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RESTRICTED SUM FORMULA OF MULTIPLE ZETA VALUES

Haiping Yuan, Jianqiang Zhao

Abstract: The famous sum formula of multiple zeta values (MZV) says that the sum of all
MZVs of fixed weight w and depth d is always equal to (w). Hoffman proved a more complicated
formula when all the arguments of the MZVs are even numbers. In this paper, we further restrict
the arguments to multiples of 4 and derive a similar sum formula.
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1. Introduction

For fixed positive integer d and d-tuple of positive integers (s1, . . . , sd) with s1 > 1,
the multiple zeta value ζ(s1, . . . , sd) is defined by

ζ(s1, . . . , sd) =
∑

k1>···>kd>0

k−s11 · · · k−sdd , (1)

where d is called the depth and s1 + · · · + sd the weight. The double zeta values
were studied by Euler [1] who derived many identities such as follows:

2n−1∑
k=2

(−1)kζ(k, 2n− k) =
1

2
ζ(2n),

2n−1∑
k=2

ζ(k, 2n− k) = ζ(2n),

from which we can easily get (see [2, Theorem 1])

n−1∑
k=1

ζ(2k, 2n− 2k) =
3

4
ζ(2n). (2)
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Using the stuffle relation ζ(2k)ζ(2n−2k) = ζ(2k, 2n−2k)+ ζ(2n−2k, 2k)+ ζ(2n)
we see immediately

n−1∑
k=1

ζ(2k)ζ(2n− 2k) =
2n+ 1

2
ζ(2n). (3)

Recently, Hoffman [3] extended (2) to arbitrary depths. Moreover, similar
formulas have been obtained for some special type Hurwitz-zeta values [4] and
alternating Euler sums [5]. In this paper we consider the following restricted sum
of multiple zeta values

Q(4n, d) =
∑

j1+···+jd=n
j1,...,jd>0

ζ(4j1, . . . , 4jd).

Our main theorem is

Theorem 1.1. For any positive integers n > d > 3,

Q(4n, d) =

b d−1
2 c∑

k=0

2k+1∑
j=0

2k+2(−1)b
k
2 c+j+d

(2k + 1)!

(
2k + 1

j

)( j−2
4

d

)
ζ(4n− 2k)π2k

+

b d−2
4 c∑

k=0

4k+2∑
j=0

22k+5(−1)k+j+d

(4k + 2)!

(
4k + 2

j

)( j−2
4

d

)(
Q(4n− 4k, 2)− 7

8
ζ(4n− 4k)

)
π4k.

Remark 1.2. For d = 2, it’s easy to prove by stuffle relation that

Q(4n, 2) =
1

2

n−1∑
k=1

ζ(4k)ζ(4n− 4k)− n− 1

2
ζ(4n)

for n > 2. However, it is an intriguing problem to find a compact formula similar
to (3).
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2. The generating function of Q(4n, d)

Recall that the symmetric function of the infinitely many variables x1, x2, · · · form
a subring Sym of Q[x1, x2, · · · ] which is invariant under all the permutations of
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the variables. Let ej =
∑
k1<···<kj xk1

. . . xkj be the j-th elementary function.
Following Hoffman [3] let’s consider its generating function

E(t) =

∞∏
j=1

(1 + txj) =

∞∑
j=0

ejt
j

and define ε : Sym→ R to be the evaluation map such that ε(xj) =
1

j4
. Let

F (s, t) =

∞∏
j=1

(1 + tsxj + ts2x2
j + · · · ).

Then it is not hard to see that the generating function of Q(4n, d) is given by

ε
(
F (s, t)

)
=

∞∑
n=0

Q(4n, d)tdsn.

First we need the following lemma.

Lemma 2.1. We have

ε(F (s, t)) =
sinπ 4

√
s(1− t) · sinhπ 4

√
s(1− t)√

1− t sinπ 4
√
s · sinhπ 4

√
s

.

Proof. We have
∞∏
j=1

(1 + tsxj + ts2x2
j + · · · ) =

∞∏
j=1

(
1 + t

sxj
1− sxj

)

=

∏∞
j=1(1− s(1− t)xj)∏∞

j=1(1− sxj)
=
E(−s(1− t))

E(−s)
.

