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COUNTING LATTICE POINTS IN CERTAIN RATIONAL
POLYTOPES AND GENERALIZED DEDEKIND SUMS

KAzuHITO KOZUKA

Abstract: Let P C R™ be a rational convex polytope with vertices at the origin and on
each positive coordinate axes. On the basis of the study on counting lattice points in tP with
positive integer ¢, which is deeply connected with reciprocity laws for generalized Dedekind sums,
we study the number of lattice points in the shifted polytope of ¢tP by a fixed rational point.
Certain generalized multiple Dedekind sums appear naturally in the main result.
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1. Introduction
Let P C R"™ be a rational convex polytope and for ¢ € N, put
Lp(t) = 4 (tPNZ"),
the number of lattice points in tP. It is known that Lp(¢) is expressed as
Lp(t) = cy()t" + -+ c1(t)t + co(t)

with periodic functions ¢o(t), - - , ¢, (t) and is called the Ehrhart quasipolynomial
of P([15]). Further the problem of finding an explicit expression of Lp(t) is deeply
connected with reciprocity laws for certain generalized Dedekind sums. Histor-
ically, the first example appeared in [16], where Mordell studied the number of
lattice points in the interior of the tetrahedron
T Yy oz
P:{(x,y,z)eRgo E+5+E<1}

for a,b,c € N and obtained a formula connected with a three-term relation of the
classical Dedekind sums.
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Generalizations for higher dimensional case are studied in [2], [3] and [4] etc.,
in which Dedekind-Rademacher sums or Fourier-Dedekind sums appear naturally.
Here, along the content of this paper, put

P(a) = {(z1, - ,zn) € RY, ’ aTy + - an®, <1}
and
Lt:a)= Lpa) (t)
for a = (a1, -+ ,a,) € N™. Let us recall the result for this case. It is obvious that
L(t : a) is equal to the Taylor coefficient of z* of the function

n

F(Z:a)déf (H(1+Zai+z2a,-+...)> A4+z+22+--1)

i=1

G| 1
:<i1:[11—z‘“> 1—2z

Making use of this, Beck, Dias and Robins studied in [3] an explicit expression of
L(t : @) under the condition of ged{a;,a;} =1 for all i # j. In order to state the
result precisely, let us define the Fourier-Dedekind sum by

1 ¢!
o(cl, - ,cpic)=— 1.1
o ) c;@qn'-o(ccﬂl) -y
C#1
for ¢,cq1,-+ ,¢, € N and | € Z, and put

R_i(a)=-Res(z""'F(z:a):2=1).
Then, it is shown in [3] that

L(t:a)=R_¢(a)+ (—1)”Za,t(a1,~-- J@iy a1t ag). (1.2)
i=1

Note that if we put
p(t:a)=t{(mi, - ,mn) € Z:, laymy + - apgmy, =t}

then

L(t:a)=p(t: (a,1)),
where (a,1) = (a1, -+ ,a,,1) € N**1 In [4], Beck, Gessel and Komatsu studied a
formula for the polynomial part of p(t : a). From Theorem and Proposition of [4]
and Remark 1 of [3], we see that R_;(a) equals the polynomial part of p(t : (a, 1))
and is expressed as

1 = (_1)m D1 P Bpl"'Bpan n—m
Ri(a) = a1 On > > B DO o e

m=0 " p1,,Pn,a€%s0
Lt patg=m

(1.3)
where B, is the pth Bernoulli number.
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As for the value at ¢ = 0, it is known that if P is an integral polytope, Lp(t)
is a polynomial of ¢ of which the constant term equals the Euler characteristic
X(P) of P. It is also known that x(P) = 1 if P is convex. In our case, since
aj ---an - P(a) is integral and convex, we have L(0,a) = 1. We note that this can
also be interpreted as L(0,a) = £(0-P(a) NZ"). In addition the formula (1.2)
also holds for ¢ = 0.

