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EXISTENCE OF AN INFINITE FAMILY
OF PAIRS OF QUADRATIC FIELDS Q(

√
m1D) AND Q(

√
m2D)

WHOSE CLASS NUMBERS ARE BOTH DIVISIBLE BY 3
OR BOTH INDIVISIBLE BY 3

Akiko Ito

Abstract: Let m1, m2, and m3 be distinct square-free integers (including 1). First, we show
that there exist infinitely many square-free integers d with gcd(m1m2, d) = 1 such that the class
numbers of Q(

√
m1d) and Q(

√
m2d) are both divisible by 3. This is a generalization of a result

of T. Komatsu [15]. Secondly, we show that there exist infinitely many positive fundamental
discriminants D with gcd(m1m2m3, D) = 1 such that the class numbers of real quadratic fields
Q(

√
m1D), Q(

√
m2D), and Q(

√
m3D) are all indivisible by 3 when m1, m2, and m3 are positive.

This is a generalization of a result of D. Byeon [4]. We add an application of this result to the
Iwasawa invariants related to Greenberg’s conjecture.

Keywords: quadratic fields, class numbers, Iwasawa invariants.

1. Introduction

For a given positive integer n, there are infinitely many imaginary quadratic fields
whose class numbers are divisible by n. Such results are obtained by T. Nagell [18],
N. C. Ankeny and S. Chowla [1], R. A. Mollin [17], etc. Similarly, for a given pos-
itive integer n, there are infinitely many real quadratic fields whose class numbers
are divisible by n. Y. Yamamoto [25], P. J. Weinberger [24], etc. obtained such
results. All the proofs of them were given by constructing such quadratic fields
explicitly. Many results on the divisibility of the class number of quadratic fields
are known for the case n = 3 particularly. We begin with a result of T. Komatsu.

Theorem 1.1 (Komatsu, [15]). Fix a non-zero integer t. Then, there exist
infinitely many both positive and negative square-free integers d such that the class
numbers of quadratic fields Q(

√
d) and Q(

√
td) are both divisible by 3.
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The result for the case t = −1 is already known by [14]. For the case where
t = −3 and d > 1, Theorem 1.1 follows from the Scholz inequality (Theorem 1.2
below), as there are infinitely many real quadratic fields whose class numbers are
divisible by 3.

Theorem 1.2 (Scholz, [21], cf. [23, Theorem 10.10]). Let d > 1 be square-
free. Let r0 be the 3-rank of the ideal class group of Q(

√
d) and s0 the 3-rank of

the ideal class group of Q(
√
−3d). Then,

r0 6 s0 6 r0 + 1.

One of the purpose of this paper is the following result which is regarded as a
generalization of Theorem 1.1.

Theorem 1.3. Let m1 and m2 be distinct square-free integers (including 1). Then,
there exist infinitely many both positive and negative square-free integers d with
gcd(m1m2, d) = 1 such that the class numbers of quadratic fields Q(

√
m1d) and

Q(
√
m2d) are both divisible by 3.

In detail, we see that Theorem 1.3 holds true for pairs of two real quadratic
fields, for pairs of two imaginary quadratic fields, or for pairs of real and imaginary
quadratic fields respectively. On the other hand, D. Byeon proved the following
theorem.

Theorem 1.4 (Byeon, [4]). Let t be a square-free integer. Then, there exist
infinitely many positive fundamental discriminants D with a positive inferior limit
density such that the class numbers of quadratic fields Q(

√
D) and Q(

√
tD) are

both indivisible by 3.

For t = −3, Theorem 1.4 follows from Theorem 1.2. We denote by h(d) the
class number of a quadratic field Q(

√
d). By Theorem 1.2, for a square-free integer

d > 1, if 3 - h(−3d), then 3 - h(d). It is known that there exist infinitely many pos-
itive fundamental discriminants D with a positive inferior limit density such that
3 - h(−3D) by [19]. Therefore, there exist infinitely many positive fundamental
discriminants D with a positive inferior limit density such that the class numbers
of quadratic fields Q(

√
D) and Q(

√
−3D) are both indivisible by 3. Another goal

of this paper is a generalization of Theorem 1.4.

Theorem 1.5. Let m1, m2, and m3 be square-free positive integers (including 1).

(1) There exist infinitely many positive fundamental discriminants D with a pos-
itive inferior limit density such that gcd(m1m2m3, D) = 1 and the class
numbers of real quadratic fields Q(

√
m1D), Q(

√
m2D), and Q(

√
m3D) are

all indivisible by 3.
(2) There exist infinitely many positive fundamental discriminants D with a pos-

itive inferior limit density such that gcd(m1m2, D) = 1 and the class num-
bers of quadratic fields Q(

√
m1D) and Q(

√
−m2D) are both indivisible by 3.
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This paper is organized as follows. In Section 2, we give a proof of Theorem 1.3
by constructing an explicit cubic polynomial which gives an unramified cyclic
cubic extension of a quadratic field. In Section 2.1, we state the method of this
construction. We treat two cases where 4 - m1m2 and 4 | m1m2 respectively
(Theorems 2.1 and 2.2). Theorem 1.3 follows from these theorems. We prove
Theorem 2.1 in Section 2.2 and prove Theorem 2.2 in Section 2.3. To check
the divisibility of the class numbers of the quadratic fields, we use a result of
P. Llorente and E. Nart [16]. In Section 3, we give a proof of Theorem 1.5. To
show this theorem, we essentially use a result of J. Nakagawa and K. Horie [19]. In
Section 3.1, we state their result. In Section 3.2, we prove Theorem 1.5. In Section
3.3, we add an application of Theorem 1.5 to the Iwasawa invariants related to
Greenberg’s conjecture.

2. Proof of Theorem 1.3

In this section, we give a proof of Theorem 1.3, modifying the method in [15].

2.1. Construction

Let m1 and m2 be distinct square-free integers (including 1). First, we treat the
case where 4 - m1m2 and 2 - m2. Let L be the set of all prime numbers l which
are inert in the extension Q( 3

√
2)/Q and satisfy the condition(
m1

l

)
=

(
m2

l

)
= 1,

where (·/·) denotes the Legendre symbol. We can show that L is an infinite set
not containing 2 and 3, using the Chebotarev density theorem as in [15, Lemma
1.1]. We fix l ∈ L. Let s be a prime number such that s ̸= 2, 3, l and s - m1m2.
We take integers n1 and n2 satisfying the following conditions: for each i = 1, 2,

ni ≡

{
0 mod 9 if mi ̸≡ 0 mod 3,

0 mod 3 if mi ≡ 0 mod 3,

min
2
i ≡ 1 mod l,

ni ≡ 0 mod s2,

and {
n1 ≡ 0 mod 2,

n2 ≡ 1 mod 2.

Note that there exist such integers ni by the Chinese remainder theorem. Now
put r1 := m1n

2
1, r2 := m2n

2
2, and r := r1r2. It follows from the assumption on ni

that r1 is even and r2 is odd. Let P be the set of prime numbers defined by

P := {p : prime | p ̸= 3, s and p|r(r − 1)(r1 − r2)}.



114 Akiko Ito

It is easy to see that 2 and l are contained in P . Let Q be the subset of P defined
by

Q := {q : prime | q ̸= 3 and q|m1m2}.

When m1m2 = −1, ±3, −9, the set Q is empty. We treat the set Q including the
case where Q is empty. Note that s ̸∈ Q. We denote by T the set of integers t
satisfying the following conditions:

t ≡ ±3s mod 27s3,

t ≡ −1 mod l,

t ̸≡ r, r1 mod p for any p ∈ P,
2t ̸≡ 3(r1 + r2) mod q for any q ∈ Q.

We can use the Chinese remainder theorem to make sure the set T is infinite.
Define three subsets of T as follows. For the case where r1 > 0 and r2 > 0, let

T1 :=

{
t ∈ T | t > 3

2
Max{r1, r2}

}
and

T2 := {t ∈ T | t 6 Max{r1, r2}}.

