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DISCREPANCY ESTIMATES FOR INDEX-TRANSFORMED
UNIFORMLY DISTRIBUTED SEQUENCES

Peter Kritzer, Gerhard Larcher, Friedrich Pillichshammer

Abstract: In this paper we show discrepancy bounds for index-transformed uniformly dis-
tributed sequences. From a general result we deduce very tight lower and upper bounds on the
discrepancy of index-transformed van der Corput-, Halton-, and (t, s)-sequences indexed by the
sum-of-digits function. We also analyze the discrepancy of sequences indexed by other functions,
such as, e.g., bnαc with 0 < α < 1.
Keywords: discrepancy, uniform distribution, van der Corput-sequence, Halton-sequence, (t, s)-
sequence, sum-of-digits function.

1. Introduction

A sequence (yn)n>0 in the unit-cube [0, 1)s is said to be uniformly distributed
modulo one if for all intervals [a, b) ⊆ [0, 1)s it is true that

lim
N→∞

#{n : 0 6 n < N,yn ∈ [a, b)}
N

= vol([a, b)). (1)

A quantitative version of (1) can be stated in terms of discrepancy. For an infinite
sequence (yn)n>0 in [0, 1)s its discrepancy is defined as

DN ((yn)n>0) := sup
[a,b)⊆[0,1)s

∣∣∣∣#{n : 0 6 n < N,yn ∈ [a, b)}
N

− vol([a, b))

∣∣∣∣ ,
where the supremum is extended over all sub-intervals [a, b) of [0, 1)s. For a given
finite sequence X = (x1, . . . ,xM ) we write DM (X) for the discrepancy of X with
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the obvious adaptions in the above definition. An infinite sequence is uniformly
distributed modulo one if and only if its discrepancy tends to zero as N goes
to infinity. However, convergence of the discrepancy to zero cannot take place
arbitrarily fast. It follows from a result of Roth [28] that for any infinite sequence
(yn)n>0 in [0, 1)s we haveNDN ((yn)n>0) > cs(logN)s/2 for infinitely many values
of N ∈ N (by N we denote the set of positive integers, and we put N0 := N∪{0}).
An improvement of this bound can be obtained from [4]. For the special case
s = 1, Schmidt [29] (see also [2]) showed that for any infinite sequence (yn)n>0 in
[0, 1) we have NDN ((yn)n>0) > logN

66 log 4 for infinitely many values of N ∈ N. This
result is best possible with respect to the order of magnitude in N . An excellent
introduction to this topic can be found in the book of Kuipers and Niederreiter [20]
(see also [6, 9, 21, 24]).

Well known examples of uniformly distributed sequences are (nα)-sequences
(also called Kronecker-sequences, see [9, 20]), van der Corput-sequences and their
multivariate analogues called Halton-sequences (see [6, 19, 20, 24]), as well as
(digital) (t, s)-sequences (see [6, 24]).

In recent years, also the distribution properties of index-transformed uniformly
distributed sequences have been studied, especially for the examples mentioned
above. In this paper, we mean by an index-transformed sequence of a sequence
(xn)n>0 a sequence (xf(n))n>0, where f : N0 → N0. Note that (xf(n))n>0 is
in general no subsequence of (xn)n>0 since we do not require that f is strictly
increasing.

For instance, the distribution properties of index-transformed Kronecker-se-
quences indexed by the sum-of-digits function were studied in [5, 8, 30, 31]. For
this special case, very precise results can be found in [8]. In [7] the well-distribution
of index-transformed Kronecker-sequences indexed by q-additive functions is con-
sidered. Furthermore, in [26] a discrepancy bound for van der Corput-sequences
in bases of the form b = 5`, ` ∈ N, indexed by Fibonacci numbers is shown. The
papers [17, 18, 26] deal with index-transformed van der Corput-, Halton-, and
(t, s)-sequences.

In this paper we are specifically interested in discrepancy bounds for sequences
indexed by the q-ary sum-of-digits function and related functions and, furthermore,
for sequences indexed by “moderately” monotonically increasing sequences, as for
example bnαc with 0 < α < 1. For an integer q > 2 and n ∈ N0 with base q
expansion n = r0 + r1q+ r2q

2 + · · · the q-ary sum-of-digits function is defined by
sq(n) := r0 + r1 + r2 + · · · .

Previously, it has been shown in [18] that the sequence (xsq(n))n>0, indexed by
the q-ary sum-of-digits function, where (xn)n>0 denotes the Halton-sequence in co-
prime bases b1, . . . , bs is uniformly distributed modulo one. The proof of this result
is due to the fact that the sequence generated by the q-ary sum-of-digits function
is uniformly distributed in Z, see, for example, [12, 27]. In this paper we provide
very tight lower and upper bounds on the discrepancy of index-transformed van
der Corput-, Halton-, and (t, s)-sequences indexed by the sum-of-digits function.
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This paper is structured as follows. In Section 2, we provide basic definitions
and notation used throughout the subsequent sections. In Section 3, we prove
a general theorem (Theorem 1) which will be of great importance in discussing
sequences indexed by the sum-of-digits function. In Section 4 we present a concrete
application of Theorem 1 which leads to the aforementioned tight bounds on the
discrepancy of Halton- and (t, s)-sequences indexed by sq(n). Furthermore, we
discuss a refinement of these results for van der Corput-sequences. Finally, in
Section 5, we deal with discrepancy bounds for sequences which are obtained by
certain moderately increasing index sequences, such as, e.g., bnαc with 0 < α < 1.

2. Notation and basic definitions

We first outline the definitions of the sequences studied in this paper, namely van
der Corput-, Halton-, and (t, s)-sequences.

Let b > 2 be an integer. A van der Corput-sequence (xn)n>0 in base b is defined
by xn = ϕb(n), where for n ∈ N0, with base b expansion n = a0 +a1b+a2b

2 + · · · ,
the so-called radical inverse function ϕb : N0 → [0, 1) is defined by

ϕb(n) :=
a0

b
+
a1

b2
+
a2

b3
+ · · · .

It is well known that for any base b > 2 the corresponding van der Corput-sequence
is uniformly distributed modulo one and that NDN ((xn)n>0) = O(logN), see, for
example, [3, 6, 20].

