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POLYNOMIAL CYCLES IN RINGS OF INTEGERS IN FIELDS
OF SIGNATURE (0,2)

Tadeusz Pezda

Abstract: We find all possible cycle-lengths of polynomial mappings in one variable over rings
of integers of number fields of signature (0, 2). Such fields have unit rank 1, and possible cycle-
lengths for other fields having unit rank 6 1, but other signature, were found earlier by other
authors.
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1. Introduction

For a commutative ring R with unity and f ∈ R[X], we define a cycle for f as
a k-tuple x0, x1, . . . , xk−1 of different elements of R such that

f(x0) = x1, f(x1) = x2, . . . , f(xk−1) = x0.

The number k is called the length of this cycle.
Let CYCL(R) be the set of all possible lengths of cycles in R of polynomials

f ∈ R[X].
For an algebraic number field K, we denote by ZK the ring of algebraic integers

in K. A field K is said to have signature (r, s) if it has r real and 2s non-real
embeddings. By Dirichlet’s theorem, the rank of the group of units in ZK equals
r + s − 1. Put ζn = exp( 2πin ). Note that [Q(ζn) : Q] = ϕ(n), and ϕ(n) 6 4
holds only for n = 1, 2, 3, 4, 5, 6, 8, 10, 12. Moreover, Q(ζ6) = Q(ζ3); Q(ζ10) =
Q(ζ5); Q(ζ2) = Q(ζ1) = Q. By Disc(K) we denote the discriminant of K.

One can treat as an exercise to prove that CYCL(Z) = {1, 2}. Boduch ([2])
and Baron ([1]) established the following result.
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Theorem B. Let K be a quadratic field. Write K = Q(
√
D) with a square-free

integer D. Then CYCL(ZK) equals

{1, 2, 3, 6} for D = −3,

{1, 2, 3, 4} for D = 5,

{1, 2, 4} for D = −1, 2,

{1, 2} for D ̸= −3,−1, 2, 5.

Around 2004, Narkiewicz [3] found sets CYCL(ZK) for cubic fields with nega-
tive discriminant, i.e. with signature (1, 1).

Theorem N. Let K be a cubic field with negative discriminant d. Then CYCL(ZK)
equals {1, 2, 3, 4, 5} for d = −23; {1, 2, 3, 4, 6} for d = −31; {1, 2, 4} for d =
−44,−59; and {1, 2} for other d.

In these theorems the signature is (2, 0), (0, 1) or (1, 1), hence the unit group
has rank 6 1. Moreover, for all but finitely many fields K of one of these signatures
one has CYCL(ZK) = {1, 2}.

In this paper we extend these results to fields of signature (0, 2). Note that
the unit rank of such fields is 1, and for all other number fields K with unit rank
6 1 the sets CYCL(ZK) were established by Theorem B and Theorem N. Let us
call a number field K trivial if for every k ∈ CYCL(ZK) there is a subfield L of
K,L ̸= K, such that k ∈ CYCL(ZL).

Theorem 1. Let K be a field of signature (0, 2). Then CYCL(ZK) equals:

(i) {1, 2, 3, 4, 5, 6} for K ∼ Q(θ), θ4 − θ3 + 2θ2 − 2θ+ 1 = 0, Disc(K) = 117;
(ii) {1, 2, 3, 4, 5, 6, 8, 10} for K = Q(ζ10), Disc(K) = 125;
(iii) {1, 2, 3, 4, 6, 8, 12} for K = Q(ζ12), Disc(K) = 144;
(iv) {1, 2, 3, 4, 6} for K ∼ Q(θ), θ4 + θ3 − 2θ + 1 = 0, Disc(K) = 189;
(v) {1, 2, 3, 4} for K ∼ Q(θ), θ4 + θ + 1 = 0, Disc(K) = 229;
(vi) {1, 2, 4, 8} for K = Q(ζ8), Disc(K) = 256;
(vii) {1, 2, 4} for K ∼ Q(θ), θ4 + θ2 + θ + 1 = 0, Disc(K) = 257;
(viii) {1, 2, 3, 4} for K ∼ Q(θ), θ4 + θ2 + 2θ + 1 = 0, Disc(K) = 272;
(ix) {1, 2, 4} for K ∼ Q(θ), θ4 + θ3 − θ + 1 = 0, Disc(K) = 392;
(x) {1, 2, 3, 4, 6} for K ∼ Q(θ), θ4 + 2θ3 + 6θ2 + 2θ + 1 = 0, Disc(K) = 432;
(xi) {1, 2, 3, 4, 6} for K = Q(

√
−3,

√
−7), Disc(K) = 441.

Other K of signature (0, 2) are trivial.

The case of signature (0, 2) in comparison to signature (1, 1) is more compli-
cated due to the bigger degree and the abundance of roots of unity ̸= ±1 in many
such fields.

In Section 2 we give some lemmas of general character concerning polynomial
cycles. In Section 3 we determine 17 fields, up to isomorphism, where something
interesting may happen. Then, in Section 4, we find all CYCL(ZK) in the fields
determined in Section 3. Computer calculations were made with the help of PARI
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and MAPLE. The main technical tool was an analysis of solutions of 3-unit equa-
tion x+ y + z = 1. As there is no known procedure to find all solutions of 3-unit
equation in any number field with unit rank > 2, our approach does not lead to
an algorithm determining CYCL(ZK) for such fields.

Quite recently, we managed to propose a finitary procedure finding CYCL(ZK),
working for any number field K. But the problem with unit rank > 2 is that the
procedure for finding all solutions of 2-unit equation x+ y = 1 can be carried out
effectively only in a particular finite family of such fields.

2. Auxiliary results

2.1. General lemma

In this subsection R is a commutative ring with 1, and without zero divisors. Let
K be the field of fractions of R. For x, y ∈ R, x ∼ y means that x and y are
associated.

Lemma 1.

(i) Let x0, x1, . . . , xk−1 be a cycle of length k in R for f(X) ∈ R[X]. Then
xi − x0 | xj − x0 for all 1 6 i | j 6 k − 1.

(ii) If k ∈ CYCL(R), then in R there is a cycle of length k of the form 0, 1, . . ..
(iii) Let x0, x1, . . . , xk−1 be a cycle of length k in R for g(X) ∈ R[X]. Then

the unique polynomial f ∈ K[X] of degree 6 k − 1 such that f(x0) =
x1, f(x1) = x2, . . . , f(xk−1) = x0 has coefficients in R.

(iv) Let x0, x1, . . . , xk−1 be a cycle of length k in R. Then xj−xi ∼ x(j−i,k)−x0
for 0 6 i < j < k. In particular, in a cycle x0 = 0, x1 = 1, x2, . . . , xk−1 of
length k in R the differences xj − xi are invertible for (j − i, k) = 1.

(v) If k ∈ CYCL(R) and l | k, then l ∈ CYCL(R).
(vi) If p ∈ CYCL(R) is a prime, then {1, 2, . . . , p} ⊂ CYCL(R).
(vii) 0, 1, x2 is a cycle in R if and only if x2 and 1− x2 are invertible.
(viii) Let A = {a1, a2, . . . , an},B = {b1, b2, . . . , bn} be subsets of R such that

ai − aj , bi − bj , ai − bj , bi − aj are units for all i < j. If for all i, j one has
ai − bi ∼ aj − bj, then {2, 4, . . . , 2n} ⊂ CYCL(R).

(ix) 0, 1, x2, x3 is a cycle in R if and only if x2 ̸= 0, x2 ∼ x3 − 1 and x2 −
1, x3 − x2, x3 are invertible.

(x) Let u, v ̸= 1 be units in R such that 1−u−v is a unit, and 1−u ∼ 1−v. Put
ϵ = (v− 1)/(1− u). Then 0, 1, 1− u, v is a cycle in R, and 0, t, t(1− u), tv
is a cycle in R if and only if t | u+ ϵ and t2 | (1 + ϵ2)(u(ϵ− 1) + ϵ2).

(xi) Let 0, 1, x2, x3, x4, x5 be a cycle for f ∈ R[X], with δ = x4

x2
. Then in R

there is a cycle of the form 0, 1, y2, y3, y4, y5 with y4
y2

= γ, for any γ ∈
A(δ) := {δ, 1δ , 1 − δ, 1

1−δ ,
δ−1
δ , δ

δ−1}. Moreover, A(v1) = A(v2) for any
v2 ∈ A(v1).