For r < 0, let
T3 := {t ∈ T | t > t0},

where t0 is a real number such that t0 > Max{r1, r2} and 2t30 − 3(r1 + r2)t
2
0 +

6rt0 − r(r1 + r2) = 0. Note that the real number t0 is uniquely determined (see
the proof of Lemma 2.11). Define

Dr1,r2(X) :=
1

27
(3X2 + r){2X3 − 3(r1 + r2)X

2 + 6rX − r(r1 + r2)}.

For any t ∈ T , we can check the integrality of Dr1,r2(t). Let F(S) denote the
family {Q(

√
m1Dr1,r2(t)) | t ∈ S} for a subset S of T . For a prime number p and

an integer a, we denote by vp(a) the greatest exponent n such that pn | a. Then,
we have the following theorem.

Theorem 2.1. Let m1 and m2 be distinct square-free integers (including 1) with
4 - m1m2. For every t ∈ T , the class numbers of quadratic fields Q(

√
m1Dr1,r2(t))

and Q(
√
m2Dr1,r2(t)) are both divisible by 3 and gcd(m1m2/3

v3(m1m2), Dr1,r2(t))
= 1. Moreover, the families F(T1), F(T2), and F(T3) each include infinitely
many quadratic fields. In particular, if m1 and m2 are positive and t ∈ T1 (resp.
t ∈ T2), then the quadratic fields Q(

√
m1Dr1,r2(t)) and Q(

√
m2Dr1,r2(t)) are both

real (resp. both imaginary). Furthermore, if m2 < 0 < m1 and t ∈ T3, then
Dr1,r2(t) is positive. In this case, the quadratic field Q(

√
m1Dr1,r2(t)) is real and

the quadratic field Q(
√
m2Dr1,r2(t)) is imaginary.
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This theorem is essential for the proof of the case 4 - m1m2 of Theorem 1.3. In
fact, the case 12 - m1m2 of Theorem 1.3 follows from Theorem 2.1 immediately.
For the case 3 | m1m2, we can show Theorem 1.3 by using Theorem 2.1 as follows.
By the congruence relation r1, r2, and t, we find v3(Dr1,r2(t)) = 3. Then,

Q
(√

miDr1,r2(t)

)
= Q

(√
mi

3

Dr1,r2(t)

33

)
when 3 | mi and

Q
(√

miDr1,r2(t)

)
= Q

(√
3mi

Dr1,r2(t)

33

)
when 3 - mi. Putting m′

i := mi/3 (resp. m′
i := 3mi) when 3 | mi (resp.

3 - mi), we have gcd(m′
1m

′
2, Dr1,r2(t)/3

3) = 1. Moreover, the class numbers of
Q(
√
m′

1Dr1,r2(t)/3
3) and Q(

√
m′

2Dr1,r2(t)/3
3) are both divisible by 3.

Next, we treat the case 4 | m1m2. Although the method of the construction
is based on the above, we need several changes. The definition of the set L is the
same as above. We fix l ∈ L. Let s be a prime number such that s ̸= 2, 3, l and
s - m1m2. We take integers n1 and n2 satisfying the following conditions: for each
i = 1, 2,

ni ≡

{
0 mod 9 if mi ̸≡ 0 mod 3,

0 mod 3 if mi ≡ 0 mod 3,

min
2
i ≡ 1 mod l,

ni ≡ 0 mod s2,

and
ni ≡ 2 mod 4.

Note that there exist such integers ni by the Chinese remainder theorem. Put
r1 := m1n

2
1, r2 := m2n

2
2, and r := r1r2 similarly. It follows from the assumption

on ni that ri is even. Let P be the set of prime numbers defined by

P := {p : prime | p ̸= 2, 3, s and p|r(r − 1)(r1 − r2)}.

It is easy to see l ∈ P . Let Q be the subset of P defined by

Q := {q : prime | q ̸= 2, 3 and q|m1m2}.

When m1m2 = −4, ±12, −36, the set Q is empty. We treat the set Q including
the case where Q is empty. Note that s ̸∈ Q. We denote by T the set of integers
t satisfying the following conditions:

t ≡ ±6s mod 8 · 27s3,
t ≡ −1 mod l,

t ̸≡ r1, r2 mod p for any p ∈ P,
2t ̸≡ 3(r1 + r2) mod q for any q ∈ Q.
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We see from the Chinese remainder theorem that the set T is infinite. The def-
initions of Ti (i = 1, 2, 3), Dr1,r2(t), and F(S) are the same as above. It follows
from the congruence relation of r1, r2, and t that Dr1,r2(t) is an integer. Then,
we obtain the following theorem.

Theorem 2.2. Let m1 and m2 be distinct square-free integers (including 1) with
4 | m1m2. For every t ∈ T , the class numbers of quadratic fields Q(

√
m1Dr1,r2(t))

and Q(
√
m2Dr1,r2(t)) are both divisible by 3 and gcd(m1m2/(4 · 3v3(m1m2)),

Dr1,r2(t)) = 1. Moreover, the families F(T1), F(T2), and F(T3) each include
infinitely many quadratic fields. In particular, if m1 and m2 are positive and t ∈
T1 (resp. t ∈ T2), then the quadratic fields Q(

√
m1Dr1,r2(t)) and Q(

√
m2Dr1,r2(t))

are both real (resp. both imaginary). Furthermore, if m2 < 0 < m1 and t ∈ T3,
then Dr1,r2(t) is positive. In this case, the quadratic field Q(

√
m1Dr1,r2(t)) is real

and the quadratic field Q(
√
m2Dr1,r2(t)) is imaginary.

This theorem is essential for the proof of the case 4 | m1m2 of Theorem 1.3. We
can show Theorem 1.3 by using Theorem 2.2 as follows. First, we treat the case 3 -
m1m2. It follows from the congruence relation r1, r2, and t that v2(Dr1,r2(t)) = 6.
Then,

Q
(√

miDr1,r2(t)

)
= Q

(√
mi

Dr1,r2(t)

26

)
.

We see gcd(m1m2, Dr1,r2(t)/2
6) = 1. Moreover, the class numbers of the quadratic

fields Q(
√
m1Dr1,r2(t)/2

6) and Q(
√
m2Dr1,r2(t)/2

6) are both divisible by 3. Sec-
ondly, we treat the case 3 | m1m2. It follows from the congruence relation r1, r2,
and t that v2(Dr1,r2(t)) = 6 and v3(Dr1,r2(t)) = 3. Then,

Q
(√

miDr1,r2(t)

)
= Q

(√
mi

3

Dr1,r2(t)

2633

)
when 3 | mi and

Q
(√

miDr1,r2(t)

)
= Q

(√
3mi

Dr1,r2(t)

2633

)
when 3 - mi. Putting m′

i := mi/3 (resp. m′
i := 3mi) when 3 | mi (resp.

3 - mi), we have gcd(m′
1m

′
2, Dr1,r2(t)/(2

633)) = 1. Moreover, the class num-
bers of Q(

√
m′

1Dr1,r2(t)/(2
633)) and Q(

√
m′

2Dr1,r2(t)/(2
633)) are both divisible

by 3.

2.2. Proof of Theorem 2.1

In this section, we give a proof of Theorem 2.1. We can show Theorem 2.2 sim-
ilarly. The proof consists of three parts: the divisibility of the class numbers of
the quadratic fields (Proposition 2.10), the determination of the sign of Dr1,r2(t)
(Proposition 2.12), and the infiniteness of F(T ) (Proposition 2.13). Before these
proofs, we show the following lemma.
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Lemma 2.3. We have

gcd(m1m2/3
v3(m1m2), Dr1,r2(t)) = 1.

Proof. When m1m2 = −1, ±3, −9, we easily see that the statement holds true.
Then, we treat the case m1m2 ̸= −1, ±3, −9, that is, the case where Q is not
empty. Assume gcd(m1m2/3

v3(m1m2), Dr1,r2(t)) ̸= 1. For every prime number ρ1
with ρ1 | gcd(m1m2/3

v3(m1m2), Dr1,r2(t)), we have 27Dr1,r2(t) ≡ 0 mod ρ1. Then,

27Dr1,r2(t) = (3t2 + r){2t3 − 3(r1 + r2)t
2 + 6rt− r(r1 + r2)}

≡ 3t4(2t− 3(r1 + r2)) ≡ 0 mod ρ1.

