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POLYNOMIAL VALUES AND GENERATORS WITH MISSING
DIGITS IN FINITE FIELDS

CECILE DARTYGE, CHRISTIAN MAUDUIT, ANDRAS SARKOZY

Abstract: We consider the linear vector space formed by the elements of the finite field Fy
with ¢ = p” over Fp. Then the elements = of Fy; have a unique representation in the form
T = Zg:l cja; with ¢; € Fp; the coefficients ¢; will be called digits. Let D be a subset of
Fp with 2 < |D| < p. We consider elements = of Fy such that for their every digit ¢; we have
¢j € D; then we say that the elements of Fj, \ D are “missing digits”. We will show that if D is
a large enough subset of Fy,, then there are squares with missing digits in Fy; if the degree of
the polynomial f(z) € Fq[X] is at least 2 then it assumes values with missing digits; there are
generators g in Fy such that f(g) is of missing digits.

Keywords: digits properties, finite fields, character sums, squares, polynomials, generators,
primitive roots.

1. Introduction

Let b € N be fixed with b > 2. If n € N, then consider the representation of n in
the number system to base b:

r—1
n=> ¢b, 0<¢<b-—1, ¢ =1, (1.1)
j=0

and write
r—1
Sn)=> ¢ (1.2)
=0

Many papers have been written on the connection between the arithmetic proper-
ties of n and certain properties of its digits cg, 1, .. .c,—1. In particular the sum of
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digits function S(n) restricted to polynomial or prime numbers has been studied in
[12], [13], [15]-[17], [20]-][22], [27], [28], [30], [31], [32]. In some other papers [1]-[9],
[14], [18], [19], [24], [25], [29] the arithmetic properties of integers with missing
digits have been studied.

In [11] Dartyge and Sarkozy initiated the study of the analogs of some of these
problems in finite fields. Indeed, let p be a prime number, ¢ = p” with r > 2, and
consider the field F,. Let B = {a1,as,...,a,} be a basis of the linear vector space
formed by F, over F,, i.e., let a1, as,...,a, be linearly independent over F,. Then
every x € I, has a unique representation in form

T = chaj (1.3)
j=1

with ¢; € F,. Write

Sp(z) = ch. (1.4)

j=1

An important special case is when the basis B consists of the first r powers of a
generator z of Fy:

B={ay,as,...,a;.} ={1,2,2%,..., 2" "'}
Then (1.3) becomes

x:chzj. (1.5)
j=1

(1.4) and (1.5) are of the same form as (1.1) and (1.2), thus we may consider (1.3)
as the finite field analog of the representation (1.1), and we may call ¢1, o, ..., ¢, in
(1.3) as “digits”, and Sg(x) can be called as “sum of digits ” function. It was shown
in [11] that if we fix an s € F,, and f(x) € F,[z] satisfying certain assumptions
then there are squares 22, elements y € F, and generators g € F, with Sg(z?) = s,
Ss(F(y) = s, Sa(f(g)) = s respectively.

In this paper our goal is to prove similar results for the elements z € F,
with missing digits. More precisely, let us fix a set D C {0,1,2,...,p — 1} with
2 <|D| < p— 1. We define the set Wp as the set of all elements = € F, such that
all their digits belong to D in the basis B = {aj,az,...,a,}:

T

Wp = {:17 = chaj with (¢1,...,¢.) € DT}.

Jj=1

Then we have [Wp| = |D|", and the elements of {0,1,...,p — 1} \ D are called
missing digits. Let ) denote the set of the quadratic residues of F, and for
f(z) € Fylz], Wp(f) the set of the polynomial values of f(x) with missing digits:

Wo(f) ={zeF,: f(z) € Wp}.
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In order to formulate some of our results we will also use the notation

logp | 1(4 _ log3 1 . B
Cloy =4 ¢ +t<3 —Q)er if 2<t<p—2, "
’ 202 (] _loo(2sin X £ s p 2 )

» T 71 ( og(2sin ;) if t=p—2.

We will show that if D is a large subset of IF),, then there are many squares in
@ with missing digits; if the degree of the polynomial f(z) € F,[z] is at least 2
then it assumes values with missing digits; there are generators g in IF, such that
f(g) is of missing digits. We remark that the analog problems in N (on squares,
polynomial values and primes with missing digits) are open and seem to be very
difficult.

