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SELF-APPROXIMATION OF HURWITZ ZETA-FUNCTIONS

Ramūnas Garunkštis, Erikas Karikovas

Abstract: We are looking for real numbers α and d for which there exist “many” real numbers τ
such that the shifts of the Hurwitz-zeta function ζ(s + iτ, α) and ζ(s + idτ, α) are ‘near’ each
other.
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1. Introduction

Let s = σ + it denote a complex variable. For σ > 1, the Hurwitz zeta-function is
given by

ζ(s, α) =

∞∑
n=0

1

(n+ α)s
,

where α is a parameter from the interval (0,1]. The Hurwitz zeta-function can
be continued analytically to the entire complex plane except for a simple pole at
s = 1. For α = 1 we get ζ(s, 1) = ζ(s), where ζ(s) is the Riemann zeta-function.

In this paper we consider the following problem. Find all real numbers 0 <
α 6 1 and d such that, for any compact subset K of the strip 1/2 < σ < 1 and
any ε > 0,

lim inf
T→∞

1

T
meas

{
τ ∈ [0, T ] : max

s∈K
|ζ(s+ iτ, α)− ζ(s+ idτ, α)| < ε

}
> 0, (1)

where measA stands for the Lebesgue measure of a measurable set A. This prob-
lem is motivated by Bagchi [1, 2, 3] result that the Riemann hypothesis for the
Riemann zeta-function is valid if and only if the inequality (1) is valid for α = 1
and d = 0. In the case of the Riemann zeta-function (α = 1) the inequality (1) was
proved by Nakamura [11] for all algebraic irrational d, afterwards by Pańkowski [14]
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for all irrational d, and recently by Nakamura and Pańkowski [13] for 0 6= d = a/b
with |a− b| 6= 1, gcd(a, b) = 1 (the papers [5, 12], where non-zero rational d were
considered, contain a gap in the proof of the main theorem, see [13]). The case,
when α 6= 1/2, 1 is a rational or transcendental number and d = 0, is a partial case
of the universality theorem for the Hurwitz zeta-function which is proved indepen-
dently by Bagchi [1] and Gonek [7], see also [9]. More on the universality theorems
see books of Laurinčikas [8], Steuding [15], and the survey of Matsumoto [10]. Here
we will prove the case then α is a transcendental number and d is a rational num-
ber, we will also show that for any transcendental number α the inequality (1) is
true for almost all numbers d and that for any irrational number d the inequality
(1) is true for almost all numbers α. Next we state our results more precisely.

Let d1, d2, . . . , dk, α be real numbers and let α be a transcendental number
from the interval (0,1] .
Let

A(d1, d2, . . . , dk;α) = {dj log(nj + α) : j = 1, . . . , k; nj ∈ N0}

be a multiset, where N0 denotes the set of all non-negative integers. Note that
in a multiset the elements can appear more than once. For example {1, 2} and
{1, 1, 2} are different multisets, but {1, 2} and {2, 1} are equal multisets. If
a multiset A(d1, d2, . . . , dk;α) is linearly independent over rational numbers then
A(d1, d2, . . . , dk;α) is a set and the numbers d1, . . . , dk are linearly independent
over Q. We prove the following theorem.

Theorem 1. Let l 6 m be positive integers and let α be a transcendental number
from the interval (0,1]. Let d1, . . . , dl ∈ R be such that A(d1, d2, . . . , dl;α) is
linearly independent over Q. For m > l, let dl+1, . . . , dm ∈ R be such that each
dk, k = l + 1, . . . ,m is a linear combination of d1, . . . , dl over Q. Then

lim inf
T→∞

1

T
meas {τ ∈ [0, T ] : (2)

max
16j,k6m

max
s∈K
|ζ(s+ idjτ, α)− ζ(s+ idkτ, α)| < ε

}
> 0.

In the inequality (2), for almost all ε, ‘lim inf’ can be replaced by ‘lim’ similarly
as in Theorem 2 of [5]. Note that for any transcendental number α, 0 < α 6 1,
and for any real number d1, the set A(d1;α) is linearly independent over Q. The
following propositions show that for any positive integer l ‘most’ collections of real
numbers d1, d2, . . . , dl, α, where 0 < α 6 1, are such that A(d1, d2, . . . , dl;α) is
linearly independent over Q.

Proposition 2. Let α be a transcendental number and l > 2. If the set
A(d1, d2, . . . , dl−1;α) is linearly independent over Q, then the set

D = {dl ∈ R : A(d1, d2, . . . , dl;α) is linearly dependent over Q}

is countable.
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Proposition 3. Let d1, d2, . . . , dl be real numbers linearly independent over Q.
Then the set

B = {α ∈ (0, 1] : A(d1, d2, . . . , dl;α) is linearly dependent over Q}

is countable.

In the next section we prove Theorem 1. Section 3 is devoted to proofs of
Propositions 2 and 3.