Now the classical Dedekind sum s(a, b) is defined by

= (D)) sy

where a € Z, b € N and

CJr—[a]-5 ifx¢Z
((x))_{o Y deez

If a,b € N with ged{a,b} = 1, we have a well-known reciprocity law such as

1 /b a 1 1

([14], [18]). In the special case of n = 2 and ¢ = 0, we have

oo(a,1:b) = —s(a,b) + % - ﬁ
and the formula (1.2), together with (1.3), naturally reduces to (1.5).

In this paper, as a generalization of L(t : a), we study the formula for the
number of the lattice points in the shifted polytope of tP(a) by a fixed rational
point, namely the formula expressing f ((—a +tP(a)) NZ™) for o € Q™. The
special case of n = 2, in which P(a) is a rectangled triangle in R?, is studied
in [5]. In our main result, we enlarge the range of t as t € Qx¢ and multiple
versions of the Dedekind-Rademacher sums will appear naturally. Let us give
a description of each section.

In Section 2, we first recall the definition and basic properties of Bernoulli
functions and give a definition of generalized Dedekind sums which appear in our
main result.

In Section 3, as important tools for the study of lattice points in rational
polytopes, we describe the integer-point transforms of rational polytopes or cones
in R™ and well-known Brion’s Theorem. Then we state the main result as a natural
application of Brion’s Theorem to the polytope —a + tP(a). As a Corollary of
the main result, we also show a generalized reciprocity law for multiple Dedekind-
Rademacher sums.

In order to prove the main result, we prepare two equations as Lemmas in
Section 4 and complete the proof in Section 5.
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2. Notations and definitions

Let B,(X) be the pth Bernoulli polynomial defined by

tetX e P
= B,(X)—.

and let B, = B,(0), the pth Bernoulli number. For any x € Q, write z = [z] + {z}
with [z] € Z and 0 < {z} < 1 and define B,(x) = B,({x}), which is periodic of
period 1 and satisfies a distribution relation such as

Z B, (x + 2) = k1P B, (k) (2.1)
A mod k

for any £k € N and x € Q. Let P = (p1,---,pn) € Z%,q € Zzo,a =
(a1, - ,an) € Z"b € Z, ¢ = (a1, - ,ap,) € Q" and B € Q, and we define
the following multiple Dedekind sum:

a b
Stp.a) (a 5)

= > ﬁ (A +aj> Bq<zy—1aj$j+aj)+ﬁ>. (2.2)

A1, A, mod b \ j=1

In the special case of n = 1, the sum is reduced to the classical Dedekind sum

(1.4) as
a b 1
8(1,1) (0 0) 1 + s(a,b).

In addition, we also have

ooy ) 5 85 (455)

which essentially includes the sums defined by Apostol as (1.3) in [1], by Rademacher
as (1.3) in [17] and by Carlitz as (1.2) in [8], (1.7) in [10] and (1.12) in [12]. We
also note that in [10] and [13], Carlitz had already studied the sum (2.2) in the
case of P = (1,---,1), @« =(0,---,0) and 8 = 0 with rather modified forms.

In the case of P =(1,---,1),¢=1,a=0=(0,---,0) and S = t/b, the sum
(2.2) is reduced to the Fourier-Dedekind sum (1.1) in such a way that

b Bt
8(17...71,1) (g t/b) = Uft( a,l: b) + T (23)

In the case of (P,q) = (p1,-** +Pn,q) € Z’;gl — N"*! and ged(b,a;) = 1 for
1 < j € n, we can derive by (2.1) that

a b e (p1 4+, o -
s(pq)( ﬁ>—b (P14 +pnta) HBpj(aj) B,(a-a+b3), (2.4)
L

where a - a = a1y + - - - + apQy, the inner product of a and .
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3. Integer-point transforms

Let S C R™ be a rational cone or polytope, The integer-point transform of S is
defined by

o(ur, - ,un: S) = Z AR T (3.1)

(mq,- ;mn)€SNZ™

If S is a polytope, the right-hand side of (3.1) is a finite sum. If S is a cone, the
right-hand side of (3.1) is a Laurent series of u{',---,u$", where ¢; = 1 or —1
for 1 < j < n and can also be expressed as a rational function of wuy,- - ,u, (cf.
Chapter 3.2 of [6]).

