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THE MATHEMATICAL WORK OF PAWEŁ DOMAŃSKI

José Bonet, Michael Langenbruch

Abstract: We report on the mathematical work of Paweł Domański (AMU Poznań).

1. Introduction

Paweł Domański was born on the 5th of June 1959, and died much too early the
4th of August 2016. He studied Mathematics at the Adam Mickiewicz University,
Poznań (Poland), and he presented his Ph.D. Thesis at this University in 1987 and
his Habilitation in 1991. He was Full professor at this University since 2003. He
got several awards and international recognitions: Corresponding Foreign Member
of Real Academia de Ciencias Exactas, Físicas y Naturales of Spain since 2009,
member of the Committee of Mathematics of the Polish Academy of Science from
2007 till 2015, J. Marcinkiewicz Award of the Polish Mathematical Society for
the best mathematical work of a student in Poland in 1987; Banach Award of
the Polish Mathematical Society in 1991; Award of 3rd Section of the Academy
of Sciences of Poland in 1993; Scientific Award of the Ministry of Education of
Poland for joint works with D. Vogt in 2001.

He was executive Editor of Studia Mathematica, editor of Functiones et Ap-
proximatio (Poznań) and member of the scientific Committee of Revista
RACSAM of the Real Academia de Ciencias Exactas Físicas y Naturales, and
Main Researcher of the grant MAESTRO of National Center of Science in Poland
with budget of around 500.000 euro (2014-2019). He was Alexander von Humboldt
fellow at the University of Wuppertal (hosted by Prof. D. Vogt) in 01.09.1991-
30.04.1993, 15.09-15.12.2000 and 1.10- 31.12.2006.

Paweł was an excellent mathematician highly estimated in the international
mathematical community with an impressively wide interest and knowledge in
many related areas of mathematics, especially in Mathematical Analysis: func-
tional analysis, Banach spaces, topological algebras, homological algebras, com-
plex analysis of one and several variables and partial differential operators, among
many other topics. Thus he could easily contribute with new ideas, techniques and
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deep results. He was a very good lecturer, as well as a clear expositor in papers and
surveys creating a very active group of young mathematicians in Poznań. Above
all, he was a very good friend, always ready to help and very generous. We miss
him very much.

In this paper we try to present a selection of results of Paweł, among his many
relevant and important contributions to functional analysis and related areas. We
hope that our presentation will give the reader an idea of the originality, creativity
and deepness of the work of our dear friend Paweł Domański.

2. The early work

Since the late seventies there was a growing interest in the group around Drew-
nowski at Poznań in non-locally convex topological vector spaces and F -spaces
(i.e. complete metrizable topological vector spaces). Several deep results had been
obtained by Kalton, Peck and Roberts. The atmosphere of those times is nicely
described in the paper about Drewnowski’s work by Domański and Wnuk [D86].

In order to state some of the first results of Domański, we recall that a topolog-
ical vector space is minimal if there is no strictly weaker vector Hausdorff topology
on the space. Minimal locally convex spaces are precisely the products of copies of
the scalar field. Drewnowski had defined in 1977 the q-minimal spaces as those for
which every Hausdorff quotient is minimal. They played an important role in the
theory of F -spaces. The first example of a minimal non-locally convex F -space
was obtained in 1995 by Kalton [32] modifying the famous method of Gowers and
Maurey [21]. It is still an open question whether there are q-minimal non-locally
convex F -spaces.

In the first papers of Domański in this direction [D28] and [D30], he improved
an example of Lohman and Stiles and gave an example of a complete non-separable
topological vector space embeddable into the product of 2ℵ0 copies of the Banach
space c0. He later extended this result by showing that the product of 2ℵ0 topo-
logical vector spaces contains a nonseparable closed subspace if each factor admits
a strongly regular semibasic sequence. This holds on every non-minimal F -space,
by a theorem of Kalton and Shapiro. The later result was also extended in [D28]
by proving that these semibasic sequences exist in every topological vector space
whose completion is not q-minimal.

The second type of problems Domański investigated is concerned with the
splitting of twisted sums and the three space problem. A twisted sum of two
topological vector spaces Y and Z is a topological vector space X with a subspace
Y1 isomorphic to Y such that the quotient X/Y1 is isomorphic to Z. The twisted
sum is said to split if Y1 is complemented in X. This can be represented in terms
short topologically exact sequences as follows

0→ Y → X → Z → 0, (∗)

where j : Y → Z and q : X → Z are open continuous linear maps and j(Y ) =
ker q. The twisted sum X splits if and only if there is a continuous linear right
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inverse T : Z → X of q, that is, q ◦T coincides with the identity on Z. In this case
we also say that the topologically exact sequence (∗) splits. There are two main
questions about twisted sums. The first one is the so-called three-space problem.
A property (P) of topological vector spaces is a three-space property if every
twisted sum of Y and Z has (P) whenever Y and Z have property (P). Kalton
proved in 1978 that being a locally convex space is not a three-space property.
The second main question is to characterize those pairs (Y,Z) of topological vector
spaces such that every twisted sum of Y and Z splits. In modern terminology,
using homological methods, this is expressed by writing Ext1(Z, Y ) = 0. Already
in the mid eighties there was an extensive literature about these two problems.
See the extensive work of S. Dierolf about the three-space problem reported by
Frerick and Wengenroth in [19] and the seminal paper by Vogt [61]. In his papers
[D29], [D31] and [D32] Paweł proved among many others the following results:

Theorem 2.1.

(1) Every twisted sum of a Banach space Y and a nuclear space Z splits.
(2) Every twisted sum of a nuclear Fréchet space Y and a normed space Z splits

if and only if every twisted sum of Y equal to the scalar field and Z splits.
This characterization also holds if Y is a Banach space and Z is a Köthe
sequence space.

(3) A locally convex space Z satisfies that every twisted sum of an arbitrary
locally convex space Y and Z is locally convex if and only if, for every index
set I, every twisted sum of `∞(I) and Z splits.

Some years later, in 1992, Paweł wrote the paper [D22] with C. Fernández,
J.C. Díaz and S. Dierolf on the three-space problem for dual Fréchet spaces.
A Fréchet space is called a dual space if it is the strong dual of a barrelled
(DF)-space in the sense of Grothendieck. It was proved in the paper that the
twisted sum X of two dual Fréchet spaces Y and Z need not be a dual Fréchet
space. However, they also proved that this is the case if every bounded set B in
Z is contained in the image q(A) of a bounded set A in X by the open surjection
q : X → Z.

3. Injective locally convex spaces

Paweł Domański dedicated several papers between 1989 and 1993 to injective lo-
cally convex spaces and related questions about the structure theory of Fréchet
spaces. In this section we briefly report about his work in this direction. A locally
convex space is called injective if it is complemented in any locally convex space
containing it. Clearly an injective locally convex space can be embedded as a com-
plemented subspace of a product

∏
i∈I `∞(Γi) of Banach spaces `∞(Γi) of bounded

families on the set Γi. The product of injective Banach space is an injective locally
convex space. These considerations led L. Nachbin in 1960 to conjecture that every
injective locally convex space should be isomorphic to a product of injective Ba-
nach spaces. This seems to be still an open question. The related problem, asked
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by Domański, Metafune and Moscatelli, whether every complemented subspace of
a countable product of Banach spaces is isomorphic to a product of Banach spaces,
was solved in the negative by M.I. Ostrovskii in [47] in 1996. Later on in 2001,
Chigogidze [11] proved that every injective locally convex space is isomorphic to
a product of injective Fréchet spaces.

Motivated by Nachbin’s question mentioned above, Paweł contributed many
interesting results. In [D33] he proved that a complemented subspace of a arbi-
trary product of Hilbert spaces is isomorphic to a product of Hilbert spaces. On
the other hand, in the joint article [D77] with Ortyński they presented a system-
atic study of complemented subspaces of products of Banach spaces which are
L1-predual spaces or `p(Γ), 1 6 p 6 ∞. As a consequence of their results they
proved that (`p)

M, 1 6 p 6∞ is primary for each cardinal numberM. A locally
convexX is primary if each time one has the topological decompositionX = Y ⊕Z,
then either Y or Z is isomorphic to X. Extending a result due to Lindenstrauss
they also proved that an injective locally convex space is isomorphic to a product
of copies of the scalar field or it contains a copy of `∞. The following result was
proved in [D34].