2. Proof of Theorem 1

We follow the proof of Theorem 1 in [5]. Also lemmas from [5] will be used. As it
was already mentioned the proof of Theorem 1 in [5] contains a gap, however here
we avoid this gap because we work directly with ζ(s, α) instead of log ζ(s, α).

Let us start with a truncated Hurwitz zeta-function

ζv(s, α) =
∑
q6v

1

(q + α)s
.

By conditions of the theorem there are integers a 6= 0 and ak,1, ak,2, . . . , ak,l such
that

dk =
1

a
(ak,1d1 + ak,2d2 + · · ·+ ak,ldl) for l < k 6 m. (3)

Let
A = max

l<k6m
{|ak,1|+ |ak,2|+ · · ·+ |ak,l|}.

Denote by ‖x‖ the minimal distance of x ∈ R to an integer. If∥∥∥∥τ dn log(q + α)

2πa

∥∥∥∥ < δ for q 6 v and 1 6 n 6 l (4)

then, by the relation (3),∥∥∥∥τ dk log(q + α)

2π

∥∥∥∥ < Aδ for q 6 v and l < k 6 m.

By this and by the continuity in s of the function ζv(s, α) we have that for any
ε > 0 there is δ > 0 such that for τ satisfying (4)

max
16k,n6m

max
s∈K
|ζv(s+ idkτ, α)− ζv(s+ idnτ, α)| < ε. (5)

For positive numbers δ, v, and T we define the set

ST = ST (δ, v) =

{
τ : τ ∈ [0, T ],

∥∥∥∥τ dn log(q + α)

2πa

∥∥∥∥ < δ, q 6 v, 1 6 n 6 l

}
. (6)
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Let U be an open bounded rectangle with vertices on the lines σ = σ1 and
σ = σ2, where 1/2 < σ1 < σ2 < 1, such that the set K is in U . Let p > v be
a positive integers. We have

1

T

∫
ST

∫
U

m∑
k=1

|ζp(s+ idkτ, α)− ζv(s+ idkτ, α)|2 dσdtdτ

=

m∑
k=1

∫
U

1

T

∫
ST

|ζp(s+ idkτ, α)− ζv(s+ idkτ, α)|2 dτdσdt.

To evaluate the inner integrals of the right-hand side of the last equality we will
apply Lemma 6 from [5]. By generalized Kronecker’s theorem (see Lemma 5 in
[5]) and by linear independence of A(d1, d2, . . . , dl;α) the curve

ω(τ) =

(
τ
dk log(q + α)

2πa

)16k6l

06q6p

is uniformly distributed mod 1 in Rl(p+1). Let R′ be a subregion of the l(p+ 1)-
dimensional unit cube defined by inequalities

‖yk,q‖ 6 δ for 1 6 k 6 l and 0 6 q 6 v

and ∣∣∣∣yk,q − 1

2

∣∣∣∣ 6 1

2
for 1 6 k 6 l and v + 1 6 q 6 p.

Let R be a subregion of the l(v+ 1)-dimensional unit cube defined by inequal-
ities

‖yk,q‖ 6 δ for 1 6 k 6 l and 0 6 q 6 v

Clearly measR′ = measR = (2δ)l(v+1). Let

ζp,v(s+ idkτ, α) = ζp(s+ idkτ, α)− ζv(s+ idkτ, α). (7)

Then in view of the linear dependence (3) we get

lim
T→∞

1

T

∫
ST

m∑
k=1

|ζp,v(s+ idkτ, α)|2 dτ

= lim
T→∞

1

T

∫
ST

(
l∑

k=1

|ζp,v(s+ idkτ, α)|2

+

m∑
k=l+1

∣∣∣∣ζp,v (s+
i

a
(ak,1d1 + ak,2d2 + · · ·+ ak,ldl)τ, α

)∣∣∣∣2
)
dτ.
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By Lemma 6 in [5] and equality (7) we obtain that the last limit is equal to

∫
R′

 l∑
k=1

∣∣∣∣∣∣
∑
v<q6p

e−2πiayk,q

(q + α)s

∣∣∣∣∣∣
2

+

m∑
k=l+1

∣∣∣∣∣∣
∑
v<q6p

e−2πi(ak,1y1,q+ak,2y2,q+···+ak,lyl,q)

(q + α)s

∣∣∣∣∣∣
2
 dy1,1 . . . dyl,p

= measR

1∫
0

. . .

1∫
0

 l∑
k=1

∣∣∣∣∣∣
∑
v<q6p

e−2πiyk,q

(q + α)s

∣∣∣∣∣∣
2

+

m∑
k=l+1

∣∣∣∣∣∣
∑
v<q6p

e−2πi(ak,1y1,q+ak,2y2,q+···+ak,lyl,q)

(q + α)s

∣∣∣∣∣∣
2
 dy1,v+1 . . . dyl,p

= mmeasR
∑
v<q6p

1

(q + α)2σ
� measR

∑
q>v

1

(q + α)2σ
.

