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LEVEL STRIPPING FOR VECTOR-VALUED SIEGEL MODULAR
FORMS OF GENUS 2

Rodney Keaton

Abstract: In this paper, we present a method by which one can strip primes from the level of
a vector-valued genus 2 Siegel modular form while preserving a congruence modulo this prime.
An application of this result to four-dimensional Galois representations will also be presented.
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1. Introduction

Throughout, we fix a rational prime ` > 5 and let GQ denote the absolute Galois
group Gal(Q/Q). Furthermore, we fix embeddings of Q into Q` and into C.

In [23], J-P. Serre poses two conjectures which provid precise conditions under
which a Galois representation of the form

ρ : GQ → GL2(F`) (1.1)

arises from a cuspidal elliptic eigenform. The “weak” conjecture simply states when
such an eigenform exists, while the “strong” conjecture gives the precise character,
level, and weight of such an eigenform. Through the late eighties and early nineties
a large body of work was dedicated to showing that the weak conjecture implies
the strong conjecture. Hence, one now simply refers to both as Serre’s conjecture.
The reader is referred to [9] for a nice overview of these results. Among this
body of work, we have the following theorem due to Ribet which provides a “level
stripping” result for Galois representations of the above type, and serves as the
primary motivation for the results in this paper.

Theorem 1 ([22, Theorem 2.1]). Suppose that ρ is as in Equation 1.1 and
arises from an elliptic eigenform of level `rN with r > 0 and (N, `) = 1. Then, ρ
arises from an elliptic eigenform of level N .
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It should also be noted that this theorem holds for ` = 3 as well and was further
extended to the case ` = 2 by Hatada in [11] using slightly different methods.
Finally, as one of the monumental achievements in modern number theory, we
have that Serre’s conjecture is now a theorem due to Khare and Wintenberger, see
[15],[16].

In recent work of Herzig and Tilouine, see [12], a “Serre type” conjecture is
made for Galois representations of the form

ρ : GQ → GSp4(F`).

For a precise statement of this conjecture the reader is referred to Section 4. In
this setting, the Galois representations are conjectured to arise from vector-valued
Siegel modular forms of genus 2. While the conjecture in this setting is not as
precise as Serre’s conjecture concerning the character, level, and weight, Herzig
and Tilouine do mention that the level should be prime to `. Bearing this in
mind, the main result of this paper is a level stripping result for Siegel modular
forms analogous to Theorem 1. Such results have been previously been obtained
by Taylor in [27] under an ordinarity condition, by Brown and the author in [7]
for Siegel modular forms which are lifted from elliptic modular forms, and by the
author in [14] for scalar valued Siegel modular forms.

In particular, the level-stripping result of this paper and the subsequent ap-
plication to Galois representations can be viewed as a direct generalization of the
results in [14] to the vector-valued setting. The techniques used to prove the main
results in this paper are identical to the techniques employed in [14], but the pri-
mary obstacle lies in the fact that the arithmetic of vector-valued Siegel modular
forms can be quite a bit more delicate. Furthermore, it is important to remark
that this paper seeks to correct a mistake which was overlooked in [14]. For more
details see the end of Section 3.3. Finally, it is the goal of the author to provide
convenient references for arithmetic results which may be common knowledge to
the experts, but have yet to explicitly appear in the literature for vector-valued
Siegel modular forms with level.

2. Background

In this section we will introduce some basic facts about vector-valued Siegel mod-
ular forms of genus 2. For more details the interested reader is referred to [3] for
a thorough treatment of scalar valued forms of arbitrary level and [30] for a quite
readable exposition of the theory of arbitrary genus vector-valued forms in the
level 1 setting.

Let h2 denote the genus 2 Siegel upper half plane, and let GSp+
4 (R) denote the

set of 4 × 4 symplectic matrices with real entries and positive similitude factor.
Note, we will denote the similitude factor by µ throughout. We have an action of
GSp+

4 (R) on h2 given by,

γ · Z = (aZ + b)(cZ + d)−1, for Z ∈ h2, γ =

(
a b
c d

)
∈ GSp+

4 R).
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In order to define vector-valued Siegel modular forms, we will need to generalize
the notion of the “automorphy factor” from the classical theory of modular forms.
To this end, consider an irreducible representation,

ρ : GL2(C)→ GL(V ),

with V some finite dimensional C-vector space. Representations of this type have
been completely classified and are, in fact, in bijective correspondence with tuples
of the form (k1, k2) ∈ Z2 with k1 > k2 by Proposition 15.47 in [10]. We call (k1, k2)
the highest weight vector of ρ.

To be more precise, we let V ′ = Cx1 ⊕ Cx2 be the standard representation of
GL2(C). Then, the highest weight vector (k1, k2) corresponds to the representation
Symk1−k2(V ′) ⊗ detk2(V ′), where Symk(V ′) is the kth symmetric power of V ′,
which we can identify with the space of degree k1 − k2 homogeneous polynomials
in C[x1, x2].

With V as above, let F : h2 → V be a holomorphic function. Then, for
γ ∈ GSp+

4 (R), we define the weight ρ slash operator by

(F |ργ)(Z) = ρ(cZ + d)−1F (γ · Z).

We are interested in functions which are invariant under the action of certain
subgroups of GSp+

4 (R) by the slash operator. In particular, we define Sp4(Z) to
be elements of GSp+

4 (R) which have integral entries and lie within the kernel of
the similitude factor. This group serves as the analogue to the group SL2(Z) in
the setting of elliptic modular forms. We also have the analogues of the level N
congruence subgroups in this setting, i.e., the subgroups

Γ2
0(N) =

{(
a b
c d

)
∈ Sp4(Z) : c ≡ 02 (mod N)

}
,

Γ2
1(N) =

{(
a b
c d

)
∈ Γ2

0(N) : a ≡ d ≡ 12 (mod N)

}
,

where we are writing the entries as 2× 2 blocks.
We are now prepared to define Siegel modular forms.

Definition 2. Let N be a positive integer, χ be a Dirichlet character modulo N ,
and V a finite dimensional complex vector space. Let F : h2 → V be a holomorphic
function and ρ : GL2(C)→ GL(V ) be an irreducible representation. Then, we say
that F is a Siegel modular form of character χ, genus 2, level N , and weight ρ if

F |ργ = χ(γ)F, for all γ ∈ Γ2
0(N),

where we set χ(γ) = χ(det d). We denote the space of all such functions as
M2
ρ (N,χ).



254 Rodney Keaton

If dimC(V ) > 1 then the modular forms in the definition above are typi-
cally referred to as vector-valued Siegel modular forms in the literature, and if
dimC(V ) = 1 then they are typically called classical or scalar-valued Siegel mod-
ular forms.

