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A COMBINATORIAL-GEOMETRIC VIEWPOINT OF KNOPP’S
FORMULA FOR DEDEKIND SUMS

Kazuhito Kozuka

Abstract: In this paper, by means of a combinatorial-geometric method, we give a new proof of
Knopp’s formula for Dedekind sums and its generalizations to multiple Dedekind sums attached
to Dirichlet characters. The combinatorial-geometric method for studying Dedekind sums were
introduced by Beck, who proved the well-known reciprocity formula for Dedekind sums and some
of its generalizations by the method. The motive of this paper is to find a similar approch to
Knopp’s formula .
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1. Introduction

For h ∈ Z and k ∈ N, the classical Dedekind sum s(h, k) is defined by

s(h, k) =
∑

α mod k

((α
k

))((hα
k

))
,

where

((x)) =

{
x− [x]− 1

2 if x /∈ Z

0 if x ∈ Z.

Among many formulas for this sum, the following ones are well known:

(I) Reciprocity formula (Dedekind [5])

12hk{s(h, k) + s(k, h)} = h2 − 3hk + k2 + 1 (1)

for h, k ∈ N with (h, k) = 1.
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(II) Knopp’s formula (Knopp [6])

∑
ad=N
d>0

d−1∑
b=0

s(ah+ bk, dk) = σ(N)s(h, k) (2)

for N ∈ N, where σ(N) =
∑
δ|N δ. Note that in the case that N is a prime

number, the formula (2) was already known to Dedekind ([5]).

Generalizations of Dedekind sums and formulas (1) and (2) have been studied
extensively with many methods. Recently, based on the works of Carlitz in [4],
Beck gave geometric proofs of (1) and some of its generalizations including mul-
tivariable cases. ([1], [2], [8]). This method is deeply connected with the theory
of lattice points in polytopes (cf. [3]). The basic idea for the proof of (1) is to
decompose the lattice points of the first quadrant in the plane R2 by a certain ray.
Let us sketch the method:

Suppose that h, k ∈ N and put

K1 = {(x, y) ∈ R2|y > h

k
x > 0} and K2 = {(x, y) ∈ R2|0 6 y <

h

k
x}.

Then, we have the following identity of formal power series:∑
(l,m)∈K1∩Z2

ulvm +
∑

(l,m)∈K2∩Z2

ulvm =
∑
l,m>0

ulvm.

Both sides of this equation can be expressed by rational functions of u and v, from
which the formula (1) is deduced by some calculations.

The motive of this paper is to find a similar approch to Knopp’s formula (2)
and its generalizations. In [7], we have already obtained a generalization of (2)
by defining higher-order multiple Dedekind sums attached to Dirichlet characters
((7) of Theorem 4.1 in [7]). In this paper, we give a new proof of it by means of
the combinatorial-geometric method. Let us give a description of each section.

In Section 2, we recall some definitions and state the main result.
In Section 3, for the purpose of providing a good overview, we prove the main

result for the special case of non-multiple Dedekind sums without Dirichlet char-
acters.

In Section 4, extending the idea in the previous section, we give a complete
proof in the general case.

2. Definitions and the main result

Let Bp and Bp(X) be the pth Bernoulli number and polynomial, respectively,
defined by

t

et − 1
=

∞∑
p=0

Bp
tp

p!
and

tetX

et − 1
=

∞∑
p=0

Bp(X)
tp

p!
.
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For any x ∈ Q, we put {x} = x−[x] and define B̃p(x) = Bp({x}), which is periodic
of period 1.

For any primitive Dirichlet character χ, we denote by fχ the conductor of χ.
For any x ∈ Q with denominator relatively prime to fχ, we can define the value
χ(x) by multiplicativity. As in [9], we define the twisted Bernoulli function B̃p,χ(x)
by

fχ−1∑
j=0

χ({x}+ j)te({x}+j)t

efχt − 1
=

∞∑
p=0

B̃p,χ(x)
tp

p!
,

or equivalently

B̃p,χ(x) = fp−1
χ

∑
j mod fχ

χ(x+ j)B̃p

(
x+ j

fχ

)