Let a = (a1, - ,an) E N, b€ N, a = (a1, -+ ,a,) € Q" and 8 € Q. In
what follows, we consider the range of ¢ as t € Qxo.

Proposition 3.1. Let t € Qxo and let K(t) denote the cone in R"*! defined by

K(t) = {(xh'" vxnay) ERn—i_l} Za](x]+aj)+b(y+ﬁ) <t
j=1

xj+aj>0(1<j<n)}.
Then we have

o(uy, - yun,v: K(t))

o Nile] —1 s a g Hog )=+ ]

: [
= Z H 1 _jugvfaj : 1—p-1 (32)

O0SAL, - An<b—1 \j=1

. n b _a7)L{aJ}
=y .. .u;a'er7ﬁ+g Z H
0 AL, -+, An<b—1 \J=1
o173 Zimiasyt{a ) —B+1} 23
X . :
1—wv1t (3:3)
Proof. If (my,--- ,m,,m) € K(t) N Z""!, then we have m; + o; > 0 for each

1<j7<nand

\ =

bz mJ+a]) 6+7

This implies m; + [a;] € Z>o and we can express

mj:—[aj]+)\j+blj with Og)\jgb—l and lj€Z>0
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and
1 t .
m = _gzaj(mj_l,_aj)—ﬁ—‘,—g —1 with [ € Zxg
1 n
= _gjglaj()\j—i—{aj} ﬁ‘f’* Za’jl -1
Hence

o(ut, - up, v K(t))

n
= E g H —lagl A | =3 2o as (N +{ay ) =B+
Ly 20 0K, An<b—1 \j=1
n
b 7a]
H(“j”
i=1
5 H Wyl \ S a0+ )=+
B — ubv—a 1—ov-1
0KA L, An<b—1 \j= 11— ujv

Thus, we obtain (3.2) and equation (3.3) is directly derived from (3.2) by making
use of [x] = x — {z} for any z € Q. [ |

Now suppose that @ = (a1,--- ,a,) € N™ with ged{a;,a;} =1 for all i # j
and as in the introduction, put

P(a’) = {(zla"' 735%) S Rg0|alz1+"'+anmn g 1}
. 1 1
Let Ay, Ao, --- , A, denote the points (,O,-- ,0) , <0770,... 7()) o
al an

1
0,---,0, ), respectively. Then for ¢ > 0, the vertices of tP(a) are the origin
a

n

and tAq, -+ ,tA,. For each 1 < i < n, let K;(t) denote the tangent cone of tA;.
Then
— —
Ki(t) = {(t — 1)OA; + > 1 AiAj |-+, pn > 0} (3.4)
J#i
={(x1, -+ ,xp) ER"|a1x1+~--+anxn <t

>0 for 1 <j<n with j#i}. (3.5)

In addition , we put
Ko(t) = RZ,, (3.6)
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which is the tangent cone of the origin for tP(a). Let oo = (aq,--- , ) € Q™ and
let us consider the shifted polytope

—a+tP(a)={(z1, - ,zn) ER"|ar1(z1 + 1)+ + an(xy + an) < 8,
zj+0; 20(1<j<n)}

and put
Lt:a,a)=4((—a+tP(a))NZ").

Then the vertices of —a + tP(a) are the points —a and —a +tA; for 1 <i < n
and their tangent cones are —a + Ko(t) = —a + RY, and

—a+ Ki{t)={(z1, - ,zn) ER"|a1(z1 + 1) + - + an(xy + @) < 8,
zj+a; 20 for 1 <j<n with j#i},

respectively. Applying (3.3), we see that

O'(’Uq,"' s Upyy - —a+K,»(t))

L (’LL U,
—Qq —Qx ag J K3
1 C Uy Uy § : | |

iy, TG
1—us'u,

=Uu

0 AL, Aiys A <a—1 \I7#7 J
B PLICA CRRIE
7
X 1— ’I,L_l (37)

(2

for 1 <i < n. For i =0, we have

o(ug, - un,: —a+ Ko(t)) = E uy™t
(mh...vmn)e(—a—l-RgO)mZn

m; Uy
u; =
i ;[a ] H 1-— Uq

n
i=1 )

i

—a —an u;

Now we have the following theorem due to Brion ([7] or Theorem 9.7 of [6]).