We have that for F ∈M2
ρ1(N,χ) and G ∈M2

ρ2(N,χ), the product

F (Z)G(Z) := F (Z)⊗C G(Z)

is in M2
ρ1⊗ρ2(N,χ), where if (k1, k2) and (k′1, k

′
2) are the highest weight vectors of

ρ1 and ρ2, respectively, then the highest weight vector of ρ1⊗ρ2 is (k1+k′1, k2+k′2).
Hence, ⊕

ρ

M2
ρ (N,χ)

is a graded C-algebra, where the sum is taken over all irreducible representations
of GL2(C).

It follows from the transformation property satisfied by F ∈M2
ρ (N,χ) and the

Koecher principle that F admits a Fourier expansion of the form

F (Z) =
∑
T∈Λ2
T>0

aF (T ) exp(Tr(TZ)) with aF (T ) ∈ V,

where Λ2 denotes the set of all 2×2 half-integral symmetric matrices, i.e., 2T is an
integral matrix with even diagonal entries, T > 0 means that T is positive definite,
and Tr(TZ) is the trace of the matrix TZ. Furthermore, if aF |ργ(T ) = 0 for every
γ ∈ Sp4(Z) when T is not strictly positive definite, we say that F is a cusp form.
We denote the subspace of cusp forms by S2

ρ(N,χ).
Next, we recall some facts from the theory of Hecke operators for Siegel modular

forms. Let F ∈M2
ρ (N,χ). We define the weight ρ double coset operator by

F [Γ2
0(N)αΓ2

0(N)]ρ =
∑
i

χ(det(aαi))F |ραi,

where the summation runs over a complete set of representatives for

Γ2
0(N)\Γ2

0(N)αΓ2
0(N).

We have a natural multiplication of these double coset operators given by

F [(Γ2
0(N)αΓ2

0(N)) · (Γ2
0(N)βΓ2

0(N))]ρ =
∑
i,j

χ(det(aαiβj ))F |ραiβj ,

which makes the collection of double coset operators into an algebra over Q, which
is called the Hecke algebra, and denoted H(Γ2

0(N)). The following proposition is
quite helpful in working with elements of the Hecke algebra.
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Proposition 3 ([30, Prop. 16.4]). Let α ∈ GSp+
4 (Q)∩M4(Z). Then, the double

coset Γ2
0(N)αΓ2

0(N) has a unique representative of the form

γ = diag(a1, a2, d1, d2)

with integers aj , dj satisfying aj > 0, ajdj = µ(γ) for j = 1, 2 and a2|d2, a1|a2.

For a prime p, if we define Hp(Γ
2
0(N)) to be the subring of double cosets in

H(Γ2
0(N)) whose representatives have only powers of p in the denominators of the

entries, then this proposition gives us that any element ofH(Γ2
0(N)) can be written

as a finite product of elements, each coming from a distinct Hp(Γ
2
0(N)). In other

words, we have a decomposition H(Γ2
0(N)) = ⊗′pHp(Γ

2
0(N)), where ⊗′p is called

the restricted tensor product, and means that all but finitely many elements of the
product should be the identity. We will also use HZ

p (Γ2
0(N)) to denote the subring

of Hp(Γ
2
0(N)) whose representatives have only integral entries. We call HZ

p (Γ2
0(N))

the local Hecke algebra at p. Let HZ(Γ2
0(N)) = ⊗′pHZ

p (Γ2
0(N)). Concerning the

generators of HZ
p (Γ2

0(N)), we have the following theorem.

Theorem 4 ([30, Thm. 9]). The local Hecke algebra at p, for p - N , is a Z-
algebra generated by the following elements

T (p) = Γ2
0(N)

(
I2 02

02 pI2

)
Γ2

0(N),

and,

Ti(p
2) = Γ2

0(N)


I2−i 0 0 0

0 p1i 0 0
0 0 p2I2−i 0
0 0 0 pIi

Γ2
0(N),

for i = 1, 2. Furthermore, Hp(Γ
2
0(N)) = HZ

p (Γ2
0(N))[1/T2(p2)].

Note, from Lemma 4.2 in [3] we have that the spaces M2
k (N,χ), S2

k(N,χ) are
stable under the action of the Hecke operators, and it is not difficult to see that
this proof extends to arbitrary weight ρ.

Moreover, adapting the scalar weight techniques from [3] to our vector-valued
setting, we immediately obtain the following theorem, which gives an explicit
action of the Hecke operators on Fourier coefficients.

Theorem 5. Let F ∈ M2
ρ (N,χ). Then, we have the following expression for

aT (p)F (T ),

χ(p2)aF

(
T

p

)
+ p3ρ(diag(p, p))−1aF (pT ) + pχ(p)

∑
D∈S(p)

ρ(D)−1aF

(
DT TD

p

)
.
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and for aT1(p2)F (T ),

χ(p2)
∑

D∈S(p)

ρ(D)−1

(
aF

(
DT TD

p2

)
+ p3χ(p)ρ(diag(p, p))−1aF (DT TD)

)

+ pχ(p2)


 ∑
D∈S(p)

ρ(D)−1aF

(
DT TD

p

)2

−
∑

D∈S(p2)

ρ(D)−1aF

(
DT TD

p2

)
− (p+ 1)χ(p)ρ(diag(p, p))−1af (T ).

Note, as the verification of this theorem is quite lengthy and fairly routine, we
have simply included the proof of this result in Section 5 so as not to take the
reader too far afield.

In addition to the Hecke operators, the space S2
ρ(N,χ) also comes equipped

with an inner product, known as the Petersson inner product. The reader is
referred to [25] for the formulation in the setting of arbitrary genus vector-valued
Siegel modular forms, where one needs to change the domain integrated over in
the case of non-trivial level.

Let V = Cx1 ⊕ Cx2 be the standard representation of GL2(C). This space
comes with a natural inner product given by

〈a1x1 + a2x2, b1x1 + b2x2〉 = a1b1 + a2b2,

which induces an inner product on Symk1−k2(V ) given by

〈v1 . . . vk1−k2 , w1 . . . wk1−k2〉 =
1

(k1 − k2)!

∑
σ∈Sk1−k2

k1−k2∏
j=1

〈vσ(j), wj〉,

where vi, wi ∈ V . From [25] we have that this inner product satisfies

1. 〈v, w〉 = 〈w, v〉, for all v, w ∈ Symk1−k2(V ).

2. 〈ρ(γ1)v, ρ(γ2)w〉 = 〈ρ(Tγ2γ1)v, w〉 for all γ1, γ2 ∈ GL2(C), v, w ∈ Symk1−k2(V ),
where

ρ : GL2(C)→ GL(Symk1−k2(V )).

