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DISCREPANCY ESTIMATES FOR INDEX-TRANSFORMED
UNIFORMLY DISTRIBUTED SEQUENCES

PETER KRITZER, GERHARD LARCHER, FRIEDRICH PILLICHSHAMMER

Abstract: In this paper we show discrepancy bounds for index-transformed uniformly dis-
tributed sequences. From a general result we deduce very tight lower and upper bounds on the
discrepancy of index-transformed van der Corput-, Halton-, and (¢, s)-sequences indexed by the
sum-of-digits function. We also analyze the discrepancy of sequences indexed by other functions,
such as, e.g., [n%] with 0 < a < 1.

Keywords: discrepancy, uniform distribution, van der Corput-sequence, Halton-sequence, (¢, s)-
sequence, sum-of-digits function.

1. Introduction

A sequence (y,,)n>0 in the unit-cube [0,1)° is said to be wuniformly distributed
modulo one if for all intervals [a,b) C [0,1)® it is true that

g R 0Sn<Noyn €lab)} _ g gy (1)

N—o0 N
A quantitative version of (1) can be stated in terms of discrepancy. For an infinite
sequence (Y,,)n>0 in [0,1)% its discrepancy is defined as
#{n :0<n< N,y, €la,b)}

Dn((Yn)nzo) :=  sup I —vol([a, b)),
[a.b)C[0,1)®

where the supremum is extended over all sub-intervals [a, b) of [0,1)°. For a given
finite sequence X = (@1, ...,xn) we write Dy (X) for the discrepancy of X with
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the obvious adaptions in the above definition. An infinite sequence is uniformly
distributed modulo one if and only if its discrepancy tends to zero as N goes
to infinity. However, convergence of the discrepancy to zero cannot take place
arbitrarily fast. It follows from a result of Roth [28] that for any infinite sequence
(Y,,)n>0 in [0,1)% we have NDn ((y,,)n>0) = cs(log N)*/2 for infinitely many values
of N € N (by N we denote the set of positive integers, and we put Ng := NU{0}).
An improvement of this bound can be obtained from [4]. For the special case
s =1, Schmidt [29] (see also [2]) showed that for any infinite sequence (yp)n>0 in
[0,1) we have NDn((yn)n>0) = 6%’50{;4 for infinitely many values of N € N. This
result is best possible with respect to the order of magnitude in N. An excellent
introduction to this topic can be found in the book of Kuipers and Niederreiter [20]
(see also [6, 9, 21, 24]).

Well known examples of uniformly distributed sequences are (na)-sequences
(also called Kronecker-sequences, see [9, 20]), van der Corput-sequences and their
multivariate analogues called Halton-sequences (see [6, 19, 20, 24]), as well as
(digital) (¢, s)-sequences (see [6, 24]).

In recent years, also the distribution properties of index-transformed uniformly
distributed sequences have been studied, especially for the examples mentioned
above. In this paper, we mean by an index-transformed sequence of a sequence
(Tn)n>0 a sequence (T¢(n))nz0, where f : No — Ng. Note that (2f(,))n>0 is
in general no subsequence of (z,)n>0 since we do not require that f is strictly
increasing.

For instance, the distribution properties of index-transformed Kronecker-se-
quences indexed by the sum-of-digits function were studied in [5, 8, 30, 31]. For
this special case, very precise results can be found in [8]. In [7] the well-distribution
of index-transformed Kronecker-sequences indexed by g-additive functions is con-
sidered. Furthermore, in [26] a discrepancy bound for van der Corput-sequences
in bases of the form b = 5%, £ € N, indexed by Fibonacci numbers is shown. The
papers [17, 18, 26] deal with index-transformed van der Corput-, Halton-, and
(t, s)-sequences.

In this paper we are specifically interested in discrepancy bounds for sequences
indexed by the g-ary sum-of-digits function and related functions and, furthermore,
for sequences indexed by “moderately” monotonically increasing sequences, as for
example [n®] with 0 < a < 1. For an integer ¢ > 2 and n € Ny with base ¢
expansion n = rg + riq + roq? + - - - the g-ary sum-of-digits function is defined by
sq(n) = =ro+ri+ro+---.

Previously, it has been shown in [18] that the sequence (, (n))n>0, indexed by
the g-ary sum-of-digits function, where (z,,)»>0 denotes the Halton-sequence in co-
prime bases by, . .., by is uniformly distributed modulo one. The proof of this result
is due to the fact that the sequence generated by the g-ary sum-of-digits function
is uniformly distributed in Z, see, for example, [12, 27]. In this paper we provide
very tight lower and upper bounds on the discrepancy of index-transformed van
der Corput-, Halton-, and (¢, s)-sequences indexed by the sum-of-digits function.
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This paper is structured as follows. In Section 2, we provide basic definitions
and notation used throughout the subsequent sections. In Section 3, we prove
a general theorem (Theorem 1) which will be of great importance in discussing
sequences indexed by the sum-of-digits function. In Section 4 we present a concrete
application of Theorem 1 which leads to the aforementioned tight bounds on the
discrepancy of Halton- and (¢, s)-sequences indexed by sq(n). Furthermore, we
discuss a refinement of these results for van der Corput-sequences. Finally, in
Section 5, we deal with discrepancy bounds for sequences which are obtained by
certain moderately increasing index sequences, such as, e.g., [n®*| with 0 < o < 1.

2. Notation and basic definitions

We first outline the definitions of the sequences studied in this paper, namely van
der Corput-, Halton-, and (¢, s)-sequences.

