PERFECT POWERS GENERATED BY THE TWISTED FERMAT CUBIC

Jonathan Reynolds

Abstract

On the twisted Fermat cubic, an elliptic divisibility sequence arises as the sequence of denominators of the multiples of a single rational point. It is shown that there are finitely many perfect powers in such a sequence whose first term is greater than 1 . Moreover, if the first term is divisible by 6 and the generating point is triple another rational point then there are no perfect powers in the sequence except possibly an l th power for some l dividing the order of 2 in the first term.

Keywords: Elliptic divisibility sequence; perfect powers; Fermat equation.

1. Introduction

A divisibility sequence is a sequence

$$
W_{1}, W_{2}, W_{3}, \ldots
$$

of integers satisfying $W_{n} \mid W_{m}$ whenever $n \mid m$. The arithmetic of these has been and continues to be of great interest. Ward [41] studied a large class of recursive divisibility sequences and gave equations for points and curves from which they can be generated (see also [32]). In particular, Lucas sequences can be generated from curves of genus 0 . Although Ward did not make such a distinction, sequences generated by curves of genus 1 have become exclusively known as elliptic divisibility sequences $[20,21,24,25]$ and have applications in Logic $[11,17,18]$ as well as Cryptography [38]. See [36, 37] for background on elliptic curves (genus-1 curves with a point). Let $d \in \mathbb{Z}$ be cube-free and consider the elliptic curve

$$
C: u^{3}+v^{3}=d
$$

It is sometimes said that C is a twist of the Fermat cubic. The set $C(\mathbb{Q})$ forms a group under the chord and tangent method: the (projective) point $[1,-1,0]$ is

[^0]the identity and inversion is given by reflection in the line $u=v$. Suppose that $C(\mathbb{Q})$ contains a non-torsion point P. Then we can write, in lowest terms,
\[

$$
\begin{equation*}
m P=\left(\frac{U_{m}}{W_{m}}, \frac{V_{m}}{W_{m}}\right) \tag{1}
\end{equation*}
$$

\]

The sequence (W_{m}) is a (strong) divisibility sequence (see Proposition 3.3 in [22]). Three particular questions about divisibility sequences have received much interest:

- How many terms fail to have a primitive divisor?
- How many terms are prime?
- How many terms are a perfect power?

A primitive divisor is a prime divisor which does not divide any previous term.

1.1. Finiteness

Bilu, Hanrot and Voutier proved that all terms in a Lucas sequence beyond the 30th have a primitive divisor [3]. Silverman showed that finitely many terms in an elliptic divisibility sequence fail to have to have a primitive divisor [34] (see also [39]). The Fibonacci and Mersenne sequences are believed to have infinitely many prime terms $[7,8]$. The latter has produced the largest primes known to date. In [9] Chudnovsky and Chudnovsky considered the likelihood that an elliptic divisibility sequence might be a source of large primes; however, (W_{m}) coming from the twisted Fermat cubic has been shown to contain only finitely many prime terms [21]. Gezer and Bizim have described the squares in some periodic divisibility sequences [23]. Using modular techniques inspired by the proof of Fermat's Last Theorem, it was finally shown in [6] that the only perfect powers in the Fibonnaci sequence are 1,8 and 144 . We will show:

Theorem 1.1. If $W_{1}>1$ then there are finitely many perfect powers in $\left(W_{m}\right)$.
The proof of Theorem 1.1 uses the divisibility properties of $\left(W_{m}\right)$ along with a modular method for cubic binary forms given in [2]. For elliptic curves in Weierstrass form similar results have been shown in [29]. In the general case, allowing for integral points, Conjecture 1.1 in [2] would give that there are finitely many perfect powers in (W_{m}).

1.2. Uniformness

What is particularly special about sequences $\left(W_{m}\right)$ coming from twisted Fermat cubics is that they have yielded uniform results as sharp as some of their genus-0 analogues mentioned above. It has been shown that all terms of $\left(W_{m}\right)$ beyond the first have a primitive divisor [19] and, in particular, we will make use of the fact that the second term always has a primitive divisor $p_{0}>3$ (see Section 6.2 in [19]). The number of prime terms in (W_{m}) is also bounded independently of d [22] and, in particular, if P is triple a rational point then all terms beyond the first fail to be prime (see Theorem 1.2 in [22]). Similar results can be achieved for perfect powers. Indeed:

Theorem 1.2. Suppose that W_{1} is even and at all primes greater than 3, P has non-singular reduction (on a minimal Weierstrass equation for C). If W_{m} is an lth power for some prime l then

$$
l \leqslant \max \left\{\operatorname{ord}_{2}\left(W_{1}\right),\left(1+\sqrt{p_{0}}\right)^{2}\right\},
$$

where $p_{0}>3$ is any primitive divisor of W_{2}. Moreover, for fixed $l>\operatorname{ord}_{2}\left(W_{1}\right)$ the number of lth powers in $\left(W_{m}\right)$ is bounded independently of d.