Using this, we define the Petersson inner product of F,G ∈ M2
ρ (N,χ), with at

least one a cusp form, to be

〈F,G〉Γ2
1(N) = ∗

∫
Γ2
1(N)\h2

〈ρ(Z)F (Z), G(Z)〉det(Im(Z))−3dZ,

where Γ2
1(N)\h2 is a fundamental domain for Γ2

1(N), and the normalizing factor
∗ is given by

1

[Sp4(Z) : {±I4}Γ2
1(N)]

.
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From [4] we have that the Hecke operators are self-adjoint with respect to this
inner product in the level 1, arbitrary genus case. Furthermore, using the formulas
derived in Theorem 5, this can be shown to hold for level N and genus 2 for all
Hecke operators in HZ

N (Γ2
0(N)) := ⊗′p-NH

Z
p (Γ2

0(N)). These formulas are precisely
the same, regardless of the level, so the self-adjointness follows immediately. From
this, it follows that S2

ρ(N,χ) has an orthogonal basis which consists of simultaneous
eigenvectors for T (p) and Ti(p2) for i = 1, 2 and for all p - N . We refer to such an
eigenvector as an eigenform. Note, by our definition of modular forms, any element
of M2

ρ (N,χ) is automatically an eigenvector for the Hecke operators T2(p2) for
p - N and has eigenvalue given by χ(p) up to some normalization factor.

We can also associate an L-function to a genus 2 Siegel modular form as well.
Assume that F ∈ S2

ρ(N,χ) is an eigenform, with ρ having highest weight vector
(k1, k2). Then, the associated L-function is given by

L(s, F ) =
∏
p-N

Lp(p
−s, F )−1

∏
p|N

(1− λF (p)p−s)−1,

with
Lp(X,F ) = 1− λF (p)X + (λF (p)2 − λF (p2; 1)− χ(p2)pk1+k2−4)X2

− χ(p2)λF (p)pk1+k2−3X3 + χ(p4)p2k1+2k2−6X4,

where T (p)F = λF (p)F and T1(p2)F = λF (p2; 1)F . Note, there are actually two
distinct L-functions associated to F , however, the L-function presented above,
referred to as the spinor L-function, is all we will be concerned with. By Theorem
1 in [1], it is known that this L-function is absolutely convergent in some right half
plane and satisfies a functional equation in the scalar weight case.

3. Level stripping of Siegel modular forms

In this section, the goal is to prove our level stripping result. Before this is possible,
we need quite a few preliminaries that will go in to the proof.

3.1. Arithmetic properties of Siegel modular forms

In this section, we give some important arithmetic properties of Siegel modular
forms, and cuspidal eigenforms in particular, which will be needed for discussing
congruences.

In order to discuss arithmetic properties of Siegel modular forms, we need to
consider Siegel modular forms with Fourier coefficients lying in a certain ring.
We make this precise here and set some notation. Recall, we can identify the
representation space V with the homogeneous polynomials C[x1, x2] of degree k1−
k2, where (k1, k2) is the highest weight vector of ρ. For any subring R ⊂ C, let VR
denote the homogeneous polynomials in R[x1, x2] of degree k1−k2. Let S2

ρ(N,χ)R
denote the subset of S2

ρ(N,χ) whose elements have Fourier coefficients in VR at
each cusp. Note, in [13], it is shown that vector-valued modular forms satisfy
a “q-expansion principle,” i.e., if the Fourier coefficients at one cusp lie in VR then
so do the Fourier coefficients at all of the other cusps.
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We begin with the following lemma which will be needed throughout this sec-
tion. Note the proof follows immediately from the explicit formulas given in The-
orem 5.

Lemma 6. Let F ∈ S2
ρ(N,χ)Q(χ). Then, TF ∈ S2

ρ(N,χ)Q(χ), for any T ∈
HZ
N (Γ2

0(N)), where Q(χ) is defined to be the number field obtained by adjoining all
of the values of χ to Q.

We should also mention that similar results have been obtained in [13] using
techniques from arithmetic geometry.

Using this lemma, we obtain the following result concerning the field of defini-
tion of the Hecke eigenvalues for a given eigenform.

Proposition 7. Let F ∈ S2
ρ(N,χ) be an eigenform. Define Q(λF ) to be the

field generated by adjoining all of the eigenvalues of F with respect to the Hecke
operators T (p) and Ti(p2) for 1 6 i 6 2 and p - N . Then, Q(λF )/Q is a totally
real finite extension.

Note, this result is certainly well known to the experts, but we record the proof
for the sake of completeness in the literature.

Proof. For any t ∈ HZ
N (Γ2

0(N)), let λ(t) satisfy tF = λ(t)F . Note, λ(t) is alge-
braic as it is the root of the characteristic polynomial of t, and as t is self-adjoint,
we have that λ(t) is totally real.

To obtain that Q(λF )/Q is a finite extension, we proceed as in the proofs of
Theorem 1 in [18] where this lemma is proven for classical Siegel modular forms of
arbitrary genus and of level 1 and Theorem 1 in [26] where this lemma is proven
for vector valued Siegel modular forms of genus 2 and level 1.

By Lemma 2.1 in [27], we have that

S2
ρ(N,χ)OK ⊗OK C = S2

ρ(N,χ),

where OK is the ring of integers of some finite abelian extension K/Q. Without
loss of generality, we assume that Q(χ) ⊆ K.

Let Aut(C/K) denote the field automorphisms of C which fix elements of K.
Let σ ∈ Aut(C/K). We define

Fσ(Z) =
∑
T

σ(aF (T )) exp(Tr(TZ)),

and σ acts on aF (T ) by considering aF (T ) ∈ C[x1, x2] and acting on the the
coefficients, i.e., for aF (T ) =

∑
i,j aijx

i
1x
j
2 we have σ(aF (T )) :=

∑
i,j σ(aij)x

i
1x
j
2.

We can decompose F as the sum

F =
∑
n

cn(Fn ⊗ zn),
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where cn ∈ OK , zn ∈ C, and Fn ∈ S2
ρ(N,χ)OK . Recall, by Lemma 6, we have that

tFn ∈ S2
ρ(N,χ)OK for any t ∈ HZ

N (Γ2
0(N)). Furthermore, for any t ∈ HZ

N (Γ2
0(N)),

we have
tF =

∑
n

cn(tFn ⊗ zn).

It follows that (tF )σ = t(Fσ) for any t ∈ HZ
N (Γ2

0(N)). In particular, tFσ =
σ(λF (t))Fσ. We notice from this that Fσ ∈ S2

ρ(N, σ ◦ χ) and that Q(λFσ ) =
σ(Q(λF )).