2. Squares with missing digits

First we prove that if |D| is close to p, then half of the elements of Wp are quadratic
residues.

Theorem 2.1. Let D C F), with 2 < |D| < p— 1. Then we have

W00l 2 < o (D1 v/p =D (2.)

Remark. Theorem Theorem 2.1 gives a non-trivial upper bound if

DI+ pvVp—ID| < |DlV/p,

that is

_p2 + \/}?4 + 4}?3(\/]3 _ 1)2

2(\/17_ 1)2 (22)
(s
2

D[ >

(p = +00).

Proof. The first step of the proof of Theorem 2.1 is to prove the following lemma.
We will use the standard notation e(t) = exp(2int).

Lemma 2.2. We have

wong)- 2l N(Z\Z(C’v

Let v denote the quadratic character of F,. Then we have

).

1 Wp 1
WonQl=1 Y @@=l s hw e
r€EWp z€EWp
Next following [11], we switch to additive characters by using Gaussian sums in

order to separate the digits c¢q,...,c.. We recall that if y is a multiplicative
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character of I} and ¢ is an additive character of Fy then the Gaussian sum of x
and 1 is defined by

GOuv) = Y x(@)y() (2.4)

z€F?

(see [26]). Then we use the following formula for all = € IF;:

ety
1%

Inserting this in (2.3) we obtain:

wonal = P2l 2566 msiw)
P

with

r

Sy =Y, ¢(§:Ciai)=H(Zw(cai)).

Ciy...,cr €D 1=1 =1 c€D
If ¢ and x are not both trivial, then |G (x, V)| < /g
For all ¢ and a;, ¥(a;) € {e(%),O < k < p—1}. There is a correspon-
dence between the additive characters ¢ and F,. This correspondence is given by

(W(ar),...,¥(a,)) = (e(%), e ,e(%)). Thus we have

wone-"P<zz ¥ ISPl e

0<ha,... by <p 1=1 ceD
(h1s..eshr)#(0,...0)

This ends the proof of Lemma 2.2.
The second part of the proof of Theorem 2.1 is to obtain an upper bound for

he
> ()
ceD p
When D is large we can use the following very simple fact for h # O:
h h
Sl 1) =S ),
€D p D p
c ceD

with the notation D = F,,\D. This remark gives something non-trivial if |D| < |D|.
The main tool for the upper bound is the following result of Vinogradov
(Lemma 14a in [33], Chapter VI page 128):

Lemma 2.3 (Vinogradov’s Lemma). If a(z) and S(z) are complexr valued

functions on {0,...,m — 1} and a € mZ then we have
|55 atwne("2) < covm
m

=0 0

<
I



Polynomial values and generators with missing digits in finite fields 69

with ) )
X=> la@]® and Y =1 |8
=0 y=0

Recently Gyarmati and the third author [23] obtained a generalization of this
lemma in finite fields.
For 0 < z < p we define

> aeD e( - Ld) d
< - if Ze(f”—)yéo,

’Zdeﬁe(_ %)’ deD P

and a(z) = 1 otherwise. With this notation we have:

S5 e() = 5 S aate(2).

z=1 D rz=1y=1 p

a(z) =

We can now apply Lemma 2.3:

Sy ()] < P+ Voo - D=0 <Pl +pvp- DL @0

h=0 ceD

Then we insert this bound in Lemma 2.2 and obtain the estimate (2.1) asserted
in Theorem 2.1. |

3. Squares with missing digits when D consists of consecutive integers

Now we will prove that if D is a set of consecutive integers with at least
> ,/plog p elements then a similar conclusion holds as in Theorem 2.1:

Theorem 3.1. We suppose that D ={0,...,t — 1} with2 <t <p—1. Then we

have:
|WD|

Wp N Q|- 2( (p, t)t/p)". (3.1)

Remark. Theorem Theorem 3.1 is non-trivial if C(p,t),/p < 1.

Proof. When D is a set of consecutive integers, we can apply some results of the
two first authors.

Lemma 3.2 ([9, Lemma 3.1]).
(i) If D=10,...,t — 1} then

LS ISt < 2 13- ) L

p
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(ii) If D=A{0,...,p—2} (and p > 3) then

|5 < 2 i (- e )

— el—)|I<—-—+———(1—1log|(2sin—)).
ptiz =\ p p mp-1) 2p

Then Theorem 3.1 can be proved by combining this lemma with Lemma 2.2. W

4. Polynomial values with missing digits

We obtain a similar result for [Wp(f)| as the estimates in Sections 2 and 3 (but
now we will also need Weil’s theorem to achieve this). We begin by stating the
result for large |D|.