Although the conditions in Theorem 1.2 appear to depend heavily on the point, in the next theorem we exploit the fact that group $C(\mathbb{Q})$ modulo the points of nonsingular reduction has order at most 3 for a prime greater than 3 .

Theorem 1.3. Suppose that $6 \mid W_{1}$ and $P \in 3 C(\mathbb{Q})$ (or P has non-singular reduction at all primes greater than 3). If W_{m} is an lth power for some prime l then $l \mid \operatorname{ord}_{2}\left(W_{1}\right)$. In particular, if $\operatorname{ord}_{2}\left(W_{1}\right)=1$ then $\left(W_{m}\right)$ contains no perfect powers.

The conditions in Theorem 1.3 are sometimes satisfied for every rational nontorsion point on C. For example, we have

Corollary 1.4. The only solutions to the Diophantine equation

$$
U^{3}+V^{3}=15 W^{3 l}
$$

with $l>1$ and $\operatorname{gcd}(U, V, W)=1$ have $W=0$.

2. Properties of elliptic divisibility sequences

In this section the required properties of $\left(W_{m}\right)$ are collected.
Lemma 2.1. Let p be a prime. For any pair $n, m \in \mathbb{N}$, if $\operatorname{ord}_{p}\left(W_{n}\right)>0$ then

$$
\operatorname{ord}_{p}\left(W_{m n}\right)=\operatorname{ord}_{p}\left(W_{n}\right)+\operatorname{ord}_{p}(m) .
$$

Proof. See equation (10) in [22].
Proposition 2.2. For all $n, m \in \mathbb{N}$,

$$
\operatorname{gcd}\left(W_{m}, W_{n}\right)=W_{\operatorname{gcd}(m, n)}
$$

In particular, for all $n, m \in \mathbb{N}, W_{n} \mid W_{n m}$.
Proof. See Proposition 3.3 in [22].
Theorem 2.3 ([19]). If $m>1$ then W_{m} has a primitive divisor.

3. The modular approach to Diophantine equations

For a more thorough exploration see [13] and Chapter 15 in [10]. As is conventional, in what follows all newforms shall have weight 2 with a trivial character at some level N and shall be thought of as a q-expansion

$$
f=q+\sum_{n \geqslant 2} c_{n} q^{n},
$$

where the field $K_{f}=\mathbb{Q}\left(c_{2}, c_{3}, \cdots\right)$ is a totally real number field. The coefficients c_{n} are algebraic integers and f is called rational if they all belong to \mathbb{Z}. For a given level N, the number of newforms is finite. The modular symbols algorithm [12], implemented on MAGMA [4] by William Stein, shall be used to compute the newforms at a given level.

Theorem 3.1 (Modularity Theorem). Let E / \mathbb{Q} be an elliptic curve of conductor N. Then there exists a newform f of level N such that $a_{p}(E)=c_{p}$ for all primes $p \nmid N$, where c_{p} is pth coefficient of f and $a_{p}(E)=p+1-\# E\left(\mathbb{F}_{p}\right)$.

Proof. This is due to Taylor and Wiles [40, 42] in the semi-stable case. The proof was completed by Breuil, Conrad, Diamond and Taylor [5].

The modularity of elliptic curves over \mathbb{Q} can be seen as a converse to
Theorem 3.2 (Eichler-Shimura). Let f be a rational newform of level N. There exists an elliptic curve E / \mathbb{Q} of conductor N such that $a_{p}(E)=c_{p}$ for all primes $p \nmid N$, where c_{p} is the pth coefficient of f and $a_{p}(E)=p+1-\# E\left(\mathbb{F}_{p}\right)$.

Proof. See Chapter 8 of [16].
Given a rational newform of level N, the elliptic curves of conductor N associated to it via the Eichler-Shimura theorem shall be computed using MAGMA.

Proposition 3.3. Let E / \mathbb{Q} be an elliptic curve with conductor N and minimal discriminant $\Delta_{\min }$. Let l be an odd prime and define

$$
N_{0}(E, l):=N / \prod_{\substack{\text { primes } p \| N \\ l \mid \operatorname{ord}_{p}\left(\Delta_{\min }\right)}} p .
$$

Suppose that the Galois representation

$$
\rho_{l}^{E}: \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \rightarrow \operatorname{Aut}(E[l])
$$

is irreducible. Then there exists a newform f of level $N_{0}(E, l)$. Also there exists a prime \mathcal{L} lying above l in the ring of integers \mathcal{O}_{f} defined by the coefficients of f such that

$$
c_{p} \equiv \begin{cases}a_{p}(E) \quad \bmod \mathcal{L} & \text { if } p \nmid l N, \\ \pm(1+p) \quad \bmod \mathcal{L} & \text { if } p \| N \text { and } p \nmid l N_{0},\end{cases}
$$

where c_{p} is the pth coefficient of f. Furthermore, if $\mathcal{O}_{f}=\mathbb{Z}$ then

$$
c_{p} \equiv \begin{cases}a_{p}(E) \quad \bmod l & \text { if } p \nmid N, \\ \pm(1+p) \quad \bmod l & \text { if } p \| N \text { and } p \nmid N_{0} .\end{cases}
$$