Let Bχ denote a basis of eigenforms for S2
ρ(N,χ) and set

B :=
⋃

χ (mod N)

Bχ,

where the union is over all Dirichlet characters modulo N . Note, B is a finite set.
From the discussion above, we have a map

Aut(C/K)→ S|B|,

where S|B| is the symmetric group on |B| letters. Thus, the action of Aut(C/K)
on each the direct sum over χ of all S2

ρ(N,χ) factors through a finite quotient.
Hence, Q(λF )/Q is a finite extension. �

Finally, to conclude this section, we have the following result concerning the
field of definition of the Fourier coefficients of an eigenform.

Lemma 8. Let F ∈ S2
ρ(N,χ) be an eigenform and let K denote Q(λF , χ), i.e.,

the field obtained by adjoining all of the values of χ to Q(λF ). Set

S2
ρ(N,χ;F ) =

{
G ∈ S2

ρ(N,χ) : λG(t) = λF (t) for all t ∈ HZ
N (Γ2

0(N))
}
.

Then,
S2
ρ(N,χ;F ) = S2

ρ(N,χ;F )OKL ⊗OKL C,

where OKL is the ring of integers of the compositum of K and L where L/Q is
some finite extension.

Proof. Recall, by Lemma 2.1 in [27] we have

S2
ρ(N,χ) = S2

ρ(N,χ)OL ⊗OL C,

where we are using the same notation which was defined before Corollary 6 and
L/Q is a finite abelian extension. We assume that L contains the values of χ. Let
{F1, . . . , Fr} be an OL-basis for S2

ρ(N,χ)OL . By Theorem 6, we have that

tFi =

r∑
j=1

cij(t)Fj , for all t ∈ HZ
N (Γ2

0(N)),

where cij(t) ∈ OL.
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For each z = (z1, . . . , zr) ∈ Cr we put

f(z) =

r∑
i=1

ziFi.

We set V (F ) = {z ∈ Cr : f(z) ∈ S2
ρ(N,χ;F )}. Note, V (F ) is a finite dimensional

C-vector space and we denote the dimension by d. It is clear that f defines a
C-linear isomorphism

f : V (F )→ S2
ρ(N,χ;F ).

Take S to be a generating set for HZ
N (Γ2

0(N)) as a Z-algebra , which we know
is finite because HZ

N (Γ2
0(N)) ↪→ EndC(S2

ρ(N,χ)). For z ∈ V (F ) it is clear that
tf(z) = λF (t)f(z) for all t ∈ S, i.e.,

r∑
i=1

cij(t)zi = λF (t)zi.

Since the coefficients λF (t), cij(t) are in KL, there exists a basis {v1, . . . , vd} of
V (F ) such that vj ∈ (KL)r. Take a non-zero γj ∈ OKL such that v′j = γjvj ∈
OrKL. Then, f(v′j) ∈ Snk (N,χ;F )OKL and V (F ) =

⊕d
i=1 Cv′i. �

3.2. Congruences of genus 2 Siegel modular forms

In this section we define two distinct notions of congruences between genus 2 Siegel
modular forms. We then show a relationship between the two notions.

Let F and G be genus 2 eigenforms of level N and M respectively. For any
prime p - MN , we let λF (p), λF (p2; i), λG(p), λG(p2; i) denote the eigenvalues of
F and G with respect to T (p) and Ti(p2) for i = 1, 2, i.e.,

T (p)F = λF (p)F , Ti(p2)F = λF (p2; i)F,

T (p)G = λG(p)G, Ti(p2)G = λG(p2; i)G.

We let Q(λF , λG) denote the compositum of Q(λF ) and Q(λG), where Q(λF ) and
Q(λG) were defined in Proposition 7. By Proposition 7, Q(λF , λG) is a totally
real number field. Let Σ denote a finite set of primes. Then, we write F ≡Σ G
(mod `) if for all primes p /∈ Σ we have

λF (p) ≡ λG(p) (mod ν), λF (p2; i) ≡ λG(p2; i) (mod ν) for i = 1, 2,

where ν is a prime lying above ` in Q(λF , λG). This is referred to as a congruence
of eigenvalues.

Our second notion will be the congruence of Fourier coefficients, which we
define as in [6]. Define the following field,

Q(F ) =
∏
T∈Λ2

Q(aF (T )),
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where

Q(aF (T )) := Q

aij : aF (T ) =
∑
i,j

aijx
i
1x
j
2


 .

As in Section 2, we have identified V with the homogeneous polynomials of degree
k2−k1 in C[x1, x2], where (k1, k2) is the highest weight vector of ρ. Then, Lemma 8
gives that after some normalization, we may assume that Q(F ) is a finite extension.
We make the same assumption for the field Q(G).

Define the `-adic valuation of F as

ord`(F ) = inf
T∈Λ2

{ordν(aF (T ))} ,

where

ordν(aF (T )) = min
i,j

ordν(aij) : aF (T ) =
∑
i,j

aijx
i
1x
j
2

 ,

and ν is a prime lying above ` in Q(F ). Using this, we say that F and G have
congruent Fourier coefficients, denoted F ≡fc G (mod `r), if ord`(F −G) > r.

For the genus 1 case, it is clear that these two notions of congruence are equiv-
alent, as the Fourier coefficients of a normalized elliptic eigenform are precisely the
eigenvalues. This equivalence is not necessarily true for any higher genus. How-
ever, we do have the following lemma, which gives that a congruence of Fourier
coefficients implies a congruence of eigenvalues.

Lemma 9. Let F,G be as defined above and let Σ be the set of rational primes
dividing MN . If F ≡fc G (mod `) then F ≡Σ G (mod `).

Proof. This proof follows the same argument as in Theorem A.1 in [21], however
we include it here to emphasize that this result works for vector-valued forms of
arbitrary level, not just the classical forms of level one case as was proven in [21].

Set K to be the compositum of Q(F ) and Q(G). Also, we adjoin the values
of the characters of F and G if necessary and continue to denote this field by
K. Let c ∈ K so that at least one component of one Fourier coefficient of cF
is an `-unit, i.e., for some T ∈ Λ2 and i, j ∈ N we have that ordν(aij) = 0,
where aF (T ) =

∑
i,j aijx

i
1x
j
2 and ν is a prime lying above ` in K. Without loss of

generality, we replace F and G by cF and cG, respectively. Denote this component
by aF (T )ij . Let t ∈ HZ

N (Γ2
0(N)) with tF = λF (t)F and tG = λG(t)G. Define the

form H = F −G. Then,

λF (t)F − λG(t)G = t(F −G) = tH.