It follows from ρ1 ̸= 3 that ρ1 ∈ Q. By definition of the set T , we see 2t ̸≡
3(r1 + r2) mod ρ1. Then, t ≡ 0 mod ρ1. On the other hand, it follows from
m1m2/3

v3(m1m2) ≡ 0 mod ρ1 that ρ1 divides r. Then, t ≡ r ≡ 0 mod ρ1. Note
that ρ1 ∈ P . This is a contradiction by definition of the set T . �

First, we show the divisibility of the class numbers of the quadratic fields. To
prove 3 | h(miDr1,r2(t)) (i = 1, 2), we use a result of P. Llorente and E. Nart [16].
Let f(Z) be an irreducible cubic polynomial of the form f(Z) = Z3 − αZ − β for
α, β ∈ Z. We denote by Kf the minimal splitting field of f(Z) over Q. Then,
kf := Q(

√
4α3 − 27β2) is contained in Kf . Assume that 4α3−27β2 is not a square

and gcd(α, β) = 2e3e
′
se

′′

for some integers e, e′, and e
′′
. Let δ, δ′, and δ

′′
be the

maximal integers such that α/(22δ32δ
′
s2δ

′′

) and β/(23δ33δ
′
s3δ

′′

) are integers. Put
α0 := α/(22δ32δ

′
s2δ

′′

) and β0 := β/(23δ33δ
′
s3δ

′′

). Llorente and Nart proved the
following proposition.

Proposition 2.4 (Llorente and Nart, [16]). Assume vp(α0) < 2 or vp(β0) < 3
for each prime number p.

(1) If p ̸= 3, then the prime ideals of kf over p are unramified in the extension
Kf/kf if and only if the condition 1 6 vp(β0) 6 vp(α0) is not satisfied.

(2) If p = 3, α0 ≡ 3 mod 9, and β2
0 ≡ α0 + 1 mod 27, then the prime ideals of

kf over 3 are unramified in the extension Kf/kf .

Remark 2.5. In [16], more general situations are treated. However, Proposition
2.4 is enough for us.

We shall show 3 | h(m1Dr1,r2(t)) and 3 | h(m2Dr1,r2(t)) for each t ∈ T . For
a fixed t ∈ T , we put u := t3 + 3rt, w := 3t2 + r, a := u− r1w, b := u− r2w, and
c := t2 − r. Then, u, w, a, b, and c are integers such that

(t+
√
r)3 = u+ w

√
r

and
r2a

2 − r1b2 = (r2 − r1)c3.
We note that r1 ̸= r2. This follows from the uniqueness of factorization into prime
factors and the assumption that m1 and m2 are square-free. Define f1(Z) :=
Z3 − 3cZ − 2a and f2(Z) := Z3 − 3cZ − 2b.
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Lemma 2.6. The polynomials f1(Z) and f2(Z) are both irreducible over Fl. In
particular, they are both irreducible over Q.

Proof. We can show this lemma in a way similar to [15, Lemma 2.2]. We see
from ri = min

2
i ≡ 1 mod l (i = 1, 2) and t ≡ −1 mod l that a ≡ b ≡ −8 mod l

and c ≡ 0 mod l. Then, fi(Z) ≡ Z3 + 16 mod l for each i = 1, 2. Since l is inert
in the extension Q( 3

√
2)/Q, the polynomial Z3 − 2 is irreducible over Fl and so

is Z3 + 16. Therefore, fi(Z) are both irreducible over Fl and hence also over Q,
where i = 1, 2. �

Lemma 2.7. The cyclic cubic extensions Kfi/kfi are both everywhere unramified
at finite places, where i = 1, 2.

By the definitions of the integers a, b, and c, we have

4(3c)3 − 27(2a)2 = 542r1Dr1,r2(t) = 542m1n
2
1Dr1,r2(t) = (54n1)

2m1Dr1,r2(t)

and

4(3c)3 − 27(2b)2 = 542r2Dr1,r2(t) = 542m2n
2
2Dr1,r2(t) = (54n2)

2m2Dr1,r2(t).

Then, kf1 = Q(
√
m1Dr1,r2(t)) and kf2 = Q(

√
m2Dr1,r2(t)). To prove Lemma 2.7,

we need the following two lemmas.

Lemma 2.8.
(1) c is odd.
(2) We have gcd(ab, c) = 3ese

′
for some integers e, e′.

Proof. (1) We see from 2 ∈ P that t ̸≡ r mod 2. Then, c = t2 − r ≡ 1 mod 2,
that is, c is odd.

(2) Let ρ2 be a prime divisor of gcd(ab, c). Note that ρ2 is odd. Since ρ2 divides
c = t2 − r, we see t2 ≡ r mod ρ2. It follows from ρ2 | ab that

0 ≡ ab ≡ (u− r1w)(u− r2w) ≡ 16t4(t− r1)(t− r2) mod ρ2.

Then, (i) ρ2 | t or (ii) t ≡ r1 mod ρ2 or (iii) t ≡ r2 mod ρ2. First, we treat
Case(i). Since ρ2 divides t, we see r ≡ t2 ≡ t ≡ 0 mod ρ2. Then, ρ2 | r, that
is, ρ2 ∈ P ∪ {3, s}. If ρ2 ∈ P , we have t ̸≡ r mod ρ2. This is a contradiction.
Therefore, ρ2 = 3, s. Secondly, we treat Case(ii). Since t ≡ r1 mod ρ2 holds, we
see

r21 ≡ t2 ≡ r = r1r2 mod ρ2.

If ρ2 divides r1, we have r ≡ 0 mod ρ2. Then, ρ2 ∈ P ∪ {3, s}. Since t ̸≡ r mod p
holds for every p ∈ P , it must be ρ2 = 3, s. If ρ2 does not divide r1, we see
r1 ≡ r2 mod ρ2, that is, ρ2 | r1 − r2. Then, ρ2 ∈ P ∪ {3, s}. If ρ2 ∈ P , we have
t ̸≡ r1 mod ρ2. This is a contradiction. Therefore, ρ2 = 3, s. Finally, we treat
Case(iii). Since t ≡ r2 mod ρ2 holds, we see

r22 ≡ t2 ≡ r = r1r2 mod ρ2.
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If ρ2 divides r2, then r ≡ 0 mod ρ2, that is, ρ2 ∈ P ∪ {3, s}. Since t ̸≡ r mod p
holds for every p ∈ P , it must be ρ2 = 3, s. If ρ2 does not divide r2, we have
r2 ≡ r1 mod ρ2. Then, t ≡ r1 ≡ r2 mod ρ2, that is, t ≡ r1 mod ρ2. This case can
result in Case(ii) and then ρ2 = 3, s. �

Lemma 2.9. We have ri ≡ 0 mod 27, where i = 1, 2.

Proof. When mi ̸≡ 0 mod 3, we have ni ≡ 0 mod 9. Then, ri = min
2
i ≡ 0 mod

27. Whenmi ≡ 0 mod 3, we have ni ≡ 0 mod 3. Then, ri = min
2
i ≡ 0 mod 27. �

Proof of Lemma 2.7. Since vs(Dr1,r2(t)) = 5 and s - m1m2 hold, we have kfi ̸=
Q, where i = 1, 2. Then, we can use Proposition 2.4. In this case, we take α = 3c,
β = 2a or 2b. By Lemma 2.8 (2), we have gcd(ab, c) = 3ese

′
for some integers

e, e′. Then, the assumption vp(α0) < 2 or vp(β0) < 3 is satisfied for each prime
number p, where α0 and β0 are as in Proposition 2.4. Moreover, the condition
1 6 vp(β0) 6 vp(α0) is not satisfied when p ̸= 3, s. By Proposition 2.4 (1), the
prime ideals of kfi over p are unramified in the extension Kfi/kfi when p ̸= 3, s.
Now, we treat the case p = s. Since

a

s3
≡ b

s3
≡ t3

s3
̸≡ 0 mod s

and
c

s2
≡ t2

s2
̸≡ 0 mod s

hold, we have δ
′′
= 1, where δ

′′
is as in Proposition 2.4. Then, we find α0 =

3c/(22δ32δ
′
s2) and vs(α0) = 0. Therefore, the condition 1 6 vs(β0) 6 vs(α0) is

not satisfied, that is, the prime ideals of kfi over s are unramified in Kfi/kfi .
Next, we treat the case p = 3. Put t1 := t

3s . We see t1 ≡ ±1 mod 9. By Lemma
2.9, we obtain

a

33s3
=
t3 + 3rt− 3r1t

2 − r1r
33s3

≡ t31 ≡ ±1 mod 27,

b

33s3
=
t3 + 3rt− 3r2t

2 − r2r
33s3

≡ t31 ≡ ±1 mod 27,

and
c

32s2
=
t2 − r
32s2

≡ t21 ≡ 1 mod 9.

