = p + Lie (K)
(cf. IV.5[6]). Further, the Cartan involutiofi(u + a) = —u + a for Vu € p,
Va € Lie(K) is a Lie algebra homomorphism afie (G) and gives rise to a
group homomorphism
©:G=0(G/K)K =Exp(p)K — G
O(Exp (u)k) := kExp (—u) forVuep,Vke K

called Cartan involution ofs. Let us consider the diffeomorphism

7:G— G
(X)) :=[0X)! forvX eG.

By 2(x) = {0 o)} = @{[(@(X))‘l}‘l} - OX) = X

there follows? = Id . For arbitraryX,Y € G one checks straightforward by
that

T(XY) = [0(XY)] " = [0(X)ey)]" = [0(Y)] " [0(X)] " = 7(Y)r(X)

and concludes that is an anti-involution. FolX = Exp (u)k € G with u € p,
k € K note thatr(X) = [0(X)]"! = X ifand only if

EExp (—u) = O(X) = X ' = k™ 'Exp (—u)

which is equivalent td: = k1. Thus,S = {Exp (u); u € p} consists of fixed
points forr and Fiz(t) C {Exp (uw)k; u € p,k € K, k* = 1g} = SK®,
whereK(?) = {k € K; k? = 15} is the normal subgroup ok, constituted by
its elements of order 2. Towards the proof of the discretene$$2in K, let us
fix a faithful finite dimensional linear representationfofandLie (K'). Then note
thata e Lie (K) with [Exp (a)]* = Exp (2a) = 1x requires the matrix of to
be semisimple and with eigenvalues fraiZ. That suffices for

K® = Exp{a € Lie(K) ; Exp(a) € K®}

to be discrete ink. Similar considerations justify that the elements of order 2
from G form a discrete normal subgrou@®® c G. Note that the Lie groups
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G/G® and K/K® have Lie algebragie (G/G?) = Lie (G), respectively,
Lie (K/K®)) = Lie (K). Taking into account tha&®) N K = K2, one ob-
serves also that

(G/G(2>) / (K/K(2>) ~ G/K.

Thus, without loss of generality{ can be assumed to have no elements of order
2. That impliesFiz(7) = S, Q.E.D.

The Cartan gyrovector space structure on a Hermitian symmetric space of non-
compact type is generalized in [5] by Friedman and Ungar to a gyrogroup struc-
ture on a bounded symmetric domain in an arbitrary complex Banach space.

We conclude the characterization of the Cartan gyrovector spaces by showing that
they are the only members of a certain class of Lie gyrovector spaces.

Corollary 33. Let (G/H, ®,,®,) be a Lie gyrovector space, associated with a
non-positively curved real analytic sectiono : G/H — G of n : G — G/H.
Suppose that

Lic (H), TE o (G/H)] C TF o (G/H)

and
Flu, F(v,u)) € Tro (G/H)  for Yu,v € Tt 0 (G/H)

where F : Lie (G) x Lie (G) — Lie (G) stands for the Campbell-Hausdorff series
(26).

Then (G/H, ®,,®,) isa Cartan gyrovector space. In particular, there isa non-
compact semisimple Lie group G, and a maximal compact subgroup K, C G,,
such that G/ H isisomorphic as an analytic manifold to the Riemannian symmet-
ric space G,/ K, of noncompact type.

Proof: By definition, one has to fix an analytic Riemannian metrion G/H
and to prove thatp € G/H is an isolated fixed point of an involutive isometry
by : M — M for g.

First of all, the sections : G/H — G are in a bijective correspondence with the
decompositionss = o (G/H) H into products of disjoint subgroupgg C G and
subsetsr (G/H) C G. Namely, a sectiow : G/H — G of r : G — G/H gives
rise to correctly defined maps

s:G— S:=0(G/H)
s(z):=o(xH)
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and

such thatr = s(z)h(z) for Vo € G. If o(zH) = a € SN H thenzH =
mo(xH) = m(a) = Himpliesthato(zH) = o(H) = 1g, sothatSNH = {1¢}.
Thus, the decomposition = s(x)h(x) is unique for allz € G. Conversely, any
decompositiorG = SH into a product of a subgroul C G and asubsef C GG
with S N H = {14} determines maps : G — S andh : G — H, such that
x = s(xz)h(x) for Vo € G. In particular, for arbitrary: € H there holds

s(za)h(za) = xa = s(x)h(z)a
so thats(za) = s(z) is constant on any cosetd. That allows to define a map

c:G/H— G
o(xH) := s(x).