By Theorem 6, we have that Q(tH) ⊆ K. Hence,

λF (t)aF (T )ij ≡ λG(t)aG(T )ij (mod ν),

where ν is a prime lying above ` in K. Since aF (T )ij is an `-unit and aF (T )ij ≡
aG(T )ij (mod ν), we have that λF (t) ≡ λG(t) (mod ν), which completes the
proof. �
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3.3. The U(`) operator

In this section, we introduce a certain operator on the space of Siegel modular
forms which is analogous to the UN` operator in [20] and then give the relevant
properties which will be important for our purposes. Furthermore, we will provide
a correction to the proof of the main result in [14].

We define the operator U(`) by its action on Fourier expansions,

U(`) :
∑

06T∈Λ2

aF (T ) exp(Tr(TZ)) 7→
∑

06T∈Λ2

aF (`T ) exp(Tr(TZ)).

For our main result we will need the following two properties of the U(`) operator.

Lemma 10 ([5, Thm 3.1]). If `||M , the operator U(`) is an injective map from
M2
ρ (M,χ) to itself.

Proof. We give a sketch of the proof here, as the result is only shown for the
scalar weight case in [5].

Let F ∈ M2
ρ (M,χ) with `||M . Following d) in Remark 1 of [5], we consider

the operator

tF = F |
∑

M∈M2(F`)
AEFBM=TM

(
0 −I2
I2 M

)
.

Note that this is the operator denoted τ(1, n) in [5]. This operator is invertible by
Proposition 2.1 in [5].

From Equation 3.2 in [5], we can decompose t as follows

tF = F |
∑

M∈M2(F`)
AEFBM=TM

(
0 −I2
I2 M

)
= p3−kF |W`|U(`),

where

W` =

(
02 −I2
`I2 02

)
.

Note, W` is an involution. Furthermore, W` normalizes the group Γ2
0(M), which

gives that F |W` ∈ M2
ρ (M,χ). Combining this with the invertibility of t, we have

that U(`) is injective. �

Lemma 11. If `2|M and χ is defined modulo M
` , the operator U(`) mapsM2

ρ (M,χ)
to M2

ρ (M/`, χ).

Proof. Here we have adapted a proof of Andrianov from [2].
Let F ∈M2

ρ (M,χ). From [5] we have that the operator U(`) is given by,

U(`)F = `3
∑
S

F |
(

1 S
0 `

)
,
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where the summation runs over all symmetric matrices in M2(Z/`Z). We have

U(`)F = `3
∑
S

F |
(

1 S
0 `

)
= `3F |

(
1 0
0 `

)∑
S

(
1 S
0 1

)
.

Define the following subgroup of Γ2
0(M/`),

Γ(M/`, `) :=

{(
A B
C D

)
∈ Γ2

0(M/`) : B ≡ 0 (mod `)

}
.

Then, for γ ∈ Γ(M/`, `) we have

F |
(

1 0
0 `

)
|
(
aγ bγ
cγ dγ

)
= F |

(
aγ bγ
`cγ `dγ

)
= F |

(
aγ

bγ
`

`cγ dγ

)
|
(

1 0
0 `

)
= χ(γ)F |

(
1 0
0 `

)
.

Note, a complete set of right coset representatives for

Γ(M/`, `)\Γ2
0(M/`)

is given by {(
1 S
0 1

)
: TS = S, S ∈M2(Z/`Z)

}
.

Let γ ∈ Γ0(M/`), and let S ∈ M2(Z/`Z) be symmetric. Set S′ to be the unique
symmetric matrix in M2(Z/`Z) which is congruent to (aγ + Scγ)−1(bγ + Sdγ)
(mod `). Then, from Lemma 13 in [2], there exists γS ∈ Γ(M/`, `) such that(

1 S
0 1

)
γ = γS

(
1 S′

0 1

)
.

Note, such a γS also satisfies χ(γ) = χ(γS). Thus,

U(`)F |γ = `3
∑
S

F |
(

1 0
0 `

)(
1 S
0 1

)
γ

= `3
∑
S

F |
(

1 0
0 `

)
γS

(
1 S′

0 1

)
= `3χ(γS)F |

(
1 0
0 `

)∑
S′

(
1 S′

0 1

)
= χ(γ)U(`)F.

This completes the proof. �
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Corollary 12. Let F ∈ S2
ρ(N`r, χ) be an eigenform with χ defined modulo N ,

r > 1, and ` - N . Then, for some ρ′ and some χ′ defined modulo N , there is
a form G ∈ S2

ρ′(N`
r−1, χ′) satisfying

F ≡fc G (mod `).

Proof. We begin by letting σ ∈ Gal(Q(F )/Q) be a Frobenius element for ν
a prime over ` in Q(F ), i.e., σx ≡ x` (mod ν) for all x ∈ OQ(F ). By realizing
σ as an element of Aut(C), we can apply Theorem 1 in [26] to see that Fσ

−1

,
as defined in the proof of Lemma 7, is an eigenform in S2

ρ(N`r, σ−1 ◦ χ). Define
a form G = U(`)(Fσ

−1

)`. Then, we have

U(`)(Fσ
−1

)` ≡ U(`)
∑
T>0
T∈Λ2

σ−1(aF (T ))` exp(`Tr(TZ)) (mod ν)

=
∑
T>0
T∈Λ2

σ−1(aF (T ))` exp(Tr(TZ))

≡
∑
T>0
T∈Λ2

aF (T ) exp(Tr(TZ)) (mod ν).

Thus, G is congruent in Fourier coefficients to F . Moreover, by Lemma 11, G ∈
S2
ρ′(N`

r−1, χ′) for some ρ′ and χ′. �

We remark here on a mistake in the proof of Theorem 8 in [14]. In this proof,
the author makes use of of the property given in Lemma 11. However, it was
brought to the attention of the author by R. Schmidt, that it is possible that
upon applying the U(`) operator, the resulting form may be identically zero. The
previous corollary allows the author to avoid this error.

3.4. Main result

In this section, we will prove the following theorem. Note, the corresponding result
for scalar valued forms can be found in [14].

Theorem 13. Let F ∈ S2
ρ(`rN,χ) be an eigenform with the highest weight vector

of ρ satisfying k2 > 3 and χ defined modulo `N with ` - N . Let Σ be the set
of rational primes which divide `N . Then, for some χ′ and ρ′, there exists an
eigenform G ∈ S2

ρ′(N,χ
′) such that F ≡Σ G (mod `).

