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SELF-APPROXIMATION OF HURWITZ ZETA-FUNCTIONS
RAMUNAS GARUNKSTIS, ERIKAS KARIKOVAS

Abstract: We are looking for real numbers a and d for which there exist “many” real numbers 7
such that the shifts of the Hurwitz-zeta function {(s + i7,a) and {(s + id7, ) are ‘near’ each
other.
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1. Introduction

Let s = 0 + it denote a complex variable. For ¢ > 1, the Hurwitz zeta-function is
given by

o0

1
((s,a) = 7;) CETL
where « is a parameter from the interval (0,1]. The Hurwitz zeta-function can
be continued analytically to the entire complex plane except for a simple pole at
s=1. For a =1 we get ((s,1) = ((s), where ((s) is the Riemann zeta-function.

In this paper we consider the following problem. Find all real numbers 0 <
a < 1 and d such that, for any compact subset K of the strip 1/2 < ¢ < 1 and
any € > 0,

liminf%meas {T €10,7]: max IC(s +iT, ) — ((s +idr,a)| < 5} >0, (1)
se

T—o0
where meas A stands for the Lebesgue measure of a measurable set A. This prob-
lem is motivated by Bagchi [1, 2, 3| result that the Riemann hypothesis for the
Riemann zeta-function is valid if and only if the inequality (1) is valid for a« = 1

and d = 0. In the case of the Riemann zeta-function (« = 1) the inequality (1) was
proved by Nakamura [11] for all algebraic irrational d, afterwards by Pankowski [14]
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for all irrational d, and recently by Nakamura and Pankowski [13] for 0 # d = a/b
with |a — b # 1, ged(a,b) = 1 (the papers [5, 12], where non-zero rational d were
considered, contain a gap in the proof of the main theorem, see [13]). The case,
when « # 1/2,1 is a rational or transcendental number and d = 0, is a partial case
of the universality theorem for the Hurwitz zeta-function which is proved indepen-
dently by Bagchi [1] and Gonek [7], see also [9]. More on the universality theorems
see books of Laurincikas [8], Steuding [15], and the survey of Matsumoto [10]. Here
we will prove the case then « is a transcendental number and d is a rational num-
ber, we will also show that for any transcendental number « the inequality (1) is
true for almost all numbers d and that for any irrational number d the inequality
(1) is true for almost all numbers . Next we state our results more precisely.
Let dy,ds,...,dr,a be real numbers and let o be a transcendental number
from the interval (0,1] .
Let

A(dy,dg, ..., dg; o) ={djlog(n; +a): j=1,...,k; n; € No}

be a multiset, where Ny denotes the set of all non-negative integers. Note that
in a multiset the elements can appear more than once. For example {1,2} and
{1,1,2} are different multisets, but {1,2} and {2,1} are equal multisets. If
a multiset A(dy,ds,...,dg;«) is linearly independent over rational numbers then
A(dy,da,...,dg;«) is a set and the numbers dy,...,d; are linearly independent
over Q. We prove the following theorem.

Theorem 1. Letl < m be positive integers and let a be a transcendental number
from the interval (0,1]. Let dy,...,d; € R be such that A(dy,ds,...,d;;«a) is
linearly independent over Q. For m > 1, let dj41,...,d, € R be such that each
di, k=14+1,...,m is a linear combination of dy,...,d; over Q. Then

o1
llfrrigéffmeas {re|0,T] : (2)

| Jhax max IC(s +id;T, ) — ((s +idpT, )| < 5} > 0.

In the inequality (2), for almost all &, ‘lim inf’ can be replaced by ‘lim’ similarly
as in Theorem 2 of [5]. Note that for any transcendental number o, 0 < o < 1,
and for any real number d;, the set A(d;;«) is linearly independent over Q. The
following propositions show that for any positive integer [ ‘most’ collections of real
numbers dy,da, ..., d;, a, where 0 < a < 1, are such that A(dy,ds,...,d;«) is
linearly independent over Q.

Proposition 2. Let a be a transcendental number and I > 2. If the set
A(dy,ds, ... ,di—1;a) is linearly independent over Q, then the set

D={d; eR: A(dy,da,...,d;; ) is linearly dependent over Q}

is countable.
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Proposition 3. Let di,ds,...,d; be real numbers linearly independent over Q.
Then the set

B ={a€(0,1]: A(d1,da,...,d;; ) is linearly dependent over Q}
is countable.

