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EXISTENCE OF AN INFINITE FAMILY

OF PAIRS OF QUADRATIC FIELDS Q(v/m1D) AND Q(v/m2D)
WHOSE CLASS NUMBERS ARE BOTH DIVISIBLE BY 3

OR BOTH INDIVISIBLE BY 3

Axiko ITo

Abstract: Let m1, ma, and m3 be distinct square-free integers (including 1). First, we show
that there exist infinitely many square-free integers d with gcd(mima,d) = 1 such that the class
numbers of Q(v/m1d) and Q(v/mad) are both divisible by 3. This is a generalization of a result
of T. Komatsu [15]. Secondly, we show that there exist infinitely many positive fundamental
discriminants D with ged(mimams, D) = 1 such that the class numbers of real quadratic fields

Q(v/m1D), Q(v/m2D), and Q(v/m3D) are all indivisible by 3 when m1, ma2, and ma are positive.
This is a generalization of a result of D. Byeon [4]. We add an application of this result to the
Iwasawa invariants related to Greenberg’s conjecture.
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1. Introduction

For a given positive integer n, there are infinitely many imaginary quadratic fields
whose class numbers are divisible by n. Such results are obtained by T. Nagell [18],
N. C. Ankeny and S. Chowla [1], R. A. Mollin [17], etc. Similarly, for a given pos-
itive integer n, there are infinitely many real quadratic fields whose class numbers
are divisible by n. Y. Yamamoto [25], P. J. Weinberger [24], etc. obtained such
results. All the proofs of them were given by constructing such quadratic fields
explicitly. Many results on the divisibility of the class number of quadratic fields
are known for the case n = 3 particularly. We begin with a result of T. Komatsu.

Theorem 1.1 (Komatsu, [15]). Fiz a non-zero integer t. Then, there exist
infinitely many both positive and negative square-free integers d such that the class
numbers of quadratic fields Q(v/d) and Q(v/td) are both divisible by 3.
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The result for the case t = —1 is already known by [14]. For the case where
t = —3 and d > 1, Theorem 1.1 follows from the Scholz inequality (Theorem 1.2
below), as there are infinitely many real quadratic fields whose class numbers are
divisible by 3.

Theorem 1.2 (Scholz, [21], cf. [23, Theorem 10.10]). Let d > 1 be square-
free. Let rq be the 3-rank of the ideal class group of Q(\/a) and sg the 3-rank of
the ideal class group of Q(v/—3d). Then,

o < 89 <710+ 1.

One of the purpose of this paper is the following result which is regarded as a
generalization of Theorem 1.1.

Theorem 1.3. Let my and mq be distinct square-free integers (including 1). Then,
there exist infinitely many both positive and negative square-free integers d with
ged(myma,d) = 1 such that the class numbers of quadratic fields Q(v/m1d) and
Q(v/mad) are both divisible by 3.

In detail, we see that Theorem 1.3 holds true for pairs of two real quadratic
fields, for pairs of two imaginary quadratic fields, or for pairs of real and imaginary
quadratic fields respectively. On the other hand, D. Byeon proved the following
theorem.

Theorem 1.4 (Byeon, [4]). Let t be a square-free integer. Then, there exist
infinitely many positive fundamental discriminants D with a positive inferior limit
density such that the class numbers of quadratic fields Q(v/D) and Q(v/tD) are
both indivisible by 3.

For t = —3, Theorem 1.4 follows from Theorem 1.2. We denote by h(d) the
class number of a quadratic field Q(v/d). By Theorem 1.2, for a square-free integer
d > 1, if 31 h(—3d), then 3 1 h(d). It is known that there exist infinitely many pos-
itive fundamental discriminants D with a positive inferior limit density such that
3 1 h(—3D) by [19]. Therefore, there exist infinitely many positive fundamental
discriminants D with a positive inferior limit density such that the class numbers
of quadratic fields Q(v/D) and Q(v/—3D) are both indivisible by 3. Another goal
of this paper is a generalization of Theorem 1.4.

Theorem 1.5. Let my, ma, and mg be square-free positive integers (including 1).

(1) There exist infinitely many positive fundamental discriminants D with a pos-
itive inferior limit density such that gcd(mimoms, D) = 1 and the class
numbers of real quadratic fields Q(v/m1D), Q(v/m2D), and Q(v/msD) are
all indivisible by 3.

(2) There exist infinitely many positive fundamental discriminants D with a pos-
itive inferior limit density such that gcd(mima, D) = 1 and the class num-

bers of quadratic fields Q(v/m1D) and Q(v/—maoD) are both indivisible by 3.
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This paper is organized as follows. In Section 2, we give a proof of Theorem 1.3
by constructing an explicit cubic polynomial which gives an unramified cyclic
cubic extension of a quadratic field. In Section 2.1, we state the method of this
construction. We treat two cases where 4 { myms and 4 | mymsg respectively
(Theorems 2.1 and 2.2). Theorem 1.3 follows from these theorems. We prove
Theorem 2.1 in Section 2.2 and prove Theorem 2.2 in Section 2.3. To check
the divisibility of the class numbers of the quadratic fields, we use a result of
P. Llorente and E. Nart [16]. In Section 3, we give a proof of Theorem 1.5. To
show this theorem, we essentially use a result of J. Nakagawa and K. Horie [19]. In
Section 3.1, we state their result. In Section 3.2, we prove Theorem 1.5. In Section
3.3, we add an application of Theorem 1.5 to the Iwasawa invariants related to
Greenberg’s conjecture.

2. Proof of Theorem 1.3

In this section, we give a proof of Theorem 1.3, modifying the method in [15].

2.1. Construction

Let m; and ms be distinct square-free integers (including 1). First, we treat the
case where 4  mymgy and 2 1 mo. Let £ be the set of all prime numbers [ which
are inert in the extension Q(+¥/2)/Q and satisfy the condition

mi mo
—_— = —_— = 1
(%)= ()=
where (-/-) denotes the Legendre symbol. We can show that £ is an infinite set
not containing 2 and 3, using the Chebotarev density theorem as in [15, Lemma

1.1]. We fix I € L. Let s be a prime number such that s # 2, 3, [ and s { mima.
We take integers ny and ns satisfying the following conditions: for each i =1, 2,

n, =

0mod 9 if m; # 0 mod 3,
0mod 3 if m; =0 mod 3,

min? =1 mod [,
_ 2
n; = 0 mod s°,

and

n1 = 0 mod 2,

no = 1 mod 2.
Note that there exist such integers n; by the Chinese remainder theorem. Now
put 71 1= mn?, ro := mon3, and r := ryry. It follows from the assumption on n;
that r1 is even and 79 is odd. Let P be the set of prime numbers defined by

P :={p:prime | p#3,s and p|r(r — 1)(r1 —r2)}.
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It is easy to see that 2 and [ are contained in P. Let @) be the subset of P defined
by

Q :={q : prime | ¢ # 3 and g|mims}.
When miyms = —1, 3, —9, the set @) is empty. We treat the set ) including the

case where @) is empty. Note that s € Q. We denote by T the set of integers ¢
satisfying the following conditions:

t = £3s mod 27s3,

t=—1modl,

tZr, r1 mod p for any p € P,
2t £ 3(ry +72) mod ¢ for any ¢ € Q.

We can use the Chinese remainder theorem to make sure the set T is infinite.
Define three subsets of T' as follows. For the case where 1 > 0 and ro > 0, let

Tl = {t eT | t 2 2M3JX{T1,T2}}

and
Ty :={teT|t<Max{ry,rz}}.