After checking thatro(xH) = s(x)H = s(x)h(z)H = xH forVzH € G/H
ando(H) = s(1¢) = 1¢, one concludes that is a section ofr : G — G/H.

To any sectiorv : G/H — G of r : G — G/H we associate a groupoid
(G/H,®,) , setting

(xH) @y (yH) = o(xH)yH forVz,y € G.

On the other hand, an arbitrary decomposit@n= SH, S N H = {15} deter-
mines a groupoidS, &°) , where

x®°y=s(zy) forvVe,yeS

ands : G — S is the decomposition map. Whenever G/H — G is associated
with G = SH, the groupoid§G/h, &,) and(S, &°) are isomorphic, as far as

(ra°y)H = s(ay)H = o(xyH)H = 2yH = (xH) ®, (yH) forVa,y € S.

For an arbitrary decompositio& = SH with S N H = {1} the subspace
Tt.S C Lie (G) is transversal tdie (H), 11, S N Lie (H) = {0}. Let

gs : Lie (G) x Lie (G) — R
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be a positive definite symmetric bilinear form, with respect to WI’J]B(;'S and
Lie (H) are orthogonal. Then the real analytic family= {g:.n },rec/m Of
positive definite symmetric bilinear forms

9zH - TEH (G/H) x TEH (G/H) — R
Gorr (u,v) == gs ((dz™")  u, (dz71) v)

is a left G-invariant metric onG/H.

We are looking for an involutivg-isometryy; : G/H — G/H with an isolated
fixed pointo = H. To this end, let us recall that the section G/H — G is non-
positively curved exactly when the exponential niap : Lie (G) — G restricts
to a global diffeomorphisnkxp : I}ﬂis — S onto its imageS := o (G/H) .
Therefore

$ = Exp (TE.S) = Exp (~T18) = 5~

is closed under inversion. According to Corollary 26is normalized byH, i.e.,
hSh=' C S forVh € H, providedT} S is ad 1. (y-invariant. There holds also
the twisted group property

Exp (u)Exp (v)Exp (u) = Exp (u)Exp (F(v,u)) = Exp (F(u, F(v,u)) € S

for Vu,v € T{R;S. By assumption(G/H, &,,®,) is a Lie gyrovector space, so
that (S, ©°) is a gyrocommutative gyrogroup. A result of Foguel and Ungar from
[3] establishes that whenevéris a twisted group, closed under inversion and
normalized byH, the groupoid(S, @°) is a gyrocommutative gyrogroup if and
only if there is an involutive group automorphigm: G — G with ¢ (x) = 271

for Va2 € S andv(y) = y for Vy € H. Sincey(zy)H = v~ 'yH = v 'H =
Y(z)H for Vo € S, Vy € H, there is a correctly defined map

Vs : G/H — G/H
Y (xH) :==(x)H forvVz € G.
Clearly,y? = Id ¢ impliest? = Id ;;, . The origino = H is the only fixed point

of ¢, because)s(xH) = xH for z € S requirest € HN S = {1}, whereas
x = 1¢. Due to theG-invariance ofy, it suffices to show that the differential

(dips)s : T (G/H) — TS (G/H)

is orthogonal with respect tg, in order to conclude that; is ag-isometry. In-

deed, the diffeomorphism : S — G/H induces a linear isomorphisfar), , :
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TR.S — T3 (G/H) and

0 ((d00); (dm), . (o), (), )
=gs (— (dﬂ')lc U, — (dﬂ)lc v) = g5 ((dﬂ')lc u, (dﬂ')lc v) for Vu,v € T{R;S.

For an arbitrary poinp = xH € G/H, x € S note that
Yy = asr ' G/H — G/H

is an involutiveg-isometry, as far agj has the same property and the left multi-
plications byz, 2! are isometries. Furthey,,(yH) = yH fory € S if and only

if 5 (z7'yH) = x~'yH. Consequentlyp = zH is the only fixed point ofj,,
Q.E.D.