Theorem 3.1. Let X be a Hausdorff locally compact topological space. If the space
C(X) of continuous functions on X endowed with the topology of uniform conver-
gence on compact sets is injective, then it either contains a copy of

∏
i∈N `∞(Γi),Γi

uncountable, or C(X) is isomorphic to
∏
i∈N C(Xi), where each Xi is a compact-

open subset of X.

In [D37] Domański solved a problem of Wolfe, and in [D38] he introduced
certain estimates of injectivity i(U) of an open subset U in a completely regular
Hausdorff topological space X that enabled him to generalize Banach space results
due to Amir and to Isbell and Semadeni.

Paweł’s article [D35] constitutes an important contribution to the local struc-
ture theory of Fréchet spaces. The aim of this paper is to extend the theory of
Banach Lp-spaces of Lindenstrauss and Pełzyński to the context of locally convex
spaces. The main tool of the paper is the notion of ultrapower of locally convex
spaces and in particular an interesting generalization of the Stern theorem which
is proved in the article. The definitions of Lp-spaces and DLp-spaces, that are
the analogues for (DF)-spaces, are technical. They are spaces “full” of subspaces
“similar” to products (respectively, direct sums) of finite-dimensional `p spaces,
and similarity is measured in terms of equicontinuity of the corresponding linear
isomorphisms. Among many other results, the following ones are presented.

Theorem 3.2.

(1) For p = 1, 2,∞, every complemented subspace of the product (resp. direct
sum) of infinitely many Lp(µ)-spaces, or L1-predual spaces for p = ∞, is
an Lp-space (resp. DLp-space).

(2) For 1 6 p 6 ∞, the strong dual of a Fréchet Lp-space (resp. (LB)-DLp-
space) is a complemented subspace of a space of type ⊕i∈NLq(µi) (resp.∏
i∈N Lq(µi)) with 1/p+ 1/q = 1.
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(3) A Fréchet space is injective if and only if it is an L∞-space that is comple-
mented in its bidual.

(4) If p 6= 2, then there exist Fréchet Lp-spaces (resp. (LB)-DLp-spaces) that are
not isomorphic to any complemented subspace of any product (resp. direct
sum) of Banach spaces.

Every Fréchet Lp-space is a quojection, that is a Fréchet space such that every
quotient with a continous norm is a Banach space or equivalently a surjective
limit of a sequence of Banach spaces. Moreover, every complete (LB)-DLp-space
is a strict (LB)-space. In fact, an extension of the principle of local reflexivity for
quojections and for operators was necessary in the paper [D35] and it was obtained
by Domański in [D36]. Quojections and prequojections (i.e. Fréchet spaces whose
bidual is a quojection) play a relevant role in the structure theory of Fréchet
spaces in connection with several problems. We refer the interested reader to the
survey by Metafune and Moscatelli [46]. In fact, in his paper [D43] Paweł solved
a question of Moscatelli and constructed a Fréchet space of continuous functions
C(X) on a completely regular Hausdorff space X, that is necessarily a quojection,
but it is not isomorphic to a complemented subspace of a countable product of
Banach spaces. Domański’s research in this direction was complemented in his
papers [D39] and [D40].

In 1987 Paweł prepared a re-worked and slightly extended version of his Ph.D.
thesis, that had been presented at the University of Poznań under the supervision
of Drewnowski. These notes, entitled “Extensions and liftings of linear operators”
were never published. Due to the interest in extendable and liftable operators
around 2000 by authors like Kalton, and Pełczyński [33], who quoted in fact Do-
mański’s notes, Paweł came back to this topic in his paper [D45] about ideals of
extendable and liftable operators. The notes “Extensions and liftings of linear op-
erators” connect the extension and lifting of operators with the splitting of short
exact sequences. They are mainly concerned with the case of p-Banach spaces.
The approach is new and it is based on operator ideals. This research is also
naturally related to injective and projective locally convex spaces. Many applica-
tions, especially relevant for Banach spaces, are collected in the last chapter. For
example L∞ spaces are characterized in terms of liftings and L1 spaces in terms of
extensions. Moreover, a Banach space Z is an L1 space if and only if every short
exact sequence 0→ Y → X → Z → 0 with Y a dual Banach space splits.

4. Joint work with Susanne Dierolf

A celebrated theorem of Davis, Figiel, Johnson, and Pełczyński [15] says that every
weakly compact operator between Banach spaces factorizes through a reflexive Ba-
nach space. In the realm of locally convex spaces there are two natural candidates
for the generalization of (weakly) compact operators: Either mapping a neighbour-
hood of the origin into a relatively (weakly) compact set or mapping all bounded
sets into relatively (weakly) compact ones. The former operators are still called
(weakly) compact (and questions reduce quite easily to the Banach case), while
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the latter ones are usually called Montel (reflexive) operators. Susanne Dierolf
and Domański considered in [D25] and [D27] the question whether every Montel
operator between Fréchet spaces factorizes through a Fréchet Montel space and,
by duality, whether every Montel operator between (LB)-spaces factorizes through
a Montel (LB)-space. They proved for example that every Montel operator from
a quasinormable Fréchet space into a Fréchet space factors through a Fréchet
Schwartz space, and that every Montel operator from a Köthe echelon space of or-
der one into a Köthe echelon space of order zero factors through a Fréchet Montel
space. It turned out that this problem was related to a still open question about
(LB)-spaces, that is attributed to Grothendieck. An (LB)-space E = indn∈N En
is called regular if every bounded subset in E is contained and bounded in one of
the steps En. Every complete (LB)-space is regular. It is unknown if the converse
holds. There was much research concerning the completeness of (LB)-spaces and
(LF)-spaces in the 1980’s and 1990’s. See Bierstedt, Bonet [5] and Wengenroth
[69]. The following result was obtained in [D25].

Theorem 4.1. Consider the following conditions.

(a) Every regular (LB)-space is complete.
(b) Every Montel operator between (LB)-spaces factorizes through a Montel

(LB)-space.
(c) For every complete (LB)-space F the space C(βN, F ) is bornological.

Then (a) ⇒ (b) ⇒ (c) holds.

The proof required a deep investigation of the structure of compact sets in com-
plete (LB)-spaces. It is also an open problem if the space C(K,X) is bornological,
hence an (LB)-space, for every Hausdorff compact topological space K and every
(LB)-space E. This question was explicitly formulated by Bierstedt and Schmets
in the 1977. The following interesting, partial positive results were presented in
[D26] and [D44].

Theorem 4.2.

(1) If E is a Montel (LB)-space, then c0(E) is bornological.
(2) If k∞ is a Köthe co-echelon space of order infinity, then c0(k∞) is borno-

logical.
(3) If K is a Hausdorff compact topological space, then C(K,λp(A)′) is bornolo-

gical for every Köthe echelon space λp(A), 1 < p <∞.

More results about bornological spaces of type C(K,F ) are due to Frerick and
Wengenroth [18]. In joint work with Bonet and Mujica [D19], Domański obtained
related results about the completeness of spaces of vector valued holomorphic
germs.

The research about factorization of operators between Fréchet spaces was con-
tinued by Paweł in the joint work with Juan Carlos Díaz [D23] in the case of
weakly compact and reflexive operators. Among other results, they proved that if
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a Fréchet space E is either quasinormable or a distinguished Köthe echelon space
of order one, then every reflexive operator from E into a Fréchet space F factors
through a reflexive Fréchet space. The proof required a careful analysis of weakly
compact subsets of Köthe co-echelon spaces of order infinity.

5. Joint work with Lech Drewnowski. Spaces of operators and vector
valued continuous functions

For Banach spaces X and Y we denote by Kw∗(X
′, Y ) the space of all compact

weak*-weak continuous linear operators T : X ′ → Y . It is contained in the space
Lw∗(X

′, Y ) of all weak*-weak continuous linear operators from X ′ into Y . Many
examples of operators, vector valued measures and vector valued functions can
be naturally identified with spaces of this type. Drewnowski, who was the thesis
advisor of Domański, investigated the question if copies of c0 and `∞ are contained
in these spaces. This problem is interesting in itself, but it is also relevant in con-
nection with the question whether the small space is complemented in the biggest
one. One of the main motivating problems was whether there exists an infinite
dimensional Banach space X such that the spaceK(X) of compact operators on X
is complemented in the space L(X) of all continuous operators on X. This problem
was only solved in 2011 by Argyros and Haydon [1]. They constructed a Banach
space XK such that every continuous operator on XK has the form λI + K for
a scalar λ and a compact operator K. This is the first infinite dimensional Banach
space in which every continuous operator has a nontrivial invariant subspace and
for which the space L(XK) is separable. The construction combines techniques
due to Bourgain and Delbaen as well as more recent tools from the theory of
hereditarily indecomposable Banach spaces of Gowers and Maurey [21].