For r < 0, let
Ts:={teT|t>1t},

where t( is a real number such that to > Max{ry,ro} and 2§ — 3(ry + 72)t3 +
6rto — r(r1 + r2) = 0. Note that the real number ¢ is uniquely determined (see
the proof of Lemma 2.11). Define

_ L

Dy, (X) = o7

(3X2 +7r){2X3 = 3(r1 + o) X2 +6rX —r(ry +72)}.

For any ¢t € T, we can check the integrality of D, ,,(t). Let F(S) denote the
family {Q(+/m1Dy, .+, (t)) | t € S} for a subset S of T'. For a prime number p and
an integer a, we denote by v,(a) the greatest exponent n such that p” | a. Then,
we have the following theorem.

Theorem 2.1. Let my and mo be distinct square-free integers (including 1) with
4{mymg. For everyt € T, the class numbers of quadratic fields Q(+/m1 Dy, v, (t))
and Q(y/m2D,, ,(1)) are both divisible by 3 and ged(mymy/3v30™m2) D, (1))
= 1. Moreover, the families F(T1), F(Tz), and F(T3) each include infinitely
many quadratic fields. In particular, if mi and ma are positive and t € Ty (resp.
t € Ty), then the quadratic fields Q(\/m1 Dy, v, (t)) and Q(v/m2Dy, ,,(t)) are both
real (resp. both imaginary). Furthermore, if ma < 0 < my and t € T3, then
D, »,(t) is positive. In this case, the quadratic field Q(/m1 Dy, r,(t)) is real and
the quadratic field Q(y/maDy, ry (t)) is imaginary.
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This theorem is essential for the proof of the case 4 { myms of Theorem 1.3. In
fact, the case 12 { myms of Theorem 1.3 follows from Theorem 2.1 immediately.
For the case 3 | mimg, we can show Theorem 1.3 by using Theorem 2.1 as follows.
By the congruence relation r1, ro, and ¢, we find v3(D,, ,,(t)) = 3. Then,

o{ymbncio)=af{'5 )

when 3 | m; and

()= fon 25

when 3 { m;. Putting m} := m;/3 (resp. m} := 3m;) when 3 | m; (resp.
3 1 m;), we have ged(mmb, Dy, ,(t)/3%) = 1. Moreover, the class numbers of

Q(v/m Dy, +,(t)/33) and Q(v/m5HD,, 1, (t)/33) are both divisible by 3.

Next, we treat the case 4 | myms. Although the method of the construction
is based on the above, we need several changes. The definition of the set L is the
same as above. We fix [ € L. Let s be a prime number such that s # 2, 3, [ and
s1mymg. We take integers ny and no satisfying the following conditions: for each
i=1, 2,

_ JO0mod 9 if m; # 0 mod 3,
"= 0mod3 if m; = 0mod 3,

min? =1 mod [,
n; = 0 mod s2,

and
n; = 2 mod 4.

Note that there exist such integers n; by the Chinese remainder theorem. Put
ry = mln%, ro = mgng, and r := ryry similarly. It follows from the assumption
on n; that r; is even. Let P be the set of prime numbers defined by

P :={p:prime |p+#2,3,s and p|r(r — 1)(r1 —ra)}.
It is easy to see [ € P. Let @ be the subset of P defined by
Q :={q: prime | ¢ # 2,3 and glmims}.

When mimy = —4, £12, —36, the set @ is empty. We treat the set ) including
the case where @) is empty. Note that s € Q. We denote by T the set of integers
t satisfying the following conditions:

t = +6s mod 8 - 2753,

t=—1modl,

t#£ry, romodp for any p € P,
2t £ 3(r1 +72) mod ¢ for any ¢ € Q.
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We see from the Chinese remainder theorem that the set 7' is infinite. The def-
initions of T; (¢ = 1,2,3), Dy, ., (t), and F(S) are the same as above. It follows
from the congruence relation of rq, 7o, and ¢ that D, ,,(t) is an integer. Then,
we obtain the following theorem.

Theorem 2.2. Let my and mso be distinct square-free integers (including 1) with
4| mimg. For everyt € T, the class numbers of quadratic fields Q(/m1 Dy, r,(t))
and Q(\/maDy, ,,(t)) are both divisible by 3 and ged(mimg/(4 - 3vs(mima)),
D, .+, (t)) = 1. Moreover, the families F(T1), F(T2), and F(T3) each include
infinitely many quadratic fields. In particular, if mi and meo are positive and t €
Ty (resp. t € Ty), then the quadratic fields Q(\/m1 Dy, r,(t)) and Q(\/maDy, r,(t))
are both real (resp. both imaginary). Furthermore, if me < 0 < m; and t € T5,
then Dy, r,(t) is positive. In this case, the quadratic field Q(/mi Dy, r,(t)) is Teal
and the quadratic field Q(y/maDy, ,,(t)) is imaginary.

This theorem is essential for the proof of the case 4 | m;ms of Theorem 1.3. We

can show Theorem 1.3 by using Theorem 2.2 as follows. First, we treat the case 3 1
mymsg. It follows from the congruence relation rq, 7o, and ¢ that ve(D;, ,,(t)) = 6.

Then,
Q( mi‘DTl,m(t))_Q( mlDrl’rg(t))

26

We see ged(myma, Dy, 1, (t)/2%) = 1. Moreover, the class numbers of the quadratic

fields Q(v/m1Dy, r, (t)/26) and Q(+/maDy., .+, (t)/2°) are both divisible by 3. Sec-

ondly, we treat the case 3 | myms. It follows from the congruence relation ry, 7o,
and ¢ that ve(Dy, r,(t)) = 6 and v3(D,, r,(¢)) = 3. Then,

iDrl,Tg t
Q( miDTlﬂ“z(t)) :Q< Tg 2633())

when 3 | m; and

@( miDrlﬂ”Q (t)) = Q( 3mzl)7"216ﬂ”323(t))

when 3 { m;. Putting m., := m;/3 (resp. m} := 3m;) when 3 | m; (resp.
3t my;), we have ged(mimb, D, ,,(t)/(2°3%)) = 1. Moreover, the class num-
bers of Q(y/m| Dy, ,(t)/(263%)) and Q(\/m4D,, ., (t)/(2633)) are both divisible
by 3.

2.2. Proof of Theorem 2.1

In this section, we give a proof of Theorem 2.1. We can show Theorem 2.2 sim-
ilarly. The proof consists of three parts: the divisibility of the class numbers of
the quadratic fields (Proposition 2.10), the determination of the sign of D, ,,(t)
(Proposition 2.12), and the infiniteness of F(T') (Proposition 2.13). Before these
proofs, we show the following lemma.
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Lemma 2.3. We have
ng(m1m2/3v3(mlm2)a D7‘17T2 (t)) =1

Proof. When mims = —1, £3, —9, we easily see that the statement holds true.
Then, we treat the case mymo # —1, 43, —9, that is, the case where @ is not
empty. Assume ged(mymg/3v3(™™2) D, (1)) # 1. For every prime number p;
with py | ged(myma/3v3(mim2) D, (1)), we have 27D, ,,(t) = 0 mod p;. Then,

27Dy, 1y (t) = (32 +1){2t3 — 3(ry 4+ ro)t? + 6rt — r(ry +19)}
= 3t*(2t — 3(r1 4+ 72)) = 0 mod p;.