6. Example: The Cartan Gyrovector Space Structure on the Upper
Half-plane

The Mobius gyrovector space structure on the unit ¢isg(1, 1) /S(U; x U;) has
been extensively studied by A. Ungar in [16], [17] and others. Here we illustrate
the considerations from the previous sections on the example of the upper half-
plane

H=SL(2,R)/SO(2).

The Lie algebra

sl(2,R)={m=<Z _ba> ; a,b,ceR}.

Its compact real form

su(2) :={m € sl(2,R) ; m+tW:0}:{<i% _g;r); TER,CEC}

so that the maximal compact subalgebra

s0(2) = sl(2,R) N su(2) = {go (_01 é) . &€ R}.

The infinitesimal Cartan decompositief2, R) = p, + so(2) holds for

po 1= sI(2,R) N (V—Tsu(2)) = {51 (é _01) +e (2 é) ; sl,gzeR}.
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Lemma 34. The exponential map

Exp : sl(2,R) = {(‘C‘ _ba>  a,bcE R}

—>SL(2,R):{(?; lB)>; A,B,C,D €R, AD—BC:I}

restricts to a diffeomorphism

Exp : po = {m <Z> = <Z _521) RSN R}
x I i)
— Exp (po) =< M <$;> = - 1 +$% i T, € Rz >0

I
where
&1 cosh(p) + & sinh(p)
Exp m - M P 27)
2 €—2sinh(p)
P
o (60.6) # 0.0, p = VETE € R p > 0, cosn(p) = <5,
el —e P
Sinh(p) = > ,

and itsinverse

(2t —23-1) p
xT N
Exp- LM ( 1) . 21 sinh(p)

€T P
sinh(p)
r?— 2% -1
S R, 211 (29)
sinh(p)
Z2
for
(1+af+a8) + V(1 + 27+ 23)” — dat
=1 1
p:=1In 2 ; (w1,m2) # (1,0)  (30)

Exp ‘M <(1)> =m <8) . (31)
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Proof: The formulae (28) and (31) are straightforward. From now on, let us
assume thas;, £&2) # (0,0). The characteristic polynomial

§1—A 3 N2 2 2
det( & ¢ _>\>—)\—51—f2—0

1

has rootstp for p := /&3 + &3, p > 0. The columns of the orthogonal matrix

T, satisfying
&1\ _ p 0\,
m(@)=r (5

are solutions of the homogeneous linear systems
<§1 Fp & ) (y1> _ <0>
& —&Fp) \¥ 0)°
()= ()
Y2 —&1E£p

work out. Their lengths are, respectively,

For instance,

via= &+ (-6 %0)? = Voplp 7 &),

Thus, one can choose

2 3
| V2o =€) V200 +&)
p—E&1 —(p+&1)
V20(p =€) 2p(p+&)
Consequently,
(%) 1 k 00 1 0 k
Expm( ) Zk_ < > :T(ZH(S —p) )tT
k=0 k=0
P 2 .
(e 0 | V200 =&) V2(p+&) | €
_T<O e‘f’>tT_ p—& —(p+&) 0 e p) T

V20(p— &) V20(p+&)
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§oel §oe™? &2 p—&
| V20 —&) V2lp+&) | | V2o &) V20(p —&1)
(p—=E&)e?  —(p+&)e” 3 —(p+&1)
V20(p—=&) V20p+&) ) \V2(p+&) V20(p+8&)
cosh(p) + &L sinh(p)
- M p
€;2sinh(p)

P
Here one can use the symmetry of the diagonal m teﬂx _p> , inorder to in-

3
det(T'T) = det(I3) = 1 reveal thattxp m ( ) SL(2,R).