(cf. pp.301 of [9]). Note that B̃p,χ(x) is also periodic of period 1.
In what follows, for integers l1, · · · , ln ∈ Z, we denote by gcd{l1, · · · , ln} the

greatest common divisor of l1, · · · , ln. We put N̄ = N ∪ {0}.
Let P = (p1, · · · , pn, q) ∈ N̄n+1, H = (h1, · · · , hn) ∈ Zn and k ∈ N. Let

Ψ = (χ1, · · · , χn, ψ) be an (n + 1)-tuple of primitive Dirichlet characters, put
fΨ = (

∏n
i=1 fχi)fψ and assume that gcd{k, fΨ} = 1. As in [7], we define the

multiple Dedekind sums S(P,H, k,Ψ) by

S(P,H, k,Ψ) =
∑

α1,··· ,αn mod k

(
n∏
i=1

B̃pi,χi

(αi
k

))
B̃q,ψ

(
h1α1 + · · ·+ hnαn

k

)
.

For any d ∈ N, we put Id = {(b1, · · · , bn) ∈ N̄n|0 6 b1, · · · , bn 6 d − 1}. For
any m,N ∈ N, we put σm,Ψ(N) =

∑
δ|N δ

m (χ1 · · ·χnψ) (δ). In addition, we put
s(P ) = p1 + · · ·+ pn + q − n. Then the main result of this paper is the following.

Theorem. Let N ∈ N. Then we have

Ns(P )−q(χ1 · · ·χn)(N)
∑
ad=N
d>0

∑
B∈Id

dq−nψ(d)S(P, aH + kB, dk,Ψ)

= σs(P ),Ψ(N)S(P,H, k,Ψ),

where we put aH + kB = (ah1 + kb1, · · · , ahn + kbn) for B = (b1, · · · , bn).

3. Proof of the Theorem in a special case

In this section, we deal with the following sum:

sp,q(h, k) =
∑

α mod k

B̃p

(α
k

)
B̃q

(
hα

k

)
.
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for p, q ∈ N̄, h ∈ Z, k ∈ N. For this sum, our main Theorem reduces to the
following formula:

Np−1
∑
ad=N
d>0

dq−1
d−1∑
b=0

sp,q(ah+ kb, dk) =
∑
δ|N

δp+q−1sp,q(h, k). (3)

The purpose of this section is to prove (3).
We put

F (h, k : s, t) =
k−1∑
α=0

e
α
k s+{hαk }t

(es − 1)(et − 1)
,

which is expanded at (s, t) = (0, 0) as

F (h, k : s, t) =
∑
p,q∈N̄

sp,q(h, k)
sp−1tq−1

p!q!
. (4)

By the periodicity of B̃q(x), we have

sp,q(h+mk, k) = sp,q(h, k)

for all m ∈ Z. By virtue of this, we assume h > 0 in what follows without loss of
generality.

Modifying the set K1 in Introduction, we put

K(h, k) =

{
(l,m) ∈ N̄2|m >

h

k
l

}
and define

f(h, k : u, v) =
∑

(l,m)∈K(h,k)

ulvm.

This formal power series can be expressed by a rational function as in the
following.

Lemma 3.1. We have

f(h, k : u, v) =

k−1∑
α=0

uαv[
hα
k ]+1

(1− ukvh)(1− v)
.

Proof. This formula is essentially the same as that for σK1(u, v) in Section 2 of
[2], and shown by a straightforward calculation as follows:

f(h, k : u, v) =
∞∑
l=0

∞∑
m=[hlk ]+1

ulvm =
k−1∑
α=0

∞∑
r=0

uα+kr
∞∑

m1=0

v[
h
k (α+kr)]+1+m1

=
k−1∑
α=0

uαv[
h
kα]+1

∞∑
r=0

(ukvh)r
∞∑

m1=0

vm1

=

k−1∑
α=0

uαv[
h
kα]+1

(1− ukvh)(1− v)
. �
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Now put

fr(h, k : u, v) =

k−1∑
α=0

uαv[
hα
k ]+1

(1− ukvh)(1− v)
.

Since we have [hα/k] = (hα/k)− {hα/k}, this can also be expressed as

fr(h, k : u, v) =

k−1∑
α=0

(ukvh)
α
k v−{

α
k }+1

(1− ukvh)(1− v)
.