Let b > 2 be an integer. A van der Corput-sequence (Zy)n>0 in base b is defined
by x,, = ¢p(n), where for n € Ny, with base b expansion n = ag + a1b+asb?+- - -,
the so-called radical inverse function ¢y : Ng — [0,1) is defined by

It is well known that for any base b > 2 the corresponding van der Corput-sequence
is uniformly distributed modulo one and that NDy ((2y)n>0) = O(log N), see, for
example, [3, 6, 20].

If we choose co-prime integers by,...,bs > 2, then s one-dimensional van der
Corput-sequences can be combined to an s-dimensional uniformly distributed se-
quence with points &, := (¢p, (1), ..., s, (n)) for n € Ny. This sequence is called

a Halton-sequence and it is known that its discrepancy is of order (log N)*/N,
see [1, 6, 10, 11, 13, 19, 22, 24|. Note that Halton-sequences are a direct general-
ization of van der Corput-sequences, so van der Corput-sequences can be viewed
as one-dimensional Halton-sequences, and indeed Halton-sequences are sometimes
also referred to as van der Corput-Halton-sequences (see, e.g., [20]). However, as
there will be results in this paper which only hold for the one-dimensional case, it
will be useful to explicitly distinguish van der Corput-sequences (which we use for
the one-dimensional variant) from Halton-sequences (which we use for the multi-
dimensional variant).

Another type of sequences we will be concerned with in this paper are (¢, s)-
sequences, for the definition of which we need the definition of elementary intervals
and (t,m, s)-nets in base b.

For an integer b > 2, an elementary interval in base b is an interval of the form
[T_;[aib=%, (a; + 1)b=%) C [0,1)*, where a;,d; are non-negative integers with
0<a; <b% for1<i<s.

Let t, m, with 0 < ¢t < m, be integers. Then a (¢, m, s)-net in base b is a point
set (yn)Zial in [0,1)% such that any elementary interval in base b of volume b*~™
contains exactly b* of the y,,.
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Furthermore, we call an infinite sequence (z,)n>0 a (t,s)-sequence in base b
if the subsequence (mn);k:klb),ﬁm_l is a (t,m, s)-net in base b for all integers k > 0
and m > t. It is known (see, e.g., [6, 23, 24]) that a (¢, s)-sequence is particularly
evenly distributed if the value of ¢ is small. In particular, it can be shown that
the discrepancy of a (t, s)-sequence in base b is of order b*(log N)*/N, see, e.g.,
[6, 23, 24].

A very important sub-class of (, s)-sequences is that of digital (¢, s)-sequences,
which are defined over algebraic structures like finite fields or rings. For the sake
of simplicity, we restrict ourselves to digital sequences over finite fields IF,, of prime
order p. Again for the sake of simplicity we do not distinguish, here and later on,
between elements in F,, and the set of integers {0,1,...,p — 1} (equipped with
arithmetic operations modulo p).

For a vector ¢ = (c1,ca,...) € Fp° and for m € N we denote the vector in
;" consisting of the first m components of ¢ by ¢(m), i.e., ¢(m) = (c1,...,¢m).
Moreover, for an N x N matrix C over F,, and for m € N we denote by C(m) the
left upper m x m submatrix of C.

For s € N and ¢ € Ny, choose N x N matrices C1,...,Cs over F, with the
following property. For every m € N, m > ¢, and all dy,...,ds € Ny with dy +
---4+ds = m —t, the vectors

cl(l)(m)7 .. .,ccgll)(m), .. .,cl(s)(m), .. .,céj)(m)

are linearly independent in [F}". Here cl-(J ) is the i-th row vector of the matrix C;.
For n € Ng let n = ng+mnip-+mnap?+--- be the base p representation of n. For
every index 1 < j < s multiply the digit vector n = (ng,ny,...)" by the matrix
Cj
Cj n = (xn,j(l)7mn’j(2)7 . .)T

(note that the matrix-vector multiplication is performed over F,), and set

L) . Tng(1) | 2n(2)

— 4 4.
" p p?
; (D) (s) : :
Finally set @, := (xn’,...,2n ). A sequence (x,)n>0 constructed in this way
is called a digital (¢, s)-sequence over F,. The matrices Cy,...,Cs are called the

generator matrices of the sequence.

To guarantee that the points x,, lie in [0,1)® (and not just in [0, 1]*) we assume
that for each 1 < j < s and w > 0 we have cgj 7)1; = 0 for all sufficiently large v,
where cSﬂZU are the entries of the matrix C; (see [24, p.72, condition (S6)] for more
information).

Throughout the paper we use the following notation. For functions f,g: N —
R, where f > 0, we write g(n) = O(f(n)) or g(n) < f(n), if there exists a C' > 0
such that |g(n)| < Cf(n) for all sufficiently large n € N. If we would like to stress
that the quantity C' may also depend on other variables than n, say aq, ..., qy,

which will be indicated by writing <a,.... .0y, -
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3. A general theorem

In this section we present a general result for the discrepancy of sequences of the
form (4(n))n>0, for a particular class of functions g : Ng — Ny. Here and in the
following, a sequence (a)ien, is called unimodal if the sequence (ag+1 — ak)keN,
has exactly one change of sign.

Furthermore, we need the concept of the so-called uniform discrepancy of a
sequence. The uniform discrepancy of a sequence (x,,)n,>0 in [0,1)* is defined as

BN((mn)nko) ‘= sup DN((wnJrk)n}O)'
keNy

Theorem 1. Let (x,)n>0 be an s-dimensional sequence with uniform discrepancy
Dy = Dn((n)n>0), and let f : Ng — R be a non-decreasing function such that
NDy < f(N) fOTN € Np.