Then, δ′ = 1, where δ′ is as in Proposition 2.4. By Lemma 2.8 (1), the integer c is
odd. Then, δ = 0, where δ is as in Proposition 2.4. Hence, (α0, β0) =

(
3c

32s2 ,
2a

33s3

)
if β = 2a and (α0, β0) =

(
3c

32s2 ,
2b

33s3

)
otherwise. Since α0 ≡ 3 mod 27 and

β0 ≡ ±2 mod 27 hold, we see

β2
0 ≡ α0 + 1 mod 27.

By Proposition 2.4 (2), the prime ideals of kfi over 3 are unramified in the extension
Kfi/kfi . The proof of Lemma 2.7 is completed. �
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Lemma 2.7 shows that 3 divides the orders of the narrow class groups of
Q(
√
m1Dr1,r2(t)) and Q(

√
m2Dr1,r2(t)). Since the difference between these or-

ders and the class numbers of Q(
√
m1Dr1,r2(t)) and Q(

√
m2Dr1,r2(t)) is only a

power of 2, the following proposition holds.

Proposition 2.10. For any t ∈ T , we have

3 | h(m1Dr1,r2(t)) and 3 | h(m2Dr1,r2(t)).

Secondly, we consider whether Dr1,r2(t) is positive or not. Define

gr1,r2(X) := 2X3 − 3(r1 + r2)X
2 + 6rX − r(r1 + r2).

Then,

Dr1,r2(X) =
1

27
(3X2 + r)gr1,r2(X).

Concerning the sign of Dr1,r2(t), we obtain the following lemma.

Lemma 2.11.

(1) Assume r1 and r2 are positive integers. Then, Dr1,r2(t) is positive if t >
3
2Max{r1, r2} and Dr1,r2(t) is negative if t 6 Max{r1, r2}.

(2) Assume r1r2 is a negative integer. If t > t0, then Dr1,r2(t) is positive, where
t0 is a real number such that t0 > Max{r1, r2} and gr1,r2(t0) = 0.

Proof. (1) Since 1
27 (3t

2 + r) is positive, the sign of Dr1,r2(t) coincides with that
of gr1,r2(t). The derivative of gr1,r2(X) is

g′r1,r2(X) = 6(X − r1)(X − r2).

We see
gr1,r2(r1) = −r1(r1 − r2)2 < 0

and
gr1,r2(r2) = −r2(r2 − r1)2 < 0.

Then, gr1,r2(X) = 0 has only one real root. This root is larger than Max{r1, r2}.
Therefore, if t 6 Max{r1, r2}, then gr1,r2(t) is negative, that is, Dr1,r2(t) is nega-
tive. Assume r1 > r2 > 0. We see

gr1,r2(3r1/2) =
1

4
r1r2(5r1 − 4r2) > 0.

Since gr1,r2(3r1/2) is positive and gr1,r2(X) is monotonically increasing for X >
Max{r1, r2}, we obtain gr1,r2(t) > 0 when t > 3r1/2. Then, Dr1,r2(t) is positive
when t > 3r1/2.

(2) We may assume r1 > 0 > r2, that is, m1 > 0 > m2. We see

g′r1,r2(X) = 6(X − r1)(X − r2).
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Since gr1,r2(r1) = −r1(r1 − r2)
2 is negative and gr1,r2(r2) = −r2(r2 − r1)

2 is
positive, there exists only one real number t0 such that t0 > r1 = Max{r1, r2}
and gr1,r2(t0) = 0. Then, gr1,r2(t) is positive when t > t0. If t >

√
−r/3, then

3t2 + r > 0. Therefore, Dr1,r2(t) is positive when t > Max
{
t0,
√
−r/3

}
. Here,

Max
{
t0,
√
−r/3

}
= t0. In fact, we see from

gr1,r2

(√
−r
3

)
=

16r

3

√
−r
3
< 0

that t0 >
√
−r/3. �

By Lemma 2.11, we obtain the following proposition.

Proposition 2.12.

(1) Assume m1 and m2 are positive integers. If t ∈ T1, then the quadratic fields
Q(
√
m1Dr1,r2(t)) and Q(

√
m2Dr1,r2(t)) are both real. If t ∈ T2, then the

quadratic fields Q(
√
m1Dr1,r2(t)) and Q(

√
m2Dr1,r2(t)) are both imaginary.

(2) Assume m1 > 0 > m2. If t ∈ T3, then the quadratic field Q(
√
m1Dr1,r2(t))

is real and the quadratic field Q(
√
m2Dr1,r2(t)) is imaginary.

Finally, we consider whether F(T ) and Fi(T ) (i = 1, 2, 3) include infinitely
many quadratic fields. We obtain the following proposition.

Proposition 2.13. We have ♯ F(T ) =∞. In particular, ♯ F(T1) =∞, ♯ F(T2) =
∞, and ♯ F(T3) =∞.

Proof. We can show this proposition in a way similar to [15, Proposition 2.7].
We will prove ♯ F(T ) = ∞. We can show ♯ F(T1) = ∞, ♯ F(T2) = ∞, and
♯ F(T3) =∞ in the same way. Assume S is a non-empty subset of T such that F(S)
is finite. We will show that we can choose a0 from T so that F(S) ( F(S ∪{a0}).
The choice of a0 is as follows. Let MS be the composite field of all quadratic fields
which belong to F(S) and let PS be the set of prime numbers ramifying in MS/Q.
Since MS/Q is of finite degree, the set PS is finite. Note that s ∈ PS . There exists
at least one prime number q1 ̸∈ P ∪PS ∪ {3} such that

(
(−r/3)

q1

)
= 1. We fix such

a prime number q1. Then, there exists at least one integer x such that 3x2+ r ≡ 0
mod q1. We fix such an integer x. Define

x0 :=

{
x if 3x2 + r ̸≡ 0 mod q21
x+ q1 if 3x2 + r ≡ 0 mod q21 .

If x0 = x + q1, then 3x20 + r ≡ 6q1x mod q21 . Assume 3x20 + r ≡ 0 mod q21 . By
q1 ̸= 2, 3, we find q1 | x, that is, q1 | r. This is a contradiction with q1 ̸∈ P ∪{3, s}.
Then, we always have 3x20 + r ≡ 0 mod q1 and 3x20 + r ̸≡ 0 mod q21 . Since

3gr1,r2(X) = (2X − 3(r1 + r2))(3X
2 + r1r2) + 16r1r2X
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holds,

3gr1,r2(x0) = (2x0 − 3(r1 + r2))(3x
2
0 + r1r2) + 16r1r2x0 ≡ 16r1r2x0 ≡ 0 mod q1

if gr1,r2(x0) ≡ 0 mod q1. It follows from 2 ∈ P and q1 ̸∈ P ∪ {3, s} that q1 | x0.
Then, q1 | r, that is, q1 ∈ P∪{3, s}. This is a contradiction. Therefore, gr1,r2(x0) ̸≡
0 mod q1. Since q1 ̸= 3 and vq1(3x20 + r) = 1 hold,

Dr1,r2(x0) =
3x20 + r

27
gr1,r2(x0) ≡ 0 mod q1

and
Dr1,r2(x0) ̸≡ 0 mod q21 .

