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WEIGHTED REAL EGYPTIAN NUMBERS
MELVYN B. NATHANSON

Abstract: Let A = (A1,...,Ay) be a sequence of nonempty finite sets of positive real num-
bers, and let B = (B1,...,Bn) be a sequence of infinite discrete sets of positive real numbers.
A weighted real Egyptian number with numerators A and denominators B is a real number ¢
that can be represented in the form
n

a;

b;

Cc =
i=1
with a; € A; and b; € B; for ¢ € {1,...,n}. In this paper, classical results of Sierpinski for
Egyptian fractions are extended to the set of weighted real Egyptian numbers.
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1. Weighted Egyptian numbers

Let N ={1,2,3,...} denote the set of positive integers.
An Egyptian fraction of length n is a rational number that can be represented
as the sum of n pairwise distinct unit fractions, that is, a rational number of the

form

)

o bi
for some n-tuple (b1, ...,b,) of pairwise distinct positive integers. Deleting the
requirement that the denominators be pairwise distinct, we define an Egyptian
number of length n as a rational number that is the sum of n unit fractions, that
is, a rational number of the form

>

prlll

for some n-tuple (by,...,by) of positive integers. Because 1/b = 1/2b + 1/2b, an
Egyptian number of length at most n is also an Egyptian number of length n.
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For numbers in the open interval (0, 1), repeated use of the elementary identities

2 _1_ .t 1
2k k  k+1 k(k+1)
and
2 1 1
+

2%+1 k+1  (k+1)(2k+1)

allows us to write an Egyptian number of length n as an Egyptian fraction of length
n, and also to write an Egyptian fraction of length n as an Egyptian fraction of
length n' for every n’ > n.

Richard K. Guy’s book Unsolved Problems in Number Theory [1, pp. 252-
262| contains an ample bibliography and many open questions about Egyptian
fractions.

There is a natural extension of Egyptian numbers from the the set of positive
rational numbers to the set of positive real numbers. Let A be a finite set of positive
real numbers, and let B be an infinite discrete set of positive real numbers. (The
set B is discrete if BN X is finite for every bounded set X.) We consider “unit
fractions” of the form 1/b with b € B, and finite sums of these unit fractions with
weights a € A. This gives real numbers of the form Y . | a;/b;.

More generally, let A = (A44,...,A,) be a sequence of nonempty finite sets of
positive real numbers, and let B = (B,..., B,) be a sequence of infinite discrete
sets of positive real numbers. A weighted real Egyptian number with numerators
A and denominators B is a real number ¢ that can be represented in the form

n

N %
Ly,
=1
for some
(a1, yp, by, .. by) € Ay X - X Ay X By X -+ X By,
Let
E(A,B) = {Z?:aieAi and b; € B; forie{l,...,n}}
i=1 °

be the set of all weighted real Egyptian numbers with numerators A and denomi-
nators B. The set £(A, B) is a set of positive real numbers.
For all ¢ € R, we define the representation function

TA’B(C)

card((al,...,ambl,...,bn)GAl><~-><Aanl><~o><Bn:Z(;c>.
i=1

The purpose of this note is to show that the topological results about Egyp-
tian numbers in Sierpinski’s classic paper [2], “Sur les decompositions de nombres
rationnels en fractions primaires” extend to weighted Egyptian numbers.
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Note that an Egyptian number of length n is a weighted real Egyptian number
with numerators A = ({1},...,{1}) and denominators B = (N,...,N). Con-
versely, for all a,b € N, we have

e_Ll_....,.1
b b b’
~——

a summands

Thus, every weighted real Egyptian number with numerators A = (Ay,...,A,)
such that A; is a finite set of positive integers for ¢ € {1,...,n}, and with denom-
inators B = (N,...,N), is an Egyptian number of length at most Y. | max(4;).

Theorem 1. Let Aq,..., A, be nonempty finite sets of positive real numbers, and
let By, ..., B, be infinite discrete sets of positive real numbers. Let
((am,h”-7am,n7bm,1a~~-7bm,n))m€N (1)

be an infinite sequence of pairwise distinct 2n-tuples in Ay X -+ -X Ap X By XX By,
that is,

(am,la-- -7am,nabm,1;-~-abm,n) = (am’,la---7am’,n;bm’717~-~7bm’,n)

if and only if m =m’. For m € N, let

n

cn=Y e £(A,B).

; m,i
=1 ’

The sequence (cm)meN contains a strictly decreasing subsequence.