Let g : Ng — Ng. Furthermore, let (N;);>0 be a strictly increasing sequence
in N with 1 = No, and assume that (N;)j>o is a divisibility chain, i.e., No|N,
N1|Ny, N3|Ns, etc. Define, for k € Ny,

Ga,j(k):=#{n : AN; <n < (A+1)N;,g(n) = k}.
Then the following two assertions hold.
1. For N € N with Ng < N < Ngy1 we have

NDN((Zg(n))nz0) = max Go,a(k).

2. Assume that G 4 ;(k) is unimodal in k for all j € Ny and all A € Ny, and put
Gj = Juax Ga,j(k) for j € Np.
For j € Ny and A € Ny let
va,ji=#{k €Ny : g(n) =k for AN; <n < (A+1)N,}
and put
vj = MAX vgj.
Then for N € N with Ng < N < Ngy1 we have

d

NDN«mg(n))n?O) < Z
=0

J

G;f(v))-

Proof.

1. To show the lower bound choose a non-negative integer s such that C~v'd =
Go,a(k) = maxgen, Go,q(k). Then the number of n € {0,..., N — 1} such
that &,y = x is at least Gy and hence, with an arbitrarily small interval
containing x, we obtain

Gq

Dn((Zg(n))nz0) = N
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2. To prove the upper bound let

N =aqNg+ag_1Ng_1+ -+ agNo,

with a; € Ny and
N
ajéjiﬂ; for je{0,...,d}.
N;
For j € {0,...,d} and £ € {0, ...,a; — 1} we consider the sequence
Nj—1
Xjo = (®g(an; +1)) 2o
where AN := aqgNg+---+a;+1Nj11 +N; (strictly speaking, A = A(j,£)).
Since G4,; is unimodal we may assume that for AN; < n < (A + 1)N; the
function g(n) attains the values

w,w+1,..., w4+ v,

for some w € Ny and some integer v = va,; < v(j).

Assume that the value w + uy with 0 < u; < v is attained most often, the
value w + ug with 0 < us < v is attained second most often, etc. ..., and
w—+u, with 0 < u, < v (indeed, u, € {0,v}) is attained least often. If w+w,
and w + u,41 are both attained the same number of times, then the order
of them is of no relevance.

If we consider the sequence X;, as a multi-set (i.e., multiplicity of the ele-
ments is relevant, but their order is not), then we can decompose X ¢ into

Gaj(w+uy) = Gajlw+ug)  times {@ujy, }

GAJ (w + U'2) - GA,]' (w + U3) times {ww+u1 y ww+u2}

GAJ' (w + U3) - GA,j (w + U4) times {-’Bw-&-ul s Lwusg s ww+u3}

Gij (w + u'Ufl) - GAJ (U} + u’U) times {ww+u1 ) ww+u2» ey ww«i»uv,l}
GAJ ('LU + u’U) - GAvj ('LU + U"UJFI) times {:L'w+u1 y Lawugs -+« + y Lwu, }7

where we formally set G4 ;(w + uy4+1) := 0. Note that because of the uni-
modality of G4 ;(k), for r € {1,...,v}, the sequence Ty tu,, Twtuy, - - - s Twtu,
is a sequence of the form xp,...,xpy,—1 for some B.
Then, using the assumptions of the theorem and the triangle inequality for
the discrepancy (see [20, p. 115, Theorem 2.6]), we obtain

N;j D, (Xj.0)

v
< Z(GAJ (Wt ur) = Ga (W + ur1))r Dy ({Totus s Bwtuszs - - - > Bwsu, })
r=1

<Gaj(wAur)f(vay) < Gjf(vg).

Using the triangle inequality for the discrepancy a second time, we finally

obtain

d

Njt1
N;j

d
NDN((mg(n))n20) < Zajij(vj) <

=0 j=0

ij(’Uj). .
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4. Indexing by the g-ary sum-of-digits function

We would now like to show results regarding index-transformed uniformly dis-
tributed sequences indexed by the g-ary sum-of-digits function. We first discuss
an application of the general result in Theorem 1 (Section 4.1) to Halton- and
(t, s)-sequences, and then show a refined result that applies to the particular case
of van der Corput-sequences (Section 4.2).

4.1. Results for Halton- and (¢, s)-sequences

Let ¢ > 2 be an integer and g(n) = s,(n) the ¢g-ary sum-of-digits function. For
j € Ny choose N; = ¢’. Then we have

Go(k) =#{n : 0< n< ¢,s.(n) =k}

and
(l+z+z®+- +a7 1) = Z Go,j(k)a",
keNy

by expanding the polynomial on the left hand side of the latter equation. Hence the
sequence (Go ;(k))ren, is the j-fold convolution of the sequence (1,1,...,1,0,0,...),
—_———
q—times
which implies by [25, Theorem 1| that Gy ;(k) is unimodal for sufficiently large j.
Since any n € Ng with A¢/ < n < (A + 1)¢/ can be written as n = n’ + Ag’,
where 0 < n’ < ¢/, it follows that s,(n) = s,(n) + s,(A) and hence G4 ;(k) =
Go,j(k — s4(A)), where we set Go ;(k — s4(A)) := 0 if k < s4(A). Consequently,
G a,j(k) is unimodal for any A € Ny and for sufficiently large j.
We recall the following lemma from |[§].

Lemma 1 (Drmota and Larcher, [8, Lemma 1]). For integers ¢ > 2, j > 1,
and 0 < k < j(qg—1) we have

’ v Pi(x; Pz J
sty = o (1) (125 252 o (5).
q

_dla=1)
where Py (x) and Pa(x) are polynomials, Py(z) is odd, where z; y := kgf\%, and

where o4 1= 4/ =1 The implied constant in the O-notation is uniform for all k

12
and only depends on q.