On the other hand, it follows from q1 ̸∈ P ∪ {3, s} and the Chinese remainder
theorem that there exists a0 ∈ T such that a0 ≡ x0 mod q21 . Then,

Dr1,r2(a0) ≡ Dr1,r2(x0) ≡ 0 mod q1

and
Dr1,r2(a0) ≡ Dr1,r2(x0) ̸≡ 0 mod q21 .

This implies that q1 ramifies in Q(
√
Dr1,r2(a0))/Q. Since gcd(m1, Dr1,r2(a0)) =

3e for some integer e and q1 ̸= 3 holds, the prime number q1 also ramifies in
Q(
√
m1Dr1,r2(a0))/Q. Then, q1 also ramifies in MS(

√
m1Dr1,r2(a0))/Q. By the

assumption q1 ̸∈ PS , this implies

MS (MS

(√
m1Dr1,r2(a0)

)
,

that is,
F(S) ( F(S ∪ {a0}).

The family F(S ∪ {a0}) is also finite. Repeating this, we can construct an infinite
increasing sequence of subsets Si of T such that

F(S) ( F(S1) ( F(S2) ( · · · ,

where i ∈ N and S ( S1 ( S2 ( · · · . This implies ♯ F(T ) =∞. �

Theorem 2.1 follows from Lemma 2.3, Propositions 2.10, 2.12, and 2.13.

2.3. Proof of Theorem 2.2

In this section, we show Theorem 2.2 (the case 4 | m1m2), modifying the method
of the proof of Theorem 2.1. First, we show the following lemma.

Lemma 2.14. We have

gcd(m1m2/(4 · 3v3(m1m2)), Dr1,r2(t)) = 1.



Existence of an infinite family of pairs of quadratic fields Q(
√
m1D) and Q(

√
m2D) 123

Proof. When m1m2 = −4, ±12, −36, we easily see that the statement holds true.
Then, we treat the case m1m2 ̸= −4, ±12, −36, that is, the case where Q is not
empty. Assume gcd(m1m2/(4 ·3v3(m1m2)), Dr1,r2(t)) ̸= 1. For every prime number
ρ3 with ρ3 | gcd(m1m2/(4 ·3v3(m1m2)), Dr1,r2(t)), we have 27Dr1,r2(t) ≡ 0 mod ρ3.
Then,

27Dr1,r2(t) = (3t2 + r){2t3 − 3(r1 + r2)t
2 + 6rt− r(r1 + r2)}

≡ 3t4{2t− 3(r1 + r2)} ≡ 0 mod ρ3.

It follows from ρ3 ̸= 2, 3 that ρ3 ∈ Q. By definition of the set T , we see 2t ̸≡
3(r1 + r2) mod ρ3. Then, t ≡ 0 mod ρ3. On the other hand, ρ3 | m1 or ρ3 | m2.
Then, t ≡ r1 ≡ 0 mod ρ3 or t ≡ r2 ≡ 0 mod ρ3. This is a contradiction by
definition of the set T . �

Secondly, we show the divisibility of the class numbers of the quadratic fields.
The definitions of the integers u, w, a, b, and c are the same as in Section 2.2.
To prove 3 | h(miDr1,r2(t)) (i = 1, 2), we use Proposition 2.4. Define f1(Z) :=
Z3 − 3cZ − 2a and f2(Z) := Z3 − 3cZ − 2b as in Section 2.2. We can show that
f1(Z) and f2(Z) are both irreducible over Q in a way similar to Lemma 2.6. Using
Proposition 2.4, we obtain the following lemma.

Lemma 2.15. The cyclic cubic extensions Kfi/kfi are both everywhere unramified
at finite places, where i = 1, 2.

It follows from the definitions of a, b, and c that kf1 = Q(
√
m1Dr1,r2(t)) and

kf2 = Q(
√
m2Dr1,r2(t)). To prove Lemma 2.15, we need the following two lemmas.

Lemma 2.16.
(1) c is even.
(2) We have gcd(ab, c) = 2e3e

′
se

′′

for some integers e, e′, and e
′′
.

Proof. (1) Since t and r are even, c = t2 − r is also even.
(2) By (1), c is even. The integer ab is also even. Then, 2 | gcd(ab, c). Let

ρ4 be an odd prime divisor of gcd(ab, c). Since ρ4 divides c = t2 − r, we have
t2 ≡ r mod ρ4. It follows from ρ4 | ab that

0 ≡ ab ≡ (u− r1w)(u− r2w) ≡ 16t4(t− r1)(t− r2) mod ρ4.

Then, (i) ρ4 | t or (ii) t ≡ r1 mod ρ4 or (iii) t ≡ r2 mod ρ4. First, we treat
Case(i). Since ρ4 divides t, we see r ≡ t2 ≡ t ≡ 0 mod ρ4. Then, ρ4 | r, that is,
ρ4 ∈ P ∪ {3, s}. It follows from ρ4 | r that ρ4 | r1 or ρ4 | r2. If ρ4 ∈ P , we have
t ̸≡ r1, r2 mod ρ4. This is a contradiction. Therefore, ρ4 = 3, s. Secondly, we
treat Case(ii). Since t ≡ r1 mod ρ4 holds, we see

r21 ≡ t2 ≡ r = r1r2 mod ρ4.

If ρ4 divides r1, we have r ≡ 0 mod ρ4. Then, ρ4 ∈ P ∪ {3, s}. Since t ̸≡
r1, r2 mod p holds for every p ∈ P , it must be ρ4 = 3, s. If ρ4 does not divide r1,
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we see r1 ≡ r2 mod ρ4, that is, ρ4 | r1 − r2. Then, ρ4 ∈ P ∪ {3, s}. If ρ4 ∈ P ,
we have t ̸≡ r1 mod ρ4. This is a contradiction. Therefore, ρ4 = 3, s. Finally, we
treat Case(iii). Since t ≡ r2 mod ρ4 holds, we see

r22 ≡ t2 ≡ r = r1r2 mod ρ4.

If ρ4 divides r2, then r ≡ 0 mod ρ4, that is, ρ4 ∈ P ∪{3, s}. Since t ̸≡ r1, r2 mod p
holds for every p ∈ P , it must be ρ4 = 3, s. If ρ4 does not divide r2, we have
r2 ≡ r1 mod ρ4. Then, t ≡ r1 ≡ r2 mod ρ4, that is, t ≡ r1 mod ρ4. This case can
result in Case(ii) and then ρ4 = 3, s. �

Lemma 2.17. We have ri ≡ 0 mod 27, where i = 1, 2.

Proof. We can show this lemma in a way similar to Lemma 2.9. �

Proof of Lemma 2.15. Since vs(Dr1,r2(t)) = 5 and s - m1m2 hold, we have
kfi ̸= Q, where i = 1, 2. Then, we can use Proposition 2.4. In this case, we take
α = 3c, β = 2a or 2b. By Lemma 2.16 (2), we have gcd(ab, c) = 2e3e

′
se

′′

for some
integers e, e′, and e

′′
. Then, the assumption vp(α0) < 2 or vp(β0) < 3 is satisfied

for each prime number p, where α0 and β0 are as in Proposition 2.4. Moreover,
the condition 1 6 vp(β0) 6 vp(α0) is not satisfied when p ̸= 2, 3, s. Then, the
prime ideals of kfi over p are unramified in the extension Kfi/kfi when p ̸= 2, 3,
s. Now, we treat the case p = 2, s. Since

a

23
=
t3 + 3rt− 3r1t

2 − r1r
23

≡ t3

23
≡ 1 mod 2,

b

23
=
t3 + 3rt− 3r2t

2 − r2r
23

≡ t3

23
≡ 1 mod 2,

and
c

22
=
t2 − r
22

≡ t2

22
≡ 1 mod 2

hold, we see δ = 1, where δ is as in Proposition 2.4. Then, α0 = 3c/(2232δ
′
s2δ

′′

)
is odd, that is, v2(α0) = 0. Therefore, the condition 1 6 v2(β0) 6 v2(α0) is not
satisfied. Since

a

s3
≡ b

s3
≡ t3

s3
̸≡ 0 mod s

and
c

s2
≡ t2

s2
̸≡ 0 mod s

hold, we have δ
′′
= 1, where δ

′′
is as in Proposition 2.4. Then, we find α0 =

3c/(2232δ
′
s2) and vs(α0) = 0. Therefore, the condition 1 6 vs(β0) 6 vs(α0) is not

satisfied. By Proposition 2.4 (1), the prime ideals of kf over 2, s are unramified
in the extension Kf/kf . Next, we treat the case p = 3. It follows from Lemma
2.17 that

a

33
=
t3 + 3rt− 3r1t

2 − r1r
33

≡ t3

33
̸≡ 0 mod 3,
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b

33
=
t3 + 3rt− 3r2t

2 − r2r
33

≡ t3

33
̸≡ 0 mod 3,

and
c

32
=
t2 − r
32

≡ t2

32
̸≡ 0 mod 3.