Drewnowski, inspired by an earlier result of Kalton, proved in 1990 in [16] that
the Banach space Kw∗(X

′, Y ) contains an isomorphic copy of `∞ if and only if
either X or Y contain such a copy. This result implies Kalton’s theorem, but it
is more powerful, as it yields consequences about tensor products and spaces of
vector valued measures and continuous functions. The theorems of Drewnowski
triggered a big amount of research on related topics. They were extended to the
setting of operators on Fréchet and (DF)-spaces by Domański together with Bonet,
Lindström and Ramanujan in [D13] and [D17].

In the early 1990’s Domański and Drewnowski studied in [D50], [D51] and
[D52] spaces C(K,X, τ) of vector valued continuous functions f : K → X from
a compact space K into a Banach space X which are continuous from K into the
space X endowed with the vector topology τ . If τ is the original topology we
write C(K,X). The space C(K,X, τ) is endowed with the topology of uniform
convergence with respect to the original topology of X. The still open conjecture is
that the space C(K,X) is complemented in C(K,X, τ) if and only if both spaces
coincide. This research was also related to injective locally convex spaces; see
Section 3. Among many others they proved the following results.
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Theorem 5.1.

(1) If the Banach space X contains a τ -convergent sequence which is not norm
convergent, then C(K,X) is not complemented in C(K,X, τ) for every in-
finite compact space K. In particular C(K,X ′) is not complemented in
C(K,X ′, w∗) for all infinite dimensional Banach spaces X.

(2) C(K,X) is complemented in C(K,X,w) if and only if every weakly null
sequence in X is a norm null sequence.

(3) Let E be a completely regular Hausdorff space that contains an infinite com-
pact set and let X be a non-Montel Fréchet space. Then C(E,X) contains
a complemented copy of c0. In particular C(E,X) is not injective.

(4) Let E be a completely regular Hausdorff space that contains an infinite com-
pact set and let X be a locally convex space containing an isomorphic copy
of `1. Then C(E,X,w) contains a complemented copy of `1, hence it is not
injective.

In his note [D42] Paweł proved that the space of Riemann integrable functions
is not complemented L∞(0, 1) since it contains a complemented copy of c0.

As mentioned in [D86], the collaboration of Domański and Drewnowski in this
topic produced a long preprint called “Injective spaces of bounded vector sequences
and spaces of operators” which pushes the methods developed by them to its limits.
This preprint was never published.

Paweł worked shortly afterwards with Lindström [D73] and with Lindström
and Schlüchtermann [D75] on a somewhat related topic. A locally convex space X
is called a Grothendieck space if every weak* convergent sequence in X ′ is weakly
convergent. Accordingly, an operator T : X → Y between Banach spaces is called
a Grothendieck operator if its transpose T ′ : Y ′ → X ′ maps weak* convergent
sequences into weakly convergent ones.

Theorem 5.2.

(1) Let X and Y be Fréchet spaces such that Y is Montel and either X ′′b or Y
has the approximation property. Then the injective tensor product X⊗̂εY
is a Grothendieck space if and only if X is a Grothendieck space. This had
been proved for X = C(K) by Freniche in 1986.

(2) If T : X → Y is a Grothendieck operator and S : X → Y is compact, then
the completed tensor product T ⊗̂εS : X⊗̂εY → X⊗̂εY is a Grothendieck
operator.

J.C. Díaz and Domański studied in [D24] when the complete injective tensor
product of two distinguished Fréchet spaces is also distinguished.

6. Composition operators on weighted spaces of holomorphic functions

During his stay in Valencia in the academic year 1996/97 Paweł started to collab-
orate with Bonet, Linström and Taskinen on composition operators on weighted
Banach spaces of holomorphic functions on the unit disc D of the complex plane C.



The mathematical work of Paweł Domański 15

We explain the context and state some results. Let G be an open subset of C, and
let v : G → R be a continuous and strictly positive weight on G. We define the
following weighted Banach spaces of holomorphic functions on G

Hv(G) := {f ∈ H(G); ||f ||v := sup
z∈G

v(z)|f(z)| <∞},

Hv0(G) := {f ∈ H(G); v|f | vanishes at ∞ on G}.

Recall that a function g vanishes at infinity on G if for every ε > 0 there is
a compact subset K of G such that |g(z)| < ε if z /∈ K.

We assume Hv(G) 6= {0}, which always happens in the cases considered below.
Banach spaces of the type mentioned above appear naturally in the study of growth
conditions of analytic functions and have been considered, since the work of Shields
and Williams, by many authors like Bierstedt, Meise, Summers Kaballo and Lusky,
among others. If v is a (continuous and strictly positive) weight on G, its associated
weight is defined by ṽ(z) := 1/||δz||Hv(G)′ . By our assumption above, ṽ(z) is finite
for every z ∈ G. Moreover v 6 ṽ on G, 1/ṽ is continuous and subharmonic, and
the Banach spaces Hv(G) and Hṽ(G) coincide isometrically. A weight v is called
essential if there is C > 1 such that v 6 ṽ 6 Cv on G.

Composition operators on various spaces of analytic functions on the unit disc
have been studied very thoroughly by a number of authors; cf. the books of Cowen,
MacCluer [14] and of Shapiro [55]. Composition operators constitute still now
a very active area of research as a search in the databases of Mathematical Reviews
or Zentralblatt shows. We now some results from the papers [D18] and [D14]. To
do this, we suppose that all the weights v are radial, non-increasing on D and
satisfy that limr→1− v(r) = 0. We denote by ϕ : D → D an analytic map. The
composition operator Cϕ : H(D)→ H(D) is defined by Cϕ(f) := f ◦ ϕ.

Theorem 6.1. The following conditions are equivalent for the composition oper-
ator Cϕ : Hv(D)→ Hw(D):

(1) The operator Cϕ is continuous.
(2) supz∈D

w(z)
ṽ(ϕ(z)) <∞.

(3) supn
||ϕ(z)n||w
||zn||v <∞.

Theorem 6.2. The following conditions are equivalent for the composition oper-
ator Cϕ : Hv(D)→ Hw(D):

(1) The operator Cϕ is (weakly) compact.
(2) lim|z|→1

w(z)
ṽ(ϕ(z)) = 0.

(3) limn→∞
||ϕ(z)n||w
||zn||v = 0.

Estimates of the essential norm of a composition operator Cϕ : Hv(D) →
Hw(D) were obtained in [D14]. Extensions of these results and consequences
for (weighted) composition operators on Bloch spaces were obtained by Montes
and by Contreras and Hernández-Díaz. The case of composition operators on
weighted spaces of vector valued holomorphic functions was discussed in [D16]
where previous work by Liu, Saksman and Tylli was continued.
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In the paper [D15] pointwise multiplication operators

Mg : Hv(D)→ Hv(D), Mg(f) := gf,

for g ∈ H(D), g 6= 0, were investigated. Pointwise multiplication operators between
different spaces of analytic functions have been studied by many authors, like
Axler, Luecking, McDonald and Sundberg and Vukotic. In [D15] properties like
continuity, isomorphism, being a Fredholm operator or having closed range were
studied and in some cases characterized. Cichoń and Seip improved later some of
these results.

Domański and Lindström [D74] investigated interpolation and sampling in
Hv(D). They used ideas and results of Seip. Let v be a continuous and strictly pos-
itive weight on D. For a given sequence Γ = (zn)n ⊂ D, we define T : Hv(D)→ `∞
by T (f) := (f(zn)v(zn))n. The sequence Γ is called a set of interpolation for v if
T is surjective, a set of linear interpolation for v if T has a continuous and linear
right inverse and a sampling set for v if T is a monomorphism. Every sampling
set is a set of uniqueness for Hv(D). The classical interpolation problem in H∞
(Hv(D) for v ≡ 1) was solved by Carleson in 1952. Seip [53] characterized the sets
of interpolation and sampling for A−p := Hvp(D) if vp(z) = (1− |z|2)p, p > 0, in
terms of certain densities. Domański and Lindström extended some of the results
of Seip and characterized (linearly) interpolating and sampling sequences in D in
terms of certain densities related to the weight v. As a consequence of their results
they obtained that, if v(z) = (1− |z|2)p log(e/(1− |z|))ε, then Hv(D) and Hvp(D)
have the same sets of interpolation and sampling, although they do not coincide
as Banach spaces.