Due to Lemma 1, there exists some ¢4 > 0 such that for sufficiently large j we
have G4 j(k) < ¢qq? /+/J, uniformly in k and A. Thus we obtain

Gy <oyl (2)
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for sufficiently large j. On the other hand, for k= U ‘S—lj it follows that

~ qj
max Go j (k) > Go,; (k) > > 3)
Furthermore it is clear that vo = 1 and v; < ¢j for all j € N. As an application
of Theorem 1, we obtain the following result.

Theorem 2. Let X := (x,)n>0 be an s-dimensional sequence such that

mD,, ((®n)n>0) < C(logm)® for all m € N, where C may depend on s or on the

sequence X, but not on m. Let g > 2 be an integer. Then there exist cz(z ), SUES 0,

where cg?’) may also depend on s and X, such that

(2) log log N)*
<D n < (3)(Og7g.
Viog S D@z < ey

Proof. Assume that ¢ < N < ¢%*'. Then we obtain from Theorem 1 and
Equation (3) that

d 61(12)

DN((wsq(n)) ) CNQQT m

On the other hand, from Theorem 1 and Equation (2) ,

-DN((xsq(n) chq \[ IOg(qj))

1 qj 1 qj
<4 (logd)® | — Z -+ = —-=
N 1<j<d/2 7 N d/2<;j<d Vi
log N 1 loglog N)?
<, (logd) <¢og +> <, Joslos V)™
VN Vd log N
and the result follows. | |

The general lower bound in Theorem 2 is best possible with respect to the
order of magnitude in N. This will follow from Theorem 3 below which deals with
van der Corput-sequences.

There are several examples of sequences X which satisfy the conditions in
Theorem 2 such as Halton- or (¢, s)-sequences (for a proof of this fact, we refer to
Section 6 of this paper). We thus obtain the following corollary.

Corollary 1. Let ¢ > 2 be an integer.
1. Let (zy)n>0 be an s-dimensional Halton-sequence in pairwise co-prime bases
bi,...,bs. Then there exist cg ), 05142 by.b. >0 such that

(2) s
c vt @ (loglogh)
2 DN((xSq(n))nzol) < 65172,171,...,175 m :

N
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2. Let (xn)n>0 be a (t,s)-sequence in base b. Then there exist céz),cgys,t

such that

>0

6512) < Dn((xs, (m) )<c(5) (loglog N)*
\/W X UN 5q(n))n=20) X Cqp st m

The result of the first part of Corollary 1 can be improved for the special
instance of van der Corput-sequences, as we will show next.

4.2. The van der Corput-sequence indexed by the sum-of-digits function

The following results are based on a general discrepancy estimate which was first
presented by Hellekalek [14]. The following definitions stem from [14, 15, 17]. We
refer to these references for further information.

For an integer b > 2 let Zy = {z = > =y zb" : 2. € {0,...,b—1}} be the set
of b-adic numbers. Z; forms an abelian group under addition. The set Ny is a
subset of Zy. The Monna map ¢y : Zp, — [0, 1) is defined by

(=)=
r=0

Note that the radical inverse function ¢ is nothing but ¢, restricted to Ng. We
also define the inverse ¢; : [0,1) — Z;, by

. (') z, - () §
¢b ( br+1> T ZOxT’b )

r=0

where we always use the finite b-adic representation for b-adic rationals in [0, 1).
For k € Ny we can define characters xi : Zy — {c € C : |c| = 1} of Zy, by

Xk(z) = exp(2migy (k) z).

Finally, let v, : [0,1) — {c € C : |c| = 1} where v (z) = xx (¢} (7).

For b > 2 we put pp(0) = 1 and py(k) = Wm,,/b) for k € N with base b
expansion k = kg + k1b+ -+ + K.b", k. £ 0.

We have the following general discrepancy bound which is based on the func-
tions .

Lemma 2. Let g € N. For any sequence (yn)n>0 in [0,1) we have

b9—1
1
D ((yn)nz0) < 35 + kz pu(k)
=1

1 N-—1
D IRAIE
n=0
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Proof. For the special case of a prime b, this result was shown by Hellekalek [14,
Theorem 3.6]. Using [17, Lemma 2.10 and 2.11] it is easy to see that Hellekalek’s
result can be generalized to the one given in the lemma (cf. [16]). |

We show a discrepancy bound for the van der Corput-sequence indexed by the
g-ary sum-of-digits function for small values of ¢. This result improves on the first
part of Corollary 1 for van der Corput-sequences. Moreover, it shows that the
general lower bound from Theorem 2 is best possible in the order of magnitude
in N.

Theorem 3. Let b,q > 2 be integers with ¢ < 14, let (zn)n>0 be the van der
Corput-sequence in base b and let (sq(n))n>0 be the sequence of the g-adic sum-of-
digits function. Then we have

1
DN((xsq(n))n20) <b,g W-

Remark 1. In view of Theorem 2, the upper bound in Theorem 3 is best possible
with respect to the order of magnitude in N.

Before we give the proof of Theorem 3, we need some preparations and auxiliary
results. Writing e(z) := exp(2wixz) for short, we have

1 N-1 1 N-1
N 2 Ham) = 57 2 e loalmn(h)) = Tu(N),

Lemma 3. Let b,q > 2 be integers, let k € N and let (zn)n>0 be the van der
Corput-sequence in base b. Then for any m € Ny it is true that

. m/2
Ti(g™) < (1 - m(‘;ﬂnqsb(kw) ,

where ||z|| is the distance of a real x to the nearest integer.