Then, δ′ = 1, where δ′ is as in Proposition 2.4. Hence, (α0, β0) =
(

3c
62s2 ,

2a
63s3

)
if

β = 2a and (α0, β0) =
(

3c
62s2 ,

2b
63s3

)
otherwise. Since

t

6s
≡ ±1 mod 9,

a

63s3
=
t3 + 3rt− 3r1t

2 − r1r
63s3

≡ t3

63s3
≡ ±1 mod 27,

b

63s3
=
t3 + 3rt− 3r2t

2 − r2r
63s3

≡ t3

63s3
≡ ±1 mod 27,

and
c

62s2
=
t2 − r
62s2

≡ t2

62s2
≡ 1 mod 9

hold, we see α0 ≡ 3 mod 27 and β0 ≡ ±2 mod 27. Then, β2
0 ≡ α0 + 1 mod 27. By

Proposition 2.4 (2), the prime ideals of kf over 3 are unramified in the extension
Kf/kf . The proof of Lemma 2.15 is completed. �

By Lemma 2.15, we obtain the following proposition.

Proposition 2.18. We have 3 | h(m1Dr1,r2(t)) and 3 | h(m2Dr1,r2(t)) for any
t ∈ T .

Thirdly, we consider whether Dr1,r2(t) is positive or not. We have the following
lemma.

Lemma 2.19.

(1) Assume r1 and r2 are positive integers. Then, Dr1,r2(t) is positive if t >
3
2Max{r1, r2} and Dr1,r2(t) is negative if t 6 Max{r1, r2}.

(2) Assume r1r2 is a negative integer. If t > t0, then Dr1,r2(t) is positive, where
t0 is a real number such that t0 > Max{r1, r2} and gr1,r2(t0) = 0.

Proof. We can show this lemma in a way similar to Lemma 2.11. �

By Lemma 2.19, we obtain the following proposition.

Proposition 2.20.

(1) Assume m1 and m2 are positive integers. If t ∈ T1, then the quadratic fields
Q(
√
m1Dr1,r2(t)) and Q(

√
m2Dr1,r2(t)) are both real. If t ∈ T2, then the

quadratic fields Q(
√
m1Dr1,r2(t)) and Q(

√
m2Dr1,r2(t)) are both imaginary.
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(2) Assume m1 > 0 > m2. If t ∈ T3, then the quadratic field Q(
√
m1Dr1,r2(t))

is real and the quadratic field Q(
√
m2Dr1,r2(t)) is imaginary.

Finally, we consider whether F(T ) and Fi(T ) (i = 1, 2, 3) include infinitely
many quadratic fields. We obtain the following proposition.

Proposition 2.21. We have ♯ F(T ) =∞. In particular, ♯ F(T1) =∞, ♯ F(T2) =
∞, and ♯ F(T3) =∞.

Proof. We can show this proposition in a way similar to Proposition 2.13. We will
prove ♯ F(T ) =∞. We can show ♯ F(T1) =∞, ♯ F(T2) =∞, and ♯ F(T3) =∞ in
the same way. Assume S is a non-empty subset of T such that F(S) is finite. We
will show that we can choose a0 from T so that F(S) ( F(S ∪ {a0}). The choice
of a0 is as follows. Let MS be the composite field of all quadratic fields which
belong to F(S) and let PS be the set of prime numbers ramifying in MS/Q. Since
MS/Q is of finite degree, the set PS is finite. Note that s ∈ PS . There exists at
least one prime number q1 ̸∈ P ∪ PS ∪ {2, 3} such that

(
(−r/3)

q1

)
= 1. We fix such

a prime number q1. Then, there exists at least one integer x such that 3x2+ r ≡ 0
mod q1. We fix such an integer x. Define

x0 :=

{
x if 3x2 + r ̸≡ 0 mod q21
x+ q1 if 3x2 + r ≡ 0 mod q21 .

If x0 = x + q1, then 3x20 + r ≡ 6q1x mod q21 . Assume 3x20 + r ≡ 0 mod q21 . By
q1 ̸= 2, 3, we find q1 | x, that is, q1 | r. This is a contradiction with q1 ̸∈ P∪{2, 3, s}.
Then, we always have 3x20 + r ≡ 0 mod q1 and 3x20 + r ̸≡ 0 mod q21 . Since

3gr1,r2(X) = (2X − 3(r1 + r2))(3X
2 + r1r2) + 16r1r2X

holds,

3gr1,r2(x0) = (2x0 − 3(r1 + r2))(3x
2
0 + r1r2) + 16r1r2x0 ≡ 16r1r2x0 ≡ 0 mod q1

if gr1,r2(x0) ≡ 0 mod q1. It follows from q1 ̸∈ P ∪{2, 3, s} that q1 | x0. Then, q1 | r,
that is, q1 ∈ P∪{2, 3, s}. This is a contradiction. Therefore, gr1,r2(x0) ̸≡ 0 mod q1.
Since q1 ̸= 3 and vq1(3x20 + r) = 1 hold,

Dr1,r2(x0) =
3x20 + r

27
gr1,r2(x0) ≡ 0 mod q1

and
Dr1,r2(x0) ̸≡ 0 mod q21 .

On the other hand, it follows from q1 ̸∈ P ∪ {2, 3, s} and the Chinese remainder
theorem that there exists a0 ∈ T such that a0 ≡ x0 mod q21 . Then,

Dr1,r2(a0) ≡ Dr1,r2(x0) ≡ 0 mod q1
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and
Dr1,r2(a0) ≡ Dr1,r2(x0) ̸≡ 0 mod q21 .

This implies that q1 ramifies in Q(
√
Dr1,r2(a0))/Q. Since gcd(m1, Dr1,r2(a0)) =

2 · 3e for some integer e and q1 ̸= 2, 3 holds, the prime number q1 also ramifies in
Q(
√
m1Dr1,r2(a0))/Q. Then, q1 also ramifies in MS(

√
m1Dr1,r2(a0))/Q. By the

assumption q1 ̸∈ PS , this implies

MS (MS

(√
m1Dr1,r2(a0)

)
,

that is,
F(S) ( F(S ∪ {a0}).

Here, the family F(S ∪ {a0}) is also finite. Repeating this, we can construct an
infinite increasing sequence of subsets Si of T such that

F(S) ( F(S1) ( F(S2) ( · · · ,

where i ∈ N and S ( S1 ( S2 ( · · · . This implies ♯ F(T ) =∞. �

Theorem 2.2 follows from Lemma 2.14, Propositions 2.18, 2.20, and 2.21.

3. Proof of Theorem 1.5

In this section, we show Theorem 1.5, modifying the method in [4]. To prove this,
we use a result of Nakagawa and Horie [19]. In Section 3.1, we state their result.
In Section 3.2, we prove Theorem 1.5. In Section 3.3, we give an application of
Theorem 1.5.

3.1. Result of Nakagawa and Horie

For a given prime number p, there are infinitely many imaginary quadratic fields
whose class numbers are indivisible by p. Such results are obtained by P. Har-
tung [8], K. Horie [10, 11], K. Horie and Y. Ônishi [9], W. Kohnen and K. Ono [13],
etc. Similarly, for a given prime number p, there are infinitely many real quadratic
fields whose class numbers are indivisible by p. K. Ono [20], D. Byeon [2, 3], etc.
obtained such results. For p = 3, results of H. Davenport and H. Heilbronn [5]
and J. Nakagawa and K. Horie [19] are known. We begin with their results.

