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ON TORSION POINTS OF CERTAIN CM ELLIPTIC CURVES
NAOKI MURABAYASHI

Abstract: Let E be a CM elliptic curve defined over an algebraic number field F' with CM by
an imaginary quadratic field K. We determine the group of K,;F-rational torsion points of E.
In some cases we also determine the group of F' or K F-rational torsion points of E.
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1. Introduction

Let E be a CM elliptic curve defined over an algebraic number field F' C C such
that End@(E)7 the ring of endomorphisms of E defined over Q, is isomorphic to
an order R of an imaginary quadratic field K C C. It is known by work of Shimura
[6] that there exists a normalized newform f of weight two on I'y (N) for some N,
such that £ admits a non-zero homomorphism ¢ : £ — J; defined over Q, where
Jy is the Q-simple factor of the Jacobian variety Ji(N) corresponding to f.

In the previous paper [1], we gave necessary and sufficient conditions for E to be
modular over F', i.e., such a non-zero homomorphism ¢ can be defined over F. It
holds that E' is modular over F if and only if the group FEio.s(C) of torsion points of
E rational over C, i.e. the group of all torsion points of E, is contained in F (K, F'),
where the subscript ab denotes the maximal abelian extension. Therefore, if E is
modular over F, it holds that Fiops(KapF') = Eiors(C).

In this paper we determine Eiors(KapF') in the case where E is not modular
over F'. We also determine Fios(F) and Elos(KF) in some cases.

2. Main results
We put K’ := K, F. Let

¢ : Gal(K/K') — Aut(FEyos(C)) (resp. ¥ : R* — Aut(Eiors(C)))

This research was financially supported by the Kansai University Grant-in-Aid for progress
of research in graduate course, 2010.
2010 Mathematics Subject Classification: primary: 11G15; secondary: 11G18



90 Naoki Murabayashi

be the homomorphism corresponding to the canonical action of Gal(K/K') (resp.
R*) on Eiors(C). Then there exists a homomorphism x : Gal(K/K') — R* such
that ® = ¥ o y. We explain the definition of x. Fix a complex uniformization
¢ : C/a = E(C), where a is a proper R ideal in K. Applying Theorem 5.4
in [5] (p. 117) with 0 € Gal(K/K’) and s = 1, we obtain the unique isomor-
phism ¢ : C/a — FE(C) such that £(u)? = &' (u) for every u € K/a. Putting
x(0) == ¢ o0&t € Aut(E) = R*, we have &(u)? = €71 (€(u)), ie., P7 = x(o)(P)
for every P = &(u) € Eiors(C). Let N be the size of the image of x. By The-
orem 5.1 in [1], F is modular over F if and only if N = 1. In particular, the
condition that F is not modular over F' implies N > 2, especially N = 2 in the
case of R* = {£1}.

Theorem 1. Assume that E is not modular over F'. Then we have

E[2] if N=2,
E[V=3) (C EB) if N=3,
E[L+V-1] (CE[2) if N=4,
{0} if N=6,

Etors (KabF) =

where Ela] (a € R) denotes the kernel of the endomorphism corresponding to a
and O denotes the identity element of E.

Proof. If N =2, then we have Imy = {£1} = (—1). We have

EtorS(KabF) = (EtorS(C))\II(il) (:: {P € EtorS(C)NI(*l)(P) = P})
= E[2.
) +2\/j3. So

Eiors(Kap F) = (Fiors (C))Y@) = E[1 — w] = E[/=3]. This is applied to the other
cases. |

If N = 3, then we have Imx = {1, w, w?} = (w), where w =

By contraposition of Theorem 1, we have the following:

Theorem 2. If there exists a point of Eiows(F') whose order is greater than or
equal to 4, E is modular over F. In the case of R* = {£1}, we can replace 4
with 3.

3. Further results

In this section we determine Eiops(F) and Eios(KF) in some cases. We put
F' .= KF.
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Proposition 3. Assume that if the conductor of R is odd, 2 does not remain
prime in K. Then Eyows(F') contains a subgroup of order 2.

Proof. Except the case where the conductor of R is odd and 2 remains prime in
K, we can take a prime ideal q of R (not necessarily proper) lying above 2 such
that R/q = Z/2Z. Lemma 1 in [4] implies that F[2] & R/2R as R-module. Let M
be the subgroup of F[2] corresponding to q/2R by this identification. The action
of Gal(F’/F') on E[2] is R-linear, so M is stable under this. Since E[2]/M =
R/q 2 727, M = 7,/27. Therefore the unique generator of M is fixed by the
action of Gal(F’/F"), so F'-rational, hence Eiops(F') 2 M = 7/27. [ |

Proposition 4. Assume that

(i) E is not modular over F';
(ii) K #Q(v-1);
(iii) 2 is ramified in K, i.e. (2) =q? (q is a prime ideal of K);
) there exists a prime ideal Q of F' lying above q such that Q is unramified
over (.