Proof. First observe that

Tk<qm>=qim S om0+t mm 1) (k) = (Ta(g)™

N0, sNm—1=0
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We now proceed as in [27]. We use the identities exp(iz) + exp(—iz) = 2cosz
and cos(2z) = 1 — 2sin® z to obtain

ITe(g)|? = qi e ((n— n')én(k))
n,n’=0

- qi g+ 3 (e((n— oK) +e(—(n —n)gu(k)))

- qu q+2 i cos (2m(n —n')¢p(k))

_ qi2 g+2 3 (1= 2sin? (n(n — ')y (k)

-1-5 Z a0 —you() < 1 - L in ()

<1- Muqsb(k)u?,

Therefore,
. m/2
Tulg™) < (1 - 16(‘fqg”||¢b<k>|2) | .

We also need the following lemma.

Lemma 4. For k € N and any N € N with g-adic expansion N = Zf:o arq" we
have

|Tk Za7q |Tk

Proof. For N = Zf:o arq",

R

{OvaNfl}: U{aRqR+"'+ar+1qr+17"',aRqR+"‘+arqr71})
r=0
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and hence
N-1
N|T(N)| = e(sq(n)%(k))’
n=0
R arq"—1
==§:MWR+“'+MHNM@)EZ‘N%WWM@)
R |arq"—1 ar—1 q"—1
<Y 1D elsg ‘ Z Z (ugp(k)) D e (sq(n)eu(k))
r=0| n= =0 =0 n=0
R q"—1 R
<Y ar | Y elsy(n Zarq T (q"
r=0 n=0 =0

We are now ready to give the proof of Theorem 3.

Proof. For k € {b",..., 0"t — 1} we have @p(k) = Ak with A, € {1,...

pr+1
b+t — 1}, where Ay, # Ay, for ki # ko. Hence we obtain from Lemma 3

b9 —1 g-1 A | 2\ ™/2
16(q — 1)
RIS srsmom ol (B =ui E )

r= k=b" q
a 2\ m/2
sl )

Ay
br—i—l

-1 pr+l_q

16(g — 1
\Zb’“+151n7r/b aZ=1 (1 (qz )’

q

Q

rl_

For the inner sum we have
! 16(q — 1)
> (-
a=1

a 2\ m/2
q bt H >
B 16(g—1) a2 \™*
- Z 1- T2y
1<a<br+1/2
L 16g-1) a2 m/2
¢ ( B W)
br+1l /2<a<br
m/2

_ 1 a2 16(g—1)
- pm(r+1) Z <b - 2 a

1<a<br+1/2 q

+ s Z (bQ’”r2 - M(brﬂ _ a)z) /2

_|_

m(r+1 2
b ) b+l /2<a<br+1 q
2 16(g —1) ,\™/? Aqg—1)\™?
S pra2 - 22} sy (1- 2
bmir ) 1<a<zb;+1/2< ¢ v ¢

where d(b) = 0 when b is odd and 6(b) = 1 when b is even.
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(q DS

The assumption ¢ < 14 yleldb > 1, and hence

b*i:_l <1 16((]* 1) ’ a Hz)m/2
p q2 br+1
2 2r 42 2\™m/2 3\
S pm(r+1) Z (b —a ) + <4>
1<a<br+1/2
p2r+2_1

9 /2 3 m/2
gbm(r+1) uz::l v +<4)
3 m/2
um/2du+<4>

2
S pmen

b27‘+2 3 m/2
<<b7q — + <>

p2r+2

m+1 4
with an implied constant depending only on b and q. Therefore

b9 —1 g—1

1 b2(r+1) 3 m/2 b9
Zpb )Tk(g |<qubr+1<m+1+<4) <<b’qm-i-l’ )

again with implied constants depending only on b and gq.
Assume that N = Zf:o arq". Then, using Lemma 4 and (4), we obtain

b9 —1 b9 —1
Z po(R)ITe(N)I < Z amq™ Z o (k)| T (q™)]
R m
p g VI — Z g ———
= m + 1
Since
~ Qm <= amq™ + — Am
N m=0 m+1 N m=0 m=|R/2|+1 +1
< QR/Q + l Ly —
TN R "TlogN
we obtain
bI—1 b
Z pv (k)| T (N)| <b,q og N’

From Lemma 2 it follows that
b9

1
D ((@s,(m)nz0) g 35 + gV’
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Choosing g = |log, v/log N | yields

1
DN ((%s,(n))n>0) <b,g e

log

Remark 2. We remark that, in principle, the method of proof based on Lemma 2
can not only be used for van der Corput-sequences, but also for Halton-sequences in
higher dimensions. However, this leads to a discrepancy bound of order (log N)™ 1 ;
which is considerably weaker than the one presented in Theorem 2.

5. Other index-transformations

In this section, we would now like to discuss index-transformed Halton- and digi-
tal (¢, s)-sequences indexed by a different kind of sequence than the sum-of-digits
function, as, e.g., ([n*])n>0 with 0 < a < 1. The following theorem provides
another general result, namely lower and upper bounds on the discrepancy of se-
quences indexed by functions which in some sense are “moderately* monotonically
increasing.

Theorem 4. Let A € Ny and write Ny .= {A, A+1, A+2,...}. Let f : Ny — Ny
be surjective and monotonically increasing. Moreover, define, for k € N4,

F(k) :=#{n : n €Ny, f(n) =k}.

Under the assumption that F(k) is monotonically increasing in k for sufficiently
large k, the following three assertions hold.