Put u = e(s+ht)/k and v = e−t. Then ukvh = es and v−1 = et, so that we have

fr(h, k : e(s+ht)/k, e−t) = −F (h, k : s, t). (5)

In order to proceed further, we introduce the following additive subgroup of
Z2 for a, d ∈ N and b ∈ Z:

A(a, d : b) = (a,−b)Z+ (0, d)Z.

The following lemma plays an essential role in proving (3).

Lemma 3.2. Let N = ad with a, d ∈ N and b ∈ Z and let (l,m) ∈ Z2. Put
d1 = gcd{l, N}, d2 = gcd{l,m,N}, l′ = l/d1 and N ′ = N/d1. Then, we have
(l,m) ∈ A(a, d : b), if and only if the following three conditions hold:

(i) a|d1
(ii) d1

a

∣∣d2
(iii) bl′ ≡ −am

d1
(mod N ′).

Proof. Suppose that (l,m) ∈ A(a, d : b) and write

(l,m) = (a,−b)µ+ (0, d)ν = (aµ,−bµ+ dν) (6)

with µ, ν ∈ Z. Then a divides l as well as N , so that a divides d1. We have further

m

d1/a
=
a(−bµ+ dν)

d1
= −bl′ +N ′ν, (7)

which implies that d1/a divides m as well as l and N . Hence, d1/a divides d2. In
addition, (7) means the congruence (iii). Conversely, under the conditions (i) , (ii)
and (iii), we can easily deduce equation (6). This completes the proof. �

Corollary 3.3. We have

∑
ad=N
d>0

d−1∑
b=0

∑
(l,m)∈A(a,d:b)∩K(h,k)

ulvm =
∑
δ|N

δ
∑

(l,m)∈(δZ)2∩K(h,k)

ulvm. (8)
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Proof. We use the same notations as in Lemma 3.2. Note that gcd{l′, N ′} = 1.
Hence, if a ∈ N satisfies the conditions (i) and (ii) in Lemma 3.2, the condition
(iii) shows that

♯{b ∈ Z|0 6 b 6 d− 1, (l,m) ∈ A(a, d : b)} =
d

N ′ =
dd1
N

=
d1
a
.

This shows that the coefficient of the term ulvm appearing in the left-hand side
of (8) is

∑
a|d1,(d1/a)|d2(d1/a). By putting δ = d1/a, this coefficient is equal to∑

δ|d2 δ, which is just the coefficient of the term ulvm appearing in the right-hand
side of (8). This completes the proof. �

Lemma 3.4. Let a, d ∈ N and b ∈ N̄. Let (l,m) ∈ A(a, d : b) and write (l,m) =
(a,−b)µ + (0, d)ν with µ, ν ∈ Z. Then, (l,m) ∈ K(h, k) holds if and only if
(µ, ν) ∈ K(ah+ kb, dk).

Proof. As in the statement, let (l,m) = (aµ,−bµ + dν). Then, (l,m) ∈ K(h, k)
holds if and only if −bµ + dν > haµ/k > 0, which is equivalent to ν > (ah +
kb)µ/(dk) > 0, namely (µ, ν) ∈ K(ah+ kb, dk). �

Now (3) is deduced as follows: Lemma 3.4 shows that the left-hand side of (8)
equals

∑
ad=N
d>0

d−1∑
b=0

∑
(µ,ν)∈K(ah+kb,dk)

uaµv−bµ+dν =
∑
ad=N
d>0

d−1∑
b=0

f(ah+ kb, dk : uab−b, vd).

On the other hand, note that for each δ|N , we have

(δZ)2 ∩K(h, k) = {(δl, δm)|(l,m) ∈ K(h, k)},

so that the right-hand side of (8) equals∑
δ|N

δ · f(h, k : uδ, vδ).