Proof. (i) For all m we have xmi − x(m−1)i = f◦((m−1)i)(xi) − f◦((m−1)i)(x0),
which is divisible by xi − x0. The rest of the proof is clear.
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(ii) Let x0, x1, . . . , xk−1 be a cycle for f(X) ∈ R[X]. Then 0, 1, x2−x0

x1−x0
,

x3−x0

x1−x0
, . . . , xk−1−x0

x1−x0
is a cycle for g(X) = 1

x1−x0
(f((x1 − x0)X + x0)− x0). Clearly

g(X) ∈ R[X].
(iii) f(X) is the remainder of the division of g(X) by (X−x0) · . . . · (X−xk−1),

so f(X) ∈ R[X].
(iv) This claim was proved in [4] for (j − i, k) = 1. The general case requires

only minor, and obvious, changes.
(v) Obvious.
(vi) In view of (ii) it is sufficient to consider a cycle x0 = 0, x1 = 1, x2, . . . , xp−1.

Since (iv) shows that all the differences xj − xi are invertible, for any 1 6 k 6 p
the Lagrange interpolation polynomial realizing the cycle 0, 1, . . . , xk−1 has its
coefficients in R.

(vii) 0, 1, x2 is the cycle for 1 + (x2 − 1)X − x2
2−x2+1
x2(x2−1)X(X − 1).

(viii) Take any k 6 n. Let c ∼ ai−bi for all i. One sees that every coefficient of
the Lagrange interpolation polynomial for the cycle a1, a2, . . . , ak, b1, b2, . . . , bk is
the ratio of two determinants. The determinant A in the denominator is associated
to ck. As the difference of l-th and l + k-th rows in the determinant B in the
numerator is divisible by c we see that ck divides B, thus B/A ∈ R.

(ix) It follows from (iv) that the conditions are necessary. To obtain their
sufficiency it is enough to observe that the Lagrange interpolation polynomial
realizing the cycle 0, 1, x2, x3 has all its coefficients in R.

(x) By (ix), 0, 1, 1−u, v is the cycle in R. Let f(X) be the unique polynomial
of degree 6 3 realizing this cycle. Then 0, t, t(1 − u), tv is a cycle for the unique
polynomial g(X) ∈ K[X] of degree 6 3. One sees that g(X) = tf( 1tX). Using
(iii) and calculating the coefficients of f(X) we get the assertion.

(xi) We see that 0, 1, x4−x2

x3−x2
, x5−x2

x3−x2
, −x2

x3−x2
, 1−x2

x3−x2
is a cycle for g(X) =

1
x3−x2

(f((x3 − x2)X + x2) − x2) ∈ R[X], and we have −x2

x4−x2
= 1

1−δ . In a simi-
lar manner we get the other elements from A(δ). The last claim may be verified
directly. �

2.2. Lemmas for number fields

In this section K is an algebraic number field.

Lemma 2. Let L be a subfield of K. If k ∈ CYCL(ZK) \ CYCL(ZL), then in ZK
there is a cycle of the form 0, 1, z2, . . . , zk−1 (and clearly of length k) with z2 /∈ L.

Proof. Let t0 = 0, t1 = 1, t2, . . . , tk−1 be a cycle in ZK . Since k /∈ CYCL(ZL),
there is the smallest l 6 k − 1 such that tl /∈ L. Then y0 = tl−2, y1 = tl−1, y2 =
tl, . . . , yk−2 = tk+l−4 (mod k), yk−1 = tk+l−3 (mod k) is a cycle (for the same map as
for the initial cycle). But then 0, 1, y2−y1y1−y0 , . . . is a cycle in ZK , with y2−y1

y1−y0 /∈ L. �

Lemma 3. Let K be a subfield of C of signature (0, 2). Assume that K is not
trivial. Then there is a unit d ∈ ZK such that K = Q(d) and every unit u of ZK
is of the form u = dmζ, for some integer m and a root of unity ζ.
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Proof. Let ρ be a fundamental unit of K. If Q(ρ) = K, then it is sufficient to
take d = ρ.

Assume that Q(ρ) is a proper subfield of K. Then Q(ρ) is quadratic and real,
since in imaginary quadratic fields there are no units of infinite order. If for some
n > 3 the number ζn belongs to K, then ρζn is also a fundamental unit of K. From
(ρζn)

n = ρn /∈ Q, we conclude that Q(ρ) = Q(ρn) ⊂ Q(ρζn) and Q(ρn) ̸= Q(ρζn).
Consequently, Q(ρζn) = K, and it is sufficient to take d = ρζn.

There remains the case when all roots of unity in K are ±1. Then every unit
lies in Q(ρ).

Let k ∈ CYCL(ZK) \ CYCL(ZQ(ρ)). Lemma 2 gives that in ZK there is a cycle
of the form 0, 1, z2, . . . of length k, with z2 /∈ Q(ρ). Since Lemma 1(iv) shows that
z2 − 1 is invertible, we get a contradiction. �

Lemma 4.

(i) The numbers ζ6, ζ56 ,
3±

√
5

2 , ±1±
√
5

2 are the only algebraic integers v of de-
gree 2 such that 0, 1, v is a cycle in ZL for any number field L containing v.

(ii) The numbers ±i,±2±
√
5, ±1±

√
5

2 ,±1±
√
2 are the only algebraic integers

w of degree 2 such that 0, 1, 1+w,w is a cycle in ZL for any number field
L containing w.

Proof. (i) Let X2 + aX + ϵ be the minimal polynomial for v. By Lemma 1(vii),
we see that ϵ ∈ {−1, 1} and 1+a+ϵ ∈ {−1, 1}. In this way we get that X2−X+1,
X2 − 3X +1, X2 +X − 1, X2 −X − 1 are the only possible minimal polynomials
for v.

(ii) Let X2 + aX + ϵ be the minimal polynomial for w. By Lemma 1(ix)
we see that w is invertible, i.e. ϵ ∈ {−1, 1}. Moreover, the same lemma gives
that for δ ∈ {−1, 1} we have w + δ | 2, which in turn, considering the minimal
polynomial for 2

w+δ , gives 1 + ϵ − aδ | 4 and 1 + ϵ − aδ | 2a. In this way we get
that X2 +1, X2 ± 4X − 1, X2 ± 2X − 1, X2 ±X − 1 are the only possible minimal
polynomials for w. �

2.3. Cycles of length 4 and the equation u+ v+w = 1 in units

Let K be a number field of signature (0, 2). If 0, 1, x2, x3 is a cycle of length 4 in
ZK , then u = 1− x2, v = x2 − x3, w = x3 are units satisfying

u+ v + w = 1 (1)

(we consider (u, v, w) as a solution of (1) only if u + v + w = 1 and u, v, w are
units).

As x2 ∼ 1 − x3, we have 1 − u ∼ 1 − w, and NK/Q(1 − u) = NK/Q(1 − w)
follows.

It may occur that some of u, v, w equal 1. If this happens, then in view of x2 ̸= 0
and x3 ̸= 1 we must have v = 1. In this case we have the cycle 0, 1, 1 + x3, x3
in ZK provided x3 is a unit satisfying x3 − 1 ∼ x3 + 1. Such cycles will require
a special consideration.
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If none of u, v, w equals 1, then we have so-called non-trivial solution of (1).
It is known that for any number field K there is only a finite number of such
solutions. For some fields K we will find them explicitly.

To each non-trivial solution of u + v + w = 1 in units we attach a triple
(NK/Q(1 − u), NK/Q(1 − v), NK/Q(1 − w)) of integers. As we noted earlier, if
a non-trivial solution (u, v, w) of (1) comes from a cycle 0, 1, x2, x3, then 1− u ∼
1− w and NK/Q(1− u) = NK/Q(1− w) = NK/Q(x2) follows.

Let us define some useful sets related to (1).

Definition 1. Let

• D(K) be the set of attached triples to all non-trivial solutions of (1) in ZK ,
where we neglect the order of terms in attached triples;

• d(K) be the set consisting of all natural numbers appearing in the triples
from D(K);

• d1(K) be the set consisting of all natural numbers n such that there is a non-
trivial solution (u, v, w) of (1) satisfying 1−u ∼ 1−w and n = NK/Q(1−u) =
NK/Q(1 − w). Hence d1(K) is the set consisting of NK/Q(x), where in ZK
there is a cycle of the form 0, 1, x, x3 with x ̸= x3 + 1;

• E(K) be the set of all w ∈ ZK such that 0, 1, 1 + w,w is a cycle in ZK ;
• e(K) be the set consisting of NK/Q(1 + w), where w ∈ E(K);
• g(K) = e(K) ∪ d1(K) be the set consisting of NK/Q(x), where in ZK there

is a cycle of the form 0, 1, x, x3.

For any natural k put m(k) = m(k,K) =
∏

p∈I(k,K)N(p), where I(k,K) is the
family of all prime ideals in ZK having norms < k and N(p) is the norm of p.

Define also V(K) as the set of all v ∈ ZK such that 0, 1, v is a cycle in ZK .

We introduce an equivalence relation in the set of all non-trivial solutions of
u+v+w = 1 as the minimal equivalence relation ≃ such that (u, v, w) ≃ (v, u, w) ≃
(u,w, v) ≃ ( 1u ,−

v
u ,−

w
u ). We observe that equivalent solutions have the same triple

attached, except for possible reordering. One sees that equivalent solutions of (1)
are trivial (or non-trivial) at the same time.