A related direction of research was pursued by Domański and Bonet in [D3].
For f ∈ H(D), p > 0, and S ⊂ D, define ‖f‖p,S = supz∈S(1 − |z|2)p|f(z)|.
The Banach space A−p = {f ∈ H(D) : ‖f‖p,D < ∞} coincides with Hv(D) for
v(z) = (1 − |z|2)p. The Korenblum space is A−∞ = indp>0A

−p = ∪p>0A
−p.

A subset S ⊂ D is called (p, q)-sampling (p 6 q) if there exists C > 0 such that
‖f‖q 6 ‖f‖p,S for all f ∈ A−q. The set S is (p, p)-sampling if and only if S is
sampling for A−p in the sense defined above, i.e. if T : f −→ ((vpf)|S) ∈ l∞(S)
is an isomorphism into. The article [D3] presents several results and examples
concerning (p, q)-sampling sets, as well as a study of the relation of this concept
with A−∞-sampling sets in the sense of Horowitz, Korenblum, Pinchuk and with
weakly sufficient sets for A−∞ in the sense of Ehrenpreis.

7. Fréchet and (LB)-algebras

Domański was also interested in topological algebras. In fact, together with Bonet
they investigated in [D7] the Köthe coechelon spaces kp(V ), 1 6 p 6 ∞ or p = 0,
that are locally convex algebras for pointwise multiplication. They characterized
when kp(V ) is an algebra for the pointwise multiplication in terms of the matrix V ,
as well as when this algebra is unital, locally m-convex, a Q-algebra or an inductive
limit of a sequence of Banach algebras. These last three conditions are equivalent
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in this context. Entire functions acting on the algebras kp(V ) are investigated.
Maximal regular ideals and multiplicative functional on an algebra are analyzed,
too. Finally, it is proved that all ideals in kp(V ) are solid if and only if this algebra
is unital.

Around 2010 Paweł started the investigation of the algebra of smooth opera-
tors L(s′, s), that is the non-commutative Fréchet algebra of all continuous linear
operators from the dual s′ of the space s of rapidly decreasing sequences into s. His
results can be found in “Algebra of smooth operators” (unpublished note available
at www.staff.amu.edu.pl/ďż˝domanski/salgebra1.pdf).

As a Fréchet space L(s′, s) is nuclear and isomorphic to the space s. This
algebra appears and plays a significant role in K-theory of Fréchet algebras in
the work of Bhatt and Inoue, Cuntz, Glöckner and Langkamp, and Phillips, in
noncommutative geometry (Blackadar and Cuntz, Connes) and in C∗-dynamical
systems (Elliot, Natsume and Nest). Moreover, it was considered by Schmüdgen
in the context of algebras of unbounded operators. This algebra serves also as an
example of a Fréchet operator space in the sense of Effros and Webster. Finally, it
is also present in quantum mechanics, where it is called the space of physical states
and its dual is the so-called space of observables. It can be identified canonically
with the algebra of rapidly decreasing matrices with the matrix product and matrix
complex conjugation.

In his paper Domanski presented some basic spectral properties of L(s′, s)
collected various representations of it. In particular, he showed that the algebra of
smooth operators consists of compact operators of s-type on `2, i.e., operators with
sequence of singular numbers belonging necessarily to s. Moreover, he proved that
the spectrum of any element of L(s′, s) is equal to its spectrum in the algebra L(`2)
and thus the sequence of eigenvalues belongs to s as well. Moreover, the algebra is
a Q-algebra, i.e., the set of invertible elements is open. This direction of research
was successfully continued by Ciaś and Piszczek, former students of Paweł. They
investigated functional calculus on L(s′, s) and closed commutative ∗-subalgebras,
automatic continuity of positive functionals and derivations, amenability, closed
maximal ideals, Grothendieck’s inequality and the multiplier algebra of L(s′, s),
among other topics. We refer to their work for precise references.

8. Splitting of smooth and distributional complexes

A large part of Paweł’s work was concerned with splitting of exact sequences in
several abstract or concrete analytic settings (see also Sections 2 and 10). In this
section we will review his joint results with Vogt [D78, D79, D81] and related
work on splitting of complexes of smooth functions or distributions. Previously,
Palamodov [49] proved that the ∂ - complex splits for positive dimensions (but
in general not at the 0th place which is a result due to Grothendieck) and that
the same holds for complexes of matrices of partial differential operators with con-
stant coefficients over convex open sets ([50]). The splitting problem for a single
partial differential operator (known as the problem of Laurent Schwartz) has been
solved by Meise, Taylor and Vogt in several spaces of (ultra)differentiable func-
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tions in a series of papers starting with [43]. In [D78, D79, D81] Domański and
Vogt obtained far reaching extensions of these results based on abstract analysis
omitting as far as possible any analytical properties of specific concrete operators.
Behind this is the (DN)− (Ω) type splitting theory of Vogt (see [44]) which is ex-
tended to cartesian products of spaces of this type. Linear topological invariants
like (DN), (Ω), (PA), (PΩ) . . . will also be important in the following sections.
We will always dispense with presenting the definitions explicitly and refer to the
corresponding literature. A common generalization of the (DN) − (Ω) splitting
theorem and Maurey’s extension theorem was proved by Defant, Domański and
Mastyło [D21]. A complete solution for the splitting problem in Fréchet-Hilbert
spaces by a condition of type (S) was obtained by Domański and Mastyło [D76].

We can only sketch two of the main results of [D78, D79, D81] here. The key
notion is the category of graded Fréchet spaces, that is, Fréchet spaces E with
a fixed (equivalence class of) projective spectra E := (En, i

k
n) of Fréchet spaces En

and linking maps ikn such that E = proj nEn. Correspondingly, graded subspaces
and quotients, graded homomorphisms and graded exact sequences are introduced
in [D78]. Also, the existence of exact projective resolutions relative to sequences
of Fréchet spaces is needed (see [D57]). A natural grading on C∞(Ω) is defined by
C∞(Kn) with a compact increasing exhaustion Kn ⊂ Ω and restrictions as linking
maps. Notice that (systems of) partial differential operators respect this grading.
A grading E is called strict if

∀k ∈ N ∃` ∈ N ∀m > ` : imk (Em) = i`k(E`).

The following theorem considerably improves any of the results known previ-
ously.

Theorem 8.1 ([D78, Corollary 5.6]). Let Ωn ⊂ Rd be open and let T0 :
C∞(Ω0)s → C∞(Ω1)s1 be a matrix of convolution operators. If the complex

0→ ker(T0)→ C∞(Ω0)s0
T0−→ C∞(Ω1)s1

T1−→ C∞(Ω2)s2 → . . . (∗)

is algebraically exact then the complex splits at C∞(Ωk)sk for any k > 1. The
complex splits at C∞(Ω0)s0 iff ker(T0) is strict graded.

The analogous question is studied in [D79, D81] for distributions instead of
smooth functions. Here the language of PLS-spaces is used and the results are
even more general than in Theorem 8.1.

Theorem 8.2. Let Ωn ⊂ Rd be open and let Tk be continuous linear operators.

(a) If the complex

0→ ker(T0)→ (D′(Ω0))
s0 T0−→ (D′(Ω1))

s1 T1−→ (D′(Ω2))
s2 → . . . (∗)

is algebraically exact then the complex splits at (D′(Ω0))
sk for any k > 1.
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(b) Let T0 : (D′(Ω0))
s0 → (D′(Ω1))

s1 be a matrix of convolution operators.
Then the complex splits at (D′(Ω0))

s0 iff ker(T0) is a strict projective limit
of LB-spaces.

The corresponding splitting result for short exact sequences has been improved
by Wengenroth [68].