In the next section we prove Theorem 1. Section 3 is devoted to proofs of
Propositions 2 and 3.

2. Proof of Theorem 1

We follow the proof of Theorem 1 in [5]. Also lemmas from [5] will be used. As it

was already mentioned the proof of Theorem 1 in [5] contains a gap, however here

we avoid this gap because we work directly with (s, a) instead of log {(s, ).
Let us start with a truncated Hurwitz zeta-function

1
Co(s, @) = Z Gta)r

q<v
By conditions of the theorem there are integers a # 0 and a1, ax,2,...,ax, such
that
1
dp = a(ak’ldl + ak72d2 + 4 adel) for I <k<m. (3)
Let

A= max {lag,1| + lar2| + -+ |ag,|}-

I<k<m

Denote by ||z|| the minimal distance of = € R to an integer. If

Tdn log(q + )
2ma

’<5 for g<v and 1<n <l (4)
then, by the relation (3),

dp. L
HTkog(qua) < A5 for g<v and I <k<m.

21

By this and by the continuity in s of the function (,(s,«) we have that for any
€ > 0 there is § > 0 such that for 7 satisfying (4)

id - id . 5
Kr,ggémrsneaglév(sﬂ kT, ) — Guo(s +idpT,a)| < e (5)

For positive numbers §, v, and T" we define the set

dy log(q + o)

-
2ma

St = ST((S,U) = {7’ T E [O,T],

‘<5,q§v, 1<n<l}. (6)
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Let U be an open bounded rectangle with vertices on the lines ¢ = 07 and
o = og, where 1/2 < 01 < 09 < 1, such that the set K is in U. Let p > v be
a positive integers. We have

1 m
T / / Z |Cp (s + idiT, @) — Cu(s + idyT, Cv)|2 dodtdr
Sr U k=1

1
:Z/T/Kp(sﬂdﬂ, &) — Co(s + idyr, @)* drdodt.
St

k=1p;

To evaluate the inner integrals of the right-hand side of the last equality we will
apply Lemma 6 from [5]. By generalized Kronecker’s theorem (see Lemma 5 in
[5]) and by linear independence of A(dy,ds,...,d;;a) the curve

1<k<!
o(r) = (rAlsE L))

2
Ta 0<q<p

is uniformly distributed mod 1 in RYP*1) . Let R’ be a subregion of the I(p + 1)-
dimensional unit cube defined by inequalities

lyegll <6 for 1<k<l and 0<g<v

and

for1<k<! and v+1<qg<p.

DN | =

1
Yk,q — 5 <
Let R be a subregion of the /(v + 1)-dimensional unit cube defined by inequal-
ities
lypgll <6 for 1<k<l and 0<g<v

Clearly meas R’ = meas R = (20)"**1. Let
Cp,v(s + idkTv a) = Cp(s + idkTa a) - Cv(s + idy T, a)~ (7)

Then in view of the linear dependence (3) we get

1 m
lim 7/ > Gpu(s + idir, ) |* dr
S

T—oo T ot
1 l
= lim —/ Cpoo(s + idyT, )
T—o0 T St (; P
m

p>

k=I1+1

7
Cpv (S + g(ak,ldl +agode + -+ ag,di)T, a)

2
> dr.



Self-approximation of Hurwitz Zeta-functions 185

By Lemma 6 in [5] and equality (7) we obtain that the last limit is equal to

2

[z o

k=1 |v<qg<p (q+a)s

2
m —27i(ag,1Y1,qFak,2Y2,qF +ak1Y1,q)
e
d ..d

+ Z Z G+ ar Y11 Yip

k=141 [v<qg<p

2

k=1 v<q<p

1 1
—271'zy;C q
= meas R/ /
(¢+a)
0 0

2
e—2mi(ak,1y1,qFak,2Y2,qF +ak,1Y1,9)

b

dyl,v+1 “ - dyl,p

k=I+1 |v<q<p ((] + a)S
= mmeas R Z _ < measRZ _
- 20 20"
Wo, (4t a) = la+a)
Consequently
Tlgnoof//z [Cp(s + tdpT, ) — Cu(s + idyT, o)|* dodtdr (8)
1
< meas R —
,; (¢ +a)*n
Again by Lemma 5 in [5],
1
Tlgr(l)Q 7 meas St = meas R. 9)
By (8) and (9), for large v, as T' — oo, we have
- 1
meas{ 7:T € ST,/ [Cpn(s + idyr, @) |* dodt < —
2 2 G ap

1
> §T meas R.