1. For an arbitrary sequence (€y)n>o0 in [0,1)° it is true that

F(f(N) - 1)
L < D@ saso):
2. For a Halton-sequence (Tp)n>0 in co-prime bases by, ..., bs,

2F(f(N — 1)+ 1)(log N)*
N )

Dn((xf(n))nz0) < C

where C' is a constant independent of N .

3. For a digital (t, s)-sequence (€,,)n>0 over F,, for prime p,

Div((@ ) Juso) < Gpt 2EL N = 13V+ 1)(log N)*

where C is a constant independent of N.
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Proof.

1. Let (@n)n>0 be an arbitrary sequence in [0,1)%, and let f and F be as in
the theorem. If f(N) = A, then, due to the properties of f, we obtain
F(f(N)—1) =0, so the lower bound on the discrepancy is trivially fulfilled.
If, on the other hand, f(N) > A, then it follows by the surjectivity of f that
there exist n € Ny such that f(n) = f(IV) — 1. Furthermore, whenever n
is such that f(n) = f(N) — 1 < f(N), it follows by the monotonicity of f
that n < N. Hence, the value f(N)— 1 occurs F(f(N) — 1) times among
f(0),..., f(N —1), and the point & ;ny_; is attained F'(f(N)— 1) times in
the sequence x (), ..., Tsn_1). The lower bound follows by considering an

arbitrarily small interval containing @ ¢(ny—1-

2. Without loss of generality, assume f(0) =0, i.e., A =0.
Furthermore, it is no loss of generality to assume that f(1) = 1 and that F'(k)
is monotonically increasing in k for k£ > 0. Indeed, if this is not the case, we
can disregard a suitable number of initial elements x ¢ (o), . . ., T f(n,), without
changing the discrepancy of the first NV points of the sequence (s )n>0 by
more than %

Let b1, ..., bs > 2 be co-prime integers and let (x,,)n>0 be the corresponding

Halton-sequence. For estimating the discrepancy, we consider an arbitrary

interval
S

I:=]]l0,e") c0,1),
i=1

for some oM, ... a®) € (0,1]. For each i € {1,...,s}, choose m; as the
minimal integer such that N < b;"". Since f(N — 1) < N — 1, the i-th
component :cgf()n) of a point Tf(,), 1 <i<'s,0<n< N -1, has at most m;
non-zero digits in its base b; representation. From this, it is easily derived
that we can restrict ourselves to considering only a(?) with at most m; non-
zero digits in their base b; expansion, 1 < ¢ < s, as this assumption changes
DN ((®f(n))n=0) by a term of order of at most N~'. We can therefore write
I as the disjoint union of intervals

s [7i—1 017(}) Ji Oz,(nl)
= T[S 50325 ).

i=1 Lr=1 v =1

where 1 < j; < m; for 1 <i < s and the ag) represent the base b; digits of
o). Each of the I(j1,...,4s) can in turn be written as the disjoint union of

intervals

s s [zl () Jizl (i)

. L (673 ki (o7 ki +1
i=1 i=1 Lr=1 ¢ i r=1 i

with 1 < j; <m; and 0 < k; < ag-f) —1. If ag-f) =0, then J(j;, k;) is of zero

volume containing no points. Hence we can restrict ourselves to considering

only those J(j;, k;) with agz) > 1.
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Let now i € {1,...,s} and v > 0 be fixed. By the construction principle of
the points of the Halton-sequence, we see that !Eq(}) is contained in J(j;, k;)
if and only if

AN

NG > Gi-1) | )
Uji— Q;

e ) k;

J

where the vq(j), 0 < r < j; — 1 are the digits of v in base b;. Note that (5)

has exactly one solution (U(()i), . j(l)

exactly one remainder R® modulo bjl such that xv € J(ji, ki) if and only
if v = R (mod b)"). By the Chinese Remainder Theorem, there exists

exactly one remainder R modulo @ :=[]}_; bf‘ such that

1) modulo b;. Hence we can identify

x, € [[J0Gi ki)  ifandonlyif wv=R (modQ).

We now deduce an estimate for the number of points among (), - .., Ty(n_1)
that are contained in an interval of the type []’_, J(js, k;). For short, we
denote this number by A ([T:_, J(ji, ki)

Note that there exists a number § = (R, Q, f(IN — 1)) € {0,1} such that

0= f(0) < R+wQ < f(N—1) if and only if w € {0,..., [L5 | — 140},
SO

R |_f(NQ 1)J_2+9 Lf(l\(’;) 1)J_2+9
A (H J(jz-,ki)) > ), FR+wQ) > Y FwQ), (6)
i=1

w=0 w=0

where we used the monotonicity of F. On the other hand, with the same
argument,

R Lf(NQ I)J*1+9 Lf(NQ 1)J+9
A <H J(ji,k») < ). FR+uwQ < ), FuQ). (7)
i=1

w=0 w=1

For the following, let K = {%J + 0. Let

(K-1)Q-1
4= Z F(r),
r=0
and note that we can write
K—2Q— K—2 Lf(N;j”J—H@
Y Y rweinzeY rwe=e Y Fwe)
w=0 r=0 w=0 w=0
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On the other hand, by the definition of 6,

(| H552 [—1+0)@-1 F(N-1)-1
5, = ¥ Fir)< Y, F(r)<N-1,
r=0 r=0

from which we conclude that

| L2 | —240

Y FwQ)<

w=0

N-—-1
o

Moreover, let

KQ
Yp = ZF(T),
r=1

213

for which we can derive, in the same way as the corresponding estimate for

EAa
Lf(NQ*I)J_,'_Q

S<Q Y, FwQ).
w=1

Again by the definition of 6,

(| 19552 |+0)Q FIN=1)
Sp= Y,  F(n= > F)
r=1 r=1

— #{neN:0< f(n) < FIN-1)} 2N -1,

where we used that f(1) = 1 and that f is monotonically increasing. Con-

sequently,
Lf(NQfl) |+0

Z F(wQ) >

w=1

N -1
o

Note, furthermore, that

Lf(%*l)J+0 Lf(%*1>J72+9

0< Y FwQ) - Y.  FwQ)

w=1 w=0

r(([ 2252 1+1)

(7 o)e)

<2F(f(N 1) +1).