Then, by Lemma 3.1, equation (8) is tranformed into

∑
ad=N
d>0

d−1∑
b=0

fr(ah+ kb, dk : uab−b, vd) =
∑
δ|N

δ · fr(h, k : uδ, vδ). (9)

Put u = e(s+ht)/k and v = e−t as before. Then, we have uav−b = e(a(s+ht)/k)+bt =
e(ads+adht+bdkt)/dk = e(Ns+(ah+kb)dt)/(dk) and vd = e−dt. Note that equation (5)
yields

fr(ah+ kb, dk : e(Ns+(ah+kb)dt)/(dk), e−dt) = −F (ah+ kb, dk : Ns, dt)
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and
fr(h, k : e−δs, e−δt) = −F (h, k : δs, δt).

Hence, equation (9) is transformed into

∑
ad=N
d>0

d−1∑
b=0

F (ah+ kb, dk : Ns, dt) =
∑
δ|N

δ · F (h, k : δs, δt).

Expanding both sides at (s, t) = (0, 0), we see from (4) that

∑
p,q∈N̄

∑
ad=N
d>0

d−1∑
b=0

sp,q(ah+ kb, dk)
Np−1dq−1sp−1tq−1

p!q!

=
∑
p,q∈N̄

∑
δ|N

δ · sp,q(h, k)
δp+q−2sp−1tq−1

p!q!
.

Comparing the coefficients, we obtain (3).

4. Proof of Theorem in the general case

In this section, we extend the method of the previous section to the general case
and prove the Theorem.

Let H = (h1, · · · , hn) ∈ Zn and k ∈ N as before. For α = (α1, · · · , αn) ∈ Zn,
we put H · α = h1α1 + · · · + hnαn(the inner product of H and α). Let Ak =
{(α1, · · · , αn) ∈ N̄n | 0 6 αi 6 k − 1 for 1 6 i 6 n} and set

F (H, k,Ψ : s1, · · · , sn, t) =
∑

α=(α1,··· ,αn)∈Ak

 n∏
i=1

fχi−1∑
ji=0

χi
(
αi
k + ji

)
e(

αi
k +ji)si

efχisi − 1



×
fψ−1∑
j=0

ψ

({
H · α
k

}
+ j

)
e({

H·α
k }+j)t

efψt − 1
,

which is expanded at (s1, · · · , sn, t) = (0, · · · , 0, 0) as

F (H, k,Ψ : s1, · · · , sn, t) =
∑

P=(p1,··· ,pn,q)∈N̄n+1

S(P,H, k,Ψ)
sp1−1
1 · · · spn−1

n tq−1

p1! · · · pn!q!
.

(10)
By the periodicity of B̃q,ψ(x), we assume that hi > 0 for 1 6 i 6 n without loss
of generality.

We put

K(H, k) =

{
(l1, · · · , ln,m) ∈ N̄n+1|m >

h1l1 + · · ·+ hnln
k

}
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and define

f(H, k,Ψ : u1, · · · , un, v)

=
∑

(l1,··· ,ln,m)∈K(H,k)

χ1(l1) · · ·χn(ln)ψ(h1l1 + · · ·+ hnln − km)ul11 · · ·ulnn vm.

Lemma 4.1. We have

f(H, k,Ψ : u1, · · · , un, v)

= (χ1 · · ·χnψ)(k)
∑

α=(α1,··· ,αn)∈Ak

 n∏
i=1

fχi−1∑
ji=0

χi
(
αi
k + ji

)
(uki v

hi)
αi
k +ji

1− (uki v
hi)fχi



×
fψ−1∑
j=0

ψ

({
H · α
k

}
+ j

)
v−({

H·α
k }+j)+fψ

1− vfψ
. (11)

Proof. For each (l1, · · · , ln,m) ∈ K(H, k), we have the following unique expres-
sions of l1, · · · , ln and m:

li = αi + kji + kfχiri with 0 6 αi 6 k − 1, 0 6 ji 6 fχi − 1 and ri ∈ N̄

for 1 6 i 6 n and

m =

[
h1l1 + · · ·+ hnln

k

]
+ (fψ − j) + fψm1 with 0 6 j 6 fψ − 1 and m1 ∈ N̄.