If we choose co-prime integers b1, . . . , bs > 2, then s one-dimensional van der
Corput-sequences can be combined to an s-dimensional uniformly distributed se-
quence with points xn := (ϕb1(n), . . . , ϕbs(n)) for n ∈ N0. This sequence is called
a Halton-sequence and it is known that its discrepancy is of order (logN)s/N ,
see [1, 6, 10, 11, 13, 19, 22, 24]. Note that Halton-sequences are a direct general-
ization of van der Corput-sequences, so van der Corput-sequences can be viewed
as one-dimensional Halton-sequences, and indeed Halton-sequences are sometimes
also referred to as van der Corput-Halton-sequences (see, e.g., [20]). However, as
there will be results in this paper which only hold for the one-dimensional case, it
will be useful to explicitly distinguish van der Corput-sequences (which we use for
the one-dimensional variant) from Halton-sequences (which we use for the multi-
dimensional variant).

Another type of sequences we will be concerned with in this paper are (t, s)-
sequences, for the definition of which we need the definition of elementary intervals
and (t,m, s)-nets in base b.

For an integer b > 2, an elementary interval in base b is an interval of the form∏s
i=1[aib

−di , (ai + 1)b−di) ⊆ [0, 1)s, where ai, di are non-negative integers with
0 6 ai < bdi for 1 6 i 6 s.

Let t,m, with 0 6 t 6 m, be integers. Then a (t,m, s)-net in base b is a point
set (yn)b

m−1
n=0 in [0, 1)s such that any elementary interval in base b of volume bt−m

contains exactly bt of the yn.
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Furthermore, we call an infinite sequence (xn)n>0 a (t, s)-sequence in base b
if the subsequence (xn)

(k+1)bm−1
n=kbm is a (t,m, s)-net in base b for all integers k > 0

and m > t. It is known (see, e.g., [6, 23, 24]) that a (t, s)-sequence is particularly
evenly distributed if the value of t is small. In particular, it can be shown that
the discrepancy of a (t, s)-sequence in base b is of order bt(logN)s/N , see, e.g.,
[6, 23, 24].

A very important sub-class of (t, s)-sequences is that of digital (t, s)-sequences,
which are defined over algebraic structures like finite fields or rings. For the sake
of simplicity, we restrict ourselves to digital sequences over finite fields Fp of prime
order p. Again for the sake of simplicity we do not distinguish, here and later on,
between elements in Fp and the set of integers {0, 1, . . . , p − 1} (equipped with
arithmetic operations modulo p).

For a vector c = (c1, c2, . . .) ∈ F∞p and for m ∈ N we denote the vector in
Fmp consisting of the first m components of c by c(m), i.e., c(m) = (c1, . . . , cm).
Moreover, for an N× N matrix C over Fp and for m ∈ N we denote by C(m) the
left upper m×m submatrix of C.

For s ∈ N and t ∈ N0, choose N × N matrices C1, . . . , Cs over Fp with the
following property. For every m ∈ N, m > t, and all d1, . . . , ds ∈ N0 with d1 +
· · ·+ ds = m− t, the vectors

c
(1)
1 (m), . . . , c

(1)
d1

(m), . . . , c
(s)
1 (m), . . . , c

(s)
ds

(m)

are linearly independent in Fmp . Here c (j)
i is the i-th row vector of the matrix Cj .

For n ∈ N0 let n = n0 +n1p+n2p
2 + · · · be the base p representation of n. For

every index 1 6 j 6 s multiply the digit vector n = (n0, n1, . . .)
> by the matrix

Cj ,
Cj · n =: (xn,j(1), xn,j(2), . . .)>

(note that the matrix-vector multiplication is performed over Fp), and set

x(j)
n :=

xn,j(1)

p
+
xn,j(2)

p2
+ · · · .

Finally set xn := (x
(1)
n , . . . , x

(s)
n ). A sequence (xn)n>0 constructed in this way

is called a digital (t, s)-sequence over Fp. The matrices C1, . . . , Cs are called the
generator matrices of the sequence.

To guarantee that the points xn lie in [0, 1)s (and not just in [0, 1]s) we assume
that for each 1 6 j 6 s and w > 0 we have c(j)v,w = 0 for all sufficiently large v,
where c(j)v,w are the entries of the matrix Cj (see [24, p.72, condition (S6)] for more
information).

Throughout the paper we use the following notation. For functions f, g : N→
R, where f > 0, we write g(n) = O(f(n)) or g(n)� f(n), if there exists a C > 0
such that |g(n)| 6 Cf(n) for all sufficiently large n ∈ N. If we would like to stress
that the quantity C may also depend on other variables than n, say α1, . . . , αw,
which will be indicated by writing �α1,...,αw .
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3. A general theorem

In this section we present a general result for the discrepancy of sequences of the
form (xg(n))n>0, for a particular class of functions g : N0 → N0. Here and in the
following, a sequence (ak)k∈N0

is called unimodal if the sequence (ak+1 − ak)k∈N0

has exactly one change of sign.
Furthermore, we need the concept of the so-called uniform discrepancy of a

sequence. The uniform discrepancy of a sequence (xn)n>0 in [0, 1)s is defined as

D̃N ((xn)n>0) := sup
k∈N0

DN ((xn+k)n>0).

Theorem 1. Let (xn)n>0 be an s-dimensional sequence with uniform discrepancy
D̃N = D̃N ((xn)n>0), and let f : N0 → R be a non-decreasing function such that
ND̃N 6 f(N) for N ∈ N0.

Let g : N0 → N0. Furthermore, let (Nj)j>0 be a strictly increasing sequence
in N with 1 = N0, and assume that (Nj)j>0 is a divisibility chain, i.e., N0|N1,
N1|N2, N2|N3, etc. Define, for k ∈ N0,

GA,j(k) := #{n : ANj 6 n < (A+ 1)Nj , g(n) = k}.

Then the following two assertions hold.
1. For N ∈ N with Nd 6 N < Nd+1 we have

NDN ((xg(n))n>0) > max
k∈N0

G0,d(k).

2. Assume that GA,j(k) is unimodal in k for all j ∈ N0 and all A ∈ N0, and put

Gj := max
k,A∈N0

GA,j(k) for j ∈ N0.

For j ∈ N0 and A ∈ N0 let

vA,j := #{k ∈ N0 : g(n) = k for ANj 6 n < (A+ 1)Nj}

and put
vj := max

A∈N0

vA,j .

Then for N ∈ N with Nd 6 N < Nd+1 we have

NDN ((xg(n))n>0) 6
d∑
j=0

Nj+1

Nj
Gjf(vj).