Further,

ε(E(−t)) =

∞∏
i=1

(
1− t

i4

)
=

∞∏
i=1

(
1−
√
t

i2

)(
1 +

√
t

i2

)
=

sinπ 4
√
t · sinhπ 4

√
t

π2
√
t

.

The lemma follows immediately. �

Let f(x) = sinx · sinhx/(2x2). The following lemma provides its series expan-
sion.

Lemma 2.2. We have

f(x) =

∞∑
k=0

(−1)k4k

(4k + 2)!
x4k.
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Proof. Using the well-known formula sinx = (eix − e−ix)/(2i) we obtain

f(x) =
1

2
· e

ix − e−ix

2ix
· e

x − e−x

2x

=
e(i+1)x + e−(i+1)x − (e(i−1)x + e−(i−1)x)

8ix2

=
1

4ix2

( ∞∑
n=0

(2i)nx2n

(2n)!
−
∞∑
n=0

(−2i)nx2n

(2n)!

)
=

∞∑
k=0

(−1)k4k

(4k + 2)!
x4k,

as desired. �

3. Proof of Theorem 1.1

Let g(t) = f( 4
√
t). Then

g(s(1− t))
g(s)

= ε(F (s/π4, t)) =
1

g(s)

∞∑
k=0

(−1)k4k

(4k + 2)!
sk(1− t)k.

Write
g(s(1− t))

g(s)
=

∞∑
d=0

Gd(s)t
d.

By the above expression, we have

Gd(s) =
(−s)d

g(s)d!
Ddg(s),

where Dd denotes the d-th derivative with respect to s. Set

Gd(s) = Xd(s)
4
√
s cot 4

√
s+ Yd(s)

4
√
s coth 4

√
s+ Zd(s) cot 4

√
s coth 4

√
s+Wd(s)

(4)

which yields easily

(−1)sDdg(s)

d!
= Xd(s)s

−d− 1
4 cos s

1
4 sinh s

1
4 + Yd(s)s

−d− 1
4 sin s

1
4 cosh s

1
4

+ Zd(s)s
−d− 1

2 cos s
1
4 cosh s

1
4 +Wd(s)s

−d− 1
2 sin s

1
4 sinh s

1
4 .

To determine the coefficients Xd(s), Yd(s), Zd(s) and Wd(s) we differentiate the
both sides of the above equation to get the following system of recursive differential
equations

(d+ 1)Xd+1(s) = −sX ′d(s) +
(
d+

1

4

)
Xd(s)−

1

4
Zd(s)−

1

4
Wd(s),

(d+ 1)Yd+1(s) = −sY ′d(s) +
(
d+

1

4

)
Yd(s) +

1

4
Zd(s)−

1

4
Wd(s),

(d+ 1)Zd+1(s) = −
√
s

4
Xd(s)−

√
s

4
Yd(s)− sZ ′d(s) +

(
d+

1

2

)
Zd(s),

(d+ 1)Wd+1(s) =

√
s

4
Xd(s)−

√
s

4
Yd(s) +

(
d+

1

2

)
Wd(s)− sW ′d(s),
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with the initial conditions X0(s) = Y0(s) = Z0(s) = 0 and W0(s) = 1. Let
xd(u) = Xd(u

2), yd(u) = Yd(u
2), zd(u) = Zd(u

2) and wd(u) = Wd(u
2). The above

system is changed into the following system:

(d+ 1)xd+1(u) = −u
2
x′d(u) +

(
d+

1

4

)
xd(u)− 1

4
zd(u)− 1

4
wd(u),

(d+ 1)yd+1(u) = −u
2
y′d(u) +

(
d+

1

4

)
yd(u) +

1

4
zd(u)− 1

4
wd(u),

(d+ 1)zd+1(u) = −u
4
xd(u)− u

4
yd(u)− u

2
z′d(u) +

(
d+

1

2

)
zd(u),

(d+ 1)wd+1(u) =
u

4
xd(u)− u

4
yd(u) +

(
d+

1

2

)
wd(u)− u

2
w′d(u).