Proof. Throughout we are working with genus 2 Siegel modular forms, so we will
drop the superscript. Furthermore, throughout the proof we will not be explicit
about the weights of the intermediate forms, but we will make a note about the
final weight ρ′ at the end. Finally, we will tacitly take finite extensions of Q as
needed.



Level stripping for vector-valued Siegel modular forms of genus 2 265

As χ is a character modulo `N we obtain a factorization χ = ωiκ, where ω is
the unique character of conductor ` and order `−1, i.e., the Teichmüller character,
and κ is a character modulo N .

Let E ∈ Mk(`, ω−i) be a form from the sequence in Theorem 1.2 in [17] such
that E ≡fc 1 (mod `). Consider the product of Siegel modular forms FE.

We first want to show that this product transforms correctly under the action
of Γ0(`r) ∩ Γ1(N). Let γ ∈ Γ0(`r) ∩ Γ1(N). Then,

(F (Z)E(Z))|γ = κωi(γ)ω−i(γ) det(cZ + d)−kρ(cZ + d)−1F (γZ)E(γZ)

= F (Z)E(Z).

Thus, the product is a form of the desired level and of character κ. We will denote
the weight of this form by ρ′. Furthermore, as E ≡fc 1 (mod `) we have that

FE ≡fc F (mod `).

Thus, FE is an eigenform when reduced modulo ν for a prime ν lying above ` in
Q(F ), and Lemma 9 gives us

FE ≡Σ F (mod `).

Let Oν be an extension of Z` which has ν as its maximal ideal. As Sρ′(N`r, κ) is a
finite, free Oν module, we can apply the Deligne-Serre lifting lemma (Lemme 6.11,
[8]) to obtain an eigenform F1 ∈ Sρ′(N`r, κ) such that

F1 ≡Σ F (mod `).

We can now apply Corollary 12 repeatedly to F1 in order to obtain a form
F2 ∈ Sρ′(N`, χ

′) for some ρ′ and χ′, which is congruent in Fourier coefficients
modulo ` to F . By the same argument used above we can find an eigenform in
Sρ′(N`, χ

′) satisfying this same congruence.
Before proceeding, we state the following lemma whose proof is precisely the

same as the proof of Proposition 3.1 in [6].

Lemma 14. Let F ∈ S2
ρ(N`, χ) be an eigenform with associated character χ

defined modulo N . Then, for some ρ′ there exists G ∈ S2
ρ′(N,χ) such that F ≡fc G

(mod `).

Applying this lemma to F2 to obtain a form F3 ∈ Sρ′(N,χ′) which is congruent
in Fourier coefficients to F modulo ν. Just as before, this yields the desired
eigenform G.

Finally, with regards to the weight ρ′ of G, if we let the highest weight vector
of ρ be (k1, k2), then the highest weight vector of ρ′ is

(`(k1 + i`m1 + `m2−1(`− 1)), `(k2 + i`m1 + `m2−1(`− 1)),

where m1 and m2 are both sufficiently large integers. In particular, we have that

(k′1, k
′
2) ≡ (k1 + i, k2 + i) (mod `− 1),

where (k′1, k
′
2) is the highest weight vector of ρ′. �
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4. Application to Galois representations

In this section, we present an application of Theorem 13 which provides evidence
for a conjecture of Herzig and Tilouine.

We begin with the following result which gives the existence of a Galois repre-
sentation attached to a cuspidal Siegel eigenform of genus 2 as well as the char-
acteristic polynomial of the images of the Frobenius elements with respect to this
representation. Note that this result is stated in [24], however the proof is es-
sentially due to Laumon in [19] and Weissauer in [31],[32]. The last reference is
necessary to conclude that the associated Galois representation is symplectic in
the case that the Siegel eigenform does not arise as a Saito-Kurokawa lift.

Theorem 15. Let F ∈ S2
ρ(M,χ) be an eigenform with ρ having highest weight

vector (k1, k2) which satisfies k2 > 3. Let K = Q(λF ) and let ν be a prime lying
above ` in K. Then, there exists a continuous, semi-simple Galois representation

ρF,ν : GQ → GL4(OKν )

such that for all primes p - `M we have

det(X · 14 − ρF,ν(Frobp)) = Lp(X,F ).

and ρF,ν is unramified at p, and we remind the reader that Lp(X,F ) is the local
factor at p of the spinor L-function as defined in Section 2.

Throughout the remainder of the section, we will suppose that F is not a Saito-
Kurokawa lift, so that we may assume the image of ρF,ν is contained in GSp4(OKν ).
Furthermore, we will denote the weight ρ by its highest weight vector (k1, k2) in
order to avoid confusion.

As we our representation takes values in GSp4(OKν ), we may form the residual
representation of ρF,ν at `, i.e., the representation

ρF,ν : GQ → GSp4 (OKν/νOKν ) ↪→ GSp4(F`),

by reducing the image of ρF,ν modulo ν. We will take the semisimplification of
the residual representation and continue to denote it as ρF,ν . We say that any
representation arising in this way is modular.

With this in mind, we can ask when is a representation ρ : GQ → GSp4(F`)
modular?

In a partial answer to this question, Herzig and Tilouine have given conditions
under which ρ is conjectured to be modular. The reason this is a partial answer
is that Herzig and Tilouine restrict to the ordinary setting. In order to state
precisely the conjecture of Herzig and Tilouine we need a bit of background. For
more details the reader is referred to [12].

First, we say that ρ is odd if µ◦ρ(c) = −1, where c ∈ GQ is complex conjugation
and µ is the similitude factor. Note, to see that this is necessary for a representation
to be modular, the reader is referred to Section 9 of [28].
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Second, we need the following definition.

Definition 16. Let F ∈ S2
(k1,k2)(M,χ) be an eigenform. We say that F is ordinary

at ` if it satisfies one of the following two equivalent conditions
1. ord`(λF (`)) = 0 and ord`(λF (`2; 1)) = k2 − 3.
2. The roots of the characteristic polynomial of ρF,ν(Frob`), which we denote

by r1, r2, r3, r4, satisfy

ord`(r1) = 0, ord`(r2) = k2−2, ord`(r3) = k1−1, ord`(r4) = k1+k2−3.

Note that the equivalence in the above definition comes directly from the char-
acteristic polynomial in Theorem 15.