It follows from p; # 3 that p1 € Q. By definition of the set T, we see 2t #
3(r1 + r2) mod p;. Then, t = 0mod p;. On the other hand, it follows from
m1m2/3”3(m1m‘2) = 0 mod p; that p; divides r. Then, t = r = 0 mod p;. Note
that p; € P. This is a contradiction by definition of the set T ]

First, we show the divisibility of the class numbers of the quadratic fields. To
prove 3 | h(m;D,, r,(t)) (i = 1,2), we use a result of P. Llorente and E. Nart [16].
Let f(Z) be an irreducible cubic polynomial of the form f(Z) = Z3 — aZ — 3 for
o, € Z. We denote by Ky the minimal splitting field of f(Z) over Q. Then,
ky = Q(\/4a® —2752) ,ils contained in K. Assume that 4a®—27432 is not a square
and ged(a, B) = 2¢3¢'s¢  for some integers e, ¢/, and ¢ . Let &, §', and & be the
maximal integers such that /(220329520 ) and 3/(239339's30 ) are integers. Put
ap = /(2203255207 ) and By = /(23933939 ). Llorente and Nart proved the
following proposition.

Proposition 2.4 (Llorente and Nart, [16]). Assume v,(ag) < 2 orvy(Bo) < 3
for each prime number p.
(1) If p # 3, then the prime ideals of ky over p are unramified in the extension
Ky /ky if and only if the condition 1 < vy(Bo) < vp(ap) is not satisfied.
(2) If p=3, ap =3 mod 9, and 32 = ap + 1 mod 27, then the prime ideals of
ky over 3 are unramified in the extension Ky /k;.

Remark 2.5. In [16], more general situations are treated. However, Proposition
2.4 is enough for us.

We shall show 3 | h(m1D,, ,(t)) and 3 | h(maD,, ,,(t)) for each ¢ € T. For
afixedt €T, weput u:=t3+3rt, w:=3t>+7r, a :=u—rw, b:=u—ryw, and
c:=1t?> —r. Then, u, w, a, b, and c are integers such that

(t+r) =u+wyr

and
rea® — rib® = (rg —ry)c’.
We note that r; # ro. This follows from the uniqueness of factorization into prime

factors and the assumption that m; and mgy are square-free. Define f1(Z) :=
73 —3cZ —2a and fo(Z) := Z3 — 3¢Z — 2.



118 Akiko Tto

Lemma 2.6. The polynomials f1(Z) and fo(Z) are both irreducible over F;. In
particular, they are both irreducible over Q.

Proof. We can show this lemma in a way similar to [15, Lemma 2.2]. We see
from 7; = mn? = 1mod! (i =1, 2) and t = —1 mod [ that a = b = —8 mod [
and ¢ = 0 mod I. Then, f;(Z) = Z3 + 16 mod [ for each i = 1, 2. Since [ is inert
in the extension Q(+¥/2)/Q, the polynomial Z3 — 2 is irreducible over F; and so
is Z3 4+ 16. Therefore, f;(Z) are both irreducible over F; and hence also over Q,
where ¢ =1, 2. |

Lemma 2.7. The cyclic cubic extensions Ky, /ky, are both everywhere unramified
at finite places, where i =1, 2.

By the definitions of the integers a, b, and ¢, we have
4(3¢)® — 27(2a)? = 54%r| D, 1, (t) = 54*myn3 Dy, 1, (t) = (5411)*my Dy, 4y ()
and

4(3¢)® — 27(20)? = 54213 Dy, 1y (1) = 54%Man3 Dy 1y (1) = (5412)?ma Dy, 1y (1).

Then, ky, = Q(y/m1Dy, r,(t)) and ks, = Q(\/maDy, r,(t)). To prove Lemma 2.7,

we need the following two lemmas.

Lemma 2.8.

(1) cis odd. /
(2) We have ged(ab,c) = 3°s® for some integers e, €.

Proof. (1) We see from 2 € P that t # 7 mod 2. Then, ¢ = t> —r = 1 mod 2,
that is, ¢ is odd.

(2) Let p2 be a prime divisor of ged(ab, ¢). Note that ps is odd. Since po divides
c=1t%—r, wesee t> = r mod po. It follows from p, | ab that

0=ab=(u—rw)(u—row) =164t —r1)(t — ro) mod po.

Then, (i) p2 | ¢t or (ii) ¢ = r; mod pg or (iii) ¢ = ro mod py. First, we treat
Case(i). Since ps divides t, we see r = t? = t = 0 mod py. Then, ps | r, that
is, p2 € PU{3,s}. If po € P, we have t # r mod po. This is a contradiction.
Therefore, po = 3, s. Secondly, we treat Case(ii). Since ¢ = r1 mod py holds, we
see

2:

] t2 =r = ryry mod p2.

If po divides r1, we have r = 0 mod pa. Then, ps € P U {3,s}. Since t Z r mod p
holds for every p € P, it must be ps = 3, s. If ps does not divide ry, we see
r1 = 19 mod po, that is, py | r1 —re. Then, po € PU{3,s}. If p; € P, we have
t # r1 mod po. This is a contradiction. Therefore, po = 3, s. Finally, we treat
Case(iii). Since t = ro mod ps holds, we see

r% =2 =r = r1ry mod p2.
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If po divides ra, then r = 0 mod po, that is, po € P U {3,s}. Since t Z r mod p
holds for every p € P, it must be po = 3, s. If po does not divide ry, we have
ro = 171 mod po. Then, t = r; = rs mod po, that is, ¢ = r1 mod py. This case can
result in Case(ii) and then ps = 3, s. |

Lemma 2.9. We have r; = 0 mod 27, where i =1, 2.

Proof. When m; # 0 mod 3, we have n; = 0 mod 9. Then, r; = mmf = 0 mod
27. When m; = 0 mod 3, we have n; = 0 mod 3. Then, r; = mmz2 =0mod27. N

Proof of Lemma 2.7. Since vs(D,, r,(t)) = 5 and s { mymg hold, we have kjy, #
Q, where ¢ = 1, 2. Then, we can use Proposition 2.4. In this case, we take oo = 3¢,
B = 2a or 2b. By Lemma 2.8 (2), we have ged(ab,c) = 3¢5 for some integers
e, €. Then, the assumption v,(ap) < 2 or v,(8y) < 3 is satisfied for each prime
number p, where o and 5y are as in Proposition 2.4. Moreover, the condition
1 < vp(Bo) < vp(ap) is not satisfied when p # 3, s. By Proposition 2.4 (1), the
prime ideals of ks, over p are unramified in the extension Ky, /ky, when p # 3, s.
Now, we treat the case p = s. Since

S8 # 0 mod s
and . 2
2 = 2 Z 0 mod s
hold, we have & = 1, where § is as in Proposition 2.4. Then, we find oy =

3¢/(2293%" %) and vs(ap) = 0. Therefore, the condition 1 < v,(8) < vs(ag) is
not satisfied, that is, the prime ideals of ky, over s are unramified in Ky, /ky,.
Next, we treat the case p = 3. Put t; := é We see t; = £1 mod 9. By Lemma
2.9, we obtain

3+ 3rt — 3rit? —
a_ _tnAor n TlrEti‘Eilmod27,

3353 3353
b 3+ 3rt — 3rqt? —
P ¥ or 33822 o — tif = +1 mod 27,
and )
c tc—=r 5
32?:W:tlzlmodg

Then, ¢’ = 1, where §’ is as in Proposition 2.4. By Lemma 2.8 (1), the integer ¢ is
odd. Then, 6 = 0, where ¢ is as in Proposition 2.4. Hence, («g, 8y) = (32’%, ﬁ%)

if 8 = 2a and (agp, By) = ( de_ 2 ) otherwise. Since ag = 3 mod 27 and

3223 3343

Bo = £2 mod 27 hold, we see
B2 = ap + 1 mod 27.

By Proposition 2.4 (2), the prime ideals of ky, over 3 are unramified in the extension
Ky, /ks,. The proof of Lemma 2.7 is completed. |
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Lemma 2.7 shows that 3 divides the orders of the narrow class groups of
Q(y/m1Dy, +,(t)) and Q(v/maD,, +,(t)). Since the difference between these or-

ders and the class numbers of Q(y/m1D,, ,,(t)) and Q(+/maD,, ,(t)) is only a
power of 2, the following proposition holds.