Then Eios(F') & E[2].

(iv

Proof. By assumption (ii) and (iii), R* = {£1}. Hence, Theorem 1 implies that
Eiors(F') C E[2]. By the theory of complex multiplication there exists a unique
homomorphism

aE/F’ : F‘&X —>K><
(where F§* denotes the idele group of F’) such that
e Ker(ag/p/) is open in Fj*;
e For any z € F*, ag/p (2)Np/ x(x)"'a = a, where Np// is the norm map
from F}* to K;;
e For any x € F;*, ag/p(z)ag/p(x)? = N(il(x)), where 2# is the complex

conjugate of a complex number z and il(x) is the fractional ideal of F’ asso-
ciated to an idele element z;

e For any z € F;* and w € K/a (C C/a),

£w)m 7 = g(ag)p (2) Nprxc (2) " o),

where [z, F'] is the element of Gal(F.,/F’) corresponding to = by the reci-
procity law of class field theory (see Theorem 19.8, p. 134 in [7]).

Claim 1. The condition that Eios(F') = E[2] is equivalent to the condition (x):
aE/F/(:U)NF//K(x)q_l €l+q? for any x € Fy*

(where Np: i (x)q denotes the q-component of Np: i (x)).
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Proof of Claim 1. It is clear that Fyo.s(F’) = E[2] is equivalent to the condition:

1
E(ap/p (2)Np k() w) = E(w) for any x € F,* and w € §a/a.

1
Putting w = 3@ (a € a), &(ag/r(2)Np Kk (z) " w) = &(w) is equivalent to the

condition (xx):

aE/F’(-r)NF’/K(x)t_l 1

2 =3

(where O, denotes the ring of integers in K, the completion of K with re-

spect to the valuation associated to t). If v # g, 2 € OF. We also have that

O‘E/F’(I)NF'/K(I);l S Otx because of ozE/F/(z)NF//K(:E)*la =a Soift # q,
the congruence relations in the condition (xx) hold. Therefore we have

a mod a®gr O, for any prime ideal v of K

O[E/F/("E)NF//K((E);]' -1

FEiors(F') = E[2] < 5

a=0 mod a®gr O
for any x € F,* and a € a

ag)p () Np g ()5t =
2

Since (2) = ¢2, the last condition is equivalent to the condition (). This completes
the proof. |

€ 0, for any x € F}*.

Claim 2. The condition (x) does not hold.

Proof of Claim 2. Let 7 be a prime element of O, i.e. (m) = q in O4. By

assumption, F /K, is an unramified extension, so NF,’Q/Kq(OS) = Of, where

Ogq denotes the ring of integers in Fy. Therefore there exists zo € O such that
Nry iy (o) = (1+ m)~!. We consider the restriction of ag/p to OF and let QF

(f = 0) be the conductor of it. Putting m := #(0q/QN)* if f > 1 and m := 1
if f =0, 20 =1 mod QF, hence ag/p (tare)™ = 1, where toxo denotes the
element of F}* whose Q-component is zo and all the other components are one.
Therefore we have

ap/r(taro) € KX N {roots of unity} = {£1}.
If ag/p (tazo) = 1,
aE/F/(LQa:O)NF//K(Lon)q_l =1+n¢l+g°
and if ag/p (toxe) = —1,
ap/r (tam)Npk(taze)g ' = —1—m=14+7—2(1+7) ¢ 1+q°
because of 2(1 + ) € g°. Hence the condition (*) does not hold. [ |
By Claim 1 and 2, Eyo,s(F') & E[2]. This completes the proof of Proposition 4. M
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Theorem 5. Let K be an imaginary quadratic field with expression Q(v/—p1 - pr),
where p1,..., pr (r = 1) are distinct prime numbers such that p; = 1 mod 4
(1<i<r). Let q be the prime ideal of K lying above 2 (then (2) = q* in K). Let
E be an elliptic curve defined over Q(jg) such that Endg(E) is isomorphic to the
mazimal order of K. Let H be the Hilbert class field of K (hence H = K(jg)).
Then we have

Ei0rs(Q(E)) = Fiors(H) = Elq) 2 Z/2Z.

Proof. By Theorem 7.1 in [2], F is not modular over Q(jg). So Theorem 1 implies
that Eios(H) C E[2]. Since (2) = g%, M in the proof of Proposition 3 coincides
with E[q]. Combining with Proposition 4, Eios(H) = E[q] & Z/27Z. Since E
is defined over Q(jg), Gal(H/Q(jg)) acts on Eios(H) = Z/2Z. Therefore the
unique generator of Eio(H) is Q(jg)-rational. Hence we get the assertion. [ |
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