Let Dν be the decomposition group of ` in GQ, where ν is any prime lying
above ` in Z. Let χ` denote the `-adic cyclotomic character and for an `-adic
number u, we set ε(u) to be the unramified character of Dν which sends Frob`
to u. Then, for F ordinary at `, we have from [29] that

ρF,ν |Dν ∼


χk1+k2−3
` ε

(
r4

`k1+k2−3

)
∗ ∗ ∗

0 χk1−1
` ε

(
r3

`k1−1

)
∗ ∗

0 0 χk2−2
` ε

(
r2

`k2−2

)
∗

0 0 0 ε(r1)

 ,

where ∼ denotes that the representations are isomorphic.
With this in mind, for a representation

ρ : GQ → GSp4(F`),

we will say ρ is ordinary at ` if up to conjugation we have

ρ|Dν ∼


χe3` ε(u3) ∗ ∗ ∗

0 χe2` ε(u2) ∗ ∗
0 0 χe1` ε(u1) ∗
0 0 0 χe0` ε(u0)

 ,

where χ` is the reduction of χ` modulo `, the exponents satisfy e3 > e2 > e1 > e0, ε
is as above, and u3, u2, u1, u0 ∈ Fx

`. We denote such a representation by (ρ, {ej}).
After twisting by an appropriate power of χ` we may assume e0 = 0 and that
ej 6 j(`− 2) for j = 1, 2, 3. This brings us to the next definition.

Definition 17. For a representation (ρ, {ej}), we say that the exponents {ej} are
`-small if we can twist ρ by a power of χ` so that 0 = e0 6 e1 6 e2 6 e3 < `− 1.

Furthermore, if we can write e1 = k2 − 2 and e2 = k1 − 1 for some integers
k1 > k2 > 3 then we call (k1, k2) the modular weight of (ρ, {ej}) .

We are now prepared to state the following conjecture.

Conjecture 18 ([12, Conj. 0]). Let (ρ, {ej}) be an irreducible, odd Galois repre-
sentation which is ordinary at ` and has modular weight (k1, k2). Suppose further
that the exponents {ej} are `-small. Then, ρ is modular of level N with ` - N .
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As evidence for this conjecture, we can state the following corollary which
follows from Theorem 13.

Corollary 19. Suppose that ρ is modular of level `rN and character χ of conduc-
tor `N with ` - N . Then, ρ is modular of level N .

Proof. Suppose that ρ arises from F ∈ S2
(k1,k2)(`

rN,χ). Then, we can apply
Theorem 13 to obtain a representation ρ′ of level N such that the characteristic
polynomials of ρ(Frobp) and ρ′(Frobp) are equal for all p - `N . Thus, the charac-
teristic polynomials of ρ and ρ′ are equal everywhere by the Chebotarev Density
Theorem. The Brauer-Nesbitt Theorem gives that ρ is isomorphic to ρ′. �

Note, this result allows one to remove the ` - N condition from Conjecture 18
after placing the necessary restriction on the corresponding character.

To conclude the section, we make a brief comment concerning the `-small
condition on the exponents. In a recent paper, Yamauchi presents the following
theorem.

Theorem 20 ([33, Thm. 1.1]). Let ρ be an irreducible, odd Galois representa-
tion. Assume that ρ is modular. Then, there is some integer 0 6 α 6 ` − 2 and
a (mod `) eigenform F of weight (k, k) or (k+ 1, k), for k > 1, such that F is not
identically zero and ρ ∼= χα` ⊗ ρF .

We should stress that that the eigenform F in the theorem is only defined
modulo `. Hence, it may not be realizable as a genuine eigenform. However, in the
discussion following this theorem in [33], Yamauchi mentions that a forthcoming
result of Boxer may allow one to show that k 6 ` + 1, and then he provides an
argument which would allow one to lift the form F to characteristic zero, i.e., to
realize F as a genuine eigenform. If one had such a result, then the condition on
the exponents being `-small in Conjecture 18 could be removed.

5. Action of Hecke operators on Fourier coefficients

In this section, we provide explicit formulas for the action of Hecke operators on
genus 2 Siegel modular forms. In particular, we provide a proof of Theorem 5. We
will adapt techniques used by Andrianov in [3] for scalar weight modular forms to
the vector valued setting.

First, we derive a basic property of Fourier coefficients, which will help motivate
our technique. Let F ∈ M2

ρ (N,χ). As we have seen, the Fourier expansion of F
of the form

F (Z) =
∑
T∈Λ2

aF (T ) exp(Tr(TZ)) with aF (T ) ∈ V,

where ρ : GL2(C)→ GL(V ). Furthermore, each Fourier coefficient is given by the
integral ∫

X (mod 1)

F (Z) exp(−Tr(TZ))dX,
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where we write Z = X + iY , dX is the Euclidean volume of the space of X
coordinates, and the integral runs over −1/2 6 Xij 6 1/2 for all i, j. This
integral formula allows us to derive the following relationship between the Fourier
coefficients of F ,

aF (MT TM) =

∫
X (mod 1)

F (Z) exp(−Tr(MT TMZ))dX

=

∫
X (mod 1)

F (Z) exp(−Tr(T TMZM))dX

= χ(det(M))ρ(M)

∫
X (mod 1)

F (TMZM) exp(−Tr(T TMZM))dX

= χ(det(M))ρ(M)aF (T ),

where M ∈ GL2(Z). Note, to move from the second line to the third line we use
that

F (Z) = χ(det(M))ρ(M)F (TMZM),

which follows from the transformation property of F and noticing that(
TM 0

0 M−1

)
∈ Γ2

0(N).

In summary, the desired property of the Fourier coefficients of F is

aF (MT TM) = χ(det(M))ρ(M)aF (T ), for all M ∈ GL2(Z). (5.1)

With this property in mind, we define a more general space of functions. Let
F(V ) denote the space of holomorphic functions F : h2 → V which have a Fourier
expansion of the form

F (Z) =
∑
T∈Λ2

aF (T ) exp(Tr(TZ)) with aF (T ) ∈ V.

Let ε be a character of the group GL2(Z). Define a subspace Fε(V ) ⊂ F(V ) by
considering only functions F ∈ F(V ) which satisfy

ε(M)F ((TMZ +M ′)M) = F (Z), for all
(
TM M ′

0 M−1

)
∈ P4,

where P4 is the Siegel parabolic subgroup. To summarize, we have defined the
space Fε(V ) to behave like modular forms with respect to the Siegel parabolic
subgroup, rather than congruence subgroups. Using an argument as in the pre-
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ceding paragraph we have that for F ∈ Fε(V ), the Fourier coefficients satisfy

aF (MT TM) = ε(M)aF (T ),

where M ∈ GL2(Z). Note, by Equation 5.1, we have that M2
ρ (N,χ) ⊆ Fε(V ) if

ε(M) = χ(det(M))ρ(M). Throughout, we will fix a ρ, χ and set ε = χρ.
As our functions in Fε(V ) behave like modular forms with respect to the Siegel

parabolic subgroup, it makes sense to define the double coset operator in this
setting

P4αP4 : Fε(V )→ Fε(V ),

given by
F [P4αP4]ε =

∑
i

χ(αi)F |εαi,

where we are summing over a complete set of coset representatives for P4\P4αP4,
α ∈ GSp+

4 (Q) satisfies cα = 0, and the slash operator is defined to be

(F |εγ)(Z) = ρ(dγ)−1F (γZ).