Then Lemma 4 in [5] gives

m
, m
meas{ 7:T € ST,Isnea]é(; |Cp.w (s +idiT, @) < y

3
T~
g

=
+
Q =
g
SN——
IN|
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where d = min,epy mingex |s — z|. Therefore we obtain that for any ¢ > 0 there
is v = v(e) such that for any p > v

meas {T :T € St, I?Ea}é(; ICp(s +idiT, @) — Cu(s +idiT, )| < 5} (10)
1
> §T meas R.
Now we will prove that for any § > 0 there is p = p(J) such that
meas {T : rglea)é(; IC(s + idpT, @) — Gp(s + idyT, )| < 5} (11)
> (1-0)T.

The last formula together with (5), (6) and (10) yields Theorem 1. We return to
the proof of (11). By the mean value theorem of the Hurwitz zeta-function (see
Garunkstis, Laurin¢ikas, and Steuding [6]) and by Carlson’s Theorem (see Carlson
[4]) we obtain

T
1 1
Jim 166+ ) = Gls iam ) dr = 3
0 q>p
where z is fixed. Thus (11) follows in view of
T )
//Z|C(5+idk7,a)pr(s+ixT,a)\2deth<<TZ 5o
k=1 (¢ + )2
0 U "= q>p

Theorem 1 is proved.

3. Proofs of Propositions 2 and 3

Proof of Proposition 2. Let €2 be a set of all rational numbers sequences, where
each sequence has only finitely many nonzero elements. Then 2 is a countable
set. By 0 we denote the sequence all elements of which are zeros. Let d; = 1.
Recall that the set A(1;«) is linearly independent. Then in view of the linear
independence of A(dy,da,...,d;—1; @) we obtain that

D_d_ di Y oolg aiplog(n+a)+ -+ di_1 > " a—1plog(n+ )
Sor o aimlog(n + a) '

(a107a117 <o @(1—-1)05 A(1—1)15 - - -5 Q105 Q115 - - ) € \ 07
(alo,all, . ) 7é 0}

Thus D is a countable set. This proves the proposition. |
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Proof of Proposition 3. We use the same notations as in the proof of Proposi-
tion 2. Similarly as before we have that

B{ae[:dlz alnlog(n+a)+~~+dlz ap log(n + a) =0,

n=0 n=0

(alo,an,...,ago,agl,...,...,alo,a“,...) EQ\O}

Recall that Q is a countable set. If, for fixed
(a107a11,-~-7a207a21,-~-7-~-,alo7a11,-~-) EQ\O,

the function

fa) =dy Z aiplogn+a)+---+d; Z ain log(n + a)

n=0 n=0

has only finite number of zeros in (0,1], then the set B is countable. Thus to
prove the proposition it remains to show that f(«) has finitely many zeros in the
interval (0,1]. In view of the condition that di,ds, ..., dj are linearly independent
and by the definition of €2 we have that there is a finite collection of real numbers
bo, b1, - .., bm, such that b,, # 0 and

f(a) =bolog(a) + by log(l 4+ ) + -+ - + by, log(m + «).

Let b, n < m be the first coefficient not equal to zero. Then we see that f(a) is
unbounded in (—n,1/2) and is bounded in (1/2,1]. Thus f(«) is not a constant
in (—n, 1]. Moreover there is a small positive number ag such that f(a) # 0 if
a € (—n,—n + ap). We consider f(a) as an analytic function in the half-plane
Ra > —n of the complex plane. A set of zeros of a non-constant analytic function
is discrete. Thus there are finitely many zeros in the disc |1 —«a| < 14+n—ap. We
obtained that the function f(«) has finitely many zeros in (0, 1]. This proves the
proposition. |
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