Proof. This arose from combining modularity with level-lowering results by Ribet $[30,31]$. The strengthening in the case $\mathcal{O}_{f}=\mathbb{Z}$ is due to Kraus and Oesterlé [27]. A detailed exploration is given, for example, in Chapter 2 of [13].

Remark 3.4. Let E / \mathbb{Q} be an elliptic curve with conductor N. Note that the exponents of the primes in the factorization of N are uniformly bounded (see Section 10 in Chapter IV of [35]). In particular, only primes of bad reduction divide N and if E has multiplicative reduction at p then $p \| N$.

Corollary 3.5. Keeping the notation of Proposition 3.3, if p is a prime such that $p \nmid l N_{0}$ and $p \mid N$ then

$$
l<(1+\sqrt{p})^{2\left[K_{f}: \mathbb{Q}\right]} .
$$

Proof. See Theorem 37 in [13].
Applying Proposition 3.3 to carefully constructed Frey curves has led to the solution of many Diophantine problems. The most famous of these is Fermat's Last theorem [42] but there are now constructions for other equations and we shall make use of those described below.

3.1. A Frey curve for cubic binary forms

Let

$$
F(x, y)=t_{0} a^{3}+t_{1}^{2} y+t_{2} x y^{2}+t_{3} y^{3} \in \mathbb{Z}[x, y]
$$

be a separable cubic binary form. In [2] a Frey curve is given for the Diophantine equation

$$
\begin{equation*}
F(a, b)=d c^{l} \tag{2}
\end{equation*}
$$

where $\operatorname{gcd}(a, b)=1, d \in \mathbb{Z}$ is fixed and $l \geqslant 7$ is prime. Define a Frey curve $E_{a, b}$ by

$$
\begin{equation*}
E_{a, b}: y^{2}=x^{3}+a_{2} x^{2}+a_{4} x+a_{6} \tag{3}
\end{equation*}
$$

where

$$
\begin{aligned}
& a_{2}=t_{1} a-t_{2} b, \\
& a_{4}=t_{0} t_{2} a^{2}+\left(3 t_{0} t_{3}-t_{1} t_{2}\right) a b+t_{1} t_{3} b^{2}, \\
& a_{6}=t_{0}^{2} t_{3} a^{3}-t_{0}\left(t_{2}^{2}-2 t_{1} t_{3}\right) a^{2} b+t_{3}\left(t_{1}^{2}-2 t_{0} t_{2}\right) a b^{2}-t_{0} t_{3}^{2} b^{3} .
\end{aligned}
$$

Then $E_{a, b}$ has discriminant $16 \Delta_{F} F(a, b)^{2}$. Consider the Galois representation

$$
\rho_{l}^{a, b}: \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \rightarrow \operatorname{Aut}\left(E_{a, b}[l]\right) .
$$

Theorem 3.6 ([2]). Let S be the set of primes dividing $2 d \Delta_{F}$. There exists a constant $\alpha(d, F) \geqslant 0$ such that if $l>\alpha(d, F)$ and $c \neq \pm 1$ then:

- the representation $\rho_{l}^{a, b}$ is irreducible;
- at any prime $p \notin S$ dividing $F(a, b)$ the equation (3) is minimal, the elliptic curve $E_{a, b}$ has multiplicative reduction and $l \mid \operatorname{ord}_{p}\left(\Delta_{\min }\left(E_{a, b}\right)\right)$.

3.2. Recipes for Diophantine equations with signature (l, l, l)

The following recipe due to Kraus [28] is taken from [10]. Consider the equation

$$
A x^{l}+B y^{l}+C z^{l}=0,
$$

with non-zero pairwise coprime terms and $l \geqslant 5$ prime. Setting $R=A B C$ assume that any prime q satisfies $\operatorname{ord}_{q}(R)<l$. Without lost of generality also assume that $B y^{l} \equiv 0 \bmod 2$ and $A x^{l} \equiv-1 \bmod 4$. Construct the Frey curve

$$
E_{x, y}: Y^{2}=X\left(X-A x^{l}\right)\left(X+B y^{l}\right) .
$$

The conductor $N_{x, y}$ of $E_{x, y}$ is given by

$$
N_{x, y}=2^{\alpha} \operatorname{rad}_{2}(R x y z),
$$

where

$$
\alpha= \begin{cases}1, & \text { if } \operatorname{ord}_{2}(R) \geqslant 5 \text { or } \operatorname{ord}_{2}(R)=0 \\ 1, & \text { if } 1 \leqslant \operatorname{ord}_{2}(R) \leqslant 4 \text { and } y \text { is even } \\ 0, & \text { if } \operatorname{ord}_{2}(R)=4 \text { and } y \text { is odd } \\ 3, & \text { if } 2 \leqslant \operatorname{ord}_{2}(R) \leqslant 3 \text { and } y \text { is odd } \\ 5, & \text { if } \operatorname{ord}_{2}(R)=1 \text { and } y \text { is odd }\end{cases}
$$