Equivalently, there exists a strictly increasing sequence (mj);i

integers such that

, of positive
Cm; > Cmyypq >0
for all j € N.
Proof. For i € {1,2,...,n}, let
By ={bmi:m=1,2,3,...}

where by, ; is the (n 4 4)-th coordinate of the mth 2n-tuple in the sequence (1).
We have By ; C B; and

(am,17~”aam,nybm,lv--wbm,n) S Al X X An X BO,l X X BO,n

for all m € N. If the set By, is finite for all ¢ = 1,...,n, then the set A; X
-+ X Ap X Bg1 X -+ %X By, is finite. This implies that the sequence (1) is finite,
which is absurd. Therefore, By ; is infinite for some i € {1,...,n}. Without loss
of generality, we can assume that ¢ = 1 and By ; is infinite.
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Because By is contained in the discrete set By, there is a strictly increasing
sequence of positive integers (m;1)52, such that

lim bmj L1 = 00.

Jj—o0o e
Let k € {1,...,n}, and let (m; )32, be a strictly increasing sequence of positive
integers such that

jhfolo b i = 00
forie{1,...,k}. f k<n-—1,then, fori e {k+1,k+2,...,n}, we consider the
set

By, = {bmj,k,i 1 j € N}

)

Suppose that the set By ; is infinite for some i € {k + 1,k +2,...,n}. Without
loss of generality, we can assume that ¢ = k + 1. Because By k41 is an infinite
subset of the discrete set By.y1, the sequence (m; )52, contains a strictly increasing
subsequence (1 x+1)32; such that

jll)lgo bmj,k+1;k+1 = O0.
It follows that

lim b
j—o0

My k1,0 — OO

for all ¢ € {1,2,...,k,k 4+ 1}. Continuing inductively, we obtain an integer

s € {1,2,...,n} and a strictly increasing sequence of positive integers (m;, )52,
such that
hHl bmj ai — 0 (2)
Jj—o0 >

for all i € {1,2,...,s}, and the sets
Bsﬂ' = {bmj,syi ] c N}

are finite for all i € {s+1,...,n}.
The sets Ai,...,A, and B s41,...,Bsy are finite. Therefore, the set of
(2n — s)-tuples
Ay X X Ap X Bssq41 X -+ X Bs

is finite. By the pigeonhole principle, there exists a (2n — s)-tuple
(af,...,ah,bi 1, b5) € Ay X -+ X Ay X By g1 X -+ X By,

and a strictly increasing subsequence (m; s+1)§2; of the sequence (m; )32, such
that

_ * * * *
(amj75+171, e Oy o Omg a5 1 - - '7bmj,s+1,n) = (al, ce by, .,bn)
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for all j € N. It follows that, for all j € N,

S

Cmjoir =D 5+ Z = Zbai;*cé

i=1 M s+1,0 i=s+1 z =1 Mij,s+1,7
where
n *
a.:
ag— v
o= g b >0
i=s+1 ¢

Note that ¢ > 0if s <n and ¢ =0if s =n.

159

The limit condition (2) implies that there exists a strictly increasing sequence

of positive integers (m; s42)72; such that

b

M et2yi < bmj+1.s+2,i
foralli e {1,...,s} and for all j € N. Let

my = Mj,s42
for j € N. We have

bmj K < bm]url K

for all i € {1,...,s}, and so

Cm; =

+c()>zb +¢h = Cm;, >0

i=1 b'HLj,i mj+1,

for all 7 € N. This completes the proof.

Corollary 1. If A= (A4,...,A,) is a sequence of nonempty finite sets of positive
real numbers and B = (By, ..., By) is a sequence of infinite discrete sets of positive

real numbers, then
T AB (C) < o0

for all c € R.

Proof. Because £(A, B) is a set of positive real numbers, we have r4 5(c) = 0 for

all ¢ <0.

If r 4 g(c) = oo for some ¢ > 0, then there exists an infinite sequence of pairwise
distinct 2n-tuples of the form (1) such that ¢, = ¢ for all m € N, and the constant
sequence (¢, )meN contains no strictly decreasing subsequence. This is impossible

by Theorem 1.

Corollary 2. For every ¢ € R there exists 6 = 6(c) > 0 such that (¢ — d,¢) N

E(A,B) = 0.
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Proof. Let ¢ € R. If, for every positive integer m, there exists
1
em € lc——,c)NE(A,B),
m

then the sequence (¢,;)men contains a strictly increasing subsequence, and this
subsequence contains no strictly decreasing subsequence. This is impossible by
Theorem 1. Therefore, there exists m € N such that § = 1/m > 0 satisfies the
condition (¢ — d,¢) NE(A, B) = 0. [ ]

Corollary 3. The set £(A, B) is nowhere dense.