9. Spaces of real analytic functions

One of the main interests of Domański was in the space A (Ω) of real analytic
functions, its topological structure and operators acting there. The following sec-
tions are devoted to this part of his scientific work. An impressive overview on
that subject is contained in the survey article [D49]. Also, one of his outstanding
results is concerned with real analytic functions, namely, the basis problem for real
analytic functions. The existence of (Schauder) bases is an important subject in
analysis. In fact, the question whether every separable Banach space has a basis
dates back to the book of Banach [3] and has been solved in the negative in various
classes of locally convex spaces including subspaces of `p, p 6= 2, (Enflo), nuclear
Fréchet spaces (Mitjagin-Henkin) and in L(`2) (Szankowski) the latter being the
only "natural" space without basis (for a concrete Fréchet space of smooth func-
tions without basis see Vogt [64]). The basis problem in A (Ω) remained open
until Domański and Vogt [D80] published their celebrated result which got the
Scientific Award of the Ministry of National Education 2001.

Theorem 9.1. A (Ω) has no basis for every open set Ω ⊂ Rd.

The proof is based on a careful study of linear topological invariants for comple-
mented Fréchet subspaces of A (Ω). Specifically, such spaces would have properties
(Ω) and (DN) which implies that they are nuclear Banach spaces, hence finite di-
mensional. By the following result, A (Ω) is an LB-space, which is false since
A (Ω) has ω := CN as a quotient by interpolation.

Theorem 9.2. ([D80, Theorem 2.2]) If an ultrabornological Köthe PLS-space E
does not admit an infinite dimensional complemented Fréchet subspace then E is
an LS-space.

In [D82] more explicit analytical tools are presented for the proof of Theorem
9.1 for A (R). Also, the above structural results are applied to obtain the existence
of right inverses for convolution operators on A (R) (cf. Langenbruch [40]).

Using composition operators the subspace structure of A (Ω) was clarified in
[D58]. Namely, for Ω ⊂ Rd the (LB)-subspaces of A (Ω) are isomorphic to a sub-
space of H(Dd) (where D is the unit disc) while the Fréchet subspaces of A (Ω)
are isomorphic to subspaces of H(Dd)r (where r is the number of components of
Ω). In continuation of [D83], Domański, Frerick and Vogt [D53] determined the
Fréchet quotients E of A (Ω) by the fact that E has (Ω) and is a quotient of H (D).

Complemented ideals in A (Rd) were studied in [D85] extending and using
previous results of Vogt [62, 63]. Specifically, if the vanishing ideal JV (Rd), V
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a complex analytic variety in a neighborhood of Rd, is complemented in A (Rd)
then V satisfies the local Phragmen-Lindelöf condition of Hörmander at every real
point of V (see [D85, Theorem 2.4]).

10. Parameter dependence of solutions of partial differential equations
and splitting of short exact sequences of PLS− spaces

The classical problem of parameter dependence of solutions of linear equations
can be formulated as follows: we are given a locally convex space F (Ω) of scalar
(generalized) functions on an open set Ω ⊂ Rd (like real analytic functions, (ul-
tra)differentiable functions or (ultra)distributions), a continuous linear operator
operator T : F (Ω) → F (Ω) and an E−valued function f ∈ F (Ω, E) where E
is a locally convex space of smooth (holomorphic, real analytic or generalized,
respectively) functions. Can we find an E−valued function g ∈ F (Ω, E) solv-
ing Tg = f? Classical results for partial differential operators are due to Trèves
[57, 58] and Browder [8], holomorphic parameter dependance was solved by Mant-
lik [41, 42]. The question is closely related to a tensor product representation of
F (Ω, E), and, correspondingly, to the surjectivity of the tensorized map T ⊗ idE
( and to the splitting of certain short exact sequences, see below) and has been
extensively been studied by Bonet and Domański (see [D2, D4, D6, D47, D48]). To
define E−valued real analytic functions f on an open set Ω ⊂ Rd we in principle
have two choices here, namely, that f locally is an E−valued power series (i.e.
f ∈ At(Ω, E)) or that f is a (weakly) real analytic function (i.e. f ∈ A (Ω, E),
that is, u◦f is real analytic for any u ∈ E′), the latter one being the proper choice
as it turns out, since A (Ω, E) = A (Ω)εE := L(A (Ω)′b, E) if E is sequentially
complete. If E is a sequential complete DF−space then A (V,E) = At(V,E)
[D1]. For Fréchet spaces however both classes in general do not coincide, in fact
the following characterization was proved in [D1].

Theorem 10.1. Let E be a Fréchet space. Then A (Ω, E) = At(Ω, E) iff E has
the property (DN).

Notice that the space H (V ) of holomorphic functions on a Stein manifold V
has property (DN) iff V has the Liouville property.

The results of [D1, D2] on real analytic parameter dependance can be summa-
rized as follows.

Theorem 10.2. Let Ωk ⊂ Rdk be open sets and let T : A (Ω1) → A (Ω2) be
a surjective continuous linear map. Then T ⊗ idE : A (Ω1, E) → A (Ω2, E) is
surjective in the following cases.

(a) E is a Fréchet quojection.
(b) E is a Fréchet space with property (DN).
(c) E is a complete LB-space such that E′b has property (Ω).

In their fundamental papers [D4, D6] Bonet and Domański treated the ques-
tion of parameter dependance in the context of splitting of short exact sequences
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of PLS−spaces and solved the splitting problem using the connection of func-
tors Proj1 and Ext1. Recall that PLS−spaces are countable projective limits of
LS−spaces. Many of the standard spaces used in analysis are of that type (e.g.
any Fréchet Schwartz space, the spaces of distributions, (ultra)differentiable func-
tions, (ultra)distributions). An informative overview on PLS−spaces is given in
[D46]. An exact sequence of PLS−spaces X,Y, Z with continuous linear mappings
j and q

0→ X
j−→ Y

q−→ Z → 0 (∗)

is called topologically exact if j is a topological isomorphism onto ker(q) and q
is open. We say that Ext1

PLS(Z,X) = 0 if any topologically exact sequence (∗)
splits (for any PLS− space Y ), i.e. if q has a continuous linear right inverse. The
following result is an important extension of the (DN) − (Ω) splitting theory of
Vogt (see [D4, Theorem 5.5] and [D6, Corollary 6.4]).

Theorem 10.3. Let X be a PLS−space. Then Ext1
PLS(F,X) = 0 in the following

cases.
(a) F is a nuclear Fréchet space and (i) or (ii) holds where

(i) F has (DN) and X has (PΩ).

(ii) F has (DN) and X has (PΩ).
(b) F is an LN−space and and (i) or (ii) holds where

(i) F ′ has (Ω) and X has (PA)

(ii) F ′ has (Ω) and X has (PA)

For the classical spaces of analysis and sequence spaces F it is well known which
of the above linear topological invariants hold or not (see e.g. [D4, Sections 5
and 6], in case of quasianalytic Roumieu type classes this is studied in [D5]). To
get results concerning E−valued equations we have to apply Theorem 10.3 to
X := ker(T ) (and F := E′b). Also for ker(T ) corresponding results are known for
several classes of operators. We mention only one special case [D6, Theorem 5.5].

Corollary 10.4. Let Ω ⊂ Rd be open and convex and let E be a nuclear Fréchet
space. Then P (D) : D ′(Ω, E)→ D ′(Ω, E) is surjective if E has property (Ω).

In [D47, D48] Domański pushed the study of the functor Ext1
PLS(F,X) still

a step further allowing F andX to be nuclear PLS−spaces. Instead of formulating
the general result here we point out that in this way distributional solutions for
linear equations depending on a real analytic parameter could be treated obtaining
(see [D47, Corollary 6.4])

Theorem 10.5. Let U be a real analytic non compact connected manifold and let
Ω ⊂ Rd be open. Let T : D ′(Ω)→ D ′(Ω) be a surjective linear operator. Then

T ⊗ idA (U) : D ′(Ω)εA (U)→ D ′(Ω)εA (U)

is surjective iff ker(T ) satisfies the dual interpolation estimate for small θ.
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The condition above can be evaluated for constant coefficient partial differential
operators P (D) on convex sets Ω using Phragmen-Lindelöff type conditions valid
on the characteristic variety of P (see [D47, Section 7]). This implies that P (D) :
D ′(Rd,A (U))→ D ′(Rd,A (U)) is never surjective if P is hypoelliptic and if Ω is
convex. Also, the following surprising inheritance result is obtained in [D47].

