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MEAN SQUARE OF THE ERROR TERM IN THE ASYMMETRIC
MULTIDIMENSIONAL DIVISOR PROBLEM

XI1AODONG CAO, YOSHIO TANIGAWA, WENGUANG ZHAI

Abstract: Let a = (a1, -+ ,a) denote a k-tuple of positive integers such that a1 < az <
~-<ag. Weputd(a;n) =3 ar  ap_ 1andlet A(a;z) be the error term of the corresponding
1 k=

asymptotic formula for the summatory function of d(a;n). In this paper we show an asymptotic
formula of the mean square of A(a;z) under a certain condition. Moreover, when k equals 2 or
3, we give unconditional asymptotic formulas for these mean squares.

n

Keywords: asymmetric multidimensional divisor problem, mean square of the error term,
Dirichlet series, functional equation, the Tong-type representation.

1. Introduction and the statement of results

Let k be a fixed positive integer and « > 1. We put a := (ay,...,ax), where
a; (7 = 1,...,k) are positive integers such that a1 < --- < ag. By d(a;n) we
denote the number of representations of an integer n in the form n = n{* ---ng*,
namely,

dlasn)= Y L (1.1)

ay Ok _
nyen t=n

We define
A(a;z) = Z d(a;n) — H(a;x),

where H (a;x) is the main term of the summatory function of d(a;n) given by the
sum of residues of Hle C(a; s)%, and ’ in the summation symbol means that the
last term d(a;x) should be counted with weight 1/2 when z is an integer. The
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asymmetric multidimensional divisor problem (or the general divisor problem) is
to study the behaviour of A(a;x). See also Ivié [7] and Krétzel [10], or the survey

paper [9].

When ay = az = 1, d(1,1;n) = >y, 1, Al Liz) = >, ., d(1,1,;n) —
z(logx + 2y — 1), (v is the Euler constant), the above problem is the classical
Dirichlet divisor problem. Dirichlet proved A(1,1;x) = O(z'/?) by his famous
hyperbola method. The exponent 1/2 was later improved by many researchers.
The latest result is

A($) — O(x131/416(log .’E)26947/8320)

due to Huxley [6]. For the lower bounds, it is known that
Al Lz) =Q4 (m%(log x)%(log log x) S exp(—cy/loglog logx)) (¢>0)
and

A(l,1;2) =Q_ (x% exp(c (log log z) 7 (log log log x)_%)> (c >0),

which are due to Hafner [5] and Corradi and Katai [3], respectively. Many corre-
sponding upper bounds and 2-results for the asymmetric multidimensional divisor
problem can be found in [7] and [10].

The mean square estimate is one of the main topics in the theory of divisor
problem. Let R(T) be the error term defined by the following formula

T
R(T):/1 A%(1,1;2)dx — ¢T3/?,

. 2
where ¢ = g5 Y07, d(il%/;l) is a positive constant. Cramér [4] first proved that

R(T) = O(T%/4+e).
Cramér’s estimate of R(T') was improved to
R(T) = O(Tlog” T) (1.2)

by Tong [12] and recently to R(T) = O(T'log® T'loglog T') by Lau and Tsang [11].
Tong’s method of proving (1.2) is the initial motivation of our previous paper [2].

Ivié [8] studied the upper bound and Q-result of the mean square of A(a;x)
for general k. As for the upper bound, he proved that if

T
/ A2(a;z)de < T2 (B > 0)
1

then Bx > gx, where
r—1

gk:2(a1—|—--~—|—ar)
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and r is the largest integer such that
(r—2)a, <ap+--+a1 (2<r<k)
[8, (1.5)]. Moreover, he showed that if the estimate

T
/ 1C(1/2 +it)|*~2dt < T e
1

holds, then B = gi. In particular, 8; = g holds for k = 2 and 3. For the lower
bound, he showed that

T
/ A%(a; z)de = Q(TH29% log” T)
1

with some constant A > 0. Inspired by these facts, Ivi¢ conjectured that the
asymptotic formula