Suppose 0 < X ∈ R. We denote by S+(X) the set of positive fundamental
discriminants 0 < D < X of quadratic fields. Similarly, we denote by S−(X) the
set of negative fundamental discriminants −X < D < 0 of quadratic fields. The
following theorem is known as a corollary that is obtained from a result of [5].

Theorem 3.1 (Davenport and Heilbronn, [5]).
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(1)

lim inf
X→∞

♯{D ∈ S+(X) | 3 - h(D)}
♯{D ∈ S+(X)}

> 5

6
.

(2)

lim inf
X→∞

♯{D ∈ S−(X) | 3 - h(D)}
♯{D ∈ S−(X)}

> 1

2
.

Nakagawa and Horie [19] improved Theorem 3.1. We state their result. Let m
and N be positive integers satisfying the following conditions:

(I) If p is an odd prime divisor of gcd(m,N), then p2 | N and p2 - m.
(II) If N is even, then condition (i) or (ii) is satisfied.

(i) 4 | N and m ≡ 1 mod 4.

(ii) 16 | N and m ≡ 8, 12 mod 16.

We construct two sets depending upon these integers m, N .

S+(X,m,N) := {D ∈ S+(X) | D ≡ m mod N}

S−(X,m,N) := {D ∈ S−(X) | D ≡ m mod N}

As a refinement of Theorem 3.1, Nakagawa and Horie proved the following theorem.

Theorem 3.2 (Nakagawa and Horie, [19]).

(1)

lim inf
X→∞

♯{D ∈ S+(X,m,N) | 3 - h(D)}
♯S+(X,m,N)

> 5

6
.

(2)

lim inf
X→∞

♯{D ∈ S−(X,m,N) | 3 - h(D)}
♯S−(X,m,N)

> 1

2
.

(3)

♯S+(X,m,N) ∼ ♯S−(X,m,N) ∼ 3X

π2φ(N)

∏
p|N :prime

q

p+ 1
,

where φ(N) is the Euler function, q := 4 if p = 2, and q := p otherwise.

Next, we state a result of Byeon [4]. Theorem 1.4 is obtained from the following
proposition.

Proposition 3.3 (Byeon, [4, Proof of Proposition 3.1]). Let t > 1 be a
square-free integer. Then, for any two positive integers m and N satisfying con-
ditions (I) and (II), we have the following:

(1)

lim inf
X→∞

♯{D ∈ S+(X,m, tN) | 3 - h(D) and 3 - h(tD)}
♯S+(X,m, tN)

> 2

3
.
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(2)

lim inf
X→∞

♯{D ∈ S+(X,m, tN) | 3 - h(D) and 3 - h(−tD)}
♯S+(X,m, tN)

> 1

3
.

Using the method of the proof of Proposition 3.3, we obtain the following
theorem.

Theorem 3.4. Let m1, m2, and m3 be square-free positive integers (including 1).
Assume that positive integers m and N satisfy conditions (I), 16 | N , m ≡ 1 mod
4, and gcd(mN,m1m2m3) | 23. Put M1 := m1m2m3N and M2 := m1m2N .
Then, we have the following:

(1)

lim inf
X→∞

♯{D ∈ S+(X,m,M1) | 3 - h(miD), where i = 1, 2, 3}
♯S+(X,m,M1)

> 1

3
.

(2)

lim inf
X→∞

♯{D ∈ S+(X,m,M2) | 3 - h(m1D) and 3 - h(−m2D)}
♯S+(X,m,M2)

> 1

3
.

For any D ∈ S+(X,m,M1), we have gcd(m1m2m3, D) = 1 (see Lemma 3.7
in Section 3.2). Similarly, for any D ∈ S+(X,m,M2), we find gcd(m1m2, D) = 1
(see Section 3.2). Therefore, Theorem 1.5 follows from this theorem.

Remark 3.5. For given positive integers m1, m2, and m3 (resp. m1 and m2), we
can take integers m and N satisfying the conditions in Theorem 3.4. Integers m
and M1 (resp. m and M2) satisfy conditions (I) and (II).

By Theorems 3.2 (3) and 3.4, we obtain the following corollary.

Corollary 3.6. Let m1, m2, and m3 be square-free positive integers (including 1).
Assume that positive integers m and N satisfy conditions (I), 16 | N , m ≡ 1 mod
4, and gcd(mN,m1m2m3) | 23. Put M1 := m1m2m3N and M2 := m1m2N .
Then, we have the following:

(1)
lim inf
X→∞

♯{D ∈ S+(X,m,M1) | 3 - h(miD), where i = 1, 2, 3}
♯S+(X)

> 1

3φ(M1)

∏
p|M1:prime

q

p+ 1
.

(2)
lim inf
X→∞

♯{D ∈ S+(X,m,M2) | 3 - h(m1D) and 3 - h(−m2D)}
♯S+(X)

> 1

3φ(M2)

∏
p|M2:prime

q

p+ 1
,

where φ(N) denotes the Euler function, q := 4 if p = 2, and q := p other-
wise.
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3.2. Proof of Theorem 3.4

In this section, we show Theorem 3.4. First, we prove Theorem 3.4 (1). Define

S+(X,m,M1,mi) := {m̃iD | D ∈ S+(X,m,M1)},

where m̃i denotes mi if mi ≡ 1 mod 4 and 4mi otherwise. Note that

♯S+(X,m,M1) = ♯S+(X,m,M1,mi),

where i = 1, 2, 3.

Lemma 3.7. For any D ∈ S+(X,m,M1), we have gcd(m1m2m3, D) = 1.

Proof. Since 16 | N and m ≡ 1 mod 4 hold, D ≡ 1 mod 4 for any D ∈
S+(X,m,M1). Then, gcd(m1m2m3, D) is odd. Let ρ be an odd prime divisor
of gcd(m1m2m3, D). It follows from D ≡ m modM1 that ρ divides m. This
implies that ρ divides gcd(m1m2m3,m). By the assumption of Theorem 3.4,
gcd(mN,m1m2m3) | 23. Then, ρ | 23. This is a contradiction. �

It follows from Lemma 3.7 and D ≡ 1 mod 4 that m̃iD is the fundamental
discriminant of a quadratic field. Then,

S+(X,m,M1,mi) = S+(m̃iX, m̃im, m̃iM1),

where i = 1, 2, 3. Integers m̃im and m̃iM1 satisfy conditions (I) and (II). Using
Theorem 3.2 (1), we find

lim inf
X→∞

♯{D ∈ S+(X,m,M1) | 3 - h(miD)}
♯S+(X,m,M1)

= lim inf
X→∞

♯{m̃iD ∈ S+(X,m,M1,mi) | 3 - h(m̃iD)}
♯S+(X,m,M1,mi)

= lim inf
X→∞

♯{m̃iD ∈ S+(X, m̃im, m̃iM1) | 3 - h(m̃iD)}
♯S+(X, m̃im, m̃iM1)

> 5

6
.

We can show

lim inf
X→∞

♯{D ∈ S+(X,m,M1) | 3 - h(miD) and 3 - h(mjD)}
♯S+(X,m,M1)

> 2

3

as follows, where i, j ∈ {1, 2, 3} are distinct integers. The equation

lim inf
X→∞

♯{D ∈ S+(X,m,M1) | 3 - h(miD)}
♯S+(X,m,M1)

> 5

6

implies that if ε > 0, then for sufficiently large X ∈ R,

♯{D ∈ S+(X,m,M1) | 3 - h(miD)}
♯S+(X,m,M1)

> 5

6
− ε.
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It follows that

♯S+(X,m,M1)

> ♯{D ∈ S+(X,m,M1) | 3 - h(miD) or 3 - h(mjD)}
= ♯{D ∈ S+(X,m,M1) | 3 - h(miD)}+ ♯{D ∈ S+(X,m,M1) | 3 - h(mjD)}
− ♯{D ∈ S+(X,m,M1) | 3 - h(miD) and 3 - h(mjD)} =: A(X).