Theorem 3.7 (Kraus [28]). The Galois representation

$$
\rho_{l}^{x, y}: \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \rightarrow \operatorname{Aut}\left(E_{x, y}[l]\right)
$$

is irreducible and $N_{0}\left(E_{x, y}, l\right)$ in Proposition 3.3 is given by

$$
N_{0}=2^{\beta} \operatorname{rad}_{2}(R),
$$

where

$$
\beta= \begin{cases}1, & \text { if } \operatorname{ord}_{2}(R) \geqslant 5 \text { or } \operatorname{ord}_{2}(R)=0 \\ 0, & \text { if } \operatorname{ord}_{2}(R)=4, \\ 1, & \text { if } 1 \leqslant \operatorname{ord}_{2}(R) \leqslant 3 \text { and } y \text { is even, } \\ 3, & \text { if } 2 \leqslant \operatorname{ord}_{2}(R) \leqslant 3 \text { and } y \text { is odd, } \\ 5, & \text { if } \operatorname{ord}_{2}(R)=1 \text { and } y \text { is odd. }\end{cases}
$$

4. Proof of Theorem 1.1

Proof of Theorem 1.1. Assume that $W_{1}>1$ and W_{m} is an l th power for some prime l. Firstly we will use the Frey curve for cubic binary forms constructed in Section 3.1 and prove the existence of a prime divisor p to which Corollary 3.5 can be applied, giving a bound for l. Let S be the set of primes dividing 27d. By assumption, W_{1} is divisible by a prime q. Lemma 2.1 gives that

$$
l \leqslant \operatorname{ord}_{q}\left(W_{m}\right)=\operatorname{ord}_{q}\left(W_{1}\right)+\operatorname{ord}_{q}(m) .
$$

Using Theorem 2.3 (or that there are only finitely many solutions to a Thue-Mahler equation), let l be large enough so that W_{n} is divisible by a prime $p \notin S$, where

$$
n=q^{l-\operatorname{ord}_{q}\left(W_{1}\right)} .
$$

Note that we can choose this lower bound for l and p independently of m. Then, using Proposition 2.2, $p \mid W_{m}$. Now construct a Frey curve $E_{U, V}$ for the Diophantine equation

$$
U_{m}^{3}+V_{m}^{3}=d W^{l}
$$

as in Section 3.1 (in our case $F(x, y)=x^{3}+y^{3}$) and consider the Galois representation

$$
\rho_{l}: \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \rightarrow \operatorname{Aut}\left(E_{U, V}[l]\right) .
$$

Using Theorem 3.6, choose l larger than some constant so that p divides the conductor of $E_{U, V}$ exactly once and the primes dividing N_{0} in Proposition 3.3 belong to S. Since there are finitely many newforms of level N_{0}, Corollary 3.5 bounds l. Finally, for fixed l there are finitely many solutions by Theorem 1 in [14].

5. Proof of Theorem 1.2

Proof of Theorem 1.2. Assume that W_{m} is an l th power. We will derive an (l,l,l) equation (9) which does not depend on d and use the Frey curve given Section 3.2. Then, similarly to the proof of Theorem 1.1, the existence of a prime divisor p_{0} will be shown which bounds l via Corollary 3.5. Since $2 \mid W_{1}$, by Lemma 2.1,

$$
l \leqslant \operatorname{ord}_{2}\left(W_{m}\right)=\operatorname{ord}_{2}\left(W_{1}\right)+\operatorname{ord}_{2}(m) .
$$

Assume that $l>\operatorname{ord}_{2}\left(W_{1}\right)$. Then $\operatorname{ord}_{2}(m)>0$ so $m=2 m^{\prime}$ for some m^{\prime}.
A Weierstrass equation for C is

$$
\begin{equation*}
y^{2}=x^{3}-2^{4} 3^{3} d^{2}, \tag{4}
\end{equation*}
$$

with coordinates $x=2^{2} 3 d /(u+v)$ and $y=2^{2} 3^{2} d(u-v) /(u+v)$. Write $x(m P)=$ A_{m} / B_{m}^{2} and $y(m P)=C_{m} / B_{m}^{3}$ in lowest terms.