Theorem 3.2 (Brion). Suppose P C R"™ is a rational convex polytope. For each
vertix v of P, let K, denote the tangent cone of v. Then we have

cr(ul’...,un:P): Z o’(ul’...vun:Kv).

v:a vertix of P
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Applying Brion’s Theorem to P = —a + tP(a), we deduce that

n

our, - up : —a+tP(a)) =Y ofur, - un : —a+ Ki(t).  (3.9)
=0

For each P = (p1,--- ,pn) € Z%,, we put P; = (p1,--* ,Di, - ,pn) for 1 <i <m.
Similarly we put a; = (a1, ,a;, - ,a,) and o; = (g, + , &y , ). Then
taking u; = e**i for 1 < i < n and combining equations (3.7), (3.8), (3.9) and the
definition (2.2), we obtain

€a1a1r1+---+ananrn § : ea1m1z1+---+anmnmn

(m1,- ,my) €(—Q+TP(@))NZ"

n —a; a;
eSS sn(a L)
YA

=1 P=(p1, ,pn) ;0 a;

< (11 (aiaj(z; — )Pt | (—agwy)P !

pobe P! pi!

+ (=" > 11 Br. (a) (aiai)P ! (3.10)

P=(p1,+,pn) €LY, i=

Here we give a supplementary explanation for the case of ¢ = 0. We define K;(0)
by (3.4) or equivalently by (3.5) if ¢ > 1 and by (3.6) if ¢ = 0. Then (3.7) and
(3.8) are also valid for ¢ = 0. Further we have —a 4+ 0- P(a) = {—a} and we
define L(0 : a,a) = §({—a} NZ"™), which is 1 or 0 according as & € Z" or

o ¢ Z". In the same way we can define o(uy, - ,up : {—a}) =u"*---u~* or
0 according as & € Z™ or o« ¢ Z"™. Since Z" is discrete in R™, L(tp+ ¢ : a, &) and
(U1, ,up : —a+ (to + €)P(a)) remain invariant for any fixed g € Qo and

sufficiently small € > 0. By considering the case of ¢y = 0, (3.10) also holds for
t=0.
Now for t € Qxq, we have

Lt:a,a)=0(1,---,1: —a+tP(a)),

which also equals the left-hand side of (3.10) at (x1, -+ ,x,) = (0,---,0). In the
rest of this paper, we shall study the right-hand side of (3.10) and deduce the
following main result.

Theorem 3.3. For any t € Qxo, we have

n

L(t:a,a)=P(t:a,a)+(-1)">_ Qi(t:a,a), (3.11)

i=1



Counting lattice points in certain rational polytopes and generalized Dedekind sums 207

where
P(t:a,a)
1 - S ad" B, (a;) )\ By(—a-a+t) ™
= Z Z (=™ (H : plu ) : 1 ' !
ayap S 7o P p;! p! (n—m)!
p1+-+pPnt+p=m
symbolically
]_ ~ ~ - n ]_
- (t - (alB(al) +o 4 anBloy) + B(—a - o+ t))) = (312
ai - ap n!
and

—a; a; 1 - -
Qit:a,a) =Sq,.. 1) o —ai+i o HBl(aj) Bi(-a-a+1).
a; b \g#

Taking ¢ = 0 and making use of the symbolical expression as in (3.12), we can
easily dedeuce a generalized reciprocity law for multiple Dedekind-Rademacher
sums, which we show as the following.

Corollary 3.4. We have

n
Z —a; a4
ay - Ay 8(1’...@) ( o Oz-)
i=1 K3 1

= f% (a1B(a1) S anB(ozn) + B(fa . a))n
T i [[@Bi(a)) ]| Bi(-a-a)+e, (3.13)
i=1 \j#i

where e = (=1)"ay - - - ap, or 0 according as o« € Z™ or o ¢ Z".