T
/ A%(a; z)dx = (Ey + o(1))T'H29% log* T (1.3)
1

holds for general k > 2 with some constants Ey > 0 and Ay, > 0 [8, (5.7)].
When k = 2, Ivié’s conjecture (1.3) was confirmed by Cao and Zhai [13]. More
precisely they proved that

1+ajtag ( 14ajtag

T a
/ A?(a;z)dr = c(@)T itz + O (T a1+ EICENICETED log% T) , (1.4)
1

where a1 and ay are integers such that 1 < a1 < ag, @ = (a1, a2) and ¢(a) is some
constant. Their method is based on the transformation formula of the exponential
sum and the Chowla and Walum type representation of A(a;z) (see also [1]).
When a; = ap = 1, the error term in (1.4) becomes O(T'% log% T). Hence (1.4) is
an analogue of Cramér’s result for A(1, 1;x).

In this paper we shall study the mean square estimate of the error term A(a; z)
more closely by means of the Tong method [2, 12]. For this purpose, we need an
auxiliary divisor function defined by

d(a;n) = Z gtk (1.5)

ay Ak _
nyen t=n

which is a dual function of d(a;n). For convenience, we write
b(n) = 72 */2d(a;n) and pin = TN,

where
a:= (a1 + - +ag)/2.
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From (1.1) and (1.5), we have

00 k
:Zdan :HC(%‘S) (Res > 1/aq)

n=1 j=1

and

_ Z b(zl) _ ,n_2a7k/272as Z d(a;n)
n=1 H n
k
= p2a—k/2-2as H C(ajs—aj+1) (Res > 1). (1.6)
j=1

n=1

Let 1/2 < 0* < 1 be a real number defined by

o* 1nf{ ‘ / (o +it)|?dt < TH'E} . (1.7)

From (1.6) it is easy to check that

1
N 1.
7 Zak ( 8)

In this paper we assume that o* satisfies the condition

k-1

<l - )
7 4o

(1.9)

This condition plays an important role in Tong’s method. From (1.8), we note
that (1.9) implies, as a necessary condition, that

(k—2)ar < a1+ -+ ap_1. (1.10)
We first prove a conditional asymptotic formula of the mean square of A(a, x).

Theorem 1. Suppose that (1.9) and (1.10) hold. Then we have
T k—1 k—1
/ A*(a;z)dr = c(a)T T2 + 0 (THW*"(“)*E) , (1.11)
1

where c¢(a) is a certain positive constant and

21 — o* k—1
U= % (1.12)
20(3—20"— 1)~ 1

n(a) :==

It is an important problem to determine the exact value of o*. Generally it is
a very difficult problem, but it is easy to see that if the Lindel6f hypothesis for
¢(s) is true, then o* =1 — 1/2a;. Hence from Theorem 1 we have
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Corollary 1. Suppose that (1.10) holds. If the Lindelsf hypothesis is true, then
we have
2a—(k=1)ay

T —1
/ A2(a;z)de = e(@)TH 5 +0 (T“kzw‘wanak*e) :
1

where c¢(a) is a certain positive constant.

When k£ = 2, we find that 0* = 1 — 1/2as holds unconditionally, which is
a consequence of the fourth power moment of ((s) on the critical line. Hence
(1.11) gives

Theorem 2. Suppose a1 < az. Then we have

a

T
1 1
/ Az(ah as; x)d;p = 02T1+a1+a2 +0 <T1+“1+“2 a2(a1+a2)(a1+a2—1)+6> , (]_]_3)
1

where co is a certain positive constant.

Theorem 2 improves the error term of (1.4). We note that if we take a; =
az = 1, the error term in (1.13) is O(T**¢). So (1.13) is an analogue of (1.2)
modulo term T¢.

Another interesting case is k = 3. In this case we can prove the following
Theorem 3.

Theorem 3. Let k =3. If a1 < as < asz and ag < ay + ag, then we have

T
14+—2 14—2 4
/ A%(a1,ag,a3; x)dx = c3T T ortostas 4 O(T Farrastes ~BTE),
1

where
1 .
(a1taztas)(3+2(as taztas)(1—1/as)) if 3(az +az) < Tay,
4a1a3
N3 = (a1+a2+a3)((al+a2+a3)(a1+3a2+3a3)(a3—1)+as(5a1+3az+3a3))

if 3(@2 + ag) > Tay,3a3 + a1 < Bas and 3as < a; + 3as,

aitaz—as ;
asz(ai+as+asz)(ai+aztaz—1) Otherwzse,

and c3 1s a certain positive constant.