Proposition 2.10. For any t € T, we have
3| h(m1Dy, 1, (1)) and 3| h(meDy, 1, (1)).
Secondly, we consider whether D, ,,(t) is positive or not. Define
Grira (X) = 2X% = 3(r1 +19) X% 4+ 69X —r(r1 +12).

Then,

Dy, i, (X) 3X% + 7)Gr1 72 (X).

1
= 277(
Concerning the sign of D, ,(t), we obtain the following lemma.
Lemma 2.11.

(1) Assume 1 and 72 are positive integers. Then, Dy, ,(t) is positive if t >
SMax{ry,r2} and Dy, ,,(t) is negative if t < Max{ry,ra}.

(2) Assume rire is a negative integer. Ift > to, then D, ,,(t) is positive, where
to is a real number such that to > Max{r1,r2} and g, »,(to) = 0.

Proof. (1) Since 5-(3t? + r) is positive, the sign of D, ,,(t) coincides with that
of gr, v, (). The derivative of g, ,,(X) is

Gy (X) = 6(X —11)(X —13).
We see

Grra (1) = —11(r1 — )% <0
and
Gy (r2) = —72(rg — 1) < 0.
Then, g, .r,(X) = 0 has only one real root. This root is larger than Max{ry,r2}.

Therefore, if t < Max{ry,rz2}, then g,, ,,(t) is negative, that is, D, ,,(t) is nega-
tive. Assume rq > ro > 0. We see

1
Grv,m,(311/2) = 17“17“2(57“1 —4ry) > 0.

Since gy, r,(37r1/2) is positive and g, », (X) is monotonically increasing for X >
Max{rq,r2}, we obtain g, r,(t) > 0 when ¢ > 3r1/2. Then, D, ,,(t) is positive
when ¢ > 3ry/2.

(2) We may assume 71 > 0 > ro, that is, m; > 0 > my. We see

Gry o (X) = 6(X —11)(X —12).
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2 2

Since gr, r,(r1) = —r1(r1 — 72)? is negative and g, r,(12) = —ro(re — r1)? is
positive, there exists only one real number ¢, such that tg > r1 = Max{ry,r}
and ¢, r,(to) = 0. Then, g, »,(¢) is positive when t > to. If ¢ > \/—r/3, then
3t? + 7 > 0. Therefore, D, ,,(t) is positive when ¢ > Max{tg, /—r/3}. Here,

Max{to, \/—7“/3} = tg. In fact, we see from

;T — @ ;T < 0
Irir\\[ 737 ) T 37\ 3
that to > /—r/3. [ |

By Lemma 2.11, we obtain the following proposition.

Proposition 2.12.

(1) Assume my and ms are positive integers. If t € Ty, then the quadratic fields
Q(v/mi1Dy, r,(t)) and Q(v/maDy, r,(t)) are both real. If t € To, then the
quadratic fields Q(\/m1 Dy, r,(t)) and Q(y/ma Dy, », (t)) are both imaginary.

(2) Assume mq >0 > mq. Ift € T3, then the quadratic field Q(v/miDy, +, (%))
is real and the quadratic field Q(y/maDy, r,(t)) is imaginary.

Finally, we consider whether F(T') and F;(T) (¢ = 1,2,3) include infinitely
many quadratic fields. We obtain the following proposition.

Proposition 2.13. We have § F(T) = oo. In particular, § F(T1) = oo, § F(Tz) =
oo, and § F(T3) = oco.

Proof. We can show this proposition in a way similar to [15, Proposition 2.7].
We will prove § F(T) = oco. We can show § F(T1) = oo, § F(I2) = oo, and
# F(T5) = oo in the same way. Assume S is a non-empty subset of T such that F(.9)
is finite. We will show that we can choose ag from T so that F(S) C F(SU{ao}).
The choice of ag is as follows. Let Mg be the composite field of all quadratic fields
which belong to F(S) and let Pg be the set of prime numbers ramifying in Mg /Q.
Since Mg /Q is of finite degree, the set Pg is finite. Note that s € Pg. There exists

at least one prime number ¢; ¢ P U Ps U {3} such that (%) = 1. We fix such

a prime number ¢;. Then, there exists at least one integer  such that 322 +r =0
mod ¢;. We fix such an integer z. Define

x if 322 +r £ 0 mod ¢?
xo =
0 r+q if 322 + 7= 0mod ¢3.

If x9 = = + qi, then 322 + r = 6¢1x mod ¢f. Assume 322 + r = 0 mod ¢?. By
g1 # 2,3, we find ¢1 | z, that is, ¢; | 7. This is a contradiction with ¢; ¢ PU{3, s}.
Then, we always have 322 + r = 0 mod ¢; and 3z3 + 7 # 0 mod ¢?. Since

3Gry e (X) = (2X —3(r1 + 7”2))(3X2 +7ire) + 16r17m2 X



122 Akiko Tto

holds,
39r1 o (x0) = (220 — 3(r1 + 1"2))(3m(2) + r1re) + 16r1rexg = 16r17920 = 0 mod ¢1

if gr,.rp(20) = 0mod ¢;. It follows from 2 € P and ¢; ¢ P U {3,s} that ¢1 | zo.
Then, ¢; | r, that is, ¢; € PU{3, s}. Thisis a contradiction. Therefore, g, r,(zo) #
0 mod ¢;. Since ¢ # 3 and v,, (323 +r) = 1 hold,

333(2)—1—7“

DT17T2(I0) = 27

Gry o (20) = 0 mod ¢y
and
D,, r,(x0) #Z 0 mod q%.

On the other hand, it follows from ¢; ¢ P U {3, s} and the Chinese remainder
theorem that there exists ag € T such that ag = xo mod ¢?. Then,

D"'l,T2 (ao) = D’I"l,’I’Q (xO) = 0 mod q1

and
DT‘17T2 (ao) = Dhﬂ“z (xo) 7_é 0 mod Q%'

This implies that ¢; ramifies in Q(/Dy, »,(a0))/Q. Since ged(my, Dy, ry(ag)) =

3¢ for some integer e and ¢; # 3 holds, the prime number ¢; also ramifies in

Q(y/m1Dy, r,(a0))/Q. Then, ¢; also ramifies in Mg(y/m1Dy, r,(a0))/Q. By the

assumption q; € Pg, this implies
MS .,C«_ MS(\/ mlDrl,rg (a0)>7

F(5) € F(SU{ao}).

The family F(S U {ag}) is also finite. Repeating this, we can construct an infinite
increasing sequence of subsets S; of T' such that

that is,

F(S) S F(51) S F(S2) &+,
where i € Nand S C S; C Sy € ---. This implies § F(T') = oo. [ |

Theorem 2.1 follows from Lemma 2.3, Propositions 2.10, 2.12, and 2.13.

2.3. Proof of Theorem 2.2

In this section, we show Theorem 2.2 (the case 4 | mims), modifying the method
of the proof of Theorem 2.1. First, we show the following lemma.

Lemma 2.14. We have

ged(mymg /(4 - 3%mim2)y D (1) = 1.
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Proof. When mimsy = —4, 12, —36, we easily see that the statement holds true.
Then, we treat the case miymo # —4, £12, —36, that is, the case where @ is not
empty. Assume ged(mymsg/(4-3v3(™m2)) D, (t)) # 1. For every prime number
ps with p3 | ged(mymy/(4-3vs(mam2)) D, (1)), we have 27D, ., (t) = 0 mod ps.
Then,

27D, 1,y (t) = (317 +7){2t° — 3(r1 + 12)t* + 6rt — r(r1 +72)}
=3t*{2t — 3(r1 +72)} = 0 mod p3.