P
fer the symmetry oExp m <£1>. Furtherdet <e . p) = landdet(T) det(‘T) =

Conversely, for anyM <i1> with z1,20 € R, 21 > 0, there exist uniquely
2

&1

determineds;, &> € R with Expm( > =M @1) More precisely, ifp :=
2

)
VEFE A0,
cosh(p) + %sinh(p) =1, %sinh(p) = T9,
then

2
x1 (cosh(p) - %sinh(p)) = cosh?(p) — %sinhQ(p)

:1+< f1>s1nh2()-1—}—€2S1nh2()—l—i-ﬂr:%.
Consequently,

1+ 23
X

+ x1 = 2cosh(p),

: : 1+ 22+ 22

whereas (30). In particulap = 0 if and only s s cosh(0) = 1,
x1

(r1 — 1)2+ 23 =0, i.e.,(z1,72) = (1,0). That allows to determine

p B p_(@-a3-1) op
sinh(p)’ = (o - COSh(p))sinh(p) N 221 sinh(p)

for (1’1,.%2) 7§ (1,0), Q.E.D.

§o = @2
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Proposition 35. The operations of the Cartan gyrovector space
(SL(2,R)/S0O(2), ®,®)
on the upper half-plane
SL(2,R)/SO(2) = {M <i1> SO(2) ; 1,20 € Ry > O}
2
are given explicitly by
ZQ(xa y)

Z2
ti(z,y) = (x1y1 + T2y2)® + |12 + (1 + y%)a

Y2

M <2> SO2) & M <y1> SO@2) = M <Zl($’ y>> 5;0(2) for

Y2
ta(x,y) = (z1y1 + 22y2) [55291 +(1+ $§)$—1]

x 14 22)(1 + 42
+ [x1y2+ (1+y§)—2] [$2y2+ ( 2)( yZ)}
Y1 11

VO [ +13 1)+ 1 — 13 + 3]

21(2,y) = [(1 —t1)2+t%] (1+t1)2+t%
Zz(l"y) -

(1+¢1)2 + 3
and by

toM <Z;> SO(2) = M <Z;g Z;) SO(2) for

(32)

(33)
(34)

(35)

(1+a?+a3) + /(1 + a? +a2)? — 4a?

a; > 0, (a1,a2) # (0,0), r =1In
2@1

r o +/(a? —a3 —1)% + 4a%a?

t =1
70, sinh(r) 2a,
a2 —a2 -1
b1(t,a) = cosh(s) + L2 sinh(s)
V(af — a3 —1)* + 4ajaj
2
ba(t,a) = 192 sinh(s)

V(af — a3 — 1)° + daja3

teoM (é) SO@2) = M (é) S0(2)

M (é) SO(2)

o
&
=
PR
2
N
o)
<
)
Il

(36)
37)
(38)

(39)
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Proof: It follows from Lemma 34 that the coset representatiMz<il> €
2

Exp (p,). According to Corollary 32

M @) SO(2) & M @;) SO(2) = M @) M @;) SO(2).

21

We look for a positive definite symmetric matrM< > € SL(2,R), such that

22

() ()= (2)v

for someU € SO(2). To this end, letP(z,y) := M @1) M @1) and
2 2

N(Q?,y) = P('r7y)tp('r7y)

be the positive definite square root of the positive definite symmetric matrix
P(z,y)!P(z,y). More precisely, if

P(z,y)' P(z,y) = S(z,y) Az, y)"' S(z,y)

for an orthogonal matriX$(z, y) and a positive definite diagonal matex(z, y),
thenN(x,y) is defined as

N(z,y) = S(z,y)V Alz,y) ("S(z,y)) -
In the case under consideratialet P(z,y) = 1, whereaslet A(x,y) = 1 and

d(z,y) d(z,y) 0
st = (7! [6<x2/>11>’m:< ( a(:c,y))l)

0

for real positived (z, y),/d(x,y). In particular,det \/A(z,y) = 1 specifies that
N(z,y) € SL(2,R). Moreover, N (z,y) is symmetric and positive definite, so

that N (z,y) € Exp (p,). Due to! N = N, one observes that
ENTIP)(NTIP) =tP(NY) TP =tP(PIP)TIP = L.