We shall prove Theorem 3 in Section 4.

2. The truncated Tong-type formula of A(a;x)

In [12], Tong studied the mean square of A(1,...,1;z). By using the functional

k

equation of (¥(s) he derived a very useful formula of A(1,...,1;z), which we call
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the truncated Tong-type formula, where the first finite sum is the same as that of
the truncated Voronoi formula, while its error term is represented by the integrals
like (2.6) below.

In our case, using the functional equation of the Riemann zeta function

wlr (3) ots) = a0r (A3 ) - o),

we find easily that the functional equation of ¢(s) and 9 (s) has a form

Ar(s)p(s) = Aa(1 = s)(l —s), (2.1)
where .
Ai(s) =] T (%) (2.2)
j=1
and

Ao(s) = f[lr (“J“f“) . (2.3)

Note that cZ(a; n) does not satisfy the Ramanujan conjecture and also the gamma
factors on the left and right hand side of (2.1) are not the same for general a, so
the pair of Dirichlet series ¢(s) and 9(s) is not contained in the so-called Selberg
class. In our previous paper [2], we developed the theory of the truncated Tong-
type formula of the error term for such a pair of Dirichlet series. Obviously ¢(s)
and ©(s) satisfy the conditions therein.

In order to write the truncated Tong-type formula for A(a;x) in the present
case, we use the same notations as in [2]. From (2.2) and (2.3), we have (we repeat
the definion of « for its importance)

a1+...+ak

= - =1
a 2 b) r )
1—-k a; 1 1
e V=3 (-3)+z-erp
J
1 ;1
V= —§ZIOgaj, V= —§Zaj loga;,
J j
A4/ k
)\:Zajlogaj:)\’, h:2a6_722aHa;aj/a
J j=1

and

ro1 1 wo—
0, =~ — — 1- — .
¢~ 3 4a+9( 2a)+ 2

In this paper we only consider the case ¢ = 0, hence

1 1 wW—-—p k-1
0= -~ — — - . 2.4
0= T T . 4o (2:4)
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We also put

1 k+1
= — 1= .
Ao =0+ 57 o 2 (2.5)

In Tong’s theory, it is important to approximate A(a;x) by the K-th averaging
integral
Aa; 9)dY i,
Ex
where we use the notation

/EKg@)dYK=A1---/Olg(@>dy1~--dyk,

i 1
g=y+ (it +yx)

with

for an integrable function g(y). Let A(a;x) be the error term of the asymptotic
formula of summatory function of d(a;n), which is defined mutatis mutandis as

for A(a;x). Then the averaging integral can be expressed by the function defined

by
N

I(\, M,N,y) = 2m'/ u*A(a;u) exp (—zh(uy)i) du. (2.6)
M
The next lemma gives the truncated Tong-type formula of A(a;y). Applying

Theorem 5 of [2] directly we get

Lemma 1. Let 1 <2 <y < (1+68)z, N = [z 17¢] and J = [(4a®r + 4a)e 1],
where 0 is a small positive constant. In every subinterval [t,t + Btl_l/m] C
[1,V/'N], there exists M # p, such that the following Tong-type formula holds:

Aa;y) =Y Rj(y),

j=1
where
b(n
RBa(y) = roy™ 3 %9)0 cos(h(ypn)'/** + com)
M <M Hn
b(n
_ Koﬂ2a(0071)y«90 Z nl(_a)o COS(h’]T(yTL)l/za + com)
n<M’
_ 2a60—k/2, 00 d(a;n) 1/2c
= KoT y Z T cos(hm(yn) + com),
nad’
Ra(y) =y 2% Re{conl (Ao, M, N, y)},
J o J
l— —m
Ry(y) = > Re {clmI <>\0 + 5o MoN, y> } gy~ oot Ak
=0 m=0

I+m>0
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S5 S pe et (po- My !
R4(y)_ZZRe Cim 0 20 700,y+;

=0 m=0

: >K+00+21a_ Kztxm

x 2 (y + 2
T
- . x . _ _
Rs(y) = 2’1 M™xCG04e | pdass N5+ 4 gl —2 =3+
+ x(4a71)(1+w1)72K+%+%76a’

Rg(y) =0,

R(y) = Ala;y) - : Ala; g)dYk,

)

where M' = M /7** and ko # 0, oo Cim, c;m are certain constants, K is a suitably
large integer and wy < 1 is a certain constant.