Lemma 5.1 (see Corollary 3.2 in [22]). Let $p=2$ or 3 . then $p \mid W_{m}$ if and only if $p \nmid A_{m}$.

The discriminant of (4) is $-2^{12} 3^{9} d^{4}$ so, since d is cube free, it is minimal at any prime larger than 3 (see Remark 1.1 in Chapter VII [36]). Note that the group of points with non-singular reduction is independent of the choice of minimal Weierstrass equation. The projective equation of (4) is

$$
Y^{2} Z=X^{3}-2^{4} 3^{3} d^{2} Z^{3}
$$

Let $p>3$ be a prime dividing d. By assumption, the partial derivatives

$$
\begin{equation*}
\frac{\partial C}{\partial X}=-3 X^{2}, \quad \frac{\partial C}{\partial Y}=2 Y Z \quad \text { and } \quad \frac{\partial C}{\partial Z}=Y^{2}+2^{4} 3^{4} d^{2} Z^{2} \tag{5}
\end{equation*}
$$

do not vanish simultaneously at $P=\left[A_{1} B_{1}, C_{1}, B_{1}^{3}\right]$ over the field \mathbb{F}_{p}. Hence, noting that $2 \nmid A_{m}$ from Lemma 5.1 and that non-singular points form a group, we have

$$
\begin{equation*}
\operatorname{gcd}\left(A_{m}^{3}, C_{m}^{2}\right) \mid 3^{3+2 \operatorname{ord}_{3}(d)} \tag{6}
\end{equation*}
$$

for all m.
The inverses of the birational transformation are given by $u=\left(2^{2} 3^{2} d+y\right) / 6 x$ and $v=\left(2^{2} 3^{2} d-y\right) / 6 x$. Thus

$$
\begin{equation*}
\frac{U_{m}}{W_{m}}=\frac{2^{2} 3^{2} d B_{m}^{3}+C_{m}}{6 A_{m} B_{m}} \quad \text { and } \quad \frac{V_{m}}{W_{m}}=\frac{2^{2} 3^{2} d B_{m}^{3}-C_{m}}{6 A_{m} B_{m}} \tag{7}
\end{equation*}
$$

The assumptions made restrict the cancellation which can occur in (7) and, up to cancellation, if W_{m} is an l th power then so is A_{m}. More precisely, since W_{m} is an l th power and $2 \mid W_{m}$, Lemma 5.1 and (6) give that A_{m} is an l th power multiplied by a power of 3 . Using the duplication formula,

$$
\begin{equation*}
\frac{A_{m}}{B_{m}^{2}}=\frac{A_{m^{\prime}}\left(A_{m^{\prime}}^{3}+8\left(2^{4} 3^{3} d^{2}\right) B_{m^{\prime}}^{6}\right)}{4 B_{m^{\prime}}^{2}\left(A_{m^{\prime}}^{3}-2^{4} 3^{3} d^{2} B_{m^{\prime}}^{6}\right)}=\frac{A_{m^{\prime}}\left(A_{m^{\prime}}^{3}+8\left(2^{4} 3^{3} d^{2}\right) B_{m^{\prime}}^{6}\right)}{4 B_{m^{\prime}}^{2} C_{m^{\prime}}^{2}} \tag{8}
\end{equation*}
$$

Again, cancellation in (8) is restricted so $A_{m^{\prime}}$ is also an l power multiplied by a power of 3 . Write

$$
m=2^{\operatorname{ord}_{2}(m)} n
$$

It follows that $A_{n}=3^{e} A^{l}$,

$$
A_{n}^{3}+8\left(2^{4} 3^{3} d^{2}\right) B_{n}^{6}=3^{f} \bar{A}^{l}
$$

and $C_{n}= \pm 3^{g} C^{l}$. Combining with $C_{n}^{2}=A_{n}^{3}-2^{4} 3^{3} d^{2} B_{n}^{6}$ gives

$$
\begin{equation*}
3^{f} \bar{A}^{l}+2^{3} 3^{2 g} C^{2 l}=3^{2+3 e} A^{3 l} \tag{9}
\end{equation*}
$$

Note that, by dividing (9) through by an appropriate power of 3 , we can assume that 3 divides at most one of the three terms.

Let $p_{0}>3$ be a primitive divisor of W_{2}. Using Proposition 2.2, $p_{0} \mid W_{2 n}$ and, since n is odd, $p_{0} \mid \bar{A} C$. Now follow the recipe given in Section 3.2. The conductor of the Frey curve for (9) is

$$
N_{\bar{A}, C}=2^{3} 3^{\delta} \operatorname{rad}_{3}(\bar{A} C A)
$$

and $N_{0}=2^{3} 3^{\delta}$ in Theorem 3.7, where $\delta=0$ or 1 . There is one newform

$$
f=q-q^{3}-2 q^{5}+q^{9}+4 q^{11}+\cdots
$$

of level $N_{0}=24$. Moreover, f is rational. Since $p_{0} \mid N_{\bar{A}, C}$ and $p_{0} \nmid N_{0}$,

$$
l<\left(1+\sqrt{p_{0}}\right)^{2}
$$

by Corollary 3.5. Finally, for fixed $l>1$ there are finitely many solutions to (9) (see Theorem 2 in [14]) and they are independent of d.