Consequentlyi/ := N~1P € O(2) and, moreover/ € SO(2), due todet(N) =
det(P) = 1. Thus,M(z)= N(z,y).
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For arbitrary(z1, z2), (y1,y2) € RT x R we obtain explicitly the corresponding
(21,22) € RT x Rwith M(z) = N(z,y). Itis immediate that

X1 €2 1 Y2
P(z,y) = 1+ 23 1+y3
x2 Yo —
T Y1
) 2
T1y1 + T2y T1Y2 + E(l +y3)
- Yo 1+ 23)(1 + y3
zoyr + (1 +23)==  woyo + ( 2)( 2)
x1 T1Y1
whereas
i) 2
T1Y1 + T2y2 T1Y2 + a(l +v3)
P(z,y)' P(z,y) = 2 2
’ ’ Y2 1+25)(1+y
zoy1 + (1 +23)== oy + ( 2)( 2)
z1 T1y1
2\ Y2
T1Y1 + T2y roy1 + (1 +z )x— f (2, y)
x . (+ad(+sd) | =M (é@ §>>
r1y2 + —(14y3) @2y2 + ’

Y1 Z1Y1

for ty(z,y), ta(z, y) with (32), (33). Note thadlet M <§1Ei’z§> = 1 guarantees
2\4y

t1(x,y) > 0. Then the characteristic polynomial &f <_l;1> is
2

t1 — A to 2 2
14+t t
det 1+13 DU U sl 15 WP
to - A 51
l1
with roots
(I+t34+13) £ /(1 + 13 +12)2 — 483
Aa(t) = :
’ 2tq
The homogeneous linear systems
tl — )\1,2(t) tQ n 0
1+ t2 -
to 2 _ )\1,2(15) Y2 0

ty
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( ; — >
Al’g(t) tl
of lel Igtll

1/172(75) = \/t% + ()\172(75) — t1)2 = \/w)\lﬁ(t) + (t% + t% — 1)

ty

have solutions

Therefore, the matrix

to _ta
v (t) v (t)
S(t1,t2) = ()\1(751)751 )\2(752)751)

vi(t) va(t)

is orthogonal and

By construction,

M <Zl(t)> = S(ty, 1) < M) 0 )tS(tl,tQ)

za(t) 0 Xa (1)
®) 2 to "0
z1(t 1 I/— t 0
M ( 1(t) - (Al(t)(t) t )\2(2)(t) 1) ( 01 pwer ) 'S(t1,ta)
’ o) ) 2(t)
Zl(t)
M
(Zg(t)
ta/ A1 () tan/Aa(t) ta  A(t)—t
_ v1(t) vo(t) v (t) 1 (t)
(M) —t)VA(t)  Qalt) = t)v/Aalt) ts X(t)—t
vi(t) va(t) va(t)  walt)
Consequently,
BV 15 Aa(t)
21(t) = =5 + =5
4 (t) vy (t)

ta[A1(t) — t1]/ M (1) n ta[Aa(t) — t1]y/Aa(2)
vi(t) V3 (t) .

zZ2 (t) =
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1+ ]+ 3
tq

Taking into accoun\ (t) A2 (t) = 1 and(t) + \o(t) = , one calcu-

lates

vivs =[(Ai(t) — t1)? + 63][(Aa(t) — t1)* + 3] = (t1 — M1 (£))* (t1 — Aa(t))?
+ 13 [AF () + A3(t) — 2t (A1 (t) + Xo(1) + 23] + t5

2
1
_ 2[ +t2+t2
_2 2

2—2(1+t§+t§)+2t§] )
t3

t—%[(l +t1)? +83][(1 - t1)? + 13-

1

Further,

2
(“‘Zé§<< OV +EOVAD)

2
- [ t+t2+t2+t2—1} (VA + V)
’/1’/2

CVE [+ 1) +1 -1+ 13]
[(1—t1)2 + 2]/ (1 + t1)% + t2

shows (34), due tQ/ X (t)y/A2(t) = 1,t; > 0 and
VA + VR =y (VA + v e(0)?