Consequently

lim
T→∞

1

T

∫
ST

∫
U

m∑
k=1

|ζp(s+ idkτ, α)− ζv(s+ idkτ, α)|2 dσdtdτ (8)

� measR
∑
q>v

1

(q + α)2σ1
.

Again by Lemma 5 in [5],

lim
T→∞

1

T
measST = measR. (9)

By (8) and (9), for large v, as T →∞, we have

meas

τ : τ ∈ ST ,
∫
U

m∑
k=1

|ζp,v(s+ idkτ, α)|2 dσdt <
√∑
q>v

1

(q + α)2σ1


>

1

2
T measR.

Then Lemma 4 in [5] gives

meas

τ : τ ∈ ST ,max
s∈K

m∑
k=1

|ζp,v(s+ idkτ, α)| 6 m

d
√
π

(∑
q>v

1

(q + α)2σ1

) 1
4


>

1

2
T measR,
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where d = minz∈∂ U mins∈K |s − z|. Therefore we obtain that for any ε > 0 there
is v = v(ε) such that for any p > v

meas

{
τ : τ ∈ ST ,max

s∈K

m∑
k=1

|ζp(s+ idkτ, α)− ζv(s+ idkτ, α)| < ε

}
(10)

>
1

2
T measR.

Now we will prove that for any δ > 0 there is p = p(δ) such that

meas

{
τ : max

s∈K

m∑
k=1

|ζ(s+ idkτ, α)− ζp(s+ idkτ, α)| < δ

}
(11)

> (1− δ)T.

The last formula together with (5), (6) and (10) yields Theorem 1. We return to
the proof of (11). By the mean value theorem of the Hurwitz zeta-function (see
Garunkštis, Laurinčikas, and Steuding [6]) and by Carlson’s Theorem (see Carlson
[4]) we obtain

lim
T→∞

1

T

T∫
0

|ζ(s+ ixτ, α)− ζp(s+ ixτ, α)|2 dτ =
∑
q>p

1

(q + α)2σ
,

where x is fixed. Thus (11) follows in view of

T∫
0

∫
U

m∑
k=1

|ζ(s+ idkτ, α)− ζp(s+ ixτ, α)|2 dσdtdτ � T
∑
q>p

1

(q + α)2σ1
.

Theorem 1 is proved.

3. Proofs of Propositions 2 and 3

Proof of Proposition 2. Let Ω be a set of all rational numbers sequences, where
each sequence has only finitely many nonzero elements. Then Ω is a countable
set. By 0 we denote the sequence all elements of which are zeros. Let d1 = 1.
Recall that the set A(1;α) is linearly independent. Then in view of the linear
independence of A(d1, d2, . . . , dl−1;α) we obtain that

D =

{
−
d1

∑∞
n=0 a1n log(n+ α) + · · ·+ dl−1

∑∞
n=0 al−1n log(n+ α)∑∞

n=0 aln log(n+ α)
:

(a10, a11, . . . , a(l−1)0, a(l−1)1, . . . , al0, al1, . . . ) ∈ Ω \ 0,

(al0, al1, . . . ) 6= 0

}
.

Thus D is a countable set. This proves the proposition. �
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Proof of Proposition 3. We use the same notations as in the proof of Proposi-
tion 2. Similarly as before we have that

B =

{
α ∈ I : d1

∞∑
n=0

a1n log(n+ α) + · · ·+ dl

∞∑
n=0

aln log(n+ α) = 0,

(a10, a11, . . . , a20, a21, . . . , . . . , al0, al1, . . . ) ∈ Ω \ 0
}
.

Recall that Ω is a countable set. If, for fixed

(a10, a11, . . . , a20, a21, . . . , . . . , al0, al1, . . . ) ∈ Ω \ 0,

the function

f(α) = d1

∞∑
n=0

a1n log(n+ α) + · · ·+ dl

∞∑
n=0

aln log(n+ α)

has only finite number of zeros in (0, 1], then the set B is countable. Thus to
prove the proposition it remains to show that f(α) has finitely many zeros in the
interval (0, 1]. In view of the condition that d1, d2, . . . , dk are linearly independent
and by the definition of Ω we have that there is a finite collection of real numbers
b0, b1, . . . , bm, such that bm 6= 0 and

f(α) = b0 log(α) + b1 log(1 + α) + · · ·+ bm log(m+ α).

Let bn, n 6 m be the first coefficient not equal to zero. Then we see that f(α) is
unbounded in (−n, 1/2) and is bounded in (1/2, 1]. Thus f(α) is not a constant
in (−n, 1]. Moreover there is a small positive number α0 such that f(α) 6= 0 if
α ∈ (−n,−n + α0). We consider f(α) as an analytic function in the half-plane
<α > −n of the complex plane. A set of zeros of a non-constant analytic function
is discrete. Thus there are finitely many zeros in the disc |1−α| 6 1 +n−α0. We
obtained that the function f(α) has finitely many zeros in (0, 1]. This proves the
proposition. �
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