We need one remark on Rg(y). In fact in [2] Rg(y) is given by

R < —1
6(y) {m(;OMwo—l-S-’Zo’ if b(n) < n*o.

In our case we can take Rg(y) = 0 since b(n) = 72*~*/2d(a,n) is always non-
negative.

We recall important estimates of the integral of I(A, M, N,y) which we will
need in the next section.

Lemma 2. Let M < N < z?, where A is a fived positive number, w be a real
number and 0 < p < % Then we have

(14+6)x
/ I(\ M, N,y)y" cos(h(uy)*/** + com)dy

< Iw+173/4a+5 P)\+a*+173/4a

max
M<PLEN

Lemma 3. Let 2(A\+0*) # —1, M < N < 24, where A is a fized positive number,
and 6 > 0 with (14 6)/* —1 < 1/4. Then we have

(146)z .
/ |I(A\, M, N,y)|?dy < z'~V/ore max p2Ator+h)—1/a
z M<LPLEN

Lemma 4. Let 2(A + 0*) # —1,2(A+0* +1) < 1/a,M > 1 and § > 0 with
(1+06)* -1 < 1/4. Then we have

(14+8)x *
/ [T(\, M, 00,y)|?dy < ot~ /ate pp20Fo +1)—1/a

These lemmas are Lemmas 8, 9 and 10 of [2], respectively. See [2] for details.



Mean square of the error term in the asymmetric multidimensional divisor problem 181

3. Mean square of A(a,x)

In the asymmetric multidimensional divisor problem, the number (u' — p)/2 =

—a + k/2 plays an important role. Although the proof of Theorem 1 is similar to

that of Theorem 1 in [2], we shall give all details for the sake of completeness.
Let

Ki(y) = Ri(y) + R2(y)
and
7
Ksy(y) = > Ri(y).

=3

It is sufficient to evaluate the integral fI(Hé)m(Kl(y) + Ka(y))?dy for 1 < x < T,
where § is some fixed small positive number.

We need the upper bound of the summatory function of ciQ(a, n). Moreover,
we have

Lemma 5. Let x > 1. Then we have

g2V « Z d?(a;n) < x¥~Yarte, (3.1)

n<x

Proof. By Cauchy’s inequality we get

2([1171) 2((11671)
< g 1x E ny Ceemy
n‘fl-un:k:n n';lmnzk:n
< nfc(a;n),

where c(a;n) = 32 a1 ek nf(al_l) . -ni(ak_l). We also note that d2(a;n) >

"I’Lk =N

c(a;n). Tt is easy to see that the generating Dirichlet series of c(a;n) has the form

© ) E
> C((:;s - H ((ajs —2(a; — 1)),  Re(s) >2—1/ax.

Jj=1

This Dirichlet series has poles at points 2 —1/a; (j =1,...,k), hence

Z cla;n) = ca® V% logh 1 . (1 + 0(1))

n<x

where ¢ is some constant and A is the number of j such that a; = a;. Therefore
Lemma 5 follows. |
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Let o* be the number defined by (1.7) which satisfies (1.9). The inequality
(1.9) is equivalent to

1
2N+ 0 +1) < o (3.2)

where Ao was defined by (2.5).