Proof.
1. To show the lower bound choose a non-negative integer κ such that G̃d =
G0,d(κ) = maxk∈N0

G0,d(k). Then the number of n ∈ {0, . . . , N − 1} such
that xg(n) = xκ is at least G̃d and hence, with an arbitrarily small interval
containing xκ we obtain

DN ((xg(n))n>0) >
G̃d
N
.
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2. To prove the upper bound let

N = adNd + ad−1Nd−1 + · · ·+ a0N0,

with aj ∈ N0 and

aj 6
Nj+1

Nj
; for j ∈ {0, . . . , d}.

For j ∈ {0, . . . , d} and ` ∈ {0, . . . , aj − 1} we consider the sequence

Xj,` := (xg(ANj+k))
Nj−1
k=0

where ANj := adNd + · · ·+ aj+1Nj+1 + `Nj (strictly speaking, A = A(j, `)).
Since GA,j is unimodal we may assume that for ANj 6 n < (A + 1)Nj the
function g(n) attains the values

w,w + 1, . . . , w + v,

for some w ∈ N0 and some integer v = vA,j 6 v(j).
Assume that the value w + u1 with 0 6 u1 6 v is attained most often, the
value w + u2 with 0 6 u2 6 v is attained second most often, etc. . . . , and
w+uv with 0 6 uv 6 v (indeed, uv ∈ {0, v}) is attained least often. If w+ur
and w + ur+1 are both attained the same number of times, then the order
of them is of no relevance.
If we consider the sequence Xj,` as a multi-set (i.e., multiplicity of the ele-
ments is relevant, but their order is not), then we can decompose Xj,` into

GA,j(w + u1)−GA,j(w + u2) times {xw+u1
}

GA,j(w + u2)−GA,j(w + u3) times {xw+u1
,xw+u2

}
GA,j(w + u3)−GA,j(w + u4) times {xw+u1

,xw+u2
,xw+u3

}
. . .

GA,j(w + uv−1)−GA,j(w + uv) times {xw+u1 ,xw+u2 , . . . ,xw+uv−1}
GA,j(w + uv)−GA,j(w + uv+1) times {xw+u1

,xw+u2
, . . . ,xw+uv},

where we formally set GA,j(w + uv+1) := 0. Note that because of the uni-
modality ofGA,j(k), for r ∈ {1, . . . , v}, the sequence xw+u1

,xw+u2
, . . . ,xw+ur

is a sequence of the form xB , . . . ,xB+r−1 for some B.
Then, using the assumptions of the theorem and the triangle inequality for
the discrepancy (see [20, p. 115, Theorem 2.6]), we obtain

NjDNj (Xj,`)

6
v∑
r=1

(GA,j(w + ur)−GA,j(w + ur+1))rDr({xw+u1 ,xw+u2 , . . . ,xw+ur})

6 GA,j(w + u1)f(vA,j) 6 Gjf(vj).

Using the triangle inequality for the discrepancy a second time, we finally
obtain

NDN ((xg(n))n>0) 6
d∑
j=0

ajGjf(vj) 6
d∑
j=0

Nj+1

Nj
Gjf(vj). �
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4. Indexing by the q-ary sum-of-digits function

We would now like to show results regarding index-transformed uniformly dis-
tributed sequences indexed by the q-ary sum-of-digits function. We first discuss
an application of the general result in Theorem 1 (Section 4.1) to Halton- and
(t, s)-sequences, and then show a refined result that applies to the particular case
of van der Corput-sequences (Section 4.2).

4.1. Results for Halton- and (t, s)-sequences

Let q > 2 be an integer and g(n) = sq(n) the q-ary sum-of-digits function. For
j ∈ N0 choose Nj = qj . Then we have

G0,j(k) = #{n : 0 6 n < qj , sq(n) = k}

and
(1 + x+ x2 + · · ·+ xq−1)j =

∑
k∈N0

G0,j(k)xk,

by expanding the polynomial on the left hand side of the latter equation. Hence the
sequence (G0,j(k))k∈N0

is the j-fold convolution of the sequence (1, 1, . . . , 1︸ ︷︷ ︸
q−times

, 0, 0, . . .),

which implies by [25, Theorem 1] that G0,j(k) is unimodal for sufficiently large j.
Since any n ∈ N0 with Aqj 6 n < (A + 1)qj can be written as n = n′ + Aqj ,
where 0 6 n′ < qj , it follows that sq(n) = sq(n

′) + sq(A) and hence GA,j(k) =
G0,j(k − sq(A)), where we set G0,j(k − sq(A)) := 0 if k < sq(A). Consequently,
GA,j(k) is unimodal for any A ∈ N0 and for sufficiently large j.

We recall the following lemma from [8].

Lemma 1 (Drmota and Larcher, [8, Lemma 1]). For integers q > 2, j > 1,
and 0 6 k 6 j(q − 1) we have

G0,j(k) =
qj√

2πjσq
exp

(
−
x2
j,k

2

)(
1 +

P1(xj,k)√
j

+
P2(xj,k)

j

)
+O

(
qj

j2

)
,

where P1(x) and P2(x) are polynomials, P1(x) is odd, where xj,k :=
k− j(q−1)

2

σq
√
j

, and

where σq :=
√

q2−1
12 . The implied constant in the O-notation is uniform for all k

and only depends on q.

Due to Lemma 1, there exists some cq > 0 such that for sufficiently large j we
have GA,j(k) 6 cqqj/

√
j, uniformly in k and A. Thus we obtain

Gj 6 cq
qj√
j

(2)
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for sufficiently large j. On the other hand, for k̃ =
⌊
j q−1

2

⌋
it follows that

max
k∈N0

G0,j(k) > G0,j(k̃) > c′q
qj√
j
. (3)

Furthermore it is clear that v0 = 1 and vj 6 qj for all j ∈ N. As an application
of Theorem 1, we obtain the following result.

Theorem 2. Let X := (xn)n>0 be an s-dimensional sequence such that
mD̃m((xn)n>0) 6 C(logm)s for all m ∈ N, where C may depend on s or on the
sequence X, but not on m. Let q > 2 be an integer. Then there exist c(2)

q , c
(3)
q > 0,

where c(3)
q may also depend on s and X, such that

c
(2)
q√

logN
6 DN ((xsq(n))n>0) 6 c(3)

q

(log logN)s√
logN

.

Proof. Assume that qd 6 N < qd+1. Then we obtain from Theorem 1 and
Equation (3) that

DN ((xsq(n))n>0) >
c′q
N

qd√
d
>

c
(2)
q√

logN
.