It follows from ps # 2, 3 that p3 € Q. By definition of the set T, we see 2t %
3(r1 + r2) mod p3. Then, ¢ = 0 mod p3. On the other hand, ps | my or ps | ma.
Then, ¢t = 71 = Omod p3 or t = ro = Omod p3. This is a contradiction by
definition of the set T |

Secondly, we show the divisibility of the class numbers of the quadratic fields.
The definitions of the integers u, w, a, b, and ¢ are the same as in Section 2.2.
To prove 3 | h(m;D,, r,(t)) (i = 1,2), we use Proposition 2.4. Define fi(Z) :=
7% —3¢Z —2a and fo(Z) := Z3 — 3c¢Z — 2b as in Section 2.2. We can show that
fi1(Z) and fo(Z) are both irreducible over Q in a way similar to Lemma 2.6. Using
Proposition 2.4, we obtain the following lemma.

Lemma 2.15. The cyclic cubic extensions Ky, /ky, are both everywhere unramified
at finite places, where i = 1,2.

It follows from the definitions of a, b, and ¢ that k¢, = Q(y/m1 Dy, r,(t)) and
ky, = Q(y/m2Dy, ,(t)). To prove Lemma 2.15, we need the following two lemmas.

Lemma 2.16.

(1) c is even.
(2) We have ged(ab, ¢) = 2¢3¢s¢  for some integers e, €, and e’ .

Proof. (1) Since ¢ and r are even, ¢ =t — r is also even.

(2) By (1), c is even. The integer ab is also even. Then, 2 | ged(ab,c). Let
p4 be an odd prime divisor of ged(ab,c). Since py divides ¢ = t? — 7, we have
t?2 = r mod py. It follows from py | ab that

0=ab=(u—rw)(u—row) = 16t*(t —r)(t — ro) mod py.

Then, (i) ps | t or (i) ¢ = ry mod py or (iii) ¢ = ro mod py. First, we treat
Case(i). Since py divides t, we see r = t> =t = 0 mod py. Then, py | 7, that is,
ps € PU{3,s}. It follows from ps | v that py | r1 or py | ro. If py € P, we have
t # r1,ro mod py. This is a contradiction. Therefore, py = 3, s. Secondly, we
treat Case(ii). Since ¢ = r; mod p4 holds, we see

r% =t? =71 =r1ry mod py.

If py divides 1, we have r = Omod py. Then, p, € P U {3,s}. Since t #
r1, 72 mod p holds for every p € P, it must be py = 3, s. If py does not divide 71,
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we see ] = 19 mod py, that is, py | 71 — r9. Then, py € PU{3,s}. If py € P,
we have t # r1 mod pys. This is a contradiction. Therefore, ps = 3, s. Finally, we
treat Case(iii). Since t = r5 mod p4 holds, we see

r% =t? =71 =r1ry mod py.

If p4 divides r3, then = 0 mod py, that is, py € PU{3, s}. Since ¢ # r1,r9 mod p
holds for every p € P, it must be py = 3, s. If py does not divide ry, we have
ro = 11 mod py. Then, t = r; = ro mod py, that is, ¢ = r1 mod py. This case can
result in Case(ii) and then py = 3, s. |

Lemma 2.17. We have r; = 0 mod 27, where i =1, 2.
Proof. We can show this lemma in a way similar to Lemma 2.9. |

Proof of Lemma 2.15. Since vs(D;, ,(t)) = 5 and s + mymz hold, we have
ks, # Q, where i = 1, 2. Then, we can use Proposition 2.4. In this case, we take

a =3¢, f = 2a or 2b. By Lemma 2.16 (2), we have ged(ab, ¢) = 2¢3¢'s¢" for some
integers e, ¢/, and € . Then, the assumption vp(ag) < 2 or vy(By) < 3 is satisfied
for each prime number p, where g and Sy are as in Proposition 2.4. Moreover,
the condition 1 < v,(By) < vp(ay) is not satisfied when p # 2, 3, s. Then, the
prime ideals of ky, over p are unramified in the extension Ky, /ky, when p # 2, 3,
s. Now, we treat the case p = 2, s. Since

a t3 4+ 3rt — 3rt?2 — rr 3

2 = 53 52—3£1m0d2,

b 3+ 3rt —3rot? —ror 3
273: 23 :2f3:111’10d.27

and ) )

c te—r t

2= = 7 = 1mod 2
hold, we see § = 1, where § is as in Proposition 2.4. Then, ag = 3c/(22325/325”)
is odd, that is, va(ag) = 0. Therefore, the condition 1 < v2(8y) < v2(ayp) is not
satisfied. Since

5%’ = s% = z—z % 0 mod s
and . 2
2 = 2 Z 0 mod s
hold, we have § = 1, where §" is as in Proposition 2.4. Then, we find oy =

3¢/(223%52) and vy () = 0. Therefore, the condition 1 < v,(8o) < vs(ag) is not
satisfied. By Proposition 2.4 (1), the prime ideals of k; over 2, s are unramified
in the extension Ky/ks. Next, we treat the case p = 3. It follows from Lemma
2.17 that

a t3 4+ 3rt — 3rit2 —rir 3

3 3 53—3¢0mod3,
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b t3 + 3rt — 3rgt? — ror 3
3= 2 53—3¢0mod3,

and ) )
c te—r t
2= 3 53—2;‘é0mod3.

Then, ¢’ = 1, where § is as in Proposition 2.4. Hence, (ag, 8y) = (62’%, 62%) if

B =2a and («ap, Bo) = < g, 2 ) otherwise. Since

62527 633

i = 41 mod 9,
6s

3+ 3rt — 3rt? — 3
@ _ Ao 1 nr_ = +1 mod 27,
6353

63s3 6353
b 34+ 3rt — 3rat® —ror 3
P 3 =58 = +1 mod 27,
and ) )
c te—r t
o = 2 = 252 =1mod?9

hold, we see ap = 3 mod 27 and By = £2 mod 27. Then, 32 = ap + 1 mod 27. By
Proposition 2.4 (2), the prime ideals of k; over 3 are unramified in the extension
Ky /ks. The proof of Lemma 2.15 is completed. |

By Lemma 2.15, we obtain the following proposition.

Proposition 2.18. We have 3 | h(m1D,, r,(t)) and 3 | h(maDy, +,(t)) for any
tefT.

Thirdly, we consider whether D, ,,(t) is positive or not. We have the following
lemma.
Lemma 2.19.

(1) Assume 1 and 12 are positive integers. Then, Dy, r,(t) is positive if t >
SMax{ry,r2} and Dy, r,(t) is negative if t < Max{ry,ro}.

(2) Assume ryry is a negative integer. Ift > to, then Dy, r,(t) is positive, where
to is a real number such that to > Max{ry,r2} and g, r,(to) = 0.

Proof. We can show this lemma in a way similar to Lemma 2.11. |
By Lemma 2.19, we obtain the following proposition.

Proposition 2.20.

(1) Assume my and ms are positive integers. If t € Ty, then the quadratic fields
Q(v/mi1Dy, r,(t)) and Q(v/maDy, r,(t)) are both real. If t € To, then the

quadratic fields Q(\/m1 Dy, r,(t)) and Q(y/ma Dy, », (t)) are both imaginary.
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(2) Assume my > 0> mq. Ift € T3, then the quadratic field Q(v/m1Dy, +,(t))
is real and the quadratic field Q(\/maDy, r,(t)) is imaginary.