In [3], Andrianov defines a map, ι, from HZ(Γ2
0(N)) to the double coset oper-

ators of the type listed above. This map is defined by

ι :
∑
i

Γ2
0(N)αi 7→

∑
i

P4αi.

The benefit of this map lies in the following lemma, which provides us with a com-
patibility between the Hecke operators onM2

ρ (N,χ) and the double coset operators
on Fε(V ).

Lemma 21. Let F ∈M2
ρ (N,χ). Then,

TF = ι(T )F, for every T ∈ HZ(Γ2
0(N)).

Proof. Note, this is stated as part of Lemma 4.12 from [3], we simply restate it
here to emphasize that we are interested in vector valued modular forms, not just
the scalar valued case.

The lemma follows from the fact that we can find coset representatives, {αi}
for T which have cαi = 0 for all i. �

With this lemma in mind, we use explicit coset representatives computed for
double cosets of the form P4\P4αP4 to compute formulas for the action of elements
of HZ(Γ2

0(N)). In fact, it is enough for our purposes to give coset representatives
for ι applied to the generators of HZ

p (Γ2
0(N)) taken from Theorem 4 for each p - N .

First, we give the image of these generators as double cosets, then we will give
their explicit decompositions.
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Lemma 22 ([3, Lemma 3.64]).

ι(T (p)) = [P4 diag(p, p, 1, 1)P4] + [P4 diag(p, 1, 1, p)P4] + [P4 diag(1, 1, p, p)P4],

ι(T1(p2)) =
1

p
[P4 diag(p, p, 1, 1)P4][P4 diag(p, 1, 1, p)P4]

+
1

p
[P4 diag(p, 1, 1, p)P4][P4 diag(1, 1, p, p)P4]

+
1

p
[P4 diag(p, 1, 1, p)P4]2 − [P4 diag(p2, 1, 1, p2)P4]

− p+ 1

p3
[P4 diag(p, p, 1, 1)P4][P4 diag(1, 1, p, p)P4],

ι(T2(p2)) =
1

p3
[P4 diag(p, p, 1, 1)P4][P4 diag(1, 1, p, p)P4].

Combining Lemma 3.60 and Proposition 3.61 from [3], we obtain the following
left coset decompositions for the double coset operators in the previous lemma,

P4\P4 diag(p, p, 1, 1)P4 = P4

(
pI2 02

02 I2

)
,

P4\P4 diag(1, 1, p, p)P4 =
⋃

B=TB∈M2(Z)/pZ)

P4

(
I2 B
02 pI2

)
,

P4\P4 diag(p, 1, 1, p)P4 =
⋃

D∈S(p)
B(D) (mod D)

P4

(
p TD−1 B

02 D

)
,

P4\P4 diag(p2, 1, 1, p2)P4 =
⋃

D∈S(p2)
B(D) (mod D)

P4

(
p2 TD−1 B

02 D

)
,

where S(d) = SL2(Z)\ SL2(Z) diag(1, d) SL2(Z), B(D) =
{
B : TBD = TDB

}
, and

B ≡ B′ (mod D) if (B −B′)D−1 ∈M2(Z).
With these left cosets, we are able to compute the action of each of these double

cosets on the Fourier coefficients of elements of M2
ρ (N,χ). We will only require

the action for primes not dividing N .

Lemma 23. Let F ∈M2
ρ (N,χ) and let p - N be a prime. Then,

1. aF [P4 diag(p,p,1,1)P4]ε(T ) = χ(p2)aF

(
T
p

)
.

2. aF [P4\P4 diag(1,1,p,p)P4]ε(T ) = p3ρ(diag(p, p))−1aF (pT ).

3. aF [P4\P4 diag(p,1,1,p)P4]ε(T ) = pχ(p)
∑

D∈S(p)

ρ(D)−1aF

(
DT TD

p

)
4. aF [P4\P4 diag(p,1,1,p)P4]ε(T ) = p2χ(p2)

∑
D∈S(p2)

ρ(D)−1aF

(
DT TD

p2

)
.

We set aF (T ) = 0 if T 6∈ Λ2.
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Proof. This is essentially the proof of Lemma 4.14 in [3].
Number 1 follows immediately. Number 2 follows by decomposing(

I2 B
02 pI2

)
=

(
I2 02

02 pI2

)(
I2 B
02 I2

)
,

applying the definition of the slash operator, and noticing that there are p3 ele-
ments of M2(Z/pZ) which are symmetric.

To show the formula in Number 3, we begin by applying the appropriate left
coset representatives to the Fourier expansion to obtain that

χ(p)
∑

D∈S(p)
B(D) (mod D)

ρ(D)−1
∑
T∈Λ2

aF (T ) exp(Tr(T (p (TD−1Z +B)D−1))

is equal to

χ(p)
∑

D∈S(p)
B(D) (mod D)

ρ(D)−1
∑
T∈Λ2

aF

(
DT TD

p

)
exp(Tr(TZ)) exp

(
Tr

(
DT TDBD−1

p

))
.

Thus, by fixing T , we have that aF [P4\P4 diag(1,1,p,p)P4]ε(T ) is equal to

χ(p)
∑

D∈S(p)
B(D) (mod D)

ρ(D)−1aF

(
DT TD

p

)
exp

(
Tr

(
DT TDBD−1

p

))
.

Furthermore, in the proof of Lemma 4.14 in [3], it is shown that for any D ∈ S(p)
we have ∑

B(D) (mod D)

exp

(
Tr

(
DT TDBD−1

p

))
= p.

Thus, our expression becomes

aF [P4\P4 diag(1,1,p,p)P4]ε(T ) = pχ(p)
∑

D∈S(p)

ρ(D)−1aF

(
DT TD

p

)
,

as desired. Note, the proof of Number 4 follows precisely the same argument as
the proof of Number 3. �

We can combine Lemma 21, Lemma 22, and Lemma 23 to give formulas for the
action of the Hecke operators in HZ

p (Γ2
0(N)) on the Fourier coefficients of elements

in M2
ρ (N,χ) for all p - N . Note, we will only be concerned with the action of T (p)

and T1(p2), as we have already restricted to the eigenspace of T2(p2). The explicit
action of these operators on Fourier coefficients is given in Theorem 5.
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