4. Preliminary results

Let x = (z1, -+ ,xp) and A(x) = A(x1, -+ ,2p,) = H (x;—x;), the difference

1<i<j<n
product of x1, -+ ,x,. Then as is well known for the Vandermonde determinant,
we have
A x; 1
= A(x)
R N |

For the proof of Theorem 3.3, we shall need the following two lemmas.
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Lemma 4.1. Letn > 2 and N € Zxo. Then we have

= P1 .. pPn
: : = Ax) g xy abr. (4.1)
N n—2 €Z
T €T e T 1 P1, " Pn >0
n " p1t-+pn=N—n+1

Lemma 4.2. Let n,N € Z>o and l € Z. Then we have

XN: <)<z+g> (—1)N(n_lN> if N<n

n .
j= 0 otherwise.

Concerning Lemma 4.1, let us recall the Schur polynomial, which is defined by

Ajtn—j
s(e s () =

for (A;) = (M,--+,An) € Zxo with Ay > --- > X, and expressed by making use
of the corresponding Young diagrams for (X;). If N > n — 1, (4.1) is a direct
consequence of the special case of (A\;) = (N —n+1,0,---,0), in which the Schur
polynomial becomes the complete symmetric polynomial of degree N —n+ 1 inn
variables x1,--- ,x,. Direct proof for this case is also possible by making use of
induction on N. Note that in the case of 0 < N < n — 1, (4.1) is also valid since
both sides become 0.
As for Lemma 4.2, consider the following equation

N /N
i=o \J
Differentiating both sides ntimes, we obtain

N . N 5
n\d" Tt @ N\ drTh+s
Z(j) T A Z(j) ar

=0 =0

0

j=0

By taking T' = —1, the result follows immediately.
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5. Proof of Theorem 3.3

In order to study the right-hand side of (3.10), we put Zy = 2%, and Z; =
N", and introduce the following functions Gy (x) = G(x1, -+ ,2,) and Hy(x) =
Hy(xzy, - ,x,) for k=0,1:

n —a; a;
Gk(m) = Zetmi Z S(Pi;m) < o —a; + t)
i=1

P=(p1,,pn)€EZk a;

< | 11 (asaj(z; — i)' (—agwy)P !
b p;! pi!

1 " . .
Hyw)= 3" 3 |[]aVBy(a)) | Bu(-a-ati)

=1 P=(p1, ,pn)€EZk J#i

" H (xj —x)P ) ()P .

1 i
Ol pi!
Then by (2.4), we see that
G()(iL') — Gl(ac) = Ho(il?) — Hl(:E) (51)
Taking @ = (x,--- ,x), we have
n_ oo —a; a; —1
_ tx ‘ ‘ (_a’ix)p
Gi(z, - z)=e€ ;28(1,..’1@) (ai —a; + t) —a
=1 p= a;

and

Especially for = (0,--- ,0), we have

n —a; a;
G1(0,-++,0) => S 1) (ai i+ t) (5.2)

and

n

H,(0, - ,O):Za%_ [[5i(ay) | Bi(—a-a+1). (5.3)

i=1 j#i
As for Hy(x), we first note that
g:fiil H(:z:] —z)P i p=0

= ji

27 (T 0 | - xp
J#i
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for 1 < i < n. Changing the roles of p; and p, we can express

n J'

Ho(w) = ay .~1-a,n ;emi Z Z H aj p( ap!a +t)

P=(p1,,pn)€ZL, P=0 \j=1
n
(=Pt H(CU] -
j=1
[T — =)