Then, we have li = k
(αi
k

+ ji + fχiri

)
for 1 6 i 6 n and

m =
H · α
k

+
n∑
i=1

hi(ji + fχiri)−
{
H · α
k

}
− j + fψ(1 +m1),

where we put α = (α1, · · · , αn). Hence,

h1l1 + · · ·+ hnln − km = k

({
H · α
k

}
+ j

)
− kfψ(1 +m1)

and

ul11 · · ·ulnn vm =

(
n∏
i=1

(uki v
hi)

αi
k +ji+fχiri

)
v−({

H·α
k }+j)+fψ(1+m1).

Consequently we derive the required formula by a straightforward calculation. �

Let fr(H, k,Ψ : u1, · · · , un, v) denote the rational function expressed by the
right-hand side of (11). Put ui = e(si+hit)/k for 1 6 i 6 n and v = e−t. Then,
uki v

hi = esi and v−1 = et, so that we have

fr(H, k,Ψ : e(s1+h1t)/k, · · · , e(sn+hnt)/k, e−t)
= (−1)n(χ1 · · ·χnψ)(k)F (H, k,Ψ : s1, · · · , sn, t). (12)
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For a, d ∈ N and B = (b1, . . . , bn) ∈ Zn, let A(a, d : B) denote the additive
subgroup of Zn+1 generated by (a, 0, · · · , 0,−b1), (0, a, · · · , 0,−b2), · · · ,
(0, 0, · · · , a,−bn) and (0, · · · , 0, d). Then Lemma 3.2 can be generalized in the
following way:

Lemma 4.2. Let N = ad with a, d ∈ N, B = (b1, . . . , bn) ∈ Zn and let
(l1, · · · , ln,m) ∈ Zn+1. Put d1 = gcd{l1, · · · , ln, N}, d2 = gcd{l1, · · · , ln,m,N},
l′i = li/d1 for 1 6 i 6 n and N ′ = N/d1. Then, we have (l1, · · · , ln,m) ∈ A(a, d :
B), if and only if the following three conditions hold:

(i) a|d1
(ii) d1

a

∣∣d2
(iii) l′1b1 + · · ·+ l′nbn ≡ −am

d1
(mod N ′).

Proof. Suppose that (l1, · · · , ln,m) ∈ A(a, d : B) and write

(l1, · · · , ln,m)

= (a, 0, · · · , 0,−b1)µ1 + · · ·+ (0, 0, · · · , a,−bn)µn + (0, · · · , 0, d)ν. (13)

with µ1, · · · , µn, ν ∈ Z. Then the conditions (i) , (ii) and (iii) follow immediately
in a similar way as in the the proof of Lemma 3.2. Conversely, under the conditions
(i) , (ii) and (iii), we can easily deduce equation (13). This completes the proof. �

Recall that Id = {(b1, · · · , bn) ∈ N̄n|0 6 bi 6 d− 1 for 1 6 i 6 n} for d ∈ N.

Corollary 4.3. Let g(l1, · · · , ln,m) be any function on Zn+1 with values in any
ring extension of Q. Then, we have∑

ad=N
d>0

an−1
∑
B∈Id

∑
(l1,··· ,ln,m)∈A(a,d:B)∩K(H,k)

g(l1, · · · , ln,m)ul11 · · ·ulnn vm

= Nn−1
∑
δ|N

δ
∑

(l1,··· ,ln,m)∈(δZ)n+1∩K(H,k)

g(l1, · · · , ln,m)ul11 · · ·ulnn vm. (14)

Proof. Let (l1, · · · , ln,m) ∈ K(H, k) and suppose that a satisfies the conditions (i)
and (ii). Then the condition (iii) shows that the set of n-tuples B = (b1, . . . , bn) ∈
Zn satisfying (l1, · · · , ln,m) ∈ A(a, d : B) consists of the solutions (x1, · · · , xn) of
the congruence

l′1x1 + · · ·+ l′nxn ≡ −am
d1

(mod N ′).