6. Proof of Theorem 1.3

Proof of Theorem 1.3. As in the proof of Theorem 1.2, consider $x(P)=A_{P} / B_{P}^{2}$ and $y(P)=C_{P} / B_{P}^{3}$ on the Weierstrass equation

$$
y^{2}=x^{3}-2^{4} 3^{3} d^{2}
$$

for C. Since P is triple another rational point, a prime of bad reduction greater 3 does not divide A_{P} (see Section 3 in [19]). Thus the partial derivatives (5) do not vanish simultaneously at P and so at all primes greater than $3, P$ has non-singular reduction on a minimal Weierstrass for C.

Now follow the proof of Theorem 1.2 up to (8). Factorizing over $\mathbb{Z}[\sqrt{-3}]$ gives

$$
A_{n}^{3}=C_{n}^{2}+2^{4} 3^{3} d^{2} B_{n}^{6}=\left(C_{n}+2^{2} 3 d B_{n}^{3} \sqrt{-3}\right)\left(C_{n}-2^{2} 3 d B_{n}^{3} \sqrt{-3}\right)
$$

We have

$$
C_{n}+2^{2} 3 d B_{n}^{3} \sqrt{-3}=(-1+\sqrt{-3})^{s}(a+b \sqrt{-3})^{3} / 2^{s+3}
$$

where $s=0,1$ or 2 and a, b are integers of the same parity. If $s=0$ then

$$
2^{3}\left(C_{n}+2^{2} 3 d B_{n}^{3} \sqrt{-3}\right)=a\left(a^{2}-9 b^{2}\right)+3 b\left(a^{2}-b^{2}\right) \sqrt{-3}
$$

so

$$
\begin{align*}
2^{3} C_{n} & =a\left(a^{2}-9 b^{2}\right), \tag{10}\\
2^{5} d B_{n}^{3} & =b\left(a^{2}-b^{2}\right), \tag{11}\\
2^{2} A_{n} & =a^{2}+3 b^{2} \tag{12}
\end{align*}
$$

If $s=1$ then

$$
\begin{aligned}
2^{4} C_{n} & =-a^{3}+9 a b^{2}-9 a^{2} b+9 b^{3}, \\
2^{6} 3 d B_{n}^{3} & =a^{3}-3 a^{2} b-9 a b^{2}+3 b^{3}, \\
2^{2} A_{n} & =a^{2}+3 b^{2}
\end{aligned}
$$

If $s=2$ then

$$
\begin{aligned}
2^{5} C_{n} & =-2 a^{3}+18 a^{2} b+18 a b^{2}-18 b^{3}, \\
2^{7} 3 d B_{n}^{3} & =-2 a^{3}-6 a^{2} b+18 a b^{2}+6 b^{3}, \\
2^{2} A_{n} & =a^{2}+3 b^{2} .
\end{aligned}
$$

By Lemma 5.1, $6 \nmid A_{n}$ so we are in the case $s=0$.
Suppose that W_{m} is a square. Then, from (8), $C_{n}= \pm C^{2}, 2 B_{n}= \pm B^{2}$ and $A_{n}=A^{2}$. Since $\operatorname{gcd}(a, b) \mid 2^{2}$, one of b or $a^{2}-b^{2}$ is coprime with the odd primes dividing d. If it is b then multiplying (10) and (12) gives

$$
\pm 2^{5}(A C)^{2}=a^{5}-6 a^{3} b^{2}-27 a b^{4}
$$

and, since b, up to sign, is either a square or 2 multiplied by a square, dividing by b^{5} gives a rational point on the hyperelliptic curve

$$
Y^{2}=X^{5}-6 X^{3}-27 X
$$

with non-zero coordinates; but computations implemented in MAGMA confirm that the Jacobian of the curve has rank 0 and, via the method of Chabauty, there are no such points. If $a^{2}-b^{2}$ is coprime with the odd primes dividing d then multiplying with (12) gives a rational point on the elliptic curve

$$
\pm Y^{2}=X^{4}+2 X^{2}-3
$$

or on the elliptic curve

$$
\pm 2^{3} Y^{2}=X^{4}+2 X^{2}-3
$$

with non-zero coordinates; but there are no such points.
Suppose that W_{m} is an l th power for some odd prime l. Then, from (8), C_{n}, $2 B_{n}$ and A_{n} are l th powers. If a is odd then (10) gives $a=C^{l}, a^{2}-9 b^{2}=2^{3} \bar{C}^{l}$ and

$$
\begin{equation*}
C^{2 l}-2^{3} \bar{C}^{l}=9 b^{2} \tag{13}
\end{equation*}
$$