On the other hand, from Theorem 1 and Equation (2) ,

DN ((xsq(n))n>0) 6
1

N

d∑
j=1

qcq
qj√
j
C(log(qj))s

�q (log d)s

 1

N

∑
16j<d/2

qj√
j

+
1

N

∑
d/26j6d

qj√
j


�q (log d)s

(√
logN√
N

+
1√
d

)
�q

(log logN)s√
logN

,

and the result follows. �

The general lower bound in Theorem 2 is best possible with respect to the
order of magnitude in N . This will follow from Theorem 3 below which deals with
van der Corput-sequences.

There are several examples of sequences X which satisfy the conditions in
Theorem 2 such as Halton- or (t, s)-sequences (for a proof of this fact, we refer to
Section 6 of this paper). We thus obtain the following corollary.

Corollary 1. Let q > 2 be an integer.
1. Let (xn)n>0 be an s-dimensional Halton-sequence in pairwise co-prime bases

b1, . . . , bs. Then there exist c(2)
q , c

(4)
q,s,b1,...,bs

> 0 such that

c
(2)
q√

logN
6 DN ((xsq(n))

N−1
n=0 ) 6 c(4)

q,s,b1,...,bs

(log logN)s√
logN

.
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2. Let (xn)n>0 be a (t, s)-sequence in base b. Then there exist c(2)
q , c

(5)
q,b,s,t > 0

such that

c
(2)
q√

logN
6 DN ((xsq(n))n>0) 6 c(5)

q,b,s,t

(log logN)s√
logN

.

The result of the first part of Corollary 1 can be improved for the special
instance of van der Corput-sequences, as we will show next.

4.2. The van der Corput-sequence indexed by the sum-of-digits function

The following results are based on a general discrepancy estimate which was first
presented by Hellekalek [14]. The following definitions stem from [14, 15, 17]. We
refer to these references for further information.

For an integer b > 2 let Zb = {z =
∑∞
r=0 zrb

r : zr ∈ {0, . . . , b− 1}} be the set
of b-adic numbers. Zb forms an abelian group under addition. The set N0 is a
subset of Zb. The Monna map φb : Zb → [0, 1) is defined by

φb(z) :=

∞∑
r=0

zr
br+1

.

Note that the radical inverse function ϕb is nothing but φb restricted to N0. We
also define the inverse φ+

b : [0, 1)→ Zb by

φ+
b

( ∞∑
r=0

xr
br+1

)
:=

∞∑
r=0

xrb
r,

where we always use the finite b-adic representation for b-adic rationals in [0, 1).
For k ∈ N0 we can define characters χk : Zb → {c ∈ C : |c| = 1} of Zb by

χk(z) = exp(2πiφb(k)z).

Finally, let γk : [0, 1)→ {c ∈ C : |c| = 1} where γk(x) = χk(φ+
b (x)).

For b > 2 we put ρb(0) = 1 and ρb(k) = 2
br+1 sin(πκr/b)

for k ∈ N with base b
expansion k = κ0 + κ1b+ · · ·+ κrb

r, κr 6= 0.
We have the following general discrepancy bound which is based on the func-

tions γk.

Lemma 2. Let g ∈ N. For any sequence (yn)n>0 in [0, 1) we have

DN ((yn)n>0) 6
1

bg
+

bg−1∑
k=1

ρb(k)

∣∣∣∣∣ 1

N

N−1∑
n=0

γk(yn)

∣∣∣∣∣ .



206 Peter Kritzer, Gerhard Larcher, Friedrich Pillichshammer

Proof. For the special case of a prime b, this result was shown by Hellekalek [14,
Theorem 3.6]. Using [17, Lemma 2.10 and 2.11] it is easy to see that Hellekalek’s
result can be generalized to the one given in the lemma (cf. [16]). �

We show a discrepancy bound for the van der Corput-sequence indexed by the
q-ary sum-of-digits function for small values of q. This result improves on the first
part of Corollary 1 for van der Corput-sequences. Moreover, it shows that the
general lower bound from Theorem 2 is best possible in the order of magnitude
in N .

Theorem 3. Let b, q > 2 be integers with q < 14, let (xn)n>0 be the van der
Corput-sequence in base b and let (sq(n))n>0 be the sequence of the q-adic sum-of-
digits function. Then we have

DN ((xsq(n))n>0)�b,q
1√

logN
.

Remark 1. In view of Theorem 2, the upper bound in Theorem 3 is best possible
with respect to the order of magnitude in N .

Before we give the proof of Theorem 3, we need some preparations and auxiliary
results. Writing e(x) := exp(2πix) for short, we have

1

N

N−1∑
n=0

γk(xsq(n)) =
1

N

N−1∑
n=0

e (sq(n)φb(k)) =: Tk(N).

Lemma 3. Let b, q > 2 be integers, let k ∈ N and let (xn)n>0 be the van der
Corput-sequence in base b. Then for any m ∈ N0 it is true that

|Tk(qm)| 6
(

1− 16(q − 1)

q2
‖φb(k)‖2

)m/2
,

where ‖x‖ is the distance of a real x to the nearest integer.

Proof. First observe that

Tk(qm) =
1

qm

q−1∑
n0,...,nm−1=0

e((n0 + . . .+ nm−1)φb(k)) = (Tk(q))m.
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We now proceed as in [27]. We use the identities exp(ix) + exp(−ix) = 2 cosx
and cos(2x) = 1− 2 sin2 x to obtain

|Tk(q)|2 =
1

q2

q−1∑
n,n′=0

e ((n− n′)φb(k))

=
1

q2

q +

q−1∑
n,n′=0
n<n′

(e ((n− n′)φb(k)) + e (−(n− n′)φb(k)))


=

1

q2

q + 2

q−1∑
n,n′=0
n<n′

cos (2π(n− n′)φb(k))


=

1

q2

q + 2

q−1∑
n,n′=0
n<n′

(
1− 2 sin2 (π(n− n′)φb(k))

)
= 1− 4

q2

q−1∑
n,n′=0
n<n′

sin2 (π(n− n′)φb(k)) 6 1− 4(q − 1)

q2
sin2(πφb(k))

6 1− 16(q − 1)

q2
‖φb(k)‖2,

Therefore,

|Tk(qm)| 6
(

1− 16(q − 1)

q2
‖φb(k)‖2

)m/2
. �

We also need the following lemma.

Lemma 4. For k ∈ N and any N ∈ N with q-adic expansion N =
∑R
r=0 arq

r we
have

|Tk(N)| 6 1

N

R∑
r=0

arq
r|Tk(qr)|.