J#i

X:wi

For each P = (p1,- -+ ,pn) € Z%, and p € Zxo, we put

boa? By (o) \ By(—a-a+t)
B(P,p) = H S— P o
and
s(P)=p1+-+Dn,
and express
n s(P)
[[@-x)P=> c@: P)x*
j=1 k=0

with ¢x(x : P) € Z[z1,- -+ ,x,]. Then

Az )Ho( )
= Z > B(P.p) Z BA ) (1P
" p= 0 PeZy,
s(P)
X Z cx(x : P)xk
k=0
s(P) etorgh TRl g 1
SO S S s Yl n)|
p OPGZ" k=0 etacnxp-i-k:—l xn—Q Tn
s(P)
DS S Cpsen Y ate: )
" p=0 PEZZ, k=0
- - lﬂln-l-p-i-k—l x7lL—2 |
x> o : : E
m=0 grtpth=l pn=2 T, 1
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Applying Lemma 4.1, we have

k—1 -
x;"""p"" x"f 2. 1 1
— Ax) 2 : 2B gln
P th=l o gn=2 o g, 1 Q=(a1,.4n)€Z3,
s(Q)=m+p+k—n

211

except for the case of m =p =%k =0. If m = p = k = 0, the determinant above

becomes
xpt a2 zp 1 (—1yn-t
: : : = A(x)
. . . XT1---X
x, b anT? T, 1 ! "
Hence we deduce that
Ho(x)
P = S e a1
B i) DEICETH) SRICIT) DL SR
" p=0 PZ, k=0 m=0 """ Q=(q1,,qn)ELL,
s(Q)=m+p+k—n
. 1 Z B(P, O)Co($ : P)
al.-.a/npez,go l’l..-xn
Now taking & = (x,--- ,x), we have

which implies

(@, -,z P) = (s(P)>(1)ka<P>k.

k
Hence
H0(1'7"‘, Z Z B-Pp Z( k >(_1)p+k
p OPEZ”
oo tm
z s(P)+s(Q)—k
D DL SR
m=0 QEZ;‘O

S(@Q=mAptk—n

1
Y BP0,
aj - - Ay

Pezy,

qn
.%‘n"
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Note that for any | € Z3, the number of Q) € Z% satisfying s(Q) = [ is what

l -1
is called the number of repeated combination and equals ( tn 1 ) It follows
that
s(P) (P)
Hola, -+ z) = " $ §° Bppz( )
n p=0 P€Z7,
y ] tﬂl m + P + k m+p+s(P)—n
m! n—1
m=0
=" -1 P)—
- B(P,0 s(P)—n
aj - Gp Z ( ’ ) n—1 z
Pezz,
1
- P.0)z5P) -
Ly seos
Pezz,

Note that the last two summations in the right-hand side of this equation are

-1
canceled since ( 1) = (71)"*1. Then applying Lemma 4.2, we see that
n—

Ho(x, )
= m+p—1 , (P)—
E E B(P,p) E z p+é(P)( )mm-&-p-l-a( )—n
| — 1=
" p=0 PezZy, m:Om n—1 S(P)
s(P)<n—1

(5.4)
Now we see from (3.10) that

L(t: a,a) = constant term of

SN I T (H o f’*‘“”):csw)—n

P:(ply...7pn)ez7>l0 =1

From (5.1), (5.2) and (5.3), we also see that the constant term of
G()(fﬂ, e ,fﬂ) - HO(xa T ,$) equals

G1(07... 7())__[{1(()7... ’0)

n —a; a; 1 - -
- S, 1,1 ( oy + t) — ;(H B (aj))Bl(—a ~a+t)
1
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It follows from (5.4) that

L(t:a,a)
n —a; a; 1 - -
SIETD Bi [CTY (A B | ) (X XS
i=1 ¢ Y a, Tt
1 tTTL
_1\pt+s(P) z
D DD DI S L ke

Pezy, p,m=0
s(P)gn—18(P)+m+p=n

=5 o al By, ()
Py

P=(p1, ,pn)€ZL, i=1

s(P)=n
1 om
= — _1)\s(P)+p v
a - an > >, (1 B(P,p)—
P=(p1,,pn)€EZY, p,m>=0
s(P)<n s(P)+m+p=n
Y TG i R .
D" Suen | gy g e L] T Br@))Bi(-a-a+t) |,
=1 i 7 i

which is easily transformed into the right-hand side of (3.11). This completes the
proof of Theorem 3.3. |

As for relations to preceding results mainly by Beck, Carlitz and Rademacher,
we note the following.