9)

(10)
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Combining Equations (6), (9), and (10), and noting that A ([];_, J(j:, k:)) =
%, gives

) s L1 L0 240 )
~A <i1:[1J(ji7ki)> _§>N > F(“’Q)‘é

w=0
e Y @) - 2PN )+ 1) 1
RF(f(N-D+1) N-1 1
- N QN @
_ 2PN -1 +1) 1
z N NG

In exactly the same way, using (7), (8), and (10), we get

%A (H J(iz‘,h)) -1 < 2PN 1) + 1) + !

Q X N N7Q7
from which we derive

1 5 1
—A J(i ki) | — =| <
(0] -

QF(f(N—-1)+1) 1
N JrNiQ.

X

Finally, note that, by writing A(I) for the number of points of (x f(n))ﬁgol

in I,
A(D)
‘vaw
m (1) 1 () 1 .
DI o S S Y1 EERRY ERY V) |
J1i=1 js=1 ki1=0 k=0 1 it
< cUos N FFIN-1)+1)
N

for a suitably chosen constant C', and the result follows.

3. As in Item 2, assume without loss of generality that f(0) =0, f(1) =1, and
that F(k) is monotonically increasing in k for k > 1.
Let p be a prime and let (x,),>0 be a digital (¢, s)-sequence over F,. For
estimating the discrepancy, we consider an arbitrary interval

S

1:=T]0,0®) € 0,1)°,

i=1

for some oM, ... o) e (0,1]. Choose m as the minimal integer such that
N < p™. By a similar argument as for the case of Halton sequences, we
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can restrict ourselves to considering only (¥ with at most m non-zero digits
agl), .. ( ) in their base p expansion. Moreover, with the same reasoning as
in the Halton case, we see that we essentially only need to deal with intervals

of the form
s [Jdi—1 (i) Ji—1 (i)

T W ki » kit

i=1 Lr=1 r=1

with 1 < j; <mand 0 < k; < agf) — 1. Again, if oz;? = 0, then J(j;, k;) is of
zero volume containing no points, so we can restrict ourselves to considering
only those J(j;, k;) with a(z) > 1.

As for the case of Halton sequences, we would like to derive an upper
and a lower bound on the number A ([];_; J(j;, k;)) of points contained

in [T;_, J(ji, ki). To this end, denote the r- th row of a generator matrix Cj,

1<j<sof (®y)n>0 by .

For an integer v > 0, the point @, is contained in []}_, J(ji, k;) if and only
if

Vo
V1 T
C-lu| =4, (11)
where vg, v1, V2, ... are the base p digits of v, where
1 1 2 2 s s
A::(ag),. §1)_17k1, ()7...,a;2)_1,k27 ...... ,a§)7...,ags)_1,ks)
14 +Js
e Js |
and
T . )
C:= (cgl), o cﬁ),cg2)7 A cg), ...... ,cgs), .. ,cgf)) € IFZ()”""””S)XN.

Let now @ := p/1tHis*t let w € Ny and consider those v > 0 with wQ <
v < (w4 1)Q — 1. For these v, the first j; + jo + - - + js + ¢ digits in their
base p expansion vary, while all the other digits are fixed. Hence we can
write (11) as

Vo
vy Ujy+-+jatt+1
Vigdgeeidiq AT
Dl' . +D2 Jit+is+Ht+2 = A s
Uji-jstt

where C = (D1|D3) and where Dy is an (j1+- - -+7s) X (j1+- - -+ Jjs+t)-matrix
and D5 is an (j1 + - - + js) X N-matrix over Fp,.
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Due to the fact that (z,)n>0 is a digital (¢, s)-sequence, it follows that D,
has full rank, and hence there are exactly p' values v in {wQ,w@ + 1,...,
(w+ 1)Q — 1} such that x, is contained in [[;_, J(ji, k;)-

Now note again that there exists a number 6 = 6(Q, f(N —1)) € {0,1} such
that 0 = f(0) < wQ < f(N—1) if and only if w € {0,..., [{E1 | —1+6}.

By our observations above, for each of these w € {0, ..., L%J —-1+6}
there exist p' integers Ry 1,..., Ry pt € {0,...,Q — 1} such that exactly
the points LRy 14+wQs -+ wa,pt-‘er among TyQ, LwQ+1;-- - 7w(w+1)Q—1 are
contained in []7_; J(ji, ki). Therefore, we can estimate
s \-WJ —2+40 pt LWJ_QJ’_Q
A (H J(ji,ki)> > Y N F(Re.tw@) zpt Y FwQ),
=1 w=0 z=1 w=0
(12)
and
s LfU\é?*l)J_l_‘_g Pt Lf(Z\é;l)J“’e
(lwn) < T Srww s ¥ rwo
=1 w=0 z=1 w=1
(13)

In exactly the same way as for a Halton sequence, we obtain, by noting that
. t
A2 TG k) = rrtr =

p

1 = 1| p2F(f(N-1)+1) p
L. _ |«
’NA <ZI—11 JU““) oS N NG
and the result follows. | |

Examples of functions f and F satisfying the assumptions of Theorem 4 are
obtained as follows. Let g : Rf — R{ be a function that is twice differentiable
on (0,00), with ¢’'(x) > 0 and ¢”(z) < 0 for z € (0,00). Moreover, define f(n) :=
lg(n)| for n € N. Tt then easily follows that f and F indeed fulfill the assumptions
of the theorem and we obtain

Flk+1)=[g " (k+1)] - [g7"(k)]. (14)
We thus obtain the following exemplary corollary to Theorem 4.