3.1. Evaluation of ff—i_a)m K2 (y)dy

Let k(= kom2@(@—1) for simplicity. By using the identity

cos(x) cos(y) = %(cos(m —y) + cos(z +y))

we get
i (y) Z Z 1_ (COS(h,’/Tyl/za (n1/20‘ _ m1/2a))
n<M’ m<M/ o~
+cos(hmy'/?* (/2 + ml/ga) + 2co7r))
Kj?
=~ (Wily) + Wa(y) + Wa(y)) ,
where
ko1 b(n)?
Wiy) =y'= 3 2{@
n<M’ n 2a
—y ZZ 77 cos(hmy' /2 (n/2 — /22y,
n, m<M'
n;ém
=y ZZ ﬁ cos(hmy/2*(n'/2* + m'/2*) 4 2¢o7r).
n, m<1\/I’

For the integral of Wi (y), we have

(14+6)x b(n)2 (146)x o1
/ Wily)dy = ) 2( 2,1/ y == dy.

2
Since (1.10) is equivalent to % < i, we find that the series EZO n:%)f1 is

convergent. So from (3.1), we have
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Hence

(146)x o0 b 2 (1+9)x - o —1
/ Wl(y)dyzz 2(7712,1/ y%dy+0(x1+%M%—%k+s). (3.3)

n=1"1

By the first derivative test, we have

1

(146)x .
/z Wa(y)dy < x = Z Z 1,W [nl/20 — mi/2a]

m, n<M'
m;ﬁn

=gt {31 + 2o},

where the summation conditions of ¥; and Y5 are given by
1
SC(%y): |n1/2a - m1/2a| > E(nm)l/m

and

50(22) |n1/2a _m1/2a| < 1 (nm)1/4a’

10
respectively. It is not hard to see that
b(n)b(m) 1
YK -
1 ZZ (nm)l_% (nm)%

n,m<M’
Inl/2&_m1/20‘>%(nm)l/4a

2

b
<> 1(71),2 < M's=te,

n<M T

4o

where we used the trivial estimate -, . b(n) < x1*e. Next we consider ¥p. By
Lagrange’s mean value theorem we have

1 1/2a-1
pl/2a _ o1/200 _ %“0/ (n—m)

for some ug between n and m. Since n < m by SC(X2), we find

|n1/2a _ m1/2a| > (nm)1/4a—1/2|n —ml,

thus we get
1
22 < Z Z % 2 n—ml
nm<1\/['
n;ém
2 2
b(m) 1
< Z%{( = > i (m) } fn—m|

n#m
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By the symmetry of n and m and then using Lemma 5 we obtain

b(n)? 1 a1 k-2
S D) DAL NIV A

5e |n —m)

Here we note that the exponent of M is 1—1/ay+ (k—2)/2a > 0 and 35 is greater
than ;. Hence

(1+0)x o2 1 iJr +€
/ Wa(y)dy <z *1M % (3.4)
x

It is easy to see that fm(Hé)I Ws(y)dy is absorbed into the right hand side of (3.4).
From (3.3) and (3.4), we get

(148)x ,42 > n)? 48z |
/ R2 = O Z ok 1/ ywdy

—n Sor
) (mWﬂﬂM%*i) +0 (x 2 e g p e +17ﬁ) .
(3.5)

Now we consider the mean square of Ry(y). By Cauchy’s inequality and
Lemma 3, we have

(1+0)= w1, [+
/ R(y)dy < o'+ / I(h, M, N, y) 2dy
xT xT

< pretaglmite max  p2Oetot+b-%
M<PEN

From (2.5) and assumption (1.9), we have
200+ 0" +1)—1/a< —1/ap + (k—1)/2a < 0.

Therefore

(1+8)x k-1 * k-1
/ R3(y)dy < x 2= TIHep2o —2 5 (3.6)

Finally we consider f;lH)m Ri(y)Ra(y)dy. From definitions of R;(y) and
Rs(y), we have

(14+6)x
/ Ry (y)Ra(y)dy

/ (1+8)= k b(n) 1/2
:Renocoo/ y2aI(Ao, M, N,y) Z Py cos(hm(ny) / * + com)dy

’I’LSM’TL 4o

= R6H6000(11 —+ IQ),
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where

(146)z . b(n)
D= [ w100 M Ny Y U cos(hm(ng) /2 + com)dy

I

and

(146)x N b(n)
I = / y2a I(Ag, M, N,y) Z P cos(hm(ny) /2 + com)dy.
x M/ j2<n<Mr TVt

By Lemma 2 we have

L < Z bln) gratl=dste max plotetl-ag
nl— 45t M<PEN
n<M’
By assumption (1.9), the exponent of P in the above estimate is negative. Hence
by using 3, ., b(n) < '+ again, we get

I, < s e photo " +1-3/4a b(nk)
_ k-1
n<M’ /2 n'~
< gt et R (3.7)
By applying Cauchy’s inequality to I5, we have
I < x%s (ViVa) /2, (3.8)
where
(146)z
Vi :/ |I()‘0aMN7y)|2dy
and

2

(1+6)x b
Vo= / Z 1 (nk)fl Cos(hﬂ—(ny)l/2a + COW) dy.