Proof. For N =
∑R
r=0 arq

r,

{0, . . . , N − 1} =

R⋃
r=0

{aRqR + · · ·+ ar+1q
r+1, . . . , aRq

R + · · ·+ arq
r − 1},
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and hence

N |Tk(N)| =

∣∣∣∣∣
N−1∑
n=0

e (sq(n)φb(k))

∣∣∣∣∣
=

∣∣∣∣∣
R∑
r=0

e ((aR + · · ·+ ar+1)φb(k))

arq
r−1∑

n=0

e (sq(n)φb(k))

∣∣∣∣∣
6

R∑
r=0

∣∣∣∣∣
arq

r−1∑
n=0

e (sq(n)φb(k))

∣∣∣∣∣ =

R∑
r=0

∣∣∣∣∣
ar−1∑
u=0

e (uφb(k))

qr−1∑
n=0

e (sq(n)φb(k))

∣∣∣∣∣
6

R∑
r=0

ar

∣∣∣∣∣
qr−1∑
n=0

e (sq(n)φb(k))

∣∣∣∣∣ =

R∑
r=0

arq
r|Tk(qr)|. �

We are now ready to give the proof of Theorem 3.

Proof. For k ∈ {br, . . . , br+1 − 1} we have ϕb(k) = Ak
br+1 with Ak ∈ {1, . . . ,

br+1 − 1}, where Ak1
6= Ak2

for k1 6= k2. Hence we obtain from Lemma 3

bg−1∑
k=1

ρb(k)|Tk(qm)| 6
g−1∑
r=0

2

br+1 sin(π/b)

br+1−1∑
k=br

(
1− 16(q − 1)

q2

∥∥∥∥ Akbr+1

∥∥∥∥2
)m/2

6
g−1∑
r=0

2

br+1 sin(π/b)

br+1−1∑
a=1

(
1− 16(q − 1)

q2

∥∥∥ a

br+1

∥∥∥2
)m/2

.

For the inner sum we have

br+1−1∑
a=1

(
1− 16(q − 1)

q2

∥∥∥ a

br+1

∥∥∥2
)m/2

=
∑

16a<br+1/2

(
1− 16(q − 1)

q2

a2

b2r+2

)m/2

+
∑

br+1/26a<br+1

(
1− 16(q − 1)

q2

(
1− a

br+1

)2
)m/2

=
1

bm(r+1)

∑
16a<br+1/2

(
b2r+2 − 16(q − 1)

q2
a2

)m/2

+
1

bm(r+1)

∑
br+1/26a<br+1

(
b2r+2 − 16(q − 1)

q2
(br+1 − a)2

)m/2

=
2

bm(r+1)

∑
16a<br+1/2

(
b2r+2 − 16(q − 1)

q2
a2

)m/2
+ δ(b)

(
1− 4(q − 1)

q2

)m/2
,

where δ(b) = 0 when b is odd and δ(b) = 1 when b is even.
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The assumption q < 14 yields 16(q−1)
q2 > 1, and hence

br+1−1∑
a=1

(
1− 16(q − 1)

q2

∥∥∥ a

br+1

∥∥∥2
)m/2

6
2

bm(r+1)

∑
16a<br+1/2

(
b2r+2 − a2

)m/2
+

(
3

4

)m/2

6
2

bm(r+1)

b2r+2−1∑
u=1

um/2 +

(
3

4

)m/2
6

2

bm(r+1)

∫ b2r+2

1

um/2 du+

(
3

4

)m/2
�b,q

b2r+2

m+ 1
+

(
3

4

)m/2
with an implied constant depending only on b and q. Therefore

bg−1∑
k=1

ρb(k)|Tk(qm)| �b,q

g−1∑
r=0

1

br+1

(
b2(r+1)

m+ 1
+

(
3

4

)m/2)
�b,q

bg

m+ 1
, (4)

again with implied constants depending only on b and q.
Assume that N =

∑R
r=0 arq

r. Then, using Lemma 4 and (4), we obtain

bg−1∑
k=1

ρb(k)|Tk(N)| 6 1

N

R∑
m=0

amq
m
bg−1∑
k=1

ρb(k)|Tk(qm)|

�b,q b
g 1

N

R∑
m=0

am
qm

m+ 1
.

Since

1

N

R∑
m=0

am
qm

m+ 1
6

1

N

bR/2c∑
m=0

amq
m +

1

N

R∑
m=bR/2c+1

am
qm

m+ 1

�q
qR/2

N
+

1

R
�q

1

logN

we obtain
bg−1∑
k=1

ρb(k)|Tk(N)| �b,q
bg

logN
.

From Lemma 2 it follows that

DN ((xsq(n))n>0)�b,q
1

bg
+

bg

logN
.
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Choosing g = blogb
√

logNc yields

DN ((xsq(n))n>0)�b,q
1√

logN
. �

Remark 2. We remark that, in principle, the method of proof based on Lemma 2
can not only be used for van der Corput-sequences, but also for Halton-sequences in
higher dimensions. However, this leads to a discrepancy bound of order (logN)−

1
s+1 ,

which is considerably weaker than the one presented in Theorem 2.

5. Other index-transformations

In this section, we would now like to discuss index-transformed Halton- and digi-
tal (t, s)-sequences indexed by a different kind of sequence than the sum-of-digits
function, as, e.g., (bnαc)n>0 with 0 < α < 1. The following theorem provides
another general result, namely lower and upper bounds on the discrepancy of se-
quences indexed by functions which in some sense are “moderately“ monotonically
increasing.

Theorem 4. Let A ∈ N0 and write NA := {A,A+ 1, A+ 2, . . .}. Let f : N0 → NA
be surjective and monotonically increasing. Moreover, define, for k ∈ NA,

F (k) := #{n : n ∈ N0, f(n) = k}.

Under the assumption that F (k) is monotonically increasing in k for sufficiently
large k, the following three assertions hold.

1. For an arbitrary sequence (xn)n>0 in [0, 1)s it is true that

F (f(N)− 1)

N
6 DN ((xf(n))n>0).

2. For a Halton-sequence (xn)n>0 in co-prime bases b1, . . . , bs,

DN ((xf(n))n>0) 6 C
2F (f(N − 1) + 1)(logN)s

N
,

where C is a constant independent of N .
3. For a digital (t, s)-sequence (xn)n>0 over Fp for prime p,

DN ((xf(n))n>0) 6 C̃pt
2F (f(N − 1) + 1)(logN)s

N
,

where C̃ is a constant independent of N .
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Proof.
1. Let (xn)n>0 be an arbitrary sequence in [0, 1)s, and let f and F be as in

the theorem. If f(N) = A, then, due to the properties of f , we obtain
F (f(N)− 1) = 0, so the lower bound on the discrepancy is trivially fulfilled.
If, on the other hand, f(N) > A, then it follows by the surjectivity of f that
there exist n ∈ N0 such that f(n) = f(N) − 1. Furthermore, whenever n
is such that f(n) = f(N) − 1 < f(N), it follows by the monotonicity of f
that n < N . Hence, the value f(N) − 1 occurs F (f(N) − 1) times among
f(0), . . . , f(N − 1), and the point xf(N)−1 is attained F (f(N)− 1) times in
the sequence xf(0), . . . ,xf(N−1). The lower bound follows by considering an
arbitrarily small interval containing xf(N)−1.