Corollary 2. Let « € (0,1).Then the following assertions hold.

1. For a Halton-sequence (xn)n>0 in co-prime bases by, ..., bs,

o — (log N)*
Ot < D((@ e Jnzo) < G LN

where Cy, Cy are constants that depend on the sequence and on «, but are
independent of N.
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2. For a digital (t,s)-sequence (n)n>0 over Z, for prime p,

= 1 = (log N)®
ANrev < ne|/n < RN
Clyra S Dn((®@ne)nz0) < O2—7

where 61, 52 are constants that depend on the sequence and on «, but are
independent of N.

Proof. The result follows by combining Theorem 2 with the observation that
ke V< F(k) < coka

with constants ¢/, ¢, > 0 that depend on «, but not on k. |

6. Appendix: Uniform discrepancy

In Corollary 1 we implicitly used the fact that (¢, s)-sequences in base b as well as
Halton-sequences in pairwise co-prime bases by, ..., bs have uniform discrepancy of
order (log N)®/N. Since we are not aware of a proof of these facts in the existing
literature, we provide one here.

6.1. Uniform discrepancy of (t, s)-sequences in base b

Assume that Ay(t, m,s) is a number for which
mebm («@) < Ab(t, m, S)

holds for the discrepancy of any (¢,m, s)-net &2 in base b.

Theorem 5. Let (x,,)n>0 be a (¢, s)-sequence in base b. Then we have

_ [log, N
NDN((n)nz0) < (20— 1) [ "+ D Ay(t,m,s)
m=t
Proof. Let k € Ng. We show that
[log, N
NDx((Tnsak)nz0) < (20— 1) [ 01+ D Ay(t,m,s)
m=t

uniformly in k£ € Nj.

For N < bt, the assertion follows trivially by NDy((€n+k)n>0) < N.

Let now N € N, N > b with b-adic expansion N = a,b" + a,_1b" "1 +--- +
a1b+ ag where a; € {0,...,0—1} for 0 < j < r and a, # 0 (note that r > ¢). For
given k € Ny, choose £ € N such that (¢ — 1)b" < k < ¢b". Then we can write

E=00" — (dp_ 10" '+ dib4dy) — 1
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with some d; € {0,...,b—1} for 0 < j <r—1, and
E=(—1b" + k1 b" 4 4 m1b+ Ko

with some k; € {0,...,b—1} for 0 < j < r—1. Note that therefore d;+r; = (b—1)
for0<j<r.

We split up the point set Py n :={x, : k <n <k+ N —1} in the following
way:

Py, N = U P64V U P paV U P

1<d<dp+1 1<m<t—1 t<m<r—1
Sdsdot 1<d<dm 1<d<dm
" m m
v U v U 2. U 2l
0<a<ar—2 o<m<t—1 t<m<r—1
0<w<am +rm—1 0<T<am +rm—1
where
r . . m
m,d — {mgbrfdr_lbrfl7,__7d7n+1b7n+17db7n+j . O g ] < b },

egzg = {wgbr+ab¢"+j : 0 é] < br}7
‘@;g,m = {$(‘€+a1'71)b7‘+(~7'71+a7'71)br_1+"'+(K7n+l+a1n+l)bm+1+wbm+j 0y < bm}
For m <t —1, we can bound the discrepancy of &, ; and &7, , respectively, by
the trivial bound 1. For m > ¢, the point sets i@;n,d and 2! are (t,m, s)-nets

in base b, and the 2! are (t,r, s)-nets in base b. From the triangle inequality for
the discrepancy we obtain

t—1
NDN(Pi.n) < (do + ag + ko + DB + D (di + G + K )0™
m=1
r—1
+ Z(dm + am + Em)Ap(t, m, s) + max(a, — 2,0)A(t, 7, 5)
m=t
r—1
<(26-1)+ (20 —2) <(t — )bt + Z Ay(t,m, s))
m=t
+ max(b — 3,0)Ay(t, 7, 5)
<(26—1) (tbf + At m, s)>
m=t
and the result follows, since r = [log, N |. |

Corollary 3. Let (x,)n>0 be a (t,s)-sequence in base b. Then we have
NDn((n)ns0) <sp bt (log N)®.
Proof. The result follows from Theorem 5 together with the fact that
Ap(t,m, s) s p btms—!

for m >t (see, for example, [6, 24]). [ |
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6.2. Uniform discrepancy of Halton-sequences

Theorem 6. Let (x),>0 be a Halton-sequence in pairwise co-prime bases by, ..., bs.
Then we have

~ |b;/2]log N 1
NDy((n)n>0) =3 H < log b, s) +O((log N)*~),
where the implied constant depends on by,...,bs and s.

Proof. The result follows from an adaption of the proof of [6, Theorem 3.36].
Note that [6, Lemma 3.37] also holds true for A(J,k,N,S) :=#{neN: k<n<
k+ N and x,, € J} instead of A(J,N,S) := A(J,0,N,S). The rest of the proof
of [6, Theorem 3.36] remains unchanged. |
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