M/ j2<n<M TV A

Applying Lemma 3 to V; we get
Vi < plmate et o2 (3.9)

The value of V5 can be bounded by the same approach as the mean square of
R1(y) and we get

k—1 1 1 k—2
Vo < aM 2wt gptorateppt et e (3.10)

By (3.8), (3.9) and (3.10) we get

k—1 *_qyk=1_ 1 2k-3 *_ly2k=3_ 1
I < gt s teM T T E gt T ey ? T T (3.11)
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From the estimates (3.5), (3.6), (3.7) and (3.11) we get

(14+6)x K22 nz (4+d)z |
/ K2(y)dy = 0 > 277/ y = dy (3.12)

nln 2c

+o (m R VSR ) +0 (x m e 2ot -2 )

where we used the facts 1 — 1/2a; < o* and

1

_ * 2k—3 1/2 N 1/2
Jj1+72’4€1a3M(7 —*+W_2ak — (l‘ T +1M o 21— ﬁ) (a,; o +1M2¢7 2—0—" 1) / .

All error terms in (3.5), (3.7) and (3.11) are bounded by the two error terms in
(3.12).

3.2. Evaluation of fz(1+5)m K2(y)dy

We first give the upper bounds of f (1+8)a RQ( Ydy (j = 3,...,7). By Cauchy’s
inequality and Lemma 3, we have

0 —a g lom
Ri(y)dy < ) ) o e+

0<l,m<J x
I+m>0

< SN R R ke pROotiER et
o<I,m<J MSPSN

l+m>0
= Y3+ Xy,

(1+8)x I 2
I+ —— 7% MN,y) dy

where the summation conditions are
SC(E3):0<l<m<J, Il+m>0 and SC(Xg):0<m<I<J,

respectively. Since we have assumed 2(Ag + 0* + 1) < 1/, we have

Yy < Z —41-1#“2(11 L= e g r2(Xoto” +1)—Liypiem
o<m<ILJT
l+m>0
* k—1 l—m l—m
— gl e (0t =)+ Z s el deral
o<m<I<T
I+m>0

The sum over [ and m in the above formula is bounded by
< (xM)~Vo 4x7t <« (a M)V,

So we have
IR R VLG A (3.13)
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Next we treat X4. Since

. l—m 1 ap —ay)+---+ (ax —ax—1) +a
2()\0-1—0' +7204 +1)_7>(k 1) (k kl) k

>0,
o (a1 + -+ ag)ag
we have
%, < Z o U I e 2N ot ) —
o<m<I<T
— gl e N2(RotoT 1) - Z N
o<m<I<J

Having in mind that N = [2%*~17¢], the sum over [ and m is O(1). So
Dy < gl e 2ot +)- % (3.14)
From (3.13), (3.14) and assumption M < v'N we get

(146)z
/ R3(y)dy < x5 +1He 207 - DHEE g gl a0t DI (3.15)

By Lemma 4 we have

/(1+a)m , i st i
Ri(y)dy < T T T T
; 1

7,m=0
.\ (2
(148)z K+m ]
X I{X— ,N,00,y + = dy
- 2a T
K
< Z pAKHE L 1Lz B ot 1) - L
J,m=0
K
m4K+%+17§+5N2(A0+0*+1 -1_K Z —m/a
m:

Since the sum over j and m is bounded, we get by the definition of N that

(1+8)z k—1 K * 1 K
/ Ri(y)dy < :L,4K+W+1—;+€N2(>\U+a +1)—;x—(4a—1—5);
x

< gz Flm Gt N2Oote T+ -3 (3.16)