Finally, we consider whether F(T') and F;(T) (i = 1,2,3) include infinitely
many quadratic fields. We obtain the following proposition.

Proposition 2.21. We have  F(T) = oo. In particular, § F(T1) = oo, § F(Tz) =
oo, and § F(T3) = oco.

Proof. We can show this proposition in a way similar to Proposition 2.13. We will
prove t F(T') = co. We can show § F(T}) = oo, § F(T3) = 00, and § F(T3) = oo in
the same way. Assume S is a non-empty subset of T such that F(.5) is finite. We
will show that we can choose ag from T so that F(S) € F(SU {ag}). The choice
of ag is as follows. Let Mg be the composite field of all quadratic fields which
belong to F(S) and let Pg be the set of prime numbers ramifying in Mg/Q. Since
Mg /Q is of finite degree, the set Pg is finite. Note that s € Pg. There exists at

least one prime number ¢; ¢ P U Pg U {2,3} such that (%) = 1. We fix such

a prime number ¢;. Then, there exists at least one integer x such that 322 +r =0
mod ¢;. We fix such an integer x. Define

I L if 322 4+ 7 # 0 mod ¢?
0 r+q if 32% +r = 0 mod ¢%.

If ¥ = x + q1, then 322 + r = 6¢;2 mod ¢?. Assume 323 + 7 = 0 mod ¢?. By
q1 # 2,3, wefind ¢; | z, that is, ¢; | 7. This is a contradiction with ¢; ¢ PU{2, 3, s}.
Then, we always have 322 +r = 0 mod ¢; and 323 + r # 0 mod ¢?. Since

3r,r2 (X) = (2X = 3(r1 +72))(3X? +1172) + 167r172X
holds,
_ 2 _ _
39r, .m0 (@0) = (220 — 3(r1 + 72)) (3 + r172) + 16717920 = 16117220 = 0 mod ¢

if g, vy (o) = 0 mod g;. It follows from ¢1 & PU{2,3, s} that q1 | zo. Then, ¢ | r,
that is, g1 € PU{2,3, s}. Thisis a contradiction. Therefore, g,, », (o) #Z 0 mod ¢.
Since ¢; # 3 and vy, (323 4+ 7) = 1 hold,

3333—1—7“

DT17T2(I0) = 27

Gry o (20) = 0 mod ¢y

and
Dy, 1y (20) # 0 mod ¢}

On the other hand, it follows from ¢; ¢ P U{2,3,s} and the Chinese remainder
theorem that there exists ag € T such that ag = xo mod ¢?. Then,

DT17T2 ((Lo) = Drl,m (1'0) = 0 mod q1
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and
Dy, r,(a0) = Dy, r, (w0) # 0 mod lﬁ-

This implies that ¢; ramifies in Q(y/Dy, »,(a0))/Q. Since ged(my, Dy, ry(ag)) =
2 - 3¢ for some integer e and g1 # 2, 3 holds, the prime number ¢; also ramifies in

Q(y/m1Dy, r,(a0))/Q. Then, ¢; also ramifies in Mg(y/m1Dy, r,(a0))/Q. By the

assumption q; € Pg, this implies
Mg - MS’(\/ mlDTl,Tz (a0)>7

F(5) € F(SU{ao}).

that is,

Here, the family F(S U {ao}) is also finite. Repeating this, we can construct an
infinite increasing sequence of subsets S; of T' such that

F(8) S F(S1) € F(S2) & -+,
where i € Nand S € S; € Sy C ---. This implies § F(T') = co. |

Theorem 2.2 follows from Lemma 2.14, Propositions 2.18, 2.20, and 2.21.

3. Proof of Theorem 1.5

In this section, we show Theorem 1.5, modifying the method in [4]. To prove this,
we use a result of Nakagawa and Horie [19]. In Section 3.1, we state their result.
In Section 3.2, we prove Theorem 1.5. In Section 3.3, we give an application of
Theorem 1.5.

3.1. Result of Nakagawa and Horie

For a given prime number p, there are infinitely many imaginary quadratic fields
whose class numbers are indivisible by p. Such results are obtained by P. Har-
tung [8], K. Horie [10, 11], K. Horie and Y. Onishi [9], W. Kohnen and K. Ono [13],
etc. Similarly, for a given prime number p, there are infinitely many real quadratic
fields whose class numbers are indivisible by p. K. Ono [20], D. Byeon [2, 3], etc.
obtained such results. For p = 3, results of H. Davenport and H. Heilbronn [5]
and J. Nakagawa and K. Horie [19] are known. We begin with their results.

Suppose 0 < X € R. We denote by S;(X) the set of positive fundamental
discriminants 0 < D < X of quadratic fields. Similarly, we denote by S_(X) the
set of negative fundamental discriminants —X < D < 0 of quadratic fields. The
following theorem is known as a corollary that is obtained from a result of [5].

Theorem 3.1 (Davenport and Heilbronn, [5]).
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(1)

ot

g D € 500 [31AD)}
X—o00 ﬁ{D S S+(X)} -

=

(2)

—_

liminf AP € S-(X) [31h(D)} |
paten H{DeS_(X)} z

N

Nakagawa and Horie [19] improved Theorem 3.1. We state their result. Let m
and N be positive integers satisfying the following conditions:

(I) If p is an odd prime divisor of ged(m, N), then p? | N and p? { m.
(IT) If N is even, then condition (i) or (ii) is satisfied.

(i) 4| N and m =1 mod 4.
(ii) 16 | N and m = 8,12 mod 16.

We construct two sets depending upon these integers m, N.
Si(X,m,N):={D e S;(X)|D=mmod N}
S_(X,m,N):={D e S_(X)| D=mmod N}

As arefinement of Theorem 3.1, Nakagawa and Horie proved the following theorem.

Theorem 3.2 (Nakagawa and Horie, [19]).
(1)
X 00 8S4+ (X, m, N)

S| Ut

e
boing D€ S-(X.m N) [ 3th(D)} 1

X—ro0 ﬁS*(vavN)

—_

[\

(3)

ﬁS+(X,m,N)~ﬁS_(X,m,N)~FQi)((N) -4

p|N:prime

where p(N) is the Euler function, ¢ :== 4 if p =2, and q := p otherwise.

Next, we state a result of Byeon [4]. Theorem 1.4 is obtained from the following
proposition.

Proposition 3.3 (Byeon, [4, Proof of Proposition 3.1]). Let ¢t > 1 be a
square-free integer. Then, for any two positive integers m and N satisfying con-
ditions (I) and (IT), we have the following:

(1)
. #{D € S.(X,m,tN) |34 h(D) and 31 A(tD)} _ 2
lim inf . 05, (X, m, tN) Z 3

w
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(2)
i inf #{D e Sy (X,m,tN) |3t h(D) and 31h(-tD)} > 1
X—00 25+ (X,m,tN) 3
Using the method of the proof of Proposition 3.3, we obtain the following
theorem.

Theorem 3.4. Let mq, ma, and mg be square-free positive integers (including 1).

Assume that positive integers m and N satisfy conditions (I), 16 | N, m = 1 mod

4, and ged(mN,mymams) | 23. Put My := mimamsN and My := mimaN.
Then, we have the following:

. De S, (X,m,M h(m;D here i = 1,2 1

liminfﬂ{ € S4(X,m, M) | 34 h(m;D), where i =1, 73}27

X —ro0 ﬁS+(X7maM1)

w

(2)

.. D e S (X, m, M) |31h(miD) and 31 h(—m2D)} _ 1
> —.
fipn Inf £S5, (X, m, My) g

w

For any D € S, (X, m, M), we have gcd(mimaomg, D) = 1 (see Lemma 3.7
in Section 3.2). Similarly, for any D € S, (X, m, Ms), we find gcd(mimse, D) =1
(see Section 3.2). Therefore, Theorem 1.5 follows from this theorem.