When listing the non-trivial solutions of (1) or the attached triples, we will try
to avoid mentioning equivalent solutions, or the attached triples differing only by
the order of appearance.

2.4. Embeddings into local rings

Let K be a number field. If ZK is embeddable into a ring S, then clearly
CYCL(ZK) ⊂ CYCL(S). Let p be a non-zero prime ideal of ZK . Let S be the
completion of (ZK)p with respect to the natural valuation. Then S is a discrete
valuation domain. Let P be its maximal ideal. Put pf = |S/P| = |ZK/p|, where
p is prime. So pf is the norm of p. A cycle x0, x1, . . . in S is called a ∗-cycle if
xi − xj ∈ P for all i, j.
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Lemma 5. Let S be as above.
(i) If k is the length of a ∗-cycle in S, then k is of the form k = a · pα, where

a | pf − 1.
(ii) If l is the length of a cycle in S, then l = ck, where c 6 pf and k is the

length of a ∗-cycle.
(iii) The length of any cycle in ZK is a product of primes not exceeding pf .
(iv) If x0 = 0, x1, . . . , xk−1 is a cycle in S of length k > pf and i0 =

min{j > 0 : xj ∈ P}, then i0 | k and i0 6 pf . Moreover, k/i0 is the
length of a ∗-cycle.

(v) CYCL(Z2) = {1, 2, 4}, where Z2 is the ring of 2-adic integers.

Proof. These assertions were proved in [4]. �

2.5. Sufficient conditions for nonexistence of cycles of some specific
lengths

Let K be a number field of signature (0, 2).

Lemma 6. Let k = qa > 4 (with prime q) be a prime power. There are no cycles
of length k in ZK if at least one of the following conditions holds.

(i) The product m(k) of norms of all prime ideals in ZK having norms < k
does not divide
(a) any element of g(K), for q = 2;
(b) any element of d1(K), for q > 2.

(ii) d1(K) is empty.

Proof. (i) Let x0 = 0, x1 = 1, x2, . . . , xqa−1 be a cycle in ZK . Let p be a prime
ideal of norm < k = qa. By Lemma 1 and Lemma 5(iv) we get xqa−1 ∈ p.
Hence xqa−1 belongs to the product of all prime ideals p of norm < k, and m(k) |
NK/Q(xqa−1) follows. Suppose that a > 2. As (by Lemma 1) 0, 1, xqa−1 , xqa−1+1

and (for q > 2) 0, 1, xqa−1 , x2qa−1+1 are cycles, we get the sufficiency of (i) for
a > 2.

Let a = 1. Lemma 5(iii) gives m(k) = m(q) = 1. Since 0, 1, x2, x3 and
0, 1, x2, x4 are cycles in ZK , we get d1(K) ̸= ∅. We thus obtain the sufficiency of
(i) for a = 1.

(ii) By (i)(b), it suffices to deal with q = 2. Let x0 = 0, x1 = 1, x2, . . . , x2a−1

be a cycle in ZK . Then Lemma 1(iv),(ix) shows that 0, 1, x2, x3 and 0, 1, x2, x2a−1

are also cycles, and at least one of them is not of the form 0, 1, 1 + w,w. Thus
d1(K) is not empty. �

Lemma 7. Assume that at least one of the following conditions holds.
(a) g(K) consists of one element;
(b) if 0, t, ty2, ty3 is a cycle (clearly, t, y2, y3 ∈ ZK), then t is invertible.

If there is a prime ideal p in ZK such that N(p) < 12 and N(p) does not divide
any element of g(K), then 12 /∈ CYCL(ZK).
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Proof. Let 0, 1, x2, . . . , x11 be a cycle in ZK , and let p be a prime ideal satisfying
N(p) < 12. Lemma 5 shows that x4 ∈ p or x6 ∈ p. Lemma 1 gives that 0, 1, x6, x7
and 0, 1, x6

x3
, x9

x3
are cycles in ZK .

Suppose that g(K) = {n}. This gives NK/Q(x6

x3
) = NK/Q(x6) = n, and

NK/Q(x3) = 1 follows.
Note that 0, x3, x6, x9 is a cycle. If (b) holds, then x3 is a unit.
We may thus assume that x3 is a unit. Lemma 1 shows then that 0, 1, x4, x5

is a cycle, and N(p) divides some element of g(K). �

Lemma 8.

(i) For any different primes p, q and natural a, b > 0 the number n of 0 6 l 6
paqb − 1 satisfying (paqb−1 − l, pq) = (l, pq) = 1 is at least 3 except for
(q, b) = (2, 1); (p, q, a, b) = (2, 3, 1, 1), (2, 3, 2, 1).

(ii) Let P, p, q be distinct primes, and let a, b > 0. Put k = paqb. Let
p1, p2, . . . , pj be distinct prime ideals of norm P . Assume that

(a) P < k;

(b) q - paqb−1 − 1;

(c) if p - P − 1, then j > 2;

(d) if p | P − 1, then j > 3 and p - pa−1qb − 1.

Then k ∈ CYCL(ZK) implies that P 2 divides some element from d(K).

Proof. (i) The assertion easily follows from a formula for n. We see that n =
(p− 1)pa−1(q − 1)qb−1 for b > 2, and n = (p− 1)pa−1(q − 2)qb−1 for b = 1.

(ii) Let 0, 1, x2, . . . , xk−1 be a cycle in ZK . Let p be any ideal of norm P . As
P < k, Lemma 5 implies that xpa−1qb ∈ p or xpaqb−1 ∈ p.

If p - P − 1, then xpa−1qb ∈ p would imply the existence of a ∗-cycle (namely
0, xpa−1qb , x2pa−1qb , . . .) of length p in (ZK)p, contradicting Lemma 5(i). Thus, in
this case we obtain xpaqb−1 ∈ p, and P 2 | P j | NK/Q(xpaqb−1) follows.

By pidgeonhole principle, at least one of the following possibilities holds
1-st possibility: P 2 | NK/Q(xpaqb−1) and q - paqb−1 − 1;
2-nd possibility: P 2 | NK/Q(xpa−1qb) and p - pa−1qb − 1.
Assume the first possibility. Using (i) we obtain that there is 0 6 l 6 paqb − 1

such that (paqb−1 − l, pq) = (l, pq) = 1; l ̸= 1 and xpaqb−1 − xl ̸= 1. Now Lemma
1 implies that (1− xpaqb−1 , xpaqb−1 − xl, xl) is a non-trivial solution of (1). Hence
NK/Q(xpaqb−1) = NK/Q(1− (1− xpaqb−1)) ∈ d(K).

We deal with the second possibility in the same manner. �

Let 0, 1, x2, x3, x4, x5 be a cycle in ZK . Put z = x4

x2
(Lemma 1 gives z ∈ V(K)).

Write then x2 = 1−u; x3 = 1−u+v for some invertible u, v. In view of x2 ∼ x3−1,
there is an invertible δ such that 1−u = δ(−u+v). Hence (α, β, γ) := (u,−δu, δv)
is a solution of (1).
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Lemma 9. Let K of signature (0, 2) be such that in ZK there are exactly k > 1
prime ideals of norm 5. Let 0, 1, x2, . . . , x5 be a cycle in ZK , and z, u, α, β, γ be as
above.

If (α, β, γ) is the trivial solution of (1), then x3 = 2− u. Otherwise,

5k | NK/Q(−β + βα+ γα) = NK/Q(z(1− α)− 1),

NK/Q(β(z − 1)(1− α) + γα) = 1.
(2)

Moreover, x3 belongs to all prime ideals of norm 5.

Proof. Let p be any prime ideal of norm 5. By Lemma 5 we must have x3 ∈ p.
If the mentioned solution is trivial, then one easily gets v = 1 or v = u2. But

the second possibility would give 1− u+ u2 ≡ 0 mod p, which is impossible.
The condition (2) follows by a direct calculation of x2, x3, x4 in terms of α, β, γ,

x3 ∼ x4 − 1, x3 ∈ p and the invertibility of x4 − x3. �

3. Determining all fields of signature (0,2) which can be non-trivial

Lemma 10. If K is a non-trivial field of signature (0, 2), then it is of one of the
following forms.

(i) Q(ζ8), Q(ζ10), Q(ζ12);
(ii) Q(v), where v is a unit such that 1− v is also a unit;
(iii) Q(w), where w is a unit such that w−1 ∼ w+1 (equivalently, 0, 1, 1+w,w

is a cycle in ZK);
(iv) Q(η), where η is a unit satisfying 1 < |η| 6 1 +

√
2.