If a is even then $a=2 C^{l}, a^{2}-9 b^{2}=2^{2} \bar{C}^{l}$ and

$$
\begin{equation*}
2^{2} C^{2 l}-2^{2} \bar{C}^{l}=9 b^{2} \tag{14}
\end{equation*}
$$

Thus, Theorem 15.3.4 in [10] (due to Bennett and Skinner [1], Ivorra [26] and Siksek [33]) and Theorem 15.3.5 in [10] (due to Darmon and Merel [15]) give that $l \leqslant 5$. If $l=3$ then we have a rational point on the elliptic curve

$$
Z^{6}+X^{3}=Y^{2} ;
$$

this curve has rank and gives a possible solution $\bar{C}=-1, a=C= \pm 1$ and $b= \pm 1$, but, from (11), we would have $B_{n}=0$. If $l=5$ then we have a rational point on the hyper elliptic curve

$$
Y^{2}=8^{e} X^{5}+1
$$

where $e=0$ or 1 ; but computations implemented in MAGMA confirm, via the method of Chabauty, that no such points give a required solution.

References

[1] Michael A. Bennett and Chris M. Skinner, Ternary Diophantine equations via Galois representations and modular forms, Canad. J. Math. 56 (2004), no. 1, 23-54.
[2] Nicolas Billerey, Formes homogènes de degré 3 et puissances p-ièmes, J. Number Theory 128 (2008), no. 5, 1272-1294.
[3] Yu. Bilu, G. Hanrot, and P. M. Voutier, Existence of primitive divisors of Lucas and Lehmer numbers, J. Reine Angew. Math. 539 (2001), 75-122, With an appendix by M. Mignotte. MR 1863855 (2002j:11027).
[4] Wieb Bosma, John Cannon, and Catherine Playoust, The Magma algebra system. I. The user language, J. Symbolic Comput. 24 (1997), no. 3-4, 235265.
[5] Christophe Breuil, Brian Conrad, Fred Diamond, and Richard Taylor, On the modularity of elliptic curves over \mathbf{Q} : wild 3-adic exercises, J. Amer. Math. Soc. 14 (2001), no. 4, 843-939 (electronic).
[6] Yann Bugeaud, Maurice Mignotte, and Samir Siksek, Classical and modular approaches to exponential Diophantine equations. I. Fibonacci and Lucas perfect powers, Ann. of Math. (2) 163 (2006), no. 3, 969-1018.
[7] Chris Caldwell, Mersenne primes: History, theorems and lists, http:// primes.utm.edu/mersenne/index.html.
[8] Chris Caldwell, The prime pages: Fibonacci prime, http://primes.utm. edu/glossary/page.php?sort=FibonacciPrime.
[9] D. V. Chudnovsky and G. V. Chudnovsky, Sequences of numbers generated by addition in formal groups and new primality and factorization tests, Adv. in Appl. Math. 7 (1986), no. 4, 385-434. MR 866702 (88h:11094)
[10] Henri Cohen, Number theory. Vol. II. Analytic and modern tools, Graduate Texts in Mathematics, vol. 240, Springer, New York, 2007.
[11] Gunther Cornelissen and Karim Zahidi, Elliptic divisibility sequences and undecidable problems about rational points, J. Reine Angew. Math. 613 (2007), 1-33.
[12] J. E. Cremona, Algorithms for modular elliptic curves, Cambridge University Press, 1997.
[13] Sander R. Dahmen, Classical and modular methods applied to Diophantine equations, Ph.D. thesis, University of Utrecht, 2008, http: //igitur-archive.library.uu.nl/dissertations/2008-0820-200949/ UUindex.html.
[14] Henri Darmon and Andrew Granville, On the equations $z^{m}=F(x, y)$ and $A x^{p}+B y^{q}=C z^{r}$, Bull. London Math. Soc. 27 (1995), no. 6, 513-543.
[15] Henri Darmon and Loïc Merel, Winding quotients and some variants of Fermat's last theorem, J. Reine Angew. Math. 490 (1997), 81-100.
[16] Fred Diamond and Jerry Shurman, A first course in modular forms, Graduate Texts in Mathematics, vol. 228, Springer-Verlag, New York, 2005.
[17] Kirsten Eisenträger and Graham Everest, Descent on elliptic curves and Hilbert's tenth problem, Proc. Amer. Math. Soc. 137 (2009), no. 6, 19511959.
[18] Kirsten Eisenträger, Graham Everest, and Alexandra Shlapentokh, Hilbert's Tenth Problem and Mazur's Conjectures in Complementary Subrings of Number Fields, http://arxiv.org/abs/1012.4878, 2010.
[19] Graham Everest, Patrick Ingram, and Shaun Stevens, Primitive divisors on twists of Fermat's cubic, LMS J. Comput. Math. 12 (2009), 54-81.