Theorem 10.6. Let Ω ⊂ Rd be open and convex and let P (D) : D ′(Ω,A (U))→
D ′(Ω,A (U)) be surjective. Then

(a) P (D) : D ′(Rd,A (U))→ D ′(Rd,A (U)) is surjective.
(b) P (D) : D ′(H,A (U))→ D ′(H,A (U)) is surjective for any halfspace H such

that ∂H is parallel to a tangent hyperplane of ∂Ω (in a point of smoothness).
(c) The principal part Pm(D) : D ′(Ω)→ D ′(Ω) has a right inverse.

As mentioned already, the right inverse problem for partial differential op-
erators has been studied intensively by Meise, Taylor and Vogt. The methods
of [D47] have been transferred to operators on Roumieu type ultradifferentiable
classes E (Ω) (see [D48]). Distributional equations depending on a distributional
parameter can be viewed as augmented operators on distributions. The surjectiv-
ity of these operators has been studied by Kalmes in a series of papers [29, 30, 31].

The E−valued interpolation problem for real analytic functions on domains
ω ⊂ Rd was solved in [D20] for sequentially complete (DF )−spaces E. In fact,
this problem always has a solution iff E has property (A). The scalar case is related
to Eidelheit sequences on A (ω) which were studied in detail in [D84] including
a characterization of Eidelheit sequences on A (ω) (see [D84, Theorem 2.2]).

11. Composition operators on real analytic functions

11.1. The range of composition operators

Composition operators and topological properties of its range have been inten-
sively studied on various spaces of holomorphic functions (see Section 6 and the
books [54, 13]) and on spaces of smooth functions, respectively (see [56, 20, 7, 6]).
Domański, Langenbruch and Goliński [D58, D59, D60, D54] initiated the study of
these operators on real analytic functions. Let M,N be real analytic manifolds
and let ϕ : M → N be real analytic. The corresponding composition operator Cϕ
is defined by

Cϕ : A (N)→ A (M), f → f ◦ ϕ, for f ∈ A (N).

The main problem is to characterize when Cϕ has closed range, is open onto its
range, and is a topological embedding, respectively. Notice that in contrast to the
smooth case the first two questions are not equivalent for real analytic functions.

To state some of the main results, some notation is needed: LetM,N and ϕ as
above and let S ⊂ N . ϕ is called semiproper if for any compact set K ⊂ N there
is a compact set L ⊂M such that ϕ(L) = ϕ(M) ∩K. S has the global extension
property if every real analytic function on S extends to a real analytic functions
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on N . S has the semiglobal extension property if for every relatively compact set
Ω b N there is an open set ∆ with Ω ⊂ ∆ b N such that

∀f ∈ A (S ∩∆)∃g ∈ A (Ω) : f
∣∣
Ω∩S= g

∣∣
Ω∩S .

S is called C−analytic if there is f ∈ A (N) such that S = {a ∈ N | f(a) = 0}.

Theorem 11.1. Let Cϕ : A (N)→ A (M) as above.

(a) Cϕ is a topological embedding iff ϕ is a real analytic semiproper surjection
([D58, Theorem 3.1]).

(b) Cϕ has closed range and is open onto its range iff ϕ is semiproper, ϕ(M) is
C−analytic with global and semiglobal extension property ([D60, Corollary
2.5])

(c) Cϕ is open onto its range iff ϕ is semiproper and ϕ(M) has the semiglobal
extension property ([D54, Theorem 3.2]).

From (c) we obtain for compact manifoldsM that Cϕ has closed range iff Cϕ is
open onto its range iff ϕ is semiproper and ϕ(M) has the global extension property
([D54, Corollary 3.5]).

It is easily seen (see [D58]) that algebra homomorphisms between A (Ω1) and
A (Ω2) are exactly given by composition operators Cϕ with ϕ : Ω2 → Ω1 real
analytic. It follows that A (Ω1) can be topologically embedded as an algebra in
A (Ω2) iff the dimension of Ω2 is at most equal to the dimension of Ω1, and if Ω2

has at least as many components as Ω1. Hence A (Ω1) and A (Ω2) are isomorphic
as topological algebras iff Ω1 and Ω2 are real analytic diffeomorphic (see [D58,
Corollary 2.3]).

11.2. Dynamics and spectrum of composition operators

A few years after Paweł’s joint work with Langenbruch [D58] about composition
operators on the space of real analytic functions began, Domański and Bonet
started to investigate the dynamical behaviour of those operators. We will now
include some results taken from the papers [D8], [D9], [D10] and [D11]. To do
this, we recall that a continuous linear operator T : E → E on a Hausdorff locally
convex space E is called power bounded if the sequence of iterates (Tn)n∈N is
equicontinuous in the space L(E) of linear operators from E to E. The operator
T on E is called mean ergodic if the limits Px := limN→∞

1
N

∑N
n=1 T

nx, x ∈ E,
exist in E. If the convergence is uniform on bounded sets we call T uniformly
mean ergodic. There is a classical theory of mean ergodic operators which goes
back to fundamental work of Yosida and Hille especially in the Banach case; cf.
the book by Krengl [37].

Theorem 11.2. Let Ω be a real analytic manifold (compact or non-compact) and
let ϕ : Ω→ Ω be a real analytic map. The following assertions are equivalent:

(a) Cϕ : A (Ω)→ A (Ω) is power bounded.
(b) Cϕ : A (Ω)→ A (Ω) is uniformly mean ergodic.
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(c) Cϕ : A (Ω)→ A (Ω) is mean ergodic.
(d) For every complex neighbourhood U of Ω there is a complex open neigh-

bourhood V ⊆ U of Ω such that ϕ extends as a holomorphic function to V ,
ϕ(V ) ⊆ V , and ϕ satisfies that for every compact subset K of U there is
a compact subset L b U such that ϕn(K) ⊂ L for n ∈ N.

The equivalent conditions of the theorem were evaluated further in the case
Ω = R. The proof of Theorem 11.2 required a study of the behaviour of orbits of
composition operators Cϕ(f) := f ◦ϕ, ϕ a holomorphic self map, on spaces H(U)
of holomorphic functions defined on an open connected subset U of Cd or, more
generally, of a Stein manifold Ω. This was done in [D8].

An operator T : X → X, X a locally convex space, is called topologically
transitive whenever for each pair of non-empty open sets U , V in X there is n ∈ N
such that Tn(U) ∩ V 6= ∅. A vector x ∈ X is called hypercyclic (or sequentially
hypercyclic) if the x-orbit {Tnx : n ∈ N} of T is dense (or sequentially dense,
respectively) in X. Every sequentially hypercyclic operator on a locally convex
spaceX is hypercylic, and hypercyclic operators are topologically transitive. There
is a huge literature about the dynamical behavior of various linear continuous
operators on Banach, Fréchet and more general locally convex spaces; see the
books by Bayart and Matheron [4] and by Grosse-Erdmann and Peris [22].

A map ϕ : Ω → Ω is said to run away on Ω if for every compact set K b Ω
there is n ∈ N such that ϕn(K) ∩K = ∅. The next two statements are take from
[D10].

Theorem 11.3. Let ϕ : Ω → Ω be an analytic map on an open subset Ω of Rd.
The composition operator Cϕ : A (Ω) → A (Ω) is topologically transitive if and
only if ϕ is injective, ϕ′ is never singular on Ω and ϕ runs away on Ω.

Theorem 11.4. Let ϕ : D → D be holomorphic, ϕ((−1, 1)) ⊂ (−1, 1). Then the
following assertions are equivalent:

(a) Cϕ : A (−1, 1)→ A (−1, 1) is (sequentially) hypercyclic;
(b) Cϕ : A (−1, 1)→ A (−1, 1) is topologically transitive;
(c) ϕ runs away on (−1, 1) and ϕ′ does not vanish on (−1, 1).

The article [D11] gives a full description of eigenvalues and eigenvectors of com-
position operators Cϕ : A (R) → A (R) for a real analytic self map ϕ : R → R as
well as an isomorphic description of corresponding eigenspaces. It also completely
characterizes those ϕ for which Abel’s equation f ◦ ϕ = f + 1 has a real analytic
solution on the real line. This research was continued in the paper [D12] that
includes results about the spectrum of Cϕ : A (R)→ A (R).