2. Without loss of generality, assume f(0) = 0, i.e., A = 0.
Furthermore, it is no loss of generality to assume that f(1) = 1 and that F (k)
is monotonically increasing in k for k > 0. Indeed, if this is not the case, we
can disregard a suitable number of initial elements xf(0), . . . ,xf(N0), without
changing the discrepancy of the first N points of the sequence (xf(n))n>0 by
more than N0

N .
Let b1, . . . , bs > 2 be co-prime integers and let (xn)n>0 be the corresponding
Halton-sequence. For estimating the discrepancy, we consider an arbitrary
interval

I :=

s∏
i=1

[0, α(i)) ⊆ [0, 1)s,

for some α(1), . . . , α(s) ∈ (0, 1]. For each i ∈ {1, . . . , s}, choose mi as the
minimal integer such that N 6 bmii . Since f(N − 1) 6 N − 1, the i-th
component x(i)

f(n) of a point xf(n), 1 6 i 6 s, 0 6 n 6 N − 1, has at most mi

non-zero digits in its base bi representation. From this, it is easily derived
that we can restrict ourselves to considering only α(i) with at most mi non-
zero digits in their base bi expansion, 1 6 i 6 s, as this assumption changes
DN ((xf(n))n>0) by a term of order of at most N−1. We can therefore write
I as the disjoint union of intervals

I(j1, . . . , js) :=

s∏
i=1

[
ji−1∑
r=1

α
(i)
r

bri
,

ji∑
r=1

α
(i)
r

bri

)
,

where 1 6 ji 6 mi for 1 6 i 6 s and the α(i)
r represent the base bi digits of

α(i). Each of the I(j1, . . . , js) can in turn be written as the disjoint union of
intervals

s∏
i=1

J(ji, ki) :=

s∏
i=1

[
ji−1∑
r=1

α
(i)
r

bri
+
ki

bjii
,

ji−1∑
r=1

α
(i)
r

bri
+
ki + 1

bjii

)
,

with 1 6 ji 6 mi and 0 6 ki 6 α
(i)
ji
− 1. If α(i)

ji
= 0, then J(ji, ki) is of zero

volume containing no points. Hence we can restrict ourselves to considering
only those J(ji, ki) with α(i)

ji
> 1.
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Let now i ∈ {1, . . . , s} and v > 0 be fixed. By the construction principle of
the points of the Halton-sequence, we see that x(i)

v is contained in J(ji, ki)
if and only if 

v
(i)
0
...

v
(i)
ji−2

v
(i)
ji−1

 =


α

(1)
i
...

α
(ji−1)
i

ki

 , (5)

where the v(i)
r , 0 6 r 6 ji − 1 are the digits of v in base bi. Note that (5)

has exactly one solution (v
(i)
0 , . . . , v

(i)
ji−1) modulo bi. Hence we can identify

exactly one remainder R(i) modulo bjii , such that x(i)
v ∈ J(ji, ki) if and only

if v ≡ R(i) (mod bjii ). By the Chinese Remainder Theorem, there exists
exactly one remainder R modulo Q :=

∏s
i=1 b

ji
i such that

xv ∈
s∏
i=1

J(ji, ki) if and only if v ≡ R (mod Q).

We now deduce an estimate for the number of points among xf(0), . . . ,xf(N−1)

that are contained in an interval of the type
∏s
i=1 J(ji, ki). For short, we

denote this number by A (
∏s
i=1 J(ji, ki)).

Note that there exists a number θ = θ(R,Q, f(N − 1)) ∈ {0, 1} such that
0 = f(0) 6 R+wQ 6 f(N − 1) if and only if w ∈ {0, . . . , b f(N−1)

Q c− 1 + θ},
so

A

(
s∏
i=1

J(ji, ki)

)
>

b f(N−1)
Q c−2+θ∑
w=0

F (R+ wQ) >

b f(N−1)
Q c−2+θ∑
w=0

F (wQ), (6)

where we used the monotonicity of F . On the other hand, with the same
argument,

A

(
s∏
i=1

J(ji, ki)

)
6

b f(N−1)
Q c−1+θ∑
w=0

F (R+ wQ) 6

b f(N−1)
Q c+θ∑
w=1

F (wQ). (7)

For the following, let K =
⌊
f(N−1)

Q

⌋
+ θ. Let

ΣA :=

(K−1)Q−1∑
r=0

F (r),

and note that we can write

ΣA =

K−2∑
w=0

Q−1∑
r=0

F (wQ+ r) > Q
K−2∑
w=0

F (wQ) = Q

b f(N−1)
Q c−2+θ∑
w=0

F (wQ).
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On the other hand, by the definition of θ,

ΣA =

(b f(N−1)
Q c−1+θ)Q−1∑

r=0

F (r) 6
f(N−1)−1∑

r=0

F (r) 6 N − 1,

from which we conclude that

b f(N−1)
Q c−2+θ∑
w=0

F (wQ) 6
N − 1

Q
. (8)

Moreover, let

ΣB :=

KQ∑
r=1

F (r),

for which we can derive, in the same way as the corresponding estimate for
ΣA,

ΣB 6 Q

b f(N−1)
Q c+θ∑
w=1

F (wQ).

Again by the definition of θ,

ΣB =

(b f(N−1)
Q c+θ)Q∑
r=1

F (r) >
f(N−1)∑
r=1

F (r)

= #{n ∈ N0 : 0 < f(n) 6 f(N − 1)} > N − 1,

where we used that f(1) = 1 and that f is monotonically increasing. Con-
sequently,

b f(N−1)
Q c+θ∑
w=1

F (wQ) >
N − 1

Q
. (9)

Note, furthermore, that

0 6

b f(N−1)
Q c+θ∑
w=1

F (wQ)−
b f(N−1)

Q c−2+θ∑
w=0

F (wQ)

6 F

((⌊
f(N − 1)

Q

⌋
− 1 + θ

)
Q

)
+ F

((⌊
f(N − 1)

Q

⌋
+ θ

)
Q

)
6 2F (f(N − 1) + 1). (10)
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Combining Equations (6), (9), and (10), and noting that λ (
∏s
i=1 J(ji, ki)) =

1
Q , gives

1

N
A

(
s∏
i=1

J(ji, ki)

)
− 1

Q
>

1

N

b f(N−1)
Q c−2+θ∑
w=0

F (wQ)− 1

Q

>

∑b f(N−1)
Q c+θ

w=1 F (wQ)− 2F (f(N − 1) + 1)

N
− 1

Q

>
−2F (f(N − 1) + 1)

N
+
N − 1

QN
− 1

Q

>
−2F (f(N − 1) + 1)

N
− 1

NQ
.