[20] Graham Everest and Helen King, Prime powers in elliptic divisibility sequences, Math. Comp. 74 (2005), no. 252, 2061-2071 (electronic).
[21] Graham Everest, Victor Miller, and Nelson Stephens, Primes generated by elliptic curves, Proc. Amer. Math. Soc. 132 (2004), no. 4, 955-963 (electronic).
[22] Graham Everest, Ouamporn Phuksuwan, and Shaun Stevens, The uniform primality conjecture for the twisted fermat cubic, http://arxiv.org/abs/ 1003.2131, 2010.
[23] Betül Gezer and Osman Bizim, Squares in elliptic divisibility sequences, Acta Arith. 144 (2010), no. 2, 125-134.
[24] Patrick Ingram, Elliptic divisibility sequences over certain curves, J. Number Theory 123 (2007), no. 2, 473-486.
[25] Patrick Ingram and Joseph H. Silverman, Uniform estimates for primitive divisors in elliptic divisibility sequences, to appear in a forthcoming memorial volume for Serge Lang, published by Springer-Verlag.
[26] Wilfrid Ivorra, Sur les équations $x^{p}+2^{\beta} y^{p}=z^{2}$ et $x^{p}+2^{\beta} y^{p}=2 z^{2}$, Acta Arith. 108 (2003), no. 4, 327-338. MR 1979902 (2004b:11036)
[27] A. Kraus and J. Oesterlé, Sur une question de B. Mazur, Math. Ann. 293 (1992), no. 2, 259-275.
[28] Alain Kraus, Majorations effectives pour l'équation de Fermat généralisée, Canad. J. Math. 49 (1997), no. 6, 1139-1161.
[29] Jonathan Reynolds, Perfect powers in elliptic divisibility sequences, http: //arxiv.org/abs/1101.2949, 2011.
[30] K. A. Ribet, On modular representations of $\operatorname{Gal}(\overline{\mathbf{Q}} / \mathbf{Q})$ arising from modular forms, Invent. Math. 100 (1990), no. 2, 431-476.
[31] Kenneth A. Ribet, Report on mod l representations of $\operatorname{Gal}(\overline{\mathbf{Q}} / \mathbf{Q})$, Motives (Seattle, WA, 1991), Proc. Sympos. Pure Math., vol. 55, Amer. Math. Soc., Providence, RI, 1994, pp. 639-676.
[32] R. Shipsey, Elliptic divisibility sequences, Ph.D. thesis, Goldsmith's College (University of London), 2000, http://homepages.gold.ac.uk/rachel/ \#PhD.
[33] Samir Siksek, On the Diophantine equation $x^{2}=y^{p}+2^{k} z^{p}$, J. Théor. Nombres Bordeaux 15 (2003), no. 3, 839-846. MR 2142239 (2005m:11049)
[34] Joseph H. Silverman, Wieferich's criterion and the abc-conjecture, J. Number Theory 30 (1988), no. 2, 226-237.
[35] Joseph H. Silverman, Advanced topics in the arithmetic of elliptic curves, Graduate Texts in Mathematics, vol. 151, Springer-Verlag, New York, 1994.
[36] Joseph H. Silverman, The arithmetic of elliptic curves, Graduate Texts in Mathematics, vol. 106, Springer, 2009.
[37] Joseph H. Silverman and John Tate, Rational points on elliptic curves, Undergraduate Texts in Mathematics, Springer-Verlag, New York, 1992.
[38] Katherine Stange and Kristin Lauter, The elliptic curve discrete logarithm problem and equivalent hard problems for elliptic divisibility sequences, Selected Areas in Cryptography 5381 (2008), 309-327.
[39] Marco Streng, Elliptic divisibility sequences with complex multiplication, Master's thesis, Universiteit Utrecht, 2006, http://www.warwick.ac.uk/ ~masjap/mthesis.pdf.
[40] Richard Taylor and Andrew Wiles, Ring-theoretic properties of certain Hecke algebras, Ann. of Math. (2) 141 (1995), no. 3, 553-572.
[41] Morgan Ward, Memoir on elliptic divisibility sequences, Amer. J. Math. 70 (1948), 31-74.
[42] Andrew Wiles, Modular elliptic curves and Fermat's last theorem, Ann. of Math. (2) 141 (1995), no. 3, 443-551.

Address: Jonathan Reynolds: Mathematisch Instituut, Universiteit Utrecht, Postbus 80.010, 3508 TA Utrecht, Nederland.
E-mail: J.M.Reynolds@uu.nl
Received: 5 April 2011

[^0]: The author is supported by a Marie Curie Intra European Fellowship (PIEF-GA-2009235210)

 2010 Mathematics Subject Classification: primary: 11G05; secondary: 11D41