Proof. Let d be as in Lemma 3. We may assume that |d| > 1. Let n be the
number of roots of unity in K. Put ζ = ζn. If n ∈ {8, 10, 12}, then K = Q(ζ) and
K satisfies (i). If

√
5 ∈ K or

√
2 ∈ K, then 1 < |d| 6 max( 1+

√
5

2 , 1 +
√
2) and K

satisfies (iv).
From this point on we assume that

√
2,
√
5 /∈ K and n ∈ {2, 4, 6}. Then a sum

of two or three roots of unity in K is 0 or has the absolute value greater than 1.
Suppose that (1) has a non-trivial solution (u, v, w). We may assume that |u| >

|v| > |w| > 1. Put u = dk1ζj1 , v = dk2ζj2 , w = dk3ζj3 , with k1 > k2 > k3 > 0. We
easily see that k1 > 0.

If k1 = k2 = k3, then |u+ v + w| = |d|k1 |ζj1 + ζj2 + ζj3 | > 1, a contradiction.
If k1 = k2 > k3, then |d|k1 6 |d|k1 |ζj1 + ζj2 | = |u + v| = |1 − w| 6 2|d|k1−1 and
|d| 6 2 follows. If 1 = k1 > k2, then d ∈ Q(ζ), a contradiction. In all other
cases, |d|k1 6 2|d|k1−1 + 1 with k1 > 2, and |d| 6 1 +

√
2 follows. Hence if (1) has

a non-trivial solution, then 1 < |d| 6 1 +
√
2 and K is as in (iv).

Suppose that 3 ∈ CYCL(ZK). Then in ZK there is a cycle of the form 0, 1, v,
with (see Lemma 1) invertible v, v − 1. If [Q(v) : Q] = 4, then K = Q(v) and K
is as in (ii). If [Q(v) : Q] = 2, then

√
5 /∈ K and Theorem B gives ζ6 ∈ K.
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Suppose that 4 ∈ CYCL(ZK) and (1) has no non-trivial solutions. Then by
Lemma 1 in ZK there is a cycle of the form 0, 1, 1 + w,w. If [Q(w) : Q] = 4, then
K = Q(w) and K is as in (iii). If [Q(w) : Q] = 2, then

√
2,
√
5 /∈ K and Theorem

B gives i = ζ4 ∈ K.
From this point on we assume moreover that d(K) = d1(K) = ∅, and K is not

as in (i),(ii),(iii),(iv).
Lemma 1(v) and Lemma 6(ii) show then that C := CYCL(ZK)⊆{1, 2, 3, 4, 6, 12}.
AsK is not trivial, we have C ̸= {1, 2}. If 3 ∈ C, then ζ6 ∈ K and CYCL(ZQ(ζ6))

= {1, 2, 3, 6} ⊆ C. As K is not trivial, we obtain 4 ∈ C. This gives ζ6, ζ4 ∈ K and
n = 12 follows, a contradiction.

If 3 /∈ C and 4 ∈ C, then i ∈ K and C = {1, 2, 4}. Thus K is trivial. �

Lemma 11. Let K = Q(v) be of signature (0, 2), where v is as in Lemma 10(ii).
Then the minimal polynomial of v is of the form F (X) = X4+aX3+bX2+(−1−
a− b)X + 1 and Disc(K) ∈ {117, 125, 144, 189, 229, 272}. Moreover,

(i) Disc(K) = 117 for (a, b) ∈ {(−5, 8), (−4, 8), (−3, 2), (−3, 5), (−2, 2),
(−1,−1), (−1, 2), (0, 2), (1,−1)};

(ii) Disc(K) = 125 for (a, b) ∈ {(−3, 4), (−2, 4), (−1, 1)};
(iii) Disc(K) = 144 for (a, b) ∈ {(−4, 5), (−2, 5), (0,−1)};
(iv) Disc(K) = 189 for (a, b) ∈ {(−5, 9), (−2, 0), (1, 0)};
(v) Disc(K) = 229 for (a, b) ∈ {(−4, 6), (−3, 3), (−3, 6), (−1, 0), (−1, 3), (0, 0)};
(vi) Disc(K) = 272 for (a, b) ∈ {(−4, 7), (−2, 1), (0, 1)}.
There are no more possibilities for (a, b).
In particular, if K is as in (i)-(vi), then there is a cycle of length 3 in ZK .

Proof. Let X4 + aX3 + bX2 + cX + 1 be the minimal polynomial of v (the last
coefficient equals ±1 since v is a unit, but it cannot be −1 since K is totally
complex). The minimal polynomial for the unit v − 1 is (X + 1)4 + a(X + 1)3 +
b(X+1)2+c(X+1)+1 with the constant term 1+a+b+c+1, and c = −1−a−b
follows.

Because of the signature (0, 2), the polynomial F (X) has no real roots. So
in particular, F (−1) = 2b + 3 > 0, 16F ( 12 ) = −4b − 6a + 9 > 0 and F (2) =
6a + 2b + 15 > 0. This gives b > −1 and −2b − 15 < 6a < −4b + 9. In view
of −2b − 15 < −4b + 9 we get b 6 11. For each −1 6 b 6 11 we see that
−2b−15

6 6 a 6 −4b+9
6 . Thus we obtain quite a small number of possibilities for

(a, b). For each resulting pair we use PARI to find whether F (X) is irreducible
and whether it has only non-real roots. PARI also computes the discriminants.
The resulting calculations are listed in the lemma. �

Lemma 12. Let K = Q(η) be of signature (0, 2), where η is as in Lemma 10(iv).
Let F (X) = X4+aX3+ bX2+ cX+1 be the minimal polynomial of η. Then K =
Q(θ), where θ is a root of F , and (a, c, b) equals one of the following possibilities:

(i) (−1,−2, 2), Disc(Q(θ)) = 117;
(ii) (−3,−2, 4), Disc(Q(θ)) = 125;
(iii) (2,−2, 2), Disc(Q(θ)) = 144;
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(iv) (1,−2, 0), Disc(Q(θ)) = 189;
(v) (1,−1, 2), Disc(Q(θ)) = 225;
(vi) (0, 1, 0), Disc(Q(θ)) = 229;
(vii) (0, 0, 6), Disc(Q(θ)) = 256;
(viii) (0, 1, 1), Disc(Q(θ)) = 257;
(ix) (0, 2, 1), Disc(Q(θ)) = 272;
(x) (2,−2, 0), Disc(Q(θ)) = 320;
(xi) (3,−3, 1), Disc(Q(θ)) = 333;
(xii) (1,−1, 0), Disc(Q(θ)) = 392;
(xiii) (0, 0, 3), Disc(Q(θ)) = 400;
(xiv) (2, 2, 6), Disc(Q(θ)) = 432;
(xv) (0, 0, 5), Disc(Q(θ)) = 441;
(xvi) (0, 4, 4), Disc(Q(θ)) = 512;
(xvii) (2,−2, 5), Disc(Q(θ)) = 576.

Moreover, the fields in (i) − (xvii) are chosen in such a way, that among the
possible triples (a, c, b) we choose the triple for which the corresponding polynomial
F (X) has a root v ∈ K with minimal value |v| > 1. This implies that for any
chosen value of (a, c, b) any root of F (X) lying in K, with absolute value bigger
than 1, satisfies the conditions for d in Lemma 3.

Proof. As 1 < |η| 6 1 +
√
2, because of the signature (0, 2) (in particular, two

roots of F (X) have the same absolute value |η|, whereas the other two have the
absolute value 1

|η| ), using Vieta’s formulae we obtain |a| 6 2(|η|+ 1
|η| ) 6 4

√
2 < 6.

The similar estimate holds for |c|. For b we have |b| 6 |η|2 + 1
|η|2 + 4 6 10.

As the fields corresponding to (a, c, b) and (−a,−c, b) are isomorphic and have
the same absolute values of their roots, we can assume a > 0. For each resulting
triple we use PARI to check the irreducibility of F (X), and calculate the signature
and the discriminant of the resulting field. Furthermore, we check that for each
value (a, c, b) giving the irreducible polynomial with no real roots the resulting
field is isomorphic to one from the provided list, and the root with absolute value
bigger than 1 has the absolute value equal or greater than the absolute value of
the corresponding root of a suitable polynomial from the list. �

Lemma 13. Let K = Q(w) be of signature (0, 2), where w is as in Lemma 10(iii).
Then the minimal polynomial of w is of the form F (X) = X4+a(X3−X)+bX2+1
and Disc(K) ∈ {117, 144, 225, 256, 320, 392, 441}. Moreover,

(i) Disc(K) = 117 for (b, a) ∈ {(−1,−1), (−1, 1), (14,−4), (14, 4)};
(ii) Disc(K) = 144 for (b, a) ∈ {(−1, 0), (2,−2), (2, 2), (14, 0)};
(iii) Disc(K) = 225 for (b, a) ∈ {(2,−1), (2, 1)};
(iv) Disc(K) = 256 for (b, a) ∈ {(0, 0), (6, 0)};
(v) Disc(K) = 320 for (b, a) ∈ {(0,−2), (0, 2), (6,−4), (6, 4)};
(vi) Disc(K) = 392 for (b, a) ∈ {(0,−1), (0, 1), (6,−2), (6, 2)};
(vii) Disc(K) = 441 for (b, a) ∈ {(2,−3), (2, 3)}.
There are no more possibilities for (b, a).
In particular, if K is as in (i)-(vii), then there is a cycle of length 4 in ZK .
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Proof. Let X4+aX3+ bX2+ cX +1 be the minimal polynomial of w. We easily
see that the constant term of the minimal polynomial for w − 1 is 2 + a + b + c,
whereas the corresponding coefficient for w+1 is 2−a+b−c. Since w−1 ∼ w+1,
we have 2+a+b+c = 2−a+b−c, and c = −a follows. So the minimal polynomial
of w has the required form. Now we are going to specify the possible values of
(b, a).