Domański and Jasiczak have very recently described in [D56] Toeplitz continu-
ous operators on the space of real analytic functions on the real line (i.e., operators
for which the associated matrix is Toeplitz). They also proved a necessary and suf-
ficient condition for such operators to be Fredholm operators. Their results show
strong similarity to the classical theory of Toeplitz operators on Hardy spaces.
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12. Vector valued hyperfunctions

12.1. The general theory

The sheaf of hyperfunctions was introduced by Sato [52] as a useful tool to study
partial differential equations and their singularities. Hyperfunctions may be de-
fined as (formal) boundary values of holomorphic or harmonic functions, as certain
relative cohomology groups or as the sheaf generated by analytic functionals with
compact support. Vector valued hyperfunctions are used e.g. in theoretical physics
or in the study of the abstract Cauchy problem (discussed in Section 12.2), respec-
tively. One technical problem in the vector valued case is the fact that hyperfunc-
tions do not have a useful topology. Nevertheless, Ion and Kawai [25] succeeded
in defining Fréchet space valued hyperfunctions. In [D61] Domański and Langen-
bruch studied E−valued hyperfunctions for PLS−spaces E and also clarified the
limitations of such a theory. In fact, the existence of E−valued hyperfunctions is
closely related to the solvability of the E−valued Laplace equation, and therefore
to the circle of problems considered by Bonet and Domanski [D6] (see Section 10).
A reasonable theory of E−valued hyperfunctions should produce a flabby sheaf F
on Rd such that the space F0(K) of sections supported in a compact set K coin-
cides with the space L(A (K), E) of E−valued analytic functionals. The following
characterization is proved in [D61, Theorem 8.9].

Theorem 12.1. Let E be an ultrabornological PLS-space. The following are equiv-
alent:

(a) For any 1 6 d < ∞ (equivalently, for some 1 6 d < ∞) there is a flabby
sheaf F on Rd such that F0(K) = L(A (K), E) for any compact set K ⊂ Rd.

(b) E has (PA).

Moreover, any of the above mentioned methods then define the same sheaf of
E−valued hyperfunctions.

A long list of well known ultrabornological (PLS)−spaces having (PA) or
failing (PA) is given in [D61, Corollaries 4.8 and 4.9]. Specifically, the spaces of
distributions or tempered distributions have (PA) while the spaces of real analytic
functions or distributions with compact support do not have (PA).

The ansatz of [D61] has been extended by Kruse [38] to the case of vector
valued Fourier hyperfunctions.

12.2. The abstract Cauchy problem

Hyperfunctions can be used to discuss the abstract Cauchy problem (ACP) under
minimal regularity assumptions. Specifically, let C : F := D(C) ⊂ E → E be
a closed operator with domain D(C) in a locally convex space E. Then

x′(t) = Cx(t); x(0) = x0. (ACP)

There is an abundance of literature on how to give a precise meaning to the
exponential ansatz to solve the ACP, i.e. to study semigroups with decreasing
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regularity (C0−, integrated, distributional and even hyperfunction semigroups, see
e.g. [45, 17, 39, 28, 48, 34, 35, 67]). For operators in Banach spaces, Komatsu [36]
introduced operator valued Laplace hyperfunctions and a corresponding Laplace
transform to find a fundamental solution for (ACP), that is, an L(E,F )−valued
Laplace hyperfunction T such that(

d

dt
− C

)
◦ T = id E ⊗ δ0 and T ◦

(
d

dt
− C

)
= id F ⊗ δ0

where δ0 is Dirac’s distribution. Komatsu showed that the existence of a fun-
damental solution for the ACP is equivalent to the fact that C has resolvents
satisfying certain exponential growth conditions on an open set Ω ⊂ C containing
any cone {z ∈ C | Re (z) > | Im(z)|/C} near ∞. Elementary examples show that
an extension of these results is impossible even for operators on Fréchet spaces if
the standard notions of Laplace transform and resolvent are used. To overcome
this difficulty, spectral valued holomorphic functions and resolvents, and a spec-
tral valued Laplace transform were introduced in [D62, D64]. We shortly recall
these key notions. Let X be a locally convex space given by a projective spectrum
X := (Xγ)γ∈Γ with connecting mappings κγν . Let G := (Gγ)γ∈Γ be directed fam-
ily of open sets Gγ ⊂ C. A family S = (Sγ)γ∈Γ is called a spectral-valued (or
X -valued) holomorphic function (denoted by S : G →X ) if

(i) Sγ : Gγ → Xγ is holomorphic;
(ii) (compatibility) ∀ γ > ν : κγν ◦ Sγ = Sν

∣∣
Gγ
.

Specifically, this is needed in the operator valued case, i.e. where X = Lb(E,F )
with the projective spectrum defined as follows: Let BE be the system of bounded
absolutely convex subsets of E (and corresponding normed spaces EB , B ∈ BE)
and let {‖ · ‖α, α ∈ A} be a system of seminorms defining the topology of F (with
local Banach spaces Fα, α ∈ A). Set X := L (E,F ) := (L(EB , Fα))(B,α)∈(BE ,A).

Let G := (GB,α)(B,α)∈(BE ,A) be a directed family of domains. A holomorphic
L (E,F )-valued function R : G → L (E,F ) is called a spectral-valued resolvent
for a closed operator C : F := D(C) ⊂ E → E (F is endowed with the graph
topology) if the following compatibility conditions are satisfied

(i) ∀α ∈ A∃α̃ ∈ A∀B ∈ BE∀λ ∈ G(B,α̃) : (λ− C)α̃α ◦R(B,α̃)(λ) = iE(B,α)

(ii) ∀B ∈ BF∃B̃ ∈ BE∀α ∈ A∀λ ∈ G(B̃,α) : R(B̃,α)(λ) ◦ (λ− C)B
B̃

= iF(B,α).

This notion considerably extends the notion of resolvents for operators in
Fréchet spaces given by Arikan, Runov and Zahariuta [2], and it can be simplified
if E,F both are (FS)-spaces (and (DFS)-spaces, respectively). Notice that our
notion is also compatible with duality. Many examples of generalized resolvents
for concrete operators are calculated in [D64]. Moreover, a new general operator
valued Laplace hyperfunction and a corresponding Laplace transform (producing
a spectral valued holomorphic function) are introduced in [D62]. The main result
in [D64] now reads as follows:
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Theorem 12.2. Let E be a complete bornological space and let C : F := D(C) ⊆
E → E be a closed operator. Then the (ACP) has a fundamental solution in the
sense of Laplace hyperfunctions if and only if C admits a spectral valued resolvent
R : G → L (E,F ) such that

∀ B ∈ BE , α ∈ A,K > 1 ∃ k = k(B,α,K) :

G(B,α) ⊇ VK,k := {z ∈ C : Re z > k + | Im z|/K}

and
sup

λ∈VK,k
‖R(B,α)(λ)‖L(EB ,Fα) exp (−Re λ/K) <∞.

13. Hadamard and Euler type operators

Let E(Ω) be a locally convex space of generalized functions on an open set Ω ⊂ Rd
containing the space of polynomials as a dense subspace. Then a linear and contin-
uous operatorH : E(Ω)→ E(Ω) is called a Hadamard type operator (or Hadamard
multiplier) if all monomials are eigenvectors, that is, if H(ξα)(x) = mαx

α for
some sequence (mα)α∈Nd called the multiplier sequence of H. Hadamard opera-
tors go back to the work of Hadamard [23], and have been intensively studied on
holomorphic functions (see [9, 10] and the survey paper [51]) and on hyperfunc-
tions [26, 27] and, recently, on smooth functions and distributions [66, 65, 59, 60].
Though Hadamard operators are uniquely determined by their multiplier sequence
they are not just diagonal operators since the monomials in general are not a basis
in E(Ω). In a series of papers [D63, D65, D66, D72, D68, D67, D71, D70] Do-
mański, Langenbruch and Vogt developed a theory of Hadamard operators on real
analytic functions and smooth functions considering three basic problems: Firstly,
find a representation theorem giving a general formula generating any Hadamard
operator. Secondly, characterize multiplier sequences and, thirdly, characterize
surjective Hadamard operators.