In exactly the same way, using (7), (8), and (10), we get

1

N
A

(
s∏
i=1

J(ji, ki)

)
− 1

Q
6

2F (f(N − 1) + 1)

N
+

1

NQ
,

from which we derive∣∣∣∣∣ 1

N
A

(
s∏
i=1

J(ji, ki)

)
− 1

Q

∣∣∣∣∣ 6 2F (f(N − 1) + 1)

N
+

1

NQ
.

Finally, note that, by writing A(I) for the number of points of (xf(n))
N−1
n=0

in I,∣∣∣∣A(I)

N
− λ(I)

∣∣∣∣
6

m1∑
j1=1

· · ·
ms∑
js=1

α
(1)
j1
−1∑

k1=0

· · ·
α

(s)
js
−1∑

ks=0

∣∣∣∣∣ 1

N
A

(
s∏
i=1

J(ji, ki)

)
− λ

(
s∏
i=1

J(ji, ki)

)∣∣∣∣∣
6 C

(logN)sF (f(N − 1) + 1)

N
,

for a suitably chosen constant C, and the result follows.
3. As in Item 2, assume without loss of generality that f(0) = 0, f(1) = 1, and

that F (k) is monotonically increasing in k for k > 1.
Let p be a prime and let (xn)n>0 be a digital (t, s)-sequence over Fp. For
estimating the discrepancy, we consider an arbitrary interval

I :=

s∏
i=1

[0, α(i)) ⊆ [0, 1)s,

for some α(1), . . . , α(s) ∈ (0, 1]. Choose m as the minimal integer such that
N 6 pm. By a similar argument as for the case of Halton sequences, we
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can restrict ourselves to considering only α(i) with at most m non-zero digits
α

(i)
1 , . . . , α

(i)
m in their base p expansion. Moreover, with the same reasoning as

in the Halton case, we see that we essentially only need to deal with intervals
of the form

s∏
i=1

J(ji, ki) :=

s∏
i=1

[
ji−1∑
r=1

α
(i)
r

pr
+
ki
pji

,

ji−1∑
r=1

α
(i)
r

pr
+
ki + 1

pji

)
,

with 1 6 ji 6 m and 0 6 ki 6 α
(i)
ji
− 1. Again, if α(i)

ji
= 0, then J(ji, ki) is of

zero volume containing no points, so we can restrict ourselves to considering
only those J(ji, ki) with α(i)

ji
> 1.

As for the case of Halton sequences, we would like to derive an upper
and a lower bound on the number A (

∏s
i=1 J(ji, ki)) of points contained

in
∏s
i=1 J(ji, ki). To this end, denote the r-th row of a generator matrix Cj ,

1 6 j 6 s of (xn)n>0 by c(j)
r .

For an integer v > 0, the point xv is contained in
∏s
i=1 J(ji, ki) if and only

if

C ·


v0

v1

v2

...

 = A>, (11)

where v0, v1, v2, . . . are the base p digits of v, where

A := (α
(1)
1 , . . . , α

(1)
j1−1, k1, α

(2)
1 , . . . , α

(2)
j2−1, k2, . . . . . . , α

(s)
1 , . . . , α

(s)
js−1, ks)

∈ Fj1+···+js
p ,

and

C :=
(
c

(1)
1 , . . . , c

(1)
j1
, c

(2)
1 , . . . , c

(2)
j2
, . . . . . . , c

(s)
1 , . . . , c

(s)
js

)>
∈ F(j1+···+js)×N

p .

Let now Q := pj1+···+js+t, let w ∈ N0 and consider those v > 0 with wQ 6
v 6 (w + 1)Q− 1. For these v, the first j1 + j2 + · · ·+ js + t digits in their
base p expansion vary, while all the other digits are fixed. Hence we can
write (11) as

D1 ·


v0

v1

...
vj1+···js+t

+D2 ·

vj1+···+js+t+1

vj1+···+js+t+2

...

 = A>,

where C = (D1|D2) and whereD1 is an (j1+· · ·+js)×(j1+· · ·+js+t)-matrix
and D2 is an (j1 + · · ·+ js)× N-matrix over Fp.



216 Peter Kritzer, Gerhard Larcher, Friedrich Pillichshammer

Due to the fact that (xn)n>0 is a digital (t, s)-sequence, it follows that D1

has full rank, and hence there are exactly pt values v in {wQ,wQ + 1, . . . ,
(w + 1)Q− 1} such that xv is contained in

∏s
i=1 J(ji, ki).

Now note again that there exists a number θ = θ(Q, f(N − 1)) ∈ {0, 1} such
that 0 = f(0) 6 wQ 6 f(N −1) if and only if w ∈ {0, . . . , b f(N−1)

Q c−1 + θ}.
By our observations above, for each of these w ∈ {0, . . . , b f(N−1)

Q c − 1 + θ}
there exist pt integers Rw,1, . . . , Rw,pt ∈ {0, . . . , Q − 1} such that exactly
the points xRw,1+wQ, . . . ,xRw,pt+wQ among xwQ,xwQ+1, . . . ,x(w+1)Q−1 are
contained in

∏s
i=1 J(ji, ki). Therefore, we can estimate

A

(
s∏
i=1

J(ji, ki)

)
>

b f(N−1)
Q c−2+θ∑
w=0

pt∑
z=1

F (Rw,z+wQ) > pt
b f(N−1)

Q c−2+θ∑
w=0

F (wQ),

(12)
and

A

(
s∏
i=1

J(ji, ki)

)
6

b f(N−1)
Q c−1+θ∑
w=0

pt∑
z=1

F (Rw,z + wQ) 6 pt
b f(N−1)

Q c+θ∑
w=1

F (wQ).