(5)

Define 

α(u, v) =
∑
d>0

xd(u)vd =
∑
d>0

x̃d(v)ud,

β(u, v) =
∑
d>0

yd(u)vd =
∑
d>0

ỹd(v)ud,

γ(u, v) =
∑
d>0

zd(u)vd =
∑
d>0

z̃d(v)ud,

δ(u, v) =
∑
d>0

wd(u)vd =
∑
d>0

w̃d(v)ud.

(6)

Multiplying the system (5) by vd and then taking the sum
∑
d>0 we get:



∂α

∂v
=v

∂α

∂v
+

1

4
α− u

2

∂α

∂u
− 1

4
γ − 1

4
δ,

∂β

∂v
=v

∂β

∂v
+

1

4
β − u

2

∂β

∂u
+

1

4
γ − 1

4
δ,

∂γ

∂v
=v

∂γ

∂v
+

1

2
γ − u

2

∂γ

∂u
− u

4
α− u

4
β,

∂δ

∂v
=v

∂δ

∂v
+

1

2
δ − u

2

∂δ

∂u
+
u

4
α− u

4
β.

Comparing the coefficients of un we get

x̃′n(v) =vx̃′n(v) +
1

4
x̃n(v)− n

2
x̃n(v)− 1

4
z̃n(v)− 1

4
w̃n(v),

ỹ′n(v) =vỹ′n(v) +
1

4
ỹn(v)− n

2
ỹn(v) +

1

4
z̃n(v)− 1

4
w̃n(v),

z̃′n(v) =vz̃′n(v) +
1

2
z̃n(v)− n

2
z̃n(v)− 1

4
x̃n−1(v)− 1

4
ỹn−1(v),

w̃′n(v) =vw̃′n(v) +
1

2
w̃n(v)− n

2
w̃n(v) +

1

4
x̃n−1(v)− 1

4
ỹn−1(v),

(7)



116 Haiping Yuan, Jianqiang Zhao

By definition (6), we see that the system has the following initial values: x̃n(0) =
0, ỹn(0) = 0, z̃n(0) = 0 for all n > 0 and w̃n(0) = 0 for all n > 1. But for w̃0(v) we
have from (5)

w0(0) = 1, wd(0) =
2d− 1

2d
wd−1(0) ∀d > 1.

It follows that wd(0) =
(

2d
d

)
/22d which yields easily

w̃0(v) =
∑
d>0

wd(0)vd = (1− v)−
1
2 .

Similarly we see that z̃0(v) = 0. Solving (7) recursively starting from the first two
equations in (7) we find the following functions are the unique solution satisfying
the initial conditions:

x̃n(v) =

2n+1∑
j=0

2n(−1)b
n+2

2 c+j

j!(2n+ 1− j)!
(1− v)

j−2
4 ;

ỹn(v) =

2n+1∑
j=0

2n(−1)b
n+3

2 c+j

j!(2n+ 1− j)!
(1− v)

j−2
4 ;

z̃n(v) = (1− (−1)n)

2n∑
j=0

2n−1(−1)
n−1

2 +j

j!(2n− j)!
(1− v)

j−2
4 ;

w̃n(v) = (1 + (−1)n)

2n∑
j=0

2n−1(−1)
n
2 +j

j!(2n− j)!
(1− v)

j−2
4 .

Using (6) we can solve xn(v), yn(v), zn(v) and wn(v) and get

xd(u) =

b d−1
2 c∑

n=0

2n+1∑
j=0

2n(−1)b
n+2

2 c+j+d

(2n+ 1)!

(
2n+ 1

j

)( j−2
4

d

)
un;

yd(u) =

b d−1
2 c∑

n=0

2n+1∑
j=0

2n(−1)b
n+3

2 c+j+d

(2n+ 1)!

(
2n+ 1

j

)( j−2
4

d

)
un;

zd(u) =

2b d−2
4 c+1∑
n=0

2n∑
j=0

(1− (−1)n)
2n−1(−1)

n−1
2 +j+d

(2n)!

(
2n

j

)( j−2
4

d

)
un;

wd(u) =

2b d4 c∑
n=0

2n∑
j=0

(1 + (−1)n)
2n−1(−1)

n
2 +j+d

(2n)!