Since F (1) > 0, we have b > −1. Moreover, as F (X) = X2((X − 1
X )2 +

a(X − 1
X ) + b+ 2) and F (X) has no real roots, we get a2 − 4(b+ 2) < 0.

The condition w − 1 ∼ w + 1 is equivalent to w − 1 | 2 and w + 1 | 2. Thus
2

w−ϵ is an algebraic integer for ϵ = −1, 1. The minimal polynomial for 2
w−ϵ is

X4 + ( 2(4ϵ+2bϵ+2a)
2+b )X3 + ( 4(6+b+3aϵ)

2+b )X2 + ( 8(a+4ϵ)
2+b )X + 16

2+b .

But 2
w−ϵ is an algebraic integer, so all the coefficients of this polynomial are

integers. We thus obtain for ϵ = −1, 1 that 2 + b | 8ϵ+ 4a+ 4bϵ; 2 + b | 24 + 4b+
12aϵ; 2 + b | 8a+ 32ϵ; 2 + b | 16, which is equivalent to 2 + b | 4a and 2 + b | 16.
So we get b ∈ {−1, 0, 2, 6, 14}.

For b = 14 we get a = −4, 0, 4. For b = 6 we get a = −4,−2, 0, 2, 4. For
b = 2 we obtain a = −3,−2,−1, 0, 1, 2, 3, but for a = 0 we obtain the reducible
polynomial. For b = 0 we obtain a = −2,−1, 0, 1, 2. For b = −1 we get a =
−1, 0, 1. The discriminants were computed by PARI. �

Proposition 1. Every non-trivial field of signature (0, 2) is isomorphic to a field
listed in Lemma 12.

Proof. The discriminants of Q(ζ8), Q(ζ10), Q(ζ12) are 256, 125, 144, respectively.
Using PARI, we check that these cyclotomic fields and the fields listed in Lemmas
11 and 13 are isomorphic to suitable fields from Lemma 12. �

Remark. It may seem that Lemmas 11 and 13 are redundant, but they will be
used later to determine all cycles of the form 0, 1, v and 0, 1, 1 + w,w in ZK .

4. Proof of Theorem 1 (giving lengths of cycles in some fields)

In this section we will prove Theorem 1. In the following subsections we shall find
the sets CYCL(ZK) for all fields K listed in Lemma 12. We will use notation from
that lemma, and the letter t will denote an element satisfying the conditions given
in Lemma 1(x). For fixed K we shall denote CYCL(ZK) by C.

The triple (a, c, b) describes the minimal polynomial of θ, as given in Lemma
12. From two roots θ of F (X) with |θ| > 1, we choose that with positive imaginary
part, and denote it by d. Using PARI we verify whether i, ζ6, ζ8, ζ10, ζ12,

√
2,
√
5 ∈

K and, if so, we express them in terms of d. We list non-trivial solutions of (1),
taking into account what was written in section 2.3 about equivalent solutions.
Using lemmas 4,11 and 13, we determine the sets V(K) and E(K).

Computing d with sufficient accuracy, and using the roots of unity in K, we
determine all non-trivial solutions of (1). We used PARI to find prime ideals in
ZK of some small norms.
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Discriminant 257, CYCL(ZK) = {1, 2, 4}(Theorem 1(vii)).
Here (a, c, b) = (0, 1, 1). PARI gives 2ZK = pq, with prime ideals p ̸= q

and N(p) = 2. Thus (ZK)p is isomorphic to Z2. Hence by Lemma 5(v) we get
C ⊆ CYCL(Z2) = {1, 2, 4}. As 1 + d4 − (−d) = −d2 is a unit and 1 + d4 ∼ 1 + d,
by Lemma 1(ix), 0, 1, 1 + d4,−d is a cycle. Thus C = {1, 2, 4}. As i,

√
2 /∈ K, we

get that K is not trivial.
Discriminant 392, CYCL(ZK) = {1, 2, 4}(Theorem 1(ix)).
Here (a, c, b) = (1,−1, 0). As NK/Q(1 − d) = 2, in ZK there is an ideal of

norm 2. Then, by Lemma 5, C ⊆ {1, 2, 4, 8, 16, . . .}. Lemma 13 shows that 4 ∈ C.
It suffices to get 8 /∈ C.

By a calculation we obtain that the unique non-trivial solution of (1) is
(−d4,−d3, d), with (4, 8, 2) as the attached triple. Thus d1(K) = ∅, and by
Lemma 6(ii), 8 /∈ C. As i,

√
2 /∈ K, we are done.

Discriminant 320, CYCL(ZK) = {1, 2, 4},K is trivial.
Here (a, c, b) = (2,−2, 0). As NK/Q(d − 1) = 2, in ZK there is an ideal of

norm 2. By Lemma 5 we then have C ⊆ {1, 2, 4, 8, . . .}. One checks that i ∈ K.
Since there is a cycle of length 4 in ZQ(i), to establish the triviality of K it suffices
to show 8 /∈ C.

It turns out that (−d3i,−d2i, d), (d2,−id, d) are the only solutions of (1), with
(10, 8, 2), (4, 2, 2) as the attached triples. We get E(K) = {d,−d, 1d ,−

1
d , d

2i,−d2i,
i
d2 ,

−i
d2 , i,−i} and e(K) = {2, 4, 8}. Therefore we get g(K) = {2, 4, 8}. A prime

ideal p = (d+ 2) has norm 5. Thus 5 | m(8), and Lemma 6(i) gives 8 /∈ C.
Discriminant 400, CYCL(ZK) = {1, 2, 3, 4},K is trivial.
Here (a, c, b) = (0, 0, 3). As i = −d3 − 2d,NK/Q(1 + i) = 4, by Lemma 5,

the lengths of cycles in ZK are of the form 2α3β . In view of
√
5 ∈ K, to get

C = {1, 2, 3, 4} and the triviality of K, it suffices to prove that 9, 8, 6 /∈ C. We
have E(K) = {±i,±2 ±

√
5, ±1±

√
5

2 }, and e(K) = {1, 4, 16} follows. In ZK ,
only (u, v, w) = (d3i, di, di), (−d3i,−d2,−d2), (d4,−d3i, di) are non-trivial solu-
tions of (1), and (16, 1, 1), (16, 1, 1), (25, 16, 1) are the attached triples. Hence we
get g(K) = {1, 4, 16}.

There are two prime ideals p1 = (d − 1) and p2 = (d + 1) of norm 5. We see
that p1p2 = (

√
5). Thus 5 | m(8) | m(9), and Lemma 6(i) gives 8, 9 /∈ C.

Suppose that 0, 1, x2, x3, x4, x5 is a cycle, with x2 /∈ Q(
√
5) (see Lemma 2). As

di = −1+
√
5

2 , all non-trivial solutions of (1) lie in Q(
√
5). By x2 /∈ Q(

√
5) and

Lemma 9, we then have that x2 = 1− u, x3 = 2− u for some invertible u. Lemma
9 gives u ≡ 2 mod

√
5. Write u = ia(di)b, for some integers a, b. In view of di ≡ 2

mod
√
5 and i ≡ (−1)j−12 mod pj , we get 2 | a. This gives u, x2 ∈ Q(

√
5),

a contradiction.
Discriminant 432, CYCL(ZK) = {1, 2, 3, 4, 6}(Theorem 1(x)).
Here (a, c, b) = (2, 2, 6). We see that ζ6 = −1

2 (d3+2d2+5d), and
√
2,
√
5, i /∈ K.

Since NK/Q(1 + dζ56 ) = 3, Lemma 5 gives that each k ∈ C is of the form 2α3β .
Using Lemma 1, one checks that 0, 1, 1 + dζ56 ,−dζ56 is a cycle in ZK of length 4.
As ζ6 ∈ K, we get {1, 2, 3, 4, 6} ⊆ C, and to have equality here we should show
that 8, 9, 12 /∈ C.
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We see that E(K) is empty. The only solution of (1) is (−d2,−dζ56 ,−dζ56 ), with
(16, 3, 3) as the attached triple. This gives g(K) = {3} (we have already seen that
g(K) is not empty).