(13)
In exactly the same way as for a Halton sequence, we obtain, by noting that
λ (
∏s
i=1 J(ji, ki)) = 1

pl1+···+ls = pt

Q ,∣∣∣∣∣ 1

N
A

(
s∏
i=1

J(ji, ki)

)
− 1

Q

∣∣∣∣∣ 6 pt2F (f(N − 1) + 1)

N
+

pt

NQ
,

and the result follows. �

Examples of functions f and F satisfying the assumptions of Theorem 4 are
obtained as follows. Let g : R+

0 → R+
0 be a function that is twice differentiable

on (0,∞), with g′(x) > 0 and g′′(x) < 0 for x ∈ (0,∞). Moreover, define f(n) :=
bg(n)c for n ∈ N. It then easily follows that f and F indeed fulfill the assumptions
of the theorem and we obtain

F (k + 1) =
⌈
g−1(k + 1)

⌉
−
⌈
g−1(k)

⌉
. (14)

We thus obtain the following exemplary corollary to Theorem 4.

Corollary 2. Let α ∈ (0, 1).Then the following assertions hold.

1. For a Halton-sequence (xn)n>0 in co-prime bases b1, . . . , bs,

C1
1

Nα
6 DN ((xbnαc)n>0) 6 C2

(logN)s

Nα
,

where C1, C2 are constants that depend on the sequence and on α, but are
independent of N .
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2. For a digital (t, s)-sequence (xn)n>0 over Zp for prime p,

C1
1

Nα
6 DN ((xbnαc)n>0) 6 C2

(logN)s

Nα
,

where C1, C2 are constants that depend on the sequence and on α, but are
independent of N .

Proof. The result follows by combining Theorem 2 with the observation that

c′αk
1
α−1 6 F (k) 6 cαk

1
α−1,

with constants c′α, cα > 0 that depend on α, but not on k. �

6. Appendix: Uniform discrepancy

In Corollary 1 we implicitly used the fact that (t, s)-sequences in base b as well as
Halton-sequences in pairwise co-prime bases b1, . . . , bs have uniform discrepancy of
order (logN)s/N . Since we are not aware of a proof of these facts in the existing
literature, we provide one here.

6.1. Uniform discrepancy of (t, s)-sequences in base b

Assume that ∆b(t,m, s) is a number for which

bmDbm(P) 6 ∆b(t,m, s)

holds for the discrepancy of any (t,m, s)-net P in base b.

Theorem 5. Let (xn)n>0 be a (t, s)-sequence in base b. Then we have

ND̃N ((xn)n>0) 6 (2b− 1)

tbt +

blogbNc∑
m=t

∆b(t,m, s)

 .

Proof. Let k ∈ N0. We show that

NDN ((xn+k)n>0) 6 (2b− 1)

tbt +

blogbNc∑
m=t

∆b(t,m, s)


uniformly in k ∈ N0.

For N < bt, the assertion follows trivially by NDN ((xn+k)n>0) 6 N .
Let now N ∈ N, N > bt with b-adic expansion N = arb

r + ar−1b
r−1 + · · · +

a1b+ a0 where aj ∈ {0, . . . , b− 1} for 0 6 j 6 r and ar 6= 0 (note that r > t). For
given k ∈ N0, choose ` ∈ N such that (`− 1)br 6 k < `br. Then we can write

k = `br − (dr−1b
r−1 + · · ·+ d1b+ d0)− 1
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with some dj ∈ {0, . . . , b− 1} for 0 6 j 6 r − 1, and

k = (`− 1)br + κr−1b
r−1 + · · ·+ κ1b+ κ0

with some κj ∈ {0, . . . , b−1} for 0 6 j 6 r−1. Note that therefore dj+κj = (b−1)
for 0 6 j < r.

We split up the point set Pk,N := {xn : k 6 n 6 k +N − 1} in the following
way:

Pk,N =
⋃

16d6d0+1

P ′
0,d ∪

⋃
16m6t−1
16d6dm

P ′
m,d ∪

⋃
t6m6r−1
16d6dm

P ′
m,d

∪
⋃

06a6ar−2

P ′′
a ∪

⋃
06m6t−1

06x6am+κm−1

P ′′′
m,x ∪

⋃
t6m6r−1

06x6am+κm−1

P ′′′
m,x,

where

P ′
m,d := {x`br−dr−1br−1−···−dm+1bm+1−dbm+j : 0 6 j < bm},
P ′′
a := {x`br+abr+j : 0 6 j < br},

P ′′′
m,x := {x(`+ar−1)br+(κr−1+ar−1)br−1+···+(κm+1+am+1)bm+1+xbm+j : 0 6 j < bm}.

For m 6 t− 1, we can bound the discrepancy of P ′
m,d and P ′′′

m,x, respectively, by
the trivial bound 1. For m > t, the point sets P ′

m,d and P ′′′
m,x are (t,m, s)-nets

in base b, and the P ′′
a are (t, r, s)-nets in base b. From the triangle inequality for

the discrepancy we obtain

NDN (Pk,N ) 6 (d0 + a0 + κ0 + 1)b0 +

t−1∑
m=1

(dm + am + κm)bm

+

r−1∑
m=t

(dm + am + κm)∆b(t,m, s) + max(ar − 2, 0)∆b(t, r, s)

6 (2b− 1) + (2b− 2)

(
(t− 1)bt +

r−1∑
m=t

∆b(t,m, s)

)
+ max(b− 3, 0)∆b(t, r, s)

6 (2b− 1)

(
tbt +

r∑
m=t

∆b(t,m, s)

)
and the result follows, since r = blogbNc. �

Corollary 3. Let (xn)n>0 be a (t, s)-sequence in base b. Then we have

ND̃N ((xn)n>0)�s,b b
t(logN)s.

Proof. The result follows from Theorem 5 together with the fact that

∆b(t,m, s)�s,b b
tms−1

for m > t (see, for example, [6, 24]). �
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6.2. Uniform discrepancy of Halton-sequences

Theorem 6. Let (x)n>0 be a Halton-sequence in pairwise co-prime bases b1, . . . , bs.
Then we have

ND̃N ((xn)n>0) =
1

s!

s∏
j=1

(
bbj/2c logN

log bj
+ s

)
+O((logN)s−1),

where the implied constant depends on b1, . . . , bs and s.

Proof. The result follows from an adaption of the proof of [6, Theorem 3.36].
Note that [6, Lemma 3.37] also holds true for A(J, k,N,S) := #{n ∈ N : k 6 n <
k + N and xn ∈ J} instead of A(J,N,S) := A(J, 0, N,S). The rest of the proof
of [6, Theorem 3.36] remains unchanged. �
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