Now consider Rs5(y). By taking K large, we have
R5<y)<<x%Mmax(%’o)+s+x do 2M 4o +E+.’L‘ 4o _%M_%J’_%_

It is easy to see that

g 1/4a ifk=2
Rs5(y) <<{ k=3 . k-3

i M3 ifk>3and M < z?*!
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Hence

(1+6)e gl-1/2a if k=2
RE(y)dy < 5 ke 3.17
/m )y {:::H’“sz%f if k>3 and M < 227, (3.17)

By the choice of M, Rg(y) = 0, so its mean square is bounded trivially.
By the same method as in [2], we have

(1+6)z
/ R2(y)dy < a°. (3.18)

The first error term in the right hand side of (3.15) is clearly bounded by the
term in the right hand side of (3.17). Hence from (3.15), (3.16), (3.17) and (3.18)
we get

(146)= . * .
/ K2(y)dy < z 7 tieprae" D+

1-1/2a if k=2
+ {x ' (3.19)

M5 ifk>3and M < 201,

3.3. Proof of Theorem 1

Choose M such that two error terms in (3.12) are of the same order, namely,

k— k=2 _ 1 k— * k—
gE M e < e T2 D (3.20)
The above formula gives
1

Clearly M satisfies M < 22*~! < v/N. Therefore (3.12) becomes

(14+0)z 12 @ 2 (148)x
/ Kf(y)dy — o Z b(n2 T / y%dy +0 <$1+%—n(a)+a) 7
x 2 n=1 2 x

n_zjx

(3.22)

where n(a) is given by (1.12).
By Cauchy’s inequality, formula (3.22) and bound (3.19) we have

(1+6)z 4o V2 (146)e , 1/2
/ Ki(y) K2 (y)dy < / Ki(y)dy / K5 (y)dy

T ifk=2

1+%+5M2(a*71)+%
< Tl itk >3

< gt @)te (3.23)

where in the last step we have used (3.20).
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We also have

(146)z o1
/ K2(y)dy < otz —n(@)te, (3.24)

Consider the first error term in (3.19) first. Since the exponent of M is negative, it
is bounded by the term in the right hand side of (3.24). Next consider the second
error term of (3.19). For k = 2 there is nothing to prove. For k > 3, it is enough
to show that

1 k-3 1

« 200 20(3 —20* — 1/ag
or equivalently 2 — 1/ay > o*. This is true under assumption (1.9).

From (3.22)-(3.24) we get immediately that

(1+6)$ 192 ©° 2 (1+5)3€ . »
/ AQ(a; y)dy = Fo~ Z b(n) / y%dy L0 ($1+%_n(a)+g) 7
B x

D) o_k—1
n=1"T 2e

)_1>M®,

which implies Theorem 1 by a splitting argument. This completes the proof of
Theorem 1.

4. Proof of Theorem 3

In order to prove Theorem 3 we need some preparations. Define m(o) (for 1/2 <
o < 1) as the supremum of all numbers m such that

T
/ (o + it)|mdt < T,
1

It is known that m(o) > 4 for o > 1/2, m(7/12) > 6 and m(5/8) > 8. Ivi¢ studied
m(o) in great detail. Without loss of generality we can assume that m(o) is a
continuous function of o. One can find a lower bound of m(¢) in |7, Theorem 8.4].
Especially we have the following simpler but a little weaker form:

= if 1<o<3
mio) > (4.1)
2<o<l
The following lemma is used essentially in Ivié¢’s argument [8].

Lemma 6. Let a; (1 < j < k) be positive integers such that a1 < --- < ay and let
P(s) and o* be defined by (1.6) and (1.7), respectively. Define the function H (o)
by
H(o) = Z S S
= m(ajo —aj + 1)
If
H(o) <1/2

for some o, we have o* < 0.
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Proof. We write 0; = ajo — a; + 1 for simplicity. Suppose that

1
2 oy S

j=1

| =

Then by Hélder’s inequality, we have

T ) T k - )
/1 () Pt = / j11|<<aj+wjt>| dt

2 1_21?' 2
k T m(o;) T i=1 m(a;)
<[] (/1 ¢(o; +iajt)|m("f>dt> </1 1dt>

Hence from the definition of ¢*, we have o* < 0. [ |

We remark that since H (o) is decreasing, if

then Theorem 1 holds.