The prime ideal q = (d + 2, 7) has norm 7. Thus 7 | m(8) | m(9), and
Lemma 6(i) gives 8, 9 /∈ C. Lemma 7 gives 12 /∈ C.

Discriminant 272, CYCL(ZK) = {1, 2, 3, 4}(Theorem 1(viii)).
Here (a, c, b) = (0, 2, 1). We have i = −d3 + d2 − d − 1, and ζ6,

√
2,
√
5 /∈ K.

Since NK/Q(1−id3) = 4, each k ∈ C is of the form 2α3β . By Lemma 11 and i ∈ K,
we see that 1, 2, 3, 4 ∈ C. To get the equality it suffices to prove that 8, 6, 9 /∈ C.

By a direct calculation, (−d4, id3,−d), (−d3,−d, di), (id3,−d2i, d2) are the only
solutions of (1), and (17, 4, 1), (4, 1, 5), (4, 1, 5) are the attached triples. Thus
d1(K) = ∅, and Lemma 6(ii) shows that 8, 9 /∈ C.

There are two prime ideals p1 = (d − 1, 5) and p2 = (d − 2, 5) of norm 5. We
see that V(K) = {−d,−di,− 1

d ,
i
d ,−id

2, i
d2 } = A(−d).

Suppose that 6 ∈ C. Then by Lemma 1(xi) and the last assertion, we get
that in ZK there is a cycle 0, 1, x2, . . . , x5 with x4

x2
= −d. A direct checking using

MAPLE gives that (2) from Lemma 9 does not hold for any non-trivial solution
(α, β, γ) of (1). Hence Lemma 9 gives x3 = 2−u; x4 = −d(1−u). But then u ≡ 2
mod p2 and x4 − 1 = −d(1− u)− 1 ≡ 0 mod p2 give d− 1 ∈ p2, a contradiction.

Discriminant 441, CYCL(ZK) = {1, 2, 3, 4, 6}(Theorem 1(xi)).
Here (a, c, b) = (0, 0, 5) and i,

√
2,
√
5 /∈ K. We see that ζ6 = − 1

2d
3 − 2d + 1

2 .
Since NK/Q(1− ζ6d) = 4, each k ∈ C is of the form k = 2α3β . As CYCL(ZQ(ζ6)) =
{1, 2, 3, 6}, and 4 ∈ C (Lemma 13), it suffices to prove that 9, 8, 12 /∈ C.

Since E(K) = {dζ6, dζ26 , dζ46 , dζ56 ,
ζ6
d ,

ζ26
d ,

ζ46
d ,

ζ56
d }, we obtain e(K) = {4}.

By a direct calculation, we see that (−d2, dζ6, dζ26 ) is the only solution of (1),
with (9, 4, 4) as the attached triple. However, 1− dζ6 is not associated to 1− dζ26 .
Thus g(K) = {4} and d1(K) = ∅. Lemma 6(ii) shows that 8, 9 /∈ C. We see that
(d− 1) has norm 7. Lemma 7 then gives 12 /∈ C.

Discriminant 333, CYCL(ZK) = {1, 2, 3, 6},K is trivial.
Here (a, c, b) = (3,−3, 1). We have ζ6 = d3 + 3d2 + 2d− 1. In ZQ(ζ6) there are

cycles of lengths 1, 2, 3, 6. In view of NK/Q(d − 1) = 3, each k ∈ C is of the form
2α3β . Thus, by Lemma 1, to get C = {1, 2, 3, 6} we should show that 4, 9 /∈ C.

We have E(K) = ∅. The only non-trivial solution of (1) is (d2, d, dζ56 ), with
the attached triple (9, 3, 3). However, 1 − d is not associated to 1 − dζ56 . Thus
g(K) = ∅, and 4 /∈ C follows. Lemma 6(ii) gives 9 /∈ C.

Discriminant 512, CYCL(ZK) = {1, 2, 4},K is trivial.
Here (a, c, b) = (0, 4, 4). Since NK/Q(d+1) = 2, we see that C ⊆ {1, 2, 4, 8, . . .}.

Since i ∈ K, to get the triviality of K it is sufficient to prove that 8 /∈ C.
We get E(K) = {±i} and e(K) = {4}. The only non-trivial solution of (1) is

(−d2i,−d,−d), with (16, 2, 2) as the attached triple. Thus g(K) = {2, 4}. We see
that p = (d + 2, 5) is the prime ideal of norm 5. Thus 5 | m(8), and Lemma 6(i)
gives 8 /∈ C.
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Discriminant 576, CYCL(ZK) = {1, 2, 3, 4, 6},K is trivial.
Here (a, c, b) = (2,−2, 5), and ζ6 = 1

5 (−2d3 − 5d2 − 10d + 4),
√
2 = dζ46 − 1.

As NK/Q(
√
2) = 4, each k ∈ C is of the form k = 2α3β . In view of Theorem B, it

suffices to prove that 8, 9, 12 /∈ C.
We get E(K) = {±1 ±

√
2}, and e(K) = {4} follows. The only non-trivial

solution of (1) is (d2ζ26 , dζ6, dζ6), with (16, 4, 4) as the attached triple. Thus g(K) =
{4}. We see that (d− 1) has norm 7. Thus 7 | m(8) | m(9), and Lemma 6(i) gives
8, 9 /∈ C. Using Lemma 7 we obtain 12 /∈ C.

Discriminant 256, CYCL(ZK) = {1, 2, 4, 8}(Theorem 1(vi)).
Here (a, c, b) = (0, 0, 6) and ζ8 = 1

4 (d
3 − d2 + 7d − 3). Clearly 1, ζ8, . . . , ζ

7
8 is

a cycle of length 8 for the polynomial f(X) = ζ8X. The ideal (ζ8+1) has norm 2,
and we get C ⊆ {1, 2, 4, 8, 16, . . .}. It suffices to prove that 16 /∈ C.

We get E(K) = {±i,±1±
√
2, ζ8, ζ

3
8 , ζ

5
8 , ζ

7
8 , d,−d, 1d ,−

1
d} and e(K) = {2, 4, 8}.

By a calculation, (dζ48 , dζ78 , ζ38 ), (dζ28 , dζ58 , dζ78 ), (dζ78 , ζ58 , ζ68 ) and (d2ζ48 , dζ
2
8 , dζ

2
8 ) are

the only non-trivial solutions of (1). They have (8, 2, 2), (4, 2, 2), (2, 2, 4) and
(16, 4, 4), as the attached triples. This gives g(K) = {2, 4, 8}. We see that
p = (ζ28 +2ζ8+2, 3) is the prime ideal of norm 9. Thus 9 | m(16), and Lemma 6(i)
gives 16 /∈ C.

Discriminant 225, CYCL(ZK) = {1, 2, 3, 4, 6},K is trivial.
Here (a, c, b) = (1,−1, 2). We have ζ6 = 1

2 (−d
3−2d2−2d+1) and

√
5 = 2dζ46−1.

As {1, 2, 3, 6} ⊆ CYCL(ZQ(ζ6)), 4 ∈ CYCL(ZQ(
√
5)) andNK/Q(1−d) = 4, it suffices

to prove that 9, 12, 8 /∈ C.
We see that (d2ζ6, d

2ζ36 , dζ6), (d
3ζ36 , d

2ζ26 , d
2ζ26 ), (d

2ζ26 , dζ
2
6 , d), (d

2ζ6, d, ζ6),
(d4ζ46 , d

3ζ36 , dζ6), (d
3, dζ6, dζ6) are the only non-trivial solutions of (1), with

(4, 4, 1), (16, 1, 1), (1, 4, 4), (4, 4, 1), (25, 16, 1), (16, 1, 1) as the attached triples. Thus
d1(K) ⊆ {1, 4}. We see that w = ±d,± 1

d ,±dζ
2
6 ,± 1

dζ6 are the only elements from
E(K) of degree 4 over Q. For all these w we have NK/Q(1 +w) = 4. Lemma 4(ii)
gives that w = ±2 ±

√
5, ±1±

√
5

2 are the only elements from E(K) of degree 2
over Q. Thus g(K) = {1, 4, 16}.

In ZK there are two prime ideals of norm 4, namely p1 = (d − 1) and p2 =
(1 + dζ26 ). We see that (2) = p1p2. Thus 16 | m(9), and Lemma 6(i) gives 9 /∈ C.

It turns out that the assumption of Lemma 7(b) is satisfied. We see that
q = (d2 + 2d+ 2, 3) is the prime ideal of norm 9. Lemma 7 gives 12 /∈ C.

Remark. From forms of cycles of length 4 obtained above, we see that the only
cycles of the form 0, 1, x2, x3 with 2 | x2, are 0, 1, 1 + w,w with w = ±2±

√
5. In

particular, if x2 ∈ p1, p2, then x2, x3 ∈ Q(
√
5).