(
2n

j

)( j−2
4

d

)
un.
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Thus

Xd(s) =

b d−1
2 c∑

n=0

2n+1∑
j=0

2n(−1)b
n+2

2 c+j+d

(2n+ 1)!

(
2n+ 1

j

)( j−2
4

d

)
s
n
2 ;

Yd(s) =

b d−1
2 c∑

n=0

2n+1∑
j=0

2n(−1)b
n+3

2 c+j+d

(2n+ 1)!

(
2n+ 1

j

)( j−2
4

d

)
s
n
2 ;

Zd(s) =

b d−2
4 c∑

n=0

4n+2∑
j=0

22n+1(−1)n+j+d

(4n+ 2)!

(
4n+ 2

j

)( j−2
4

d

)
sn+1/2;

Wd(s) =

b d4 c∑
n=0

4n∑
j=0

22n(−1)n+j+d

(4n)!

(
4n

j

)( j−2
4

d

)
sn.

By the well-known formulas

z cot z = −2

∞∑
n=0

ζ(2n)

π2n
z2n, z coth z = −2

∞∑
n=0

(−1)n
ζ(2n)

π2n
z2n,

we obtain

4
√
s cot 4

√
s = −2

∞∑
n=0

ζ(2n)

π2n
s
n
2 , 4

√
s coth 4

√
s = −2

∞∑
n=0

(−1)n
ζ(2n)

π2n
s
n
2 ,

and

√
s cot 4

√
s · coth 4

√
s = 4

∞∑
k=0

∑
m+l=k

(−1)m
ζ(2m)ζ(2l)

π2k
s
k
2

= 4

∞∑
k=0

∑
m+l=2k

(−1)m
ζ(2m)ζ(2l)

π4k
sk.

Here by exchanging m and l we notice that the inner sum vanishes if k is odd.
Hence the coefficient of sn in Gd(π4s) is
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Q(4n, d) = 2

b d−1
2 c∑

k=0

2k+1∑
j=0

2k(−1)b
k
2 c+j+d

(2k + 1)!

(
2k + 1

j

)( j−2
4

d

)
ζ(4n− 2k)π2k

+ 2

b d−1
2 c∑

k=0

2k+1∑
j=0

(−1)k
2k(−1)b

k+1
2 c+j+d

(2k + 1)!

(
2k + 1

j

)( j−2
4

d

)
ζ(4n− 2k)π2k

+ 4

b d−2
4 c∑

k=0

4k+2∑
j=0

22k+1(−1)k+j+d

(4k + 2)!

(
4k + 2

j

)( j−2
4

d

)

×

 ∑
m,l>0,

m+l=2n−2k

(−1)mζ(2m)ζ(2l)

π4k

since Wd(s) has degree less than n. Observe that the first two lines are the same
and for any positive integer w

∑
m,l>0,
m+l=2w

(−1)mζ(2m)ζ(2l) = 2

w−1∑
l=1

ζ(4l)ζ(4w − 4l)−
2w−1∑
l=1

ζ(2l)ζ(4w − 2l)− ζ(4w)

= 4Q(4w, 2) + (2w − 3)ζ(4w)− 4w + 1

2
ζ(4w)

= 4Q(4w, 2)− 7

2
ζ(4w)

by stuffle relation ζ(4m)ζ(4l) = ζ(4m, 4l) + ζ(4l, 4m) + ζ(4m + 4l) and equation
(3). Therefore we finally get

Q(4n, d) = 4

b d−1
2 c∑

k=0

2k+1∑
j=0

2k(−1)b
k
2 c+j+dζ(4n− 2k)π2k

(2k + 1)!

(
2k + 1

j

)( j−2
4

d

)
ζ(4n− 2k)π2k

+ 4

b d−2
4 c∑

k=0

4k+2∑
j=0

22k+1(−1)k+j+d

(4k + 2)!

(
4k + 2

j

)( j−2
4

d

)

×
(

4Q(4n− 4k, 2)− 7

2
ζ(4n− 4k)

)
π4k.

This concludes the proof of Theorem 1.1 and this paper.
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