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ON TORSION POINTS OF CERTAIN CM ELLIPTIC CURVES

Naoki Murabayashi

Abstract: Let E be a CM elliptic curve defined over an algebraic number field F with CM by
an imaginary quadratic field K. We determine the group of KabF -rational torsion points of E.
In some cases we also determine the group of F or KF -rational torsion points of E.
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1. Introduction

Let E be a CM elliptic curve defined over an algebraic number field F ⊆ C such
that EndQ(E), the ring of endomorphisms of E defined over Q, is isomorphic to
an order R of an imaginary quadratic field K ⊆ C. It is known by work of Shimura
[6] that there exists a normalized newform f of weight two on Γ1(N) for some N ,
such that E admits a non-zero homomorphism φ : E → Jf defined over Q, where
Jf is the Q-simple factor of the Jacobian variety J1(N) corresponding to f .

In the previous paper [1], we gave necessary and sufficient conditions for E to be
modular over F , i.e., such a non-zero homomorphism φ can be defined over F . It
holds that E is modular over F if and only if the group Etors(C) of torsion points of
E rational over C, i.e. the group of all torsion points of E, is contained in E(KabF ),
where the subscript ab denotes the maximal abelian extension. Therefore, if E is
modular over F , it holds that Etors(KabF ) = Etors(C).

In this paper we determine Etors(KabF ) in the case where E is not modular
over F . We also determine Etors(F ) and Etors(KF ) in some cases.

2. Main results

We put K ′ := KabF . Let

Φ : Gal(K/K ′) −→ Aut(Etors(C)) (resp. Ψ : R× −→ Aut(Etors(C)))
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be the homomorphism corresponding to the canonical action of Gal(K/K ′) (resp.
R×) on Etors(C). Then there exists a homomorphism χ : Gal(K/K ′) −→ R× such
that Φ = Ψ ◦ χ. We explain the definition of χ. Fix a complex uniformization
ξ : C/a ∼−→ E(C), where a is a proper R ideal in K. Applying Theorem 5.4
in [5] (p. 117) with σ ∈ Gal(K/K ′) and s = 1, we obtain the unique isomor-
phism ξ′ : C/a ∼−→ E(C) such that ξ(u)σ = ξ′(u) for every u ∈ K/a. Putting
χ(σ) := ξ′ ◦ ξ−1 ∈ Aut(E) = R×, we have ξ(u)σ = ξ′ξ−1(ξ(u)), i.e., Pσ = χ(σ)(P )
for every P = ξ(u) ∈ Etors(C). Let N be the size of the image of χ. By The-
orem 5.1 in [1], E is modular over F if and only if N = 1. In particular, the
condition that E is not modular over F implies N > 2, especially N = 2 in the
case of R× = {±1}.

Theorem 1. Assume that E is not modular over F . Then we have

Etors(KabF ) =


E[2] if N = 2,
E[

√
−3] (⊆ E[3]) if N = 3,

E[1 +
√
−1] (⊆ E[2]) if N = 4,

{O} if N = 6,

where E[a] (a ∈ R) denotes the kernel of the endomorphism corresponding to a
and O denotes the identity element of E.

Proof. If N = 2, then we have Imχ = {±1} = ⟨−1⟩. We have

Etors(KabF ) = (Etors(C))Ψ(−1) (:= {P ∈ Etors(C)|Ψ(−1)(P ) = P})
= E[2].

If N = 3, then we have Imχ = {1, ω, ω2} = ⟨ω⟩, where ω =
−1 +

√
−3

2
. So

Etors(KabF ) = (Etors(C))Ψ(ω) = E[1− ω] = E[
√
−3]. This is applied to the other

cases. �

By contraposition of Theorem 1, we have the following:

Theorem 2. If there exists a point of Etors(F ) whose order is greater than or
equal to 4, E is modular over F . In the case of R× = {±1}, we can replace 4
with 3.

3. Further results

In this section we determine Etors(F ) and Etors(KF ) in some cases. We put
F ′ := KF .



On torsion points of certain CM elliptic curves 91

Proposition 3. Assume that if the conductor of R is odd, 2 does not remain
prime in K. Then Etors(F

′) contains a subgroup of order 2.

Proof. Except the case where the conductor of R is odd and 2 remains prime in
K, we can take a prime ideal q of R (not necessarily proper) lying above 2 such
that R/q ∼= Z/2Z. Lemma 1 in [4] implies that E[2] ∼= R/2R as R-module. Let M
be the subgroup of E[2] corresponding to q/2R by this identification. The action
of Gal(F ′/F ′) on E[2] is R-linear, so M is stable under this. Since E[2]/M ∼=
R/q ∼= Z/2Z, M ∼= Z/2Z. Therefore the unique generator of M is fixed by the
action of Gal(F ′/F ′), so F ′-rational, hence Etors(F

′) ⊇M ∼= Z/2Z. �

Proposition 4. Assume that

(i) E is not modular over F ;
(ii) K ̸= Q(

√
−1);

(iii) 2 is ramified in K, i.e. (2) = q2 (q is a prime ideal of K);
(iv) there exists a prime ideal Q of F ′ lying above q such that Q is unramified

over q.

Then Etors(F
′) $ E[2].