Lemma 7. Let k =3, a1 < az < ag and az < ay + az. Let o* be defined by (1.7).
Then we have

gl—m if3(a2+a3)<7a1,

o<1 - m if 3(az + a3) > Tay, 3az + a1 < bag and 3az < a1 + 3aq,

=1- —21 otherwise.
as
(4.2)

Proof. Let a1 < az < a3 and a; + a2 > az. By Lemma 6 we shall find o such
that

1 1

_ H <1/2.
as a1 +ag +as (U) /

For the sake of simplicity we put o; = a0 —a; +1 (j = 1,2,3) for o € [3,1] as
before. It is easy to see that % <o3<oy<or <1,
We shall use the weak version (4.1).

Case 1: We first consider the case 3(as + a3) < 7a; and we put

5

=1 —
7 4(a1+a2+a3)
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Clearly 0 < 1 —1/(a; + ag + a3). Since 3as < 7a; — 3as < (2a1 + 5az) — 3az =
2(ay + az), we have 0 > 1 — i and o1 < %. By (4.1) we have

1 3—40’1 3—40’2 3—40’3 1
H(o) = < _
(o) ;m(aj) Y R 2

Hence we get o* < 0.
Case 2: When 3(a2 + as) > Tay, 3az + a1 < bag and 3as < a1 + 3ag, we put

3
c=1-—\
ar + 3as + 3a3
It is clear that 0 <1—1/(a1 +a2+a3) and o > 1— 5— by the last condition. One
can check that the first two conditions imply that 5 < 01 <1 and <o3<0op <2

X3
. Hence

1 1—0’1 3—40’2 3—403 1
H(o) = < _——
(@) Zmaj) I 2

j=1
Hence we get o* < 0.

Case 3: We consider the case 3(as + a3) > 7ay, 3as + a1 < bag and 3az >
a1 + 3as. In this case we put

1
=1 - —.
2a3

Note that this is the best possible choice. Using the last condition we easily check
that

3&3 a; + 3&2 40,1
and hence
1 a1 5
= 1—— | - 1=1-—2>-.
o1=a ( 2a3> Tt 2a3 ~ 8

Now we consider two cases.

(i) If 3az < 4as, then oy < 2. By the third condition we get
1 1—0q 3— 4oy 1 ay + 3as 1
H(o) = < =T
() ; m(o;) 5 1 1T 6a 2

(i) If 3a3 > 4ag, then oy > 2. By the third condition we have 3as > a;+3as >
2(a1 + az). Hence

3
1 1—0’1 1—0'2 1
H(o) = < —
;m(aj) 3 3 4
1 arta 1,13 1
=17 6as \4+6 2 2
Combining the two cases (i) and (ii), we have 0* =0 =1 —1/(2a3)
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Case 4: Finally we consider the case 3(as + as) > 7a1, 3as + a1 > Hag, where

we put
1

c=1——.
2a3
In this case, using the second condition, we easily check that
3az > bag — ay = 4as

and hence

1 a9 )
a1 — ) —ag+1=1-2 2
72 “2( 2a3> o2 + 23 ~ 8

We have 1 > o5 > %,1 >0 > g, and o3 = % Hence

3

1 ].—0'1 1—0’2 1 1
H(o) = < -
() jzlm(aj) 5 T3 tisgt

Therefore we have 0* =0 =1 — 1/(2a3). |

Proof of Theorem 3. Now the proof of Theorem 3 is immediate by substituting
each value on the right hand side of (4.2) to (1.12). [ |

Remark. From Lemma 7 we have

9 7
*(3,4,5) = — *(2,3,4) = =
g ( ) ) ) 107 a ( ) ) ) 87
which are the best possible results . By Theorem 8.4 of Ivi¢[7] we also note the

following slightly better results

214 41761
*(4 <= *(1,2,2) < ——— = 0.765948.. . ..
0" (4,5,6) < o o*( ) < 5ppy = 0765948
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