To begin with, Hadamard operators are closely connected to multiplicative
convolution (see Theorem 13.1 below). Let xy := (x1y1, . . . , xdyd) denote the co-
ordinatewise multiplication on Rd and let V (Ω) := {x ∈ Rd | xΩ ⊂ Ω} denote the
dilation set where Ω ⊂ Rd always is an open set in this section. Let E(V (Ω))′

denote the functionals on E(Rd) with support in V (Ω). The following Represen-
tation Theorem for the space ME(Ω) of Hadamard operators on E(Ω) is proved
in [D65] (for d = 1) and in [D72] in the analytic case (and in [66] in the smooth
case).

Theorem 13.1. Let E(Ω) = A (Ω) or E(Ω) = C∞(Ω). The map

B : E(V (Ω))′b →ME(Ω) ⊂ Lb(E(Ω)),

B(T )(g)(y) := 〈g(y·), T 〉, T ∈ E(V (Ω))′, g ∈ E(Ω),

is a bijective continuous linear linear map and the multiplier sequence (mα)α∈Nd
of B(T ) is equal to the sequence of moments of the functional T on E(Ω), i.e.

mα = 〈xα, T 〉 for any α ∈ Nd. (∗)
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The Represetation Theorem means that Hadamard operators are just multi-
plicative convolution operators with a functional supported in V (Ω). Specifically,
the following classes of continuous linear operators are Hadamard operators:
(a) Euler operators: P (θ) :=

∑
|β|6m aβθ

β where θ = (θ1, . . . , θd) and θj =
xj∂j ;

(b) integral operators: M(g)(x) :=
∫

[0,1]d
g(xy)dy (for d = 1 this is Hadamard’s

operator [23]);
(c) dilation operators: Ma(g)(x) := g(ax) for a > 0;

Using the Cauchy transform (and hyperfunction theory) a representation of
Hadamard multipliers by an algebra of holomorphic functions can be given with
Hadamard multiplication of the Laurent coefficients (see [D72, Section 3] and
[66]). Besides the strong topology τb there are two other natural topologies on
A (V (Ω))′, and [D72] contains a detailed discussion of the question if and when
these topologies coincide with the one induced from Lb(A (Ω)) via B. Specifically,
B ⊂ A (V (Ω))′b is bounded iff B(B) ⊂MA (Ω) is bounded.

13.1. Surjectivity of Hadamard operators on real analytic functions

By (∗) in Theorem 13.1 multiplier sequences for Hadamard operators on A (Ω)
are moment sequences of analytic functionals, and these can be characterized by
holomorphic interpolation (see Theorem 13.2 below). An open set ω ⊂ C is called
an asymptotic halfspace if 0 ∈ ω and if ω =

⋃
n(κn + ωKn) where Kn → ∞ and

ωK := {z ∈ C | |y| < Kx}. Asymptotic halfspaces in Cd are the cartesian product
ωd of an asymptotic halfspace ω ⊂ C. For a ∈ Rd let Qa =

∏d
k=1[−eak , eak ] and

Ha(ωd) := {f ∈ H(ωd) | ∀1 6 j ∈ N : sup
z∈Γj

|f(z)|e−〈a+1/j,Re (z)〉 <∞}

where Γj is an exhaustion of ωd by closures of asymptotic half spaces. We now
have the following characterization of moment sequences of analytic functionals
by interpolation (see [D68, Th. 6.1, Cor. 6.4]).

Theorem 13.2. There is a surjective continuous linear mapping I : Ha(ωd)2d →
A (Qa)′b such that

〈I((fσ)σ∈{0,1}d), xα〉 = fσ(α) for α ∈ Ndσ.

The mapping I is not injective. However, the kernel of I can be described
rather precisely since I is the tensor product of the corresponding mappings in one
variable (see [D68]). This leads to large sets where the functions (fσ)σ ∈ ker(I) are
small. As a consequence we have the following description of multiplier projections,
i.e. Hadamard multipliers which are projections (see [D66] (for d = 1) and [D69]).

Theorem 13.3. The following assertions are equivalent.

(a) There is a Hadamard multiplier projection M : A (Rd)→ A (Rd) with mul-
tiplier sequence (mα)α∈Nd and I := {α ∈ Nd | mα = 1}.
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(b) For any real analytic function f ∈ A (Rd) with Taylor expansion f(z) =∑
α∈Nd fαz

α at 0, also the function fI with Taylor expansion fI(z) =∑
α∈I fαz

α at 0, extends to a real analytic function on Rd.
(c) The set I belongs to the set algebra in Nd generated by the products of sets

which are either finite subsets of N or the set of even numbers 2N.

Using the above Interpolation Theorem and the description of the kernel of I,
the surjectivity of Euler operators P (θ) has been discussed in detail in [D68] (in-
cluding a perturbation result for surjectivity). It turns out that surjectivity is
closely related to the so called half plane property. We can only mention one
typical result here.

Theorem 13.4. The following are equivalent for a polynomial P .
(a) Pm(θ) is invertible on A0(Rd) := {f ∈ A (Rd) | f(0) = 0}.
(b) Pm satisfies the so-called closed halfplane property, i.e.,

Pm(z) 6= 0 if 0 6= x and x > 0.

There is an extensive literature on the halfplane property partly motivated by
image processing (see the survey paper [12]).

The above results can be applied to operators built from operators conjugate
to θj . This class of operators (far more general than Euler type partial differential
operators) has been characterized in [D67].

13.2. Surjectivity of Hadamard operators on smooth functions

In [D70] and [D71] Domański and Langenbruch studied surjectivity of Hadamard
operators on smooth functions. It turns out that the methods as well as the
results are completely different from those for real analytic functions sketched in
the previous section. First notice that range of P (θ) is contained in

C∞I(P )(Ω) := {f ∈ C∞(Ω) | ∀∅ 6= J ⊂ D ∀α ∈ NJ :

P (α, ξD\J) ≡ 0⇒ f (α)(0J , xD\J) = 0 if (0J , xD\J) ∈ Ω}.

The main results are the following:

Theorem 13.5. Any Euler operator 0 6= P (θ) : C∞(Rd) → C∞I(P )(R
d) is surjec-

tive.

This holds for C∞(Ω) instead of C∞(Rd) if and only if Ω is a so called m-convex
set.

The proof relies on a reduction and induction procedure using Euler operators
on certain Whitney jets and reducing the problem to the surjectivity of P (θ) on
the space

E ([0,∞[d) := {f ∈ C∞(Rd) | supp(f) ⊂ [0,∞[d}.
Notice that this makes no sense in the case of real analytic functions. A suit-
ably defined Mellin transform identifies E ([0,∞[d)′b with a corresponding space
of holomorphic germs HM transforming the action of P (θ) to the multiplication
by P (z).
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Theorem 13.6. The Euler operator P (θ) : C∞(Ω)→ C∞I(P )(Ω) is surjective iff
Ω is P (θ)-convex (for supports), i.e.

∀K ⊂⊂ Ω ∀k ∈ N ∃K̃ ⊂⊂ Ω ∀T ∈ Ck
I(P )(Ω)′ :

suppI(P )(T ) ⊂ K̃ if supp(tP (θ)T ) ⊂ K.

Here suppI(P )(T ) is the support of T in the sense of C∞I(P )(Ω)′ which can be
defined since C∞I(P )(Ω) is a module over an algebra containing sufficiently many
resolutions of the identity.

Though Theorem 13.6 resembles very much the constant coefficient case
(see [24]) the consequences differ very much: if P (θ) : C∞(Ωi)→ C∞I(P )(Ωi), i ∈ I,
is surjective for any i ∈ I then P (θ) : C∞(Ω) → C∞I(P )(Ω) need not be surjec-
tive for Ω := (∩i∈IΩi)◦ or Ω := (lim infi∈I Ωi)

◦, moreover, in general there is no
minimal open set Ω̃ ⊃ Ω such that P (θ) : C∞(Ω̃)→ C∞I(P )(Ω̃) is surjective. Also,
surjectivity depends on lower order terms for operators in two variables.

Finally, the kernel of Euler type operators is studied in [D71, Section 11] show-
ing that there are many operators with trivial kernel.

Theorem 13.7. The Euler operator P (θ) : C∞(Rd) → C∞(Rd) is bijective iff
there is k ∈ N such that

P (z) 6= 0 if z ∈ (C>k)d

where C>k := {0, . . . , k − 1} ∪ {z ∈ C | Re (z) > k} ⊃ N.

For general Hadamard operators on C∞(Rd) surjectivity is connected to some
new division property and a restrictive slowly decreasing condition (see [D70]).
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