Proof. By assumption (ii) and (iii), R× = {±1}. Hence, Theorem 1 implies that
Etors(F

′) ⊆ E[2]. By the theory of complex multiplication there exists a unique
homomorphism

αE/F ′ : F ′
A
× −→ K×

(where F ′
A
× denotes the idele group of F ′) such that

• Ker(αE/F ′) is open in F ′
A
×;

• For any x ∈ F ′
A
×, αE/F ′(x)NF ′/K(x)−1a = a, where NF ′/K is the norm map

from F ′
A
× to K×

A ;
• For any x ∈ F ′

A
×, αE/F ′(x)αE/F ′(x)ρ = N(il(x)), where zρ is the complex

conjugate of a complex number z and il(x) is the fractional ideal of F ′ asso-
ciated to an idele element x;

• For any x ∈ F ′
A
× and w ∈ K/a (⊆ C/a),

ξ(w)[x, F
′] = ξ(αE/F ′(x)NF ′/K(x)−1w),

where [x, F ′] is the element of Gal(F ′
ab/F

′) corresponding to x by the reci-
procity law of class field theory (see Theorem 19.8, p. 134 in [7]).

Claim 1. The condition that Etors(F
′) = E[2] is equivalent to the condition (∗):

αE/F ′(x)NF ′/K(x)−1
q ∈ 1 + q2 for any x ∈ F ′

A
×

(where NF ′/K(x)q denotes the q-component of NF ′/K(x)).
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Proof of Claim 1. It is clear that Etors(F
′) = E[2] is equivalent to the condition:

ξ(αE/F ′(x)NF ′/K(x)−1w) = ξ(w) for any x ∈ F ′
A
× and w ∈ 1

2
a/a.

Putting w =
1

2
a (a ∈ a), ξ(αE/F ′(x)NF ′/K(x)−1w) = ξ(w) is equivalent to the

condition (∗∗):

αE/F ′(x)NF ′/K(x)−1
r

2
a ≡ 1

2
a mod a⊗R Or for any prime ideal r of K

(where Or denotes the ring of integers in Kr, the completion of K with re-
spect to the valuation associated to r). If r ̸= q, 2 ∈ O×

r . We also have that
αE/F ′(x)NF ′/K(x)−1

r ∈ O×
r because of αE/F ′(x)NF ′/K(x)−1a = a. So if r ̸= q,

the congruence relations in the condition (∗∗) hold. Therefore we have

Etors(F
′) = E[2] ⇐⇒

αE/F ′(x)NF ′/K(x)−1
q − 1

2
a ≡ 0 mod a⊗R Oq

for any x ∈ F ′
A
× and a ∈ a

⇐⇒
αE/F ′(x)NF ′/K(x)−1

q − 1

2
∈ Oq for any x ∈ F ′

A
×.

Since (2) = q2, the last condition is equivalent to the condition (∗). This completes
the proof. �

Claim 2. The condition (∗) does not hold.

Proof of Claim 2. Let π be a prime element of Oq, i.e. (π) = q in Oq. By
assumption, F ′

Q/Kq is an unramified extension, so NF ′
Q/Kq

(O×
Q) = O×

q , where
OQ denotes the ring of integers in F ′

Q. Therefore there exists x0 ∈ O×
Q such that

NF ′
Q/Kq

(x0) = (1 + π)−1. We consider the restriction of αE/F ′ to O×
Q and let Qf

(f > 0) be the conductor of it. Putting m := ♯(OQ/Q
f )× if f > 1 and m := 1

if f = 0, xm0 ≡ 1 mod Qf , hence αE/F ′(ιQx0)
m = 1, where ιQx0 denotes the

element of F ′
A
× whose Q-component is x0 and all the other components are one.

Therefore we have

αE/F ′(ιQx0) ∈ K× ∩ {roots of unity} = {±1}.

If αE/F ′(ιQx0) = 1,

αE/F ′(ιQx0)NF ′/K(ιQx0)
−1
q = 1 + π /∈ 1 + q2

and if αE/F ′(ιQx0) = −1,

αE/F ′(ιQx0)NF ′/K(ιQx0)
−1
q = −1− π = 1 + π − 2(1 + π) /∈ 1 + q2

because of 2(1 + π) ∈ q2. Hence the condition (∗) does not hold. �

By Claim 1 and 2, Etors(F
′) $ E[2]. This completes the proof of Proposition 4. �
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Theorem 5. Let K be an imaginary quadratic field with expression Q(
√
−p1 · · · pr),

where p1, . . . , pr (r > 1) are distinct prime numbers such that pi ≡ 1 mod 4
(1 6 i 6 r). Let q be the prime ideal of K lying above 2 (then (2) = q2 in K). Let
E be an elliptic curve defined over Q(jE) such that EndQ(E) is isomorphic to the
maximal order of K. Let H be the Hilbert class field of K (hence H = K(jE)).
Then we have

Etors(Q(jE)) = Etors(H) = E[q] ∼= Z/2Z.

Proof. By Theorem 7.1 in [2], E is not modular over Q(jE). So Theorem 1 implies
that Etors(H) ⊆ E[2]. Since (2) = q2, M in the proof of Proposition 3 coincides
with E[q]. Combining with Proposition 4, Etors(H) = E[q] ∼= Z/2Z. Since E
is defined over Q(jE), Gal(H/Q(jE)) acts on Etors(H) ∼= Z/2Z. Therefore the
unique generator of Etors(H) is Q(jE)-rational. Hence we get the assertion. �
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