Theorem 4.1. Let D C F, with 2 < |D| < p—1 and f(x) € Z[x] with degree
n > 2. Then we have

W ()] = Wol| <

”Jal (1 +pvo— 1) (4.1)

When D is a set of consecutive integers we will prove:

Theorem 4.2. We suppose that D = {0,...,t — 1} with 2 <t <p—1. Then we
have:

IWo()] = Wol| < (0 = 1)(Clp. )ty

Proofs of Theorems 4.1 and 4.2. First, we obtain in the following lemma,
a similar result as Lemma 2.2 for the sets Wp(f).

Lemma 4.3. We suppose that the degree of f is > 2. Then we have:

<7 = H!Z( I

..... r<p 1=1 ceD
(hh h )75(0 :0)

(Wo(f)] -

For 1 < j < r we consider the additive character v; defined by:

bia) = {eXp () 0=

1 otherwise (1< <r).

Thus for z = Y_;_, x;a; € F, we have

T Ty z
U3(e) = U(eran) - gyarar) = v () 97 (ar) = o 2.
We can use this to detect digit conditions since for x = z1a1 + - - - + z,a, we have

P he 1 if z;=c
S v~ 2) = {0 .

otherwise.
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If we sum this formula over all ¢ € D, then we detect the z such that x; € D. It
remains then to take the product over all the digits to have an indicator of the
elements of Wop:

B 1 if zeWp
]1_[1 ( C;th%w ( )) - {0 otherwise.
We deduce that
ot = 3 T15 3> hutone( - ).
z€F, j= 1 ceD h=1 p

We develop this product and change the order of summation. The contribution of

hi1=...=h, =0 provides the main term:
wol=or+ - S (TTekven) T (Se( %))
P ohy i he<p  aeR, im1 i=1 ceD p

(A1seees i) #(0,...,0)

We can check easily that if (hy, ..., h,) # (0,...,0) then [[/_, ¢/ # ¢y. Thus we
can apply the following theorem ([34], see also [26, Theorem 5.38, p. 223]):

Lemma 4.4 (Weil). Let g € F,[X] be of degree n > 1 with (n,q) = 1 and ¢
a nontrivial additive character of Fq. Then

|3 wlg))| < (0= 1)va.

z€F,

It remains to apply this theorem to finish the proof of Lemma 4.3. (4.1) is
obtained by combining Lemma 4.3 with (2.6). It is also sufficient to combine
Lemma 4.3 with Lemma 3.2 to end the proof of Theorem 4.2. |

5. Polynomial values with generator argument and missing digits

Another variant of these problems is to study polynomial values with generator ar-
gument. According to the notations of [11] we will denote the set of the generators
(or primitive elements) of F, by G. For f(x) € F4[z] we now consider

Wpo(f,G)=1{9€G: f(g) € Wp}.

Combining the method of the proof of the previous theorem with the estimates of
character sums over generators and with polynomial arguments obtained in [11]
we can prove:

Theorem 5.1. Let D C F, with 2 < |D| < p—1 and f(x) € Z[z] with degree
n > 2. Then we have

W) o1 AL < (2 B (101 =T
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When D is a set of consecutive integers, the corresponding result is

Theorem 5.2. We suppose that D = {0,...,t — 1} with 2 <t <p—1. Then we
have:

W) - D121 < (14 (0 - Drla — D)V

The proof of Lemma 4.3 can be adapted to detect the polynomial values with
generator arguments and missing digits:

Wolr. 9= 11 3 el oe( - ).
geg j= 1P c€D h=1

We argue in the same way as before. The only difference is that instead of applying
Lemma 4.4 we use the following lemma proved in [11].

Lemma 5.3 (|11, Lemma 4.1]). Under the notations and hypothesis of 4.4 we

have:
| vsto))] < (- Vrta - v+ AL,
9€eG 7=
The analogue of Lemma 4.3 is then
Cprla=D (1 (=Dl (v _heyy
Wo(r.0)| - 1D == < (L + 7 )(; dez;f( )))"

(5.1)
Finally Theorem 5.1 is obtained by (5.1) and (2.6), Theorem 5.2 is proved by
using (5.1) and Lemma 3.2.
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