Note that the map from Zn to Z defined by mapping (x1, · · · , xn) onto l′1x1 +
· · · + l′nxn induces a map from (Z/N ′Z)n to Z/N ′Z, which is surjective because
gcd{l′1, · · · , l′n, N ′} = 1. Hence, for each y mod N ′ ∈ Z/N ′Z, the number of n-
tuples (x1, · · · , xn) mod N ′ ∈ (Z/N ′Z)n satisfying l′1x1+ · · ·+ l′nxn ≡ y (mod N ′)

is ♯(Z/N ′Z)n/♯(Z/N ′Z) = N ′n−1. Taking y = −am/d1, we see further that

♯{B ∈ Id|(l1, · · · , ln,m) ∈ A(a, d : B)} = N ′n−1
(
d

N ′

)n
=
dn

N ′ =
dn−1d1
a

.
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Hence, the coefficient of the term g(l1, · · · , ln,m)ul11 · · ·ulnn vm appearing in the
left-hand side of (14) is∑

a|d1
(d1/a)|d2

an−1 d
n−1d1
a

= Nn−1
∑
a|d1

(d1/a)|d2

d1
a
.

By putting δ = d1/a, this coefficient is equal to Nn−1
∑
δ|d2 δ, which is just the

coefficientof the term g(l1, · · · , ln,m)ul11 · · ·ulnn vm appearing in the right-hand side
of (14). This completes the proof. �

Lemma 4.4. Let a, d ∈ N and B = (b1, · · · , bn) ∈ N̄n. Let (l1, · · · , ln,m) ∈
A(a, d : B) be written as (13), namely

(l1, · · · , ln,m) = (aµ1, · · · , aµn,−b1µ1 − · · · − bnµn + dν)

with µ1, · · · , µn, ν ∈ Z. Then, (l1, · · · , ln,m) ∈ K(H, k) holds if and only if
(µ1, · · · , µn, ν) ∈ K(aH + kB, dk).

Proof. By (13), (l1, · · · , ln,m) ∈ K(H, k) holds if and only if

−(b1µ1 + · · ·+ bnµn) + dν >
a(h1µ1 + · · ·+ hnµn)

k
with µ1, · · · , µn ∈ N̄ ,

which is equivalent to

ν >

n∑
i=1

(ahi + kbi)µ/(dk) with µ1, · · · , µn ∈ N̄ ,

namely (µ1, · · · , µn, ν) ∈ K(aH + kB, dk). �

Now we are going to prove the Theorem. Put

g(l1, · · · , ln,m) = χ1(l1) · · ·χn(ln)ψ(h1l1 + · · ·hnln − km).

If (13) holds, we have

h1l1 + · · ·hnln − km = a(h1µ1 + · · ·+ hnνn) + k(b1µ1 + · · ·+ bnµn − dν)

=
n∑
i=1

(ahi + kbi)µi − dkν

and
ul11 · · ·ulnn vm = (ua1v

−b1)µ1 · · · (uanv−bn)µnvdν .
Hence, by Lemmas 4.1 and 4.4, equation (14) becomes∑

ad=N
d>0

an−1(χ1 · · ·χn)(a)
∑
B∈Id

fr(aH + kB, dk,Ψ : ua1v
−b1 , · · · , uanv−bn , vd)

= Nn−1
∑
δ|N

δ(χ1 · · ·χnψ)(δ)fr(H, k,Ψ : uδ1, · · · , uδn, vδ). (15)
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Put ui = e(si+hit)/k for 1 6 i 6 n and v = e−t as before. Then, we have

uai v
−bi = ea(si+hit)/k+bit = e(Nsi+(ahi+kbi)dt)/dk

for 1 6 i 6 n and
vd = e−dt.

Then, by (10) and (12), equation (15) is transformed into∑
P=(p1,··· ,pn,q)∈N̄n+1

∑
ad=N
d>0

an−1(χ1 · · ·χn)(a)
∑
B∈Id

(χ1 · · ·χnψ)(dk)

× S(P, aH + kB, dk,Ψ)
Np1+···+pn−ndq−1sp1−1

1 · · · spn−1
n tq−1

p1! · · · pn!q!
= Nn−1

∑
P=(p1,··· ,pn,q)∈N̄n+1

∑
δ|N

δ(χ1 · · ·χnψ)(δ)(χ1 · · ·χnψ)(k)

× S(P,H, k,Ψ)
δp1+···+pn+q−(n+1)sp1−1

1 · · · spn−1
n tq−1

p1! · · · pn!q!
.

Comparing the coefficients, we complete the proof of Theorem.
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