Remark 3.5. For given positive integers mq, ma, and mg (resp. m; and ms), we
can take integers m and N satisfying the conditions in Theorem 3.4. Integers m
and M; (resp. m and M>) satisfy conditions (I) and (II).

By Theorems 3.2 (3) and 3.4, we obtain the following corollary.

Corollary 3.6. Let my, mo, and mg be square-free positive integers (including 1).
Assume that positive integers m and N satisfy conditions (I), 16 | N, m = 1 mod
4, and ged(mN,mymams) | 23. Put My := mymamsN and My := mimsN.
Then, we have the following:
1
M) .. H{DeS(X,m,M)|3th(m;D), where i =1,2,3}
lim inf

1 _7
> 3()0(M1) pM11;[7'ime + I
) lim inf t{D € S4(X,m, M) | 31 h(m1D) and 3 { h(=m»D)}
min 5, ()

1 q
P )
3p(Ms) H +1

2 p|Ma:prime p

where ¢(N) denotes the Euler function, ¢ :== 4 if p =2, and q := p other-
wise.
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3.2. Proof of Theorem 3.4
In this section, we show Theorem 3.4. First, we prove Theorem 3.4 (1). Define
S (X, m, My,m;) :={m;D | D e S (X,m, M)},
where m; denotes m; if m; = 1 mod 4 and 4m,; otherwise. Note that
15, (X, m, My) = 4S+(X, m, My, m;),
where i = 1,2, 3.
Lemma 3.7. For any D € S (X, m, M), we have ged(mymams, D) = 1.

Proof. Since 16 | N and m = 1mod4 hold, D = 1mod4 for any D €
S+ (X, m, My). Then, ged(mimams, D) is odd. Let p be an odd prime divisor
of ged(myimams, D). It follows from D = m mod M; that p divides m. This
implies that p divides ged(mymams, m). By the assumption of Theorem 3.4,
ged(mN, mymams3) | 23. Then, p | 23. This is a contradiction. [ ]

It follows from Lemma 3.7 and D = 1 mod 4 that m;D is the fundamental
discriminant of a quadratic field. Then,

S+(Xam7 M17 m’L) = S+(TfﬁJ’LX7 Tfﬁ/im; ’Fr\/LiMl)a

where i = 1,2,3. Integers m;m and m;M; satisfy conditions (I) and (II). Using
Theorem 3.2 (1), we find

#H{De S (X,m,My)]|3th(m;D)}

lim inf
X 5, (X, m, My)
= lim inf g{m:D € Sy (X, m, My, m;) | 31 h(m;D)}
X —00 ﬁS+(X,m,M1,mi)
_ Jin g 20D € S (X mim, midy) | 34 h(miD)} 5
X =00 ﬁS_;,_(X, mim7miM1) 6

We can show

.. H{DeS(X,m,M)|3th(m;D) and 31 h(m;D)}
pa £, (X.m. M) g

[SSER )

as follows, where 7, j € {1,2,3} are distinct integers. The equation

i HLD € 5(Xom, M) | 3E b D)} _ 5
X—o00 ﬁS+(X7m,M1) 6
implies that if € > 0, then for sufficiently large X € R,
H{D € S (X,m, M) |34 h(miD)} 5
ﬁS+(X7m7M1) -~ 6 .
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It follows that
ﬁS+(X,m,M1)
> #{D e S (X,m, M) |31h(m;D) or 3{h(m;D)}
=D € S4(X,m, M) | 3t h(m;D)} + #{D € Sy (X, m,My) | 31 h(m;D)}
—t{D € S+ (X,m, M) | 31 h(m;D) and 31 h(m;D)} =: A(X).

If € > 0, then for sufficiently large X € R we have

AX) > (Z - 5)tiS+(X,m,M1) + (2 - e>ﬁS+(X,m,M1)

—H{D € S.(X,m, M) | 31 h(m;D) and 31 h(m;D)}
= (2 - 2s> 1S, (X, m, My)
—${D € S (X, m, M) | 3+ h(m;D) and 31 h(m;D)}.
Then, for sufficiently large X € R we have
4D € S, (X,m, M) | 31 h(m:D) and 3¢ h(m;D)}

2 (; - 26) ﬁS+(Xa m, M1)7

that is,
#H{D e S.(X,m, M) |3t h(m;D) and 31 h(m;D)} S 2 9
ﬁS+(X7m7M1) - 3 .
Therefore,
i inf #H{D e S4(X,m, M) |31th(m;D) and 31 h(m;D)} > g
X =00 ﬁS+(X7m7M1) 3

Similarly, we obtain

i inf #{D e Sy (X,m,My)|3th(m;D), wherei=1,2,3} > 1
X—o0 ﬁSJr(vale)

w

The proof of Theorem 3.4 (1) is completed. Next, we show Theorem 3.4 (2),
modifying the method in the above. In this case, we define

S (X, m, My, —ms) :={—maD | D € S (X, m, M)},
where msy denotes msy if —m9 = 1 mod 4 and 4m4y otherwise. Note that
8S (X, m, My) = 4S5 (X, m, My, my) = §54+ (X, m, Ma, —my).
For any D € S, (X, m, My), we see gcd(myma, D) = 1. Then,
S+ (X, m, My, mq1) = Sy (m1 X, mym, my Ms)
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and

S-‘r(Xa m, M27 7m2) =5_ (W/BX7 %m/a %MQ)a
where m’ is a positive integer satisfying —mom = mom’ mod maMs. Integers
mim and my My (resp. mam’ and maMy) satisfy conditions (I) and (II). Using

Theorem 3.2 (1) and (2), we find

#{D € S (X,m,Ms)|3th(mD)}

lim inf 65 (X, m, My)
= liminf ﬁ{mlD € S+(X,m,M27m1) | 3 Jf h(m1D)}
X 00 ﬁS+(X7m,M27m1)
= lim inf H{mD € S‘*'(X’mlfnivml%ﬂ | 31 h(m1D)} > 5
X —00 ﬁS’+(X7m1m,m1M2) 6
and
liminf HP € 9+(X,m, My) | 3§ h(=m2D)}
Xmroo 854 (X, m, Ms)
— liminf LMD € 51 (X,m, My, —ms) | 31 h(=m2D)}
XKoo ﬁS+(Xam7M27 _’ITLQ)
_N —~ / —_— _N
— i inf HEm2D € 8- (X, mam’, ma M) | 3t h(=m2D)} S L
Xeo £S_ (X, mam/, maMs) 5

Combining the above inequalities, we can likewise obtain

lim inf ﬁ{D S S+(X,m,M2) ‘ 3J(h(m1D) and 3J(h(—m2D)} > 1

X—ro0 ﬁS+(X7m7M2) -

w

The proof of Theorem 3.4 (2) is completed.

3.3. Application

In this section, we give an application of Theorem 1.5 to the Iwasawa invariants
of the cyclotomic Zs-extension of a quadratic field. We begin with a result of
K. Iwasawa.

Theorem 3.8 (Iwasawa, [12]). Let p be a prime number, k an algebraic number
field of finite degree, and K/k an arbitrary Z,-extension. If p does not split in k and
the class number of k is indivisible by p, then Ap(K/k) = pp(K/k) = vp(K/k) = 0,
where A\, (K/k), pp(K/k), and vp(K/k) are the Iwasawa invariants of K/k.