=V (t) + () +2=

(1+t)2+13
Vi

Next, (35) follows by

to 1—13+13
aa(t) =2 { [ SR + (6 + - 1) () - ) VBT

# [0+ @+ 6 -] 0ut) - )V
1

t 1—t2+12
222{[ LT (22— 1)— (1— t2+t2]( M)+ Aot )

V2 ty
+ (t1 + t2 —-1) [(Al(t))% + (>\2(t))%}} N (1 ri—llt; 3
2
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after expressing

P01 + Da(®)]F = (VMO +V22®) (M) = VIO VARD + X))
_ V(A 40?2+ [1+t%+t§ _1]
Vi ty '
According to Corollary 32, the scalar multiplication of the Cartan gyrovector
spaceSL(2,R)/SO(2) is given by

te M (Z;) SO(2) = Exp (tEXp M <Zl>) SO(2)

2

forvt € R, VM <Zl> € Exp (p,). Then by Lemma 34 there holds
2
o P a? —a% -1
Exp (tEXle ( )) =Expm sinh(r) . 2a,
a t
2 sinh(r)a2

bl(t, a)
=M
(bg(t,a))

(14+a?+a3)++/(1+a?+a3)?—4a?

for

>0

a; > 0, (alaaQ) 7é (130)3T:1n

2@1
e s
t#0 = |t >0
700 Hsinh(r) 2a,
bu(t, @) = cosh(p) + sign ()T =2 =L ___un(p)
1(t,a) = cosh(p) + sign sinh(p
V(a3 —a} —1)? + 4a2d3

a1a9
V(af — a3 = 1)” + daja;
Heresign (t) = 1 for ¢t > 0 orsign (t) = —1 for ¢t < 0. Let us introduce

| (e BT
=5 t)p=1
s i=sign(t)p sinh(r)

bo(t,a) = 2sign (t) sinh(p).

2a1

and observe thaign (s) = sign (¢). Making use of the identitiesosh (sign (s)s)

= cosh(s), sinh (sign (s)s) = sign (s)sinh(s), one obtains (36) and (37). The
equalities (38) and (39) follow from (9), (31), (28), Q.E.D.
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Let us construct explicitly the norm

Jou (&) (2))

&1 ._
HExpm <§2> SO(Z)H = Vi
for Vm <£1> = <£1 &2 > € po =p(SL(2,R)/SO(2)), associated with the
&2 & =&

restriction of the Killing form

5o (m (&) m () = adm(gl) d(m<n))

2 72

(&) )= o)

onyp,. To this end, let us introduce tfex 2-matrix units£;, 1 < 4, j < 2, with
single nonzero entry at the intersection of théth row with thej-th column.
Thenp, is the real span of

g1:= FE11 — By and &g := E9 + F9y.

More precisely,

m (?) = &1 + &oea.
2

The isotropy subalgebra(2) C si(2,R) is the real line, generated by
€o 1= E12 — FEo.
For an arbitrary, € sl(2,R) let us identify
ad¢ @ sl(2,R) — sl(2,R)
with its 3 x 3-matrix with respect to the basis, €1, e-. It is straightforward that

ad ¢, (g0) = [e1,60) = 262, ad (e1) =0, ade,(e2)=2¢,

2
ad., = 0].
0

whereas

N OO

0
0
0
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Similarly,
ad.,(g0,) = =21, ad,(e1) = —2e,, adg,(e2) =0

reveal that

Consequently,

By(e1,e1) =Tr (adEI)Q =Tr (

CR=E=
ococo
o o
5
I
o

N OO

By(e1,e2) = Tr (adad,) = Tr |:(
0

2
0
0
—2 0\’
By(ez,e0) = Tr (ad.,)? = Tr (2 0 0) =8.
0 0 0

Thus, we obtain the following

Corollary 36. Let (SL(2,R)/SO(2),®,®) be the Cartan gyrovector space on
the upper half-plane, described in Proposition 35,

HEXp m (2) S’O(Q)H =4 /&2 + &2
d(z,y) = ||z cy|| forVz,ye SL(2,R)/SO(2).

Then d is the distance function of the left SL(2, R)-invariant Killing metric g on
the upper half-plane SL(2,R)/SO(2). The left @-trandations and the gyrations
areisometriesfor ¢, d and the geodesicsfor theKillingmetricon SL(2,R)/SO(2)
arethe gyro-lines~(t) =z @ (t ® y), t € R for fixed z,y € SL(2,R)/SO(2).
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