It suffices to get 8 /∈ C. Let 0, 1, x2, . . . , x7 be a cycle in ZK . Lemma 5
implies that x4 ∈ p1p2 = (2). Lemma 1 shows that 0, 1, x4, x5 and 0, 1, x4

x3
, x7

x3
are

cycles satisfying 2 | x4, respectively, 2 | x4

x3
. The above Remark shows now that

x4,
x4

x3
, x7

x3
∈ Q(

√
5), and x7 ∈ Q(

√
5) follows.

Let y0, y1, . . . , y7 be any cycle in ZK with y0, y1 ∈ Q(
√
5). Then 0, 1, y2−y0y1−y0 , . . .,

y7−y0
y1−y0 is a cycle (see Lemma 1(ii)), and we obtain that y7−y0

y1−y0 ∈ Q(
√
5). This gives
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y7 ∈ Q(
√
5). As y7, y0, y1, . . . , y6 is a cycle, we obtain in a similar manner that

y6 ∈ Q(
√
5), and so on. Finally, we would get a cycle of length 8 already in ZQ(

√
5),

which is rejected by Theorem B.
Discriminant 229, CYCL(ZK) = {1, 2, 3, 4}(Theorem 1(v)).
Here (a, c, b) = (0, 1, 0) and i,

√
2,
√
5, ζ6 /∈ K. Since NK/Q(d − 1) = 3, each

k ∈ C is of the form k = 2α3β . Lemma 11 guarantees that 3 ∈ C, whereas, using
Lemma 1(ix), we see that 0, 1, 1− d7, d5 is a cycle of length 4. In order to receive
C = {1, 2, 3, 4}, we therefore should get 8, 9, 6 /∈ C.

By a direct calculation, we see that (d7,−d6, d5), (d5,−d4, d2), (d8, d5,−d) and
(d7, d3,−d) are the only non-trivial solutions of (1), with (3, 5, 3), (3, 1, 3), (15, 3, 1)
and (3, 9, 1) as the attached triples. This gives d1(K) = {3}. We get e(K) = ∅,
and g(K) = {3} follows. Lemma 11(v) gives V(K) = A(−d).

The prime ideal q1 = (d + 2, 5) has norm 5. Thus 5 | m(8) | m(9), and
Lemma 6(i) gives 8, 9 /∈ C. It suffices to prove the same for 6.

Let 0, 1, x2, . . . , x5 be a cycle in ZK of length 6. Using Lemma 1(xi), we may
assume that x4

x2
= −d. If (x2, x3, x4) leads to the trivial solution of (1), as explained

before Lemma 9, then x2 = 1 − u, x3 = 2 − u, x4 = −d(1 − u). This leads to
2− u ∈ q1,−d(1− u)− 1 ∈ q1 and d− 1 ∈ q1, a clear contradiction.

We see that the possibilities for (x2, x3, x4) that lead to the non-trivial solution
of (1) from Lemma 9 and satisfy (2) are (1−d, 1−d+ 1

d ,−d(1−d)), (1−d, 1−d+
d3,−d(1−d)). Hence x2 = 1−d and x4 = −d(1−d). As x4−x5 = −d(1−d)−x5
is invertible, taking into account all non-trivial solutions of (1), we obtain that
x5 ∈ { 1

d5 ,−
1
d4 ,

1
d3 ,−

1
d ,−1,−d, d2, d3}. But for cycles of length 6 we have x5 − 1 ∼

x2 = 1−d, and NK/Q(x5− 1) = 3 follows. Hence x5 ∈ { 1
d5 , d

2}. But x5−x2 ∈ q1,
and no possibility for x5 remains.

Discriminant 125, CYCL(ZK) = {1, 2, 3, 4, 5, 6, 8, 10}(Theorem 1(ii)).
Here (a, c, b) = (−3,−2, 4). We see that ζ10 = −d3 + 3d2 − 3d+ 1. We obtain

that the prime ideal p = (d+3, 5) has norm 5, and (11) = q1q2q3q4, with different
prime ideals q1, q2, q3, q4 of norm 11.

By Lemma 5 (considering p) we get that the length of any cycle in ZK is of
one of the following forms: 5α, 2 · 5α, 3 · 5α, 4 · 5α, 6 · 5α, 8 · 5α, 12 · 5α, 16 · 5α.

As 1, ζ10, ζ210, . . . , ζ910 is a cycle for the polynomial f(X) = ζ10X, using Lemma 1,
we get {1, 2, 3, 4, 5, 10} ⊆ C.

Let a1 = 0, a2 = 1, a3 = ζ310, a4 = dζ710, b1 = ζ310(1 − d2ζ710), b2 = ζ610, b3 =

ζ710, b4 =
ζ610
d . Such ai, bj satisfy the conditions from Lemma 1(viii), so

6, 8 ∈ C. Thus {1, 2, 3, 4, 5, 6, 8, 10} ⊆ C, and to get the equality we should show
that 25, 16, 15, 12, 20 /∈ C.

There are 23 non-trivial solutions of (1), with (1, 1, 1), (5, 1, 1), (5, 5, 1),
(11, 1, 1), (11, 5, 1), (11, 11, 1), (16, 1, 1), (25, 16, 1) as the attached triples. Thus
d(K) = {1, 5, 11, 16, 25}. Since E(K) = {±2 ±

√
5, ±1±

√
5

2 } and e(K) = {1, 16},
we get g(K) ⊆ {1, 5, 11, 16}.

We see that 114 | m(16) | m(25), and Lemma 6(i) gives 16, 25 /∈ C. We apply
Lemma 8(ii) for P = 11, j = 4 and for (k, p) = (15, 3), (12, 3), (20, 5). We then
obtain 15, 12, 20 /∈ C, respectively.
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Discriminant 117, CYCL(ZK) = {1, 2, 3, 4, 5, 6}(Theorem 1(i)).
Here (a, c, b) = (−1,−2, 2), ζ6 = −d3 − d − 1, and q = (1 + d4) is the prime

ideal of norm 9.
We have E(K) = {d5ζ26 , d5ζ56 , dζ6, dζ46 , ζ26 1

d , ζ
5
6
1
d , ζ6

1
d5 , ζ

4
6

1
d5 }, and e(K) = {1, 16},

follows.
There are 27 non-trivial solutions of (1), with (1, 1, 1), (7, 1, 1), (7, 7, 1), (9, 1, 1),

(9, 7, 1), (13, 1, 1), (13, 9, 1), (16, 1, 1), (16, 13, 1), (19, 7, 1) as the attached triples.
Thus d1(K) ⊆ {1, 7} and g(K) ⊆ {1, 7, 16}.

We see that in ZK there are two ideals of norm 7, namely p1 = (d+ 1, 7) and
p2 = (d+ 3, 7).

As the difference of any two different elements in {0, 1, ζ6, d, dζ6, d3ζ26} is in-
vertible, using the Vandermonde determinant, we get that any tuple of different
elements lying in this set is a cycle in ZK . Thus 1, 2, 3, 4, 5, 6 ∈ C. By Lemmas 1
and 5 to get C = {1, 2, 3, 4, 5, 6} it suffices to prove that 7, 8, 9, 15, 10, 12 /∈ C.

Let 0, 1, x2, . . . , x6 be a cycle of length 7 in ZK . By Lemma 1, we see that the
differences of any two different elements in the set {0, 1, x2, . . . , x6} are invertible.
These elements in any order give a cycle of length 7 in ZK . If u is invertible then
0, u, ux2, . . . , ux6 is a cycle in ZK . We may thus assume that the absolute values
of x2, . . . , x6 are at least 1.

Note that ζ6, ζ56 , d, dζ6, dζ46 , dζ56 , d2ζ6, d2ζ26 , d2ζ36 , d3ζ6, d3ζ26 are the only elements
of V(K) with absolute value at least 1. A direct check shows that we cannot choose
five elements out of them with the property that any two chosen elements have
the invertible difference. This shows that 7 /∈ C.

We see that 49 | m(8) | m(9), and Lemma 6(i) gives 8, 9 /∈ C. We apply
Lemma 8(ii) with P = 7, j = 2 and (k, p) = (15, 5), and obtain 15 /∈ C. The
asumption (b) of Lemma 7 is satisfied, and considering q we get 12 /∈ C. We are
left with 10.

Let 0, 1, x2, . . . , x9 be a cycle. Lemma 1 shows that 0, 1, x2, x3 and 0, 1, x2, x9
are cycles in ZK , at least one of them is not of the form 0, 1, 1 + w,w. By con-
siderations in sect. 2.3, we then obtain that NK/Q(x2) ∈ d1(K) ⊆ {1, 7}. By
Lemma 5(i), we have that x2 is not in p1 nor in p2, and 7 - NK/Q(x2) follows.
This implies that x2 (and then, by Lemma 1, also x4, x6, x8) is invertible. Hence
by Lemma 5, x5 lies in p1 and in p2. In particular 49 | NK/Q(x5).