Remark 5.1. In the case of a = (0,---,0) and ¢t € Zso, P(t : @, a) reduces
to the right-hand side of (1.3) and Q;(t : a,) to o_¢(ay, -+ ,a;, - ,an : a;) by
virtue of (2.3). Hence (3.11) reduces to the formula (1.2).

Remark 5.2. In the case of n = 2 and t = 0, some calculations show that (3.13)
reduces to the reciprocity law for Dedekind-Rademacher sums (Theorem 2 of [17]
or the formula in the case p = 1 for (4.4) of [11]). In addition, multiplying both
sides of (3.10) by (z1 — z2)z122 and examining the coefficient of 27z§ carefully for
each r,s € Z>o, we can also derive the formula (2.15) of [12], which also reduces
to (3.2) of [8] and (4.1) of [9] if a € Z2.

Acknowledgements. The author would like to express his deep gratitude to
Professor Beck for giving him some encouraging suggestions.

References

[1] T.M. Apostol, Generalized Dedekind sums and transformation formulae of
certain Lambert series, Duke Math. J. 17 (1950), 147-157.

[2] M. Beck, Counting lattice points by means of the residue theorem, Ramanujan
J. 4 (2000), 299-310.



214

3]

[4]

5]

[6]

17l
18]
19]
[10]

[11]
[12]

13]
14]
15]
16]
17]

[18]

Kazuhito Kozuka

M. Beck, R. Diaz and S. Robins, The Frobenius problem, rational polytopes,
and Fourier-Dedekind sums, J. Number Theory 96 (2002), 1-21.

M. Beck, .M. Gessel and T. Komatsu, The polynomial part of a restricted
partition function related to the Frobenius problem, Electronic J. Combin. 8,
no.1 (2001), N7.

M. Beck and S. Robins, Faplicit and efficient formulas for the lattice point
count in rational polygons using Dedekind-Rademacher sums, Discrete and
Comp. Geom. 27 (2002), 443-459.

M. Beck and S. Robins, Computing the continuous discretely: Integerpoint
enumeration in polyhedra, Undergraduate Texs in Mathematics, Springer,
New York, 2007.

M. Brion, Points entiers dans les polyédres convexes, Ann. Sci. Ecole Norm.
Sup (4) 21, no. 4 (1988), 653-663.

L. Carlitz, Some theorems on generalized Dedekind sums, Pacific J. Math. 3,
no.3 (1953), 513-522.

L. Carlitz, Dedekind sums and Lambert series, Proc. Amer. Math. Soc. 5
(1954), 580—-584.

L. Carlitz, A note on generalized Dedekind sums, Duke. Math. J. 21 (1954),
399-403.

L. Carlitz, Generalized Dedekind sums, Math. Zeit. 85 (1964), 83-90.

L. Carlitz, Some theorems on generalized Dedekind-Rademacher sums, Pacific
J. Math. 75 (1975), 347-358.

L. Carlitz, Many-term relations for multiple Dedekind sums, Indian J. Math.
20 (1978), 77-89.

R. Dedekind, Erlduterungen zu zwei Fragmenten von Riemann, Gesammelte
mathematische Werke, Bd. I. S, 159-173.

E. Ehrhart, Sur un probléme de géométrie diophantienne linéaire II, J. reine
angew. Math. 227 (1967), 25-49.

L. Mordell, Lattice points in a tetrahedron and generalized Dedekind sums,
J. Indian Math. Soc. (N.S) 15 (1951), 41-46.

H. Rademacher, Some remarks on certain generalized Dedekind sums, Acta.
Arith. 9 (1964), 97-105.

H. Rademacher and A. Whiteman, Theorems on Dedekind sums, Amer.
J. Math. 63 (1941), 377-407.

Address: Kazuhito Kozuka: Department of Mathematics, National Institute of Technology,

Miyakonojo College, Miyakonojo, Miyazaki 885-8567, Japan.

E-mail: k31k@cc.miyakonojo-nct.ac.jp
Received: 28 December 2015; revised: 2 June 2016