If ε > 0, then for sufficiently large X ∈ R we have

A(X) >
(
5

6
− ε
)
♯S+(X,m,M1) +

(
5

6
− ε
)
♯S+(X,m,M1)

− ♯{D ∈ S+(X,m,M1) | 3 - h(miD) and 3 - h(mjD)}

=

(
5

3
− 2ε

)
♯S+(X,m,M1)

− ♯{D ∈ S+(X,m,M1) | 3 - h(miD) and 3 - h(mjD)}.

Then, for sufficiently large X ∈ R we have

♯{D ∈ S+(X,m,M1) | 3 - h(miD) and 3 - h(mjD)}

>
(
2

3
− 2ε

)
♯S+(X,m,M1),

that is,

♯{D ∈ S+(X,m,M1) | 3 - h(miD) and 3 - h(mjD)}
♯S+(X,m,M1)

> 2

3
− 2ε.

Therefore,

lim inf
X→∞

♯{D ∈ S+(X,m,M1) | 3 - h(miD) and 3 - h(mjD)}
♯S+(X,m,M1)

> 2

3
.

Similarly, we obtain

lim inf
X→∞

♯{D ∈ S+(X,m,M1) | 3 - h(miD), where i = 1, 2, 3}
♯S+(X,m,M1)

> 1

3
.

The proof of Theorem 3.4 (1) is completed. Next, we show Theorem 3.4 (2),
modifying the method in the above. In this case, we define

S+(X,m,M2,−m2) := {−m̃2D | D ∈ S+(X,m,M2)},

where m̃2 denotes m2 if −m2 ≡ 1 mod 4 and 4m2 otherwise. Note that

♯S+(X,m,M2) = ♯S+(X,m,M2,m1) = ♯S+(X,m,M2,−m2).

For any D ∈ S+(X,m,M2), we see gcd(m1m2, D) = 1. Then,

S+(X,m,M2,m1) = S+(m̃1X, m̃1m, m̃1M2)
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and
S+(X,m,M2,−m2) = S−(m̃2X, m̃2m

′, m̃2M2),

where m′ is a positive integer satisfying −m̃2m ≡ m̃2m
′ mod m̃2M2. Integers

m̃1m and m̃1M2 (resp. m̃2m
′ and m̃2M2) satisfy conditions (I) and (II). Using

Theorem 3.2 (1) and (2), we find

lim inf
X→∞

♯{D ∈ S+(X,m,M2) | 3 - h(m1D)}
♯S+(X,m,M2)

= lim inf
X→∞

♯{m̃1D ∈ S+(X,m,M2,m1) | 3 - h(m̃1D)}
♯S+(X,m,M2,m1)

= lim inf
X→∞

♯{m̃1D ∈ S+(X, m̃1m, m̃1M2) | 3 - h(m̃1D)}
♯S+(X, m̃1m, m̃1M2)

> 5

6

and

lim inf
X→∞

♯{D ∈ S+(X,m,M2) | 3 - h(−m2D)}
♯S+(X,m,M2)

= lim inf
X→∞

♯{−m̃2D ∈ S+(X,m,M2,−m2) | 3 - h(−m̃2D)}
♯S+(X,m,M2,−m2)

= lim inf
X→∞

♯{−m̃2D ∈ S−(X, m̃2m
′, m̃2M2) | 3 - h(−m̃2D)}

♯S−(X, m̃2m′, m̃2M2)
> 1

2
.

Combining the above inequalities, we can likewise obtain

lim inf
X→∞

♯{D ∈ S+(X,m,M2) | 3 - h(m1D) and 3 - h(−m2D)}
♯S+(X,m,M2)

> 1

3
.

The proof of Theorem 3.4 (2) is completed.

3.3. Application

In this section, we give an application of Theorem 1.5 to the Iwasawa invariants
of the cyclotomic Z3-extension of a quadratic field. We begin with a result of
K. Iwasawa.

Theorem 3.8 (Iwasawa, [12]). Let p be a prime number, k an algebraic number
field of finite degree, and K/k an arbitrary Zp-extension. If p does not split in k and
the class number of k is indivisible by p, then λp(K/k) = µp(K/k) = νp(K/k) = 0,
where λp(K/k), µp(K/k), and νp(K/k) are the Iwasawa invariants of K/k.

If k is an abelian field, the Iwasawa µ-invariant of the cyclotomic Zp-extension
of k is equal to 0 [6]. For a prime number p, we denote by λp(d), µp(d), and νp(d)
the Iwasawa λ-, µ-, and ν-invariant of the cyclotomic Zp-extension of a quadratic
field Q(

√
d). By Theorems 3.4 and 3.8, we obtain the following two corollaries.
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Corollary 3.9. Let m1 and m2 be square-free positive integers (including 1).

(1) There exist infinitely many positive fundamental discriminants D with a pos-
itive inferior limit density such that gcd(m1m2, D) = 1 and λ3(miD) =
µ3(miD) = ν3(miD) = 0, where i = 1, 2.

(2) There exist infinitely many positive fundamental discriminants D with a pos-
itive inferior limit density such that gcd(m1m2, D) = 1, λ3(m1D) =
µ3(m1D) = ν3(m1D) = 0, and λ3(−m2D) = µ3(−m2D) = ν3(−m2D) = 0.

Corollary 3.10. Let m1, m2, and m3 be distinct square-free positive integers
(including 1) with 3 | (m1 −m2)(m2 −m3)(m3 −m1). Then, there exist infinitely
many positive fundamental discriminants D with a positive inferior limit density
such that gcd(m1m2m3, D) = 1 and λ3(miD) = µ3(miD) = ν3(miD) = 0, where
i = 1, 2, 3.

The idea of this application is based on the one in [19] and [22]. If k is a to-
tally real field, for any prime number p, it is conjectured that the Iwasawa λp-
and µp-invariants of the cyclotomic Zp-extension of k are equal to 0 (Greenberg’s
Conjecture, [7]). We can say that Corollaries 3.9 (1) and 3.10 are related to this
conjecture. These corollaries are proved by taking N and m, where N and m are
integers in Theorem 3.4. For example, we can take N and m as follows.

Q(
√
m1D), Q(

√
m2D)

m1 m2 m N
0̄ 0̄ 1 16
0̄ 1̄ p1 16p21
0̄ 2̄ 1 16
1̄ 1̄ 3p2 144
1̄ 2̄ 3p2 144
2̄ 2̄ 3p2 144

Q(
√
m1D), Q(

√
−m2D)

m1 −m2 m N
0̄ 0̄ 1 16
0̄ 1̄ p1 16p21
0̄ 2̄ 1 16
1̄ 1̄ 3p2 144
1̄ 2̄ 3p2 144
2̄ 2̄ 3p2 144

Q(
√
m1D), Q(

√
m2D), Q(

√
m3D)

m1 m2 m3 m N
0̄ 0̄ 0̄ 1 16
0̄ 0̄ 1̄ p′1 16p′21
0̄ 1̄ 1̄ p′1 16p′21
0̄ 0̄ 2̄ 1 16
0̄ 2̄ 2̄ 1 16
1̄ 1̄ 1̄ 3p′2 144
1̄ 1̄ 2̄ 3p′2 144
1̄ 2̄ 2̄ 3p′2 144
2̄ 2̄ 2̄ 3p′2 144
0̄ 1̄ 2̄ − −
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Remark 3.11. We define 0̄, 1̄, and 2̄ as 0̄ ≡ 0 mod 3, 1̄ ≡ 1 mod 3, and 2̄ ≡
2 mod 3. Integers p1, p2, p′1, and p′2 are defined as prime numbers such that
p1 ≡ 5 mod 12 and p1 - m1m2, such that p2 ≡ 3 mod 4 and p2 - 3m1m2, such that
p′1 ≡ 5 mod 12 and p′1 - m1m2m3, and such that p′2 ≡ 3 mod 4 and p′2 - 3m1m2m3

respectively. The existence of these prime numbers follows from the theorem on
arithmetic progressions.
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