Applying Lemma 1, we see that (1−x5, x5−x7, x7) and (1−x5, x5−x9, x9) are
solutions of (1), and at least one of them is not trivial. This gives that NK/Q(x5) =
NK/Q(1− (1− x5)) belongs to d(K). However, no element of d(K) is divisible by
49, and 10 /∈ C follows.

Discriminant 189, CYCL(ZK) = {1, 2, 3, 4, 6}(Theorem 1(iv)).
Here (a, c, b) = (1,−2, 0), ζ6 = −d3 − 2d2 − d+2 and

√
2,
√
5, i /∈ K. We have

(3) = p4 with the prime ideal p = (d+1) of norm 3, and q = (d+5, 7) has norm 7.
By Lemma 5, each k ∈ C is of the form k = 2α3β .

We see that (d2, d2ζ26 , d), (d2ζ6, dζ6, dζ
5
6 ), (d3ζ6, d

2ζ6, d
2), (d3, d2, dζ6),

(d2, dζ56 , ζ6), (d
4ζ26 , d

3ζ6, d), (d
3ζ56 , d, dζ6) are the only non-trivial solutions of (1),

with (3, 3, 1), (1, 3, 3), (9, 1, 3), (7, 3, 3), (3, 3, 1), (21, 9, 1), (9, 1, 3) as the attached
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triples. As (3, 3, 1) appears among the associated triples, we get 4 ∈ C. We
see that e(K) = ∅, and d1(K) = g(K) = {3} follows.

As ζ6 ∈ K, we see that 1, 2, 3, 6 ∈ C. So to get C = {1, 2, 3, 4, 6}, it suffices to
prove that 8, 9, 12 /∈ C.

We have 7 | m(8) | m(9), and Lemma 6(i) gives 8, 9 /∈ C. Lemma 7 gives
12 /∈ C.

Discriminant 144, CYCL(ZK) = {1, 2, 3, 4, 6, 8, 12}(Theorem 1(iii)).
Here (a, c, b) = (2,−2, 2). We check that ζ12 = −1

2d
2 − d − 1

2 . We have that
p = (d− 1) is the prime ideal of norm 4, and (13) = q1q2q3q4 with distinct prime
ideals q1, q2, q3, q4 of norm 13. Thus each k ∈ C is of the form k = 2α3β . We have
V(K) = {dζ512, dζ712, dζ812, dζ1012 , ζ12, ζ212, ζ512, ζ712, ζ1012 , ζ1112 ,

ζ212
d ,

ζ412
d ,

ζ512
d ,

ζ712
d }.

Since ζ12 ∈ K, we have 12 ∈ C, and {1, 2, 3, 4, 6, 12} ⊆ C follows. One checks
that a1 = 0, a2 = d, a3 = dζ12, a4 = ζ512, b1 = (d+1)dζ812, b2 = dζ312, b3 = dζ1012 , b4 =
d2ζ812 satisfy the assumptions of Lemma 1(viii), and therefore 8 ∈ C. Hence to get
C = {1, 2, 3, 4, 6, 8, 12}, it suffices to prove that 16, 24, 9 /∈ C.

The full list of non-trivial solutions of (1) consists of 16 items. We do not
enlist them, but we will focus on the attached triples. They are as follows:
(4, 1, 1), (4, 4, 4), (9, 4, 1), (13, 4, 1), (16, 1, 1), (16, 9, 1).

We have E(K) = {ζ12, ζ512, ζ712, ζ1112 ,±d,±di,± 1
d ,±

i
d ,±d

2,± 1
d2 ,±i} (where

clearly i = ζ312) and e(K) = {1, 4, 16}. Hence g(K) = {1, 4, 16}. As 13 | m(16),
Lemma 6(i) gives 16 /∈ C. Applying Lemma 8(ii) with P = 13, j = 4 and
(k, p) = (24, 3), we obtain 24 /∈ C. We are left with 9.

Let 0, 1, x2, . . . , x8 be a cycle of length 9 in ZK for f(X). Take any j ∈ {3, 6}.
Lemma 5 shows that xj ∈ p. By Lemma 1, we have that 0, 1, xj , x4 and 0, 1, xj , x7
are cycles in ZK . Let j1 ∈ {4, 7} be such that 0, 1, xj , xj1 is not of the form
0, 1, 1 + w,w. Since xj , 1 − xj1 ∈ p we have that (1 − xj , xj − xj1 , xj1) is the
non-trivial solution of (1), with at least two elements divisible by 4 in the attached
triple. Hence this attached triple is (4, 4, 4). Only (d2i, di, d) is a solution of
(1) with (4, 4, 4) as the attached triple. This solution has three equivalent ones,
namely ( 1d ,−i,−di), (−

i
d , i,−d) and (− i

d2 ,−
1
d ,

i
d ) (other equivalent solutions arise

by changing the order of terms). So 1−x3, 1−x6 ∈ {d2i,±di,±d,± 1
d ,±i,±

i
d ,−

i
d2 }

:= A1, i.e. in A1 we gather the units appearing in these four solutions.
Remark. Let L be a Galois extension of Q, and σ be any automorphism of L. As-
sume that y0, y1, . . . , yk−1 is a cycle in ZL for g(X). Then σ(y0), σ(y1), . . . , σ(yk−1)
is also a cycle in ZL (for (σg)(X)).

In A1 some numbers are conjugated. Namely d, di, id ,−
1
d are conjugated. Anal-

ogously, the numbers −di,− i
d ,

1
d are conjugated to −d. The numbers d2i = 2+

√
3

and −i are conjugated to −i
d2 = 2−

√
3 and to i, respectively.

Suppose that 1−x3 ∈ {d, di, id ,−
1
d}. We may take 1−x3 = d. As x6−x3 ∼ x3

we have NK/Q(x6 − x3) = 4. Since 1 − x6 ∈ A1, by a simple check we then get
1− x6 ∈ {di,−di, i,−i,− i

d , d
2i} := A2.

Now we look at x2, x5, x8. By Lemma 1, they lie in V(K). Moreover, x2 −
x3, x5 − x3, x8 − x3 are also units. This gives that x2, x5, x8 are in {dζ512, dζ712,
dζ812, dζ

10
12 , ζ

5
12, ζ

10
12} := A3.
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In view of x5−x2 ∼ x8−x2 ∼ x8−x5 ∼ x3, we get x2 ≡ x5 ≡ x8 mod p. This
leads to {x2, x5, x8} = {dζ712, dζ1012 , ζ1012} := A4 or {x2, x5, x8} = {dζ812, dζ512, ζ512}
:= A5.

By Lemma 1 the numbers x2−x6, x5−x6, x8−x6 are units. So for each v ∈ A4

we have that v − x6 is a unit, or for each v ∈ A5 we have that v − x6 is a unit.
However, it turns out that no x6 fulfilling 1−x6 ∈ A2 satisfies at least one of these
two conditions. Thus 1− x3 ∈ {d, di, id ,−

1
d} is impossible.

Suppose that 1 − x3 ∈ {−d,−di,− i
d ,

1
d}. We may assume 1 − x3 = −d. In

a similar way as above we get 1 − x6 ∈ {di,−di, i,−i, id , d
2i} := A′

2. We also

get that x2, x5, x8 are in {dζ1012 , ζ212, ζ512, ζ712,
ζ212
d ,

ζ712
d } := A′

3, and {x2, x5, x8} =

{dζ1012 , ζ712,
ζ712
d } := A′

4 or {x2, x5, x8} = {ζ512, ζ212,
ζ212
d } := A′

5 follows. In a similar
way as above a contradiction follows.

Suppose that 1 − x3 ∈ {d2i, −id2 }. We may assume that 1 − x3 = d2i. In
a similar way as above, we get that x2, x5, x8 lie in {dζ512, dζ1012 , ζ512, ζ712} := A′′

3 .
We see that one cannot find three elements in A′′

3 congruent to each other mod p,
a contradiction. So, we get 1− x3 ∈ {i,−i}, and x3 ∈ {1± i} follows.

Therefore for any cycle in ZK of the form 0, y1, . . . , y8 we have y3
y1

∈ {1± i}.
By Remark, we may assume that x3 = 1 + i. Take any l ∈ {4, 7}. We see

that 3l ≡ 3 (mod 9). Then 0, xl, x2l, . . . . is a cycle for f◦l of length 9. We thus
have (1 + i)/xl = (x3l (mod 9))/xl ∈ {1 ± i}. This gives x4, x7 ∈ {1, i}. But
x4, x7 ̸= x1 = 1 and x4 ̸= x7, a contradiction. In this way we obtained 9 /∈ C.

As, according to Proposition 1, it was the last field to be considered, we proved
Theorem 1.
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