If k is an abelian field, the Iwasawa p-invariant of the cyclotomic Z,-extension
of k is equal to 0 [6]. For a prime number p, we denote by A,(d), p,(d), and v,(d)
the Iwasawa \-, ui-, and v-invariant of the cyclotomic Z,-extension of a quadratic
field Q(v/d). By Theorems 3.4 and 3.8, we obtain the following two corollaries.
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Corollary 3.9. Let my and mo be square-free positive integers (including 1).

(1) There exist infinitely many positive fundamental discriminants D with a pos-
itive inferior limit density such that gcd(mimag, D) = 1 and A3(m;D) =
us(m; D) = v3(m; D) =0, where i =1, 2.

(2) There exist infinitely many positive fundamental discriminants D with a pos-
itive inferior limit density such that ged(mimg, D) = 1, A3(miD) =
us(m1D) = v3(m1D) =0, and A3(—maD) = pg(—maD) = v35(—maD) = 0.

Corollary 3.10. Let my, ms, and mg be distinct square-free positive integers
(including 1) with 3 | (my —ms2)(mg —mg)(ms —my). Then, there exist infinitely
many positive fundamental discriminants D with a positive inferior limit density
such that ged(myimams, D) =1 and As(m;D) = us(m;D) = v3(m;D) = 0, where
i=1, 2, 3.

The idea of this application is based on the one in [19] and [22]. If & is a to-
tally real field, for any prime number p, it is conjectured that the Iwasawa \p-
and pp,-invariants of the cyclotomic Z,-extension of k are equal to 0 (Greenberg’s
Conjecture, [7]). We can say that Corollaries 3.9 (1) and 3.10 are related to this
conjecture. These corollaries are proved by taking N and m, where N and m are
integers in Theorem 3.4. For example, we can take N and m as follows.

Q(\/mlD)v Q(\/mQD) Q(\/mlD)7 Q(\/meD)

mi1 | mo m N mi | —mo m N
0 0 1 16 0 0 1 16
0 [ T [ p | 16p7 0 | T [[ p |16p7
0 2 1 16 0 2 1 16
1 2 3ps | 144 1 2 3py | 144

Q(vmiD), Q(v'm2D), Q(v'm3D)
mi | mg | msg m N
0 0 0 1 16
0 0 1 P} 16p7
0 1 1 L 16p7
0 0 2 1 16
0 2 2 1 16
T 113 144
T [ 12 |30 144
1 2 2 3ph 144
3 [ 2 [ 2 || 3p, | 144
0 1 2 - —
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Remark 3.11. We define 0, 1, and 2 as 0 = 0mod 3, I = 1 mod 3, and 2 =
2mod 3. Integers pi1, p2, p}, and ph are defined as prime numbers such that
p1 = 5 mod 12 and p; { myms, such that po = 3 mod 4 and ps + 3mymg, such that
p) = 5 mod 12 and p} t mymamg, and such that p, = 3 mod 4 and p}, { 3mymams
respectively. The existence of these prime numbers follows from the theorem on
arithmetic progressions.

Acknowledgements. The author wishes to express her gratitude to Professor
Toru Komatsu, Professor Shin Nakano, Doctor Satoshi Fujii, Doctor Takayuki
Morisawa, Doctor Filippo Alberto Edoardo Nuccio Mortarino Majno di Capriglio,
and Yoshichika lizuka for helpful discussions. She also thanks Professor Kohji
Matsumoto and Professor Hiroshi Suzuki for continuous encouragement.

References

[1] N.C. Ankeny and S. Chowla, On the divisibility of the class number of
quadratic fields, Pacific J. Math. 5 (1955), 321-324.

[2] D. Byeon, Indivisibility of class numbers and Iwasawa A-invariants of real
quadratic fields, Compositio Math. 126 (2001), no. 3, 249-256.

[3] D. Byeon, Existence of certain fundamental discriminants and class numbers
of real quadratic fields, J. Number Theory 98 (2003), no. 2, 432-437.

[4] D. Byeon, Class numbers of quadratic fields Q(v/D) and Q(v/tD), Proc. Amer.
Math. Soc. 132 (2004), no. 11, 3137-3140.

[5] H. Davenport and H. Heilbronn, On the density of discriminants of cubic
fields. II, Proc. Roy. Soc. London Ser. A 322 (1971), no. 1551, 405-420.

[6] B. Ferrero and L.C. Washington, The Iwasawa invariant p, vanishes for
abelian number fields, Ann. of Math. (2) 109 (1979), no. 2, 377-395.

[7] R. Greenberg, On the Iwasawa invariants of totally real number fields, Amer.
J. Math. 98 (1976), no. 1, 263-284.

[8] P. Hartung, Proof of the existence of infinitely many imaginary quadratic
fields whose class number is not divisible by 3, J. Number Theory 6 (1974),
276-278.

[9] K. Horie and Y. Onishi, The ezistence of certain infinite families of imaginary
quadratic fields, J. Reine Angew. Math. 390 (1988), 97-113.

[10] K. Horie, A note on basic Iwasawa A-invariants of imaginary quadratic fields,
Invent. Math. 88 (1987), 31-38.

[11] K. Horie, Trace formulae and imaginary quadratic fields, Math. Ann. 288
(1990), 605-612.

[12] K. Iwasawa, A note on class numbers of algebraic number fields, Abh. Math.
Sem. Univ. Hamburg 20 (1956), 257-258.

[13] W. Kohnen and K. Ono, Indivisibility of class numbers of imaginary quadratic
fields and orders of Tate-Shafarevich groups of elliptic curves with complex
multiplication, Invent. Math. 135 (1999), 387-398.

[14] T. Komatsu, A family of infinite pairs of quadratic fields Q(v/D) and
Q(v/—D) whose class numbers are both divisible by 3, Acta Arith. 96 (2001),
213-221.



Existence of an infinite family of pairs of quadratic fields Q(v/m1D) and Q(v/m2D) 135

[15] T. Komatsu, An infinite family of pairs of quadratic fields Q(~/D) and
Q(v'mD) whose class numbers are both divisible by 3, Acta Arith. 104 (2002),
129-136.

[16] P. Llorente and E. Nart, Effective determination of the decomposition of the
rational primes in a cubic field, Proc. Amer. Math. Soc. 87 (1983), 579-585.

[17] R.A. Mollin, Solutions of Diophantine equations and divisibility of class num-
bers of complex quadratic fields, Glasgow Math. J. 38 (1996), 195-197.

[18] T. Nagell, Uber die Klassenzahl imagindr-quadratischer Zahlkorper, Abh.
Math. Sem. Univ. Hamburg 1 (1922), 140-150.

[19] J. Nakagawa and K. Horie, Elliptic curves with no rational points, Proc. Amer.
Math. Soc. 104 (1988), 20—24.

[20] K. Omno, Indivisibility of class numbers of real quadratic fields, Compositio
Math. 119 (1999), no. 1, 1-11.

[21] A. Scholz, Uber die Beziehung der Klassenzahlen quadratischer Korper
zueinander, J. Reine Angew. Math. 166 (1932), 201-203.

[22] H. Taya, Iwasawa invariants and class numbers of quadratic fields for the
prime 3, Proc. Amer. Math. Soc. 128 (2000), no. 5, 1285-1292.

[23] L.C. Washington, Introduction to Cyclotomic fields, second edition, GTM 83,
Springer.

[24] P.J. Weinberger, Real quadratic fields with class numbers divisible by n,
J. Number Theory 5 (1973), 237-241.

[25] Y. Yamamoto, On unramified Galois extentions of quadratic number fields,
Osaka J. Math. 7 (1970), 57-76.

Address: Akiko Ito: Shibaura Institute of Technology, 307 Fukasaku, Minuma-ku, Saitama-shi,
Saitama 337-8570, Japan.

E-mail: i035895Q@shibaura-it.ac.jp
Received: 26 May 2012