Proof. Let £(A, B) denote the closure of £(A, B), and let U be a nonempty open
set in R. If UNE(A, B) # 0, then there exists ¢ € U N E(A, B). By Corollary 2,
there exists § > 0 such that (¢c—d,¢)NE(A,B) =0, and so U € E(A, B). It follows
that the set £(A, B) of weighted real Egyptian numbers is nowhere dense. |

2. Signed weighted Egyptian numbers

Notation. Let ji,...,js € N. We write

(J1,---,Js) = (1,...,n}

fl<ji<jo<---<js<n. Forse{l,...,n—1} and

J:(jla'--7js)j(1,...,n}

let
L=1,....,n)\J=1,...,0n_s)

be the strictly increasing (n — s)-tuple obtained by deleting the integers j1,. .., js
from (1,...,n). To the n-tuple of sets A = (A, As,..., A,), we associate the
s-tuple of sets

Ay =(4;,,4;,,...,4,,).
and the (n — s)-tuple of sets

AL = (14(17/1527 ey Agnis) .
For example, the 2-tuple
J=(3,5)=(1,2,3,4,5,6)

and the 4-tuple
L=(1,2,3,4,5,6)\ (3,5) = (1,2,4,6)

determine the set sequences Ay = (43, As) and Ay = (Aq, As, Ay, Ag).
Let A = (4;1,...,4,) be a sequence of nonempty finite sets of positive real
numbers, and let B = (B, ..., B,) be a sequence of infinite discrete sets of positive
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real numbers. A signed weighted real Egyptian number with numerators A and
denominators B is a real number ¢ that can be represented in the form

n

-5 0

i=1

for some 3n-tuple

(a1, yQny b1y ey by €1, ey ER) (4)
€A X+ x A, X By x---x By, x{1,-1}".

Let

Ei(A, B) _ {Z 5;;%
i=1

be the set of all signed weighted Egyptian numbers with numerators A and denom-
inators B. For all ¢ € R, the representation function rjﬁ(c) counts the number
of 3n-tuples of the form (4) that satisfy equation (3). We have rj’B(c) > 1if and
only if ¢ € £%(A, B).

The proofs in this section are simple modifications of proofs in [2].

ta; € A;, b € B;, and g; € {1,-1} forie{l,...,n}}

Theorem 2. Let A= (Ay,...,A,) be a sequence of nonempty finite sets of posi-
tive real numbers, and let B = (B1,...,By) be a sequence of infinite discrete sets
of positive real numbers. If n =1, then

riB(c) < 00

forallce R. If n =2, then
er(c) < 00

for all c € R\ {0}, but it is possible that riB(O) = o0.
Letn > 3. Let s € {2,3,...,n—1), J = (j1,-..,Js) 2 (1,...,n), and L =
(1,...,n)\ J. ]fri],BJ(O) = oo, then ri’B(c) =00 for all c € E¥(Ar,BL).

Proof. If n =1, A= (A1), and B = (B1), then

gi(A,B) = {Elbal NS Al, b1 € By, and g1 € {1,—1}}
1

is a set of nonzero numbers, and so er(O) =0.

Let ¢ € R\ {0}. If rj’B(c) > 1, then ¢ = €1a1 /by for some a; € Ay, by €
Bi,e; € {1,—1}. If ¢ > 0, then e; = 1. If ¢ < 0, then &y = —1. For each a; € A;
there is at most one b; € By such that ¢ = e1a;1/by, and so TiB(c) < A1) < o0

Let n = 2. Suppose that A = (A, A2) and B = (B1,Bs). Let A = A1 N Ay
and B = By N By. If A is nonempty and B is infinite, then for all a € A and b € B
we have

(a,a,b,b,1,—1) € A} x Ay x By x By x {1,-1}?
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and

andsorAB( ) = 0.
Let ¢ € R\ {0}. Let a* = max(A; U Ay). If

o £1a1 E2a2
c= b by (5)

is a representation of ¢ in £¥ (A, B), then

M<—+—<f—Lﬂ><f&L—
b1 bg bl b2 IIIlIl(bl7 bg)

and so .
0< min(bl,bg) < %
c

Because the sets By and By are discrete, the sets

E:{beB b, |}

are finite for i = 1 and 2, and so the set of fractions

2
£ia; -
F = U { ;) ‘ L a; EAi,bZ‘ € B;,g; € {1,—1}}
=1

)

is also finite. Every representation of ¢ of the form (5) must include at least one
fraction in the set F, and this fraction uniquely determines the other fraction in
the representation (5). Therefore, riB(C) < oo for ¢ # 0.

The statement for n > 3 follows immediately from the observation that if
J=X(1,...,n)and L=(1,...,n)\ J, then

EX(As,By) + EX(AL, BL) = E7(A, B).
This completes the proof. |

Theorem 3. Let A= (A;,...,A4,) be a sequence of nonempty finite sets of posi-
tive real numbers, and let B = (B1,...,B,) be a sequence of infinite discrete sets
of positive real numbers. Let

n—2
B=J U &85

s=1 Js=(j1,--,Js)
<(1,...,n

Forallce R\ J(A,B),
rj’B(c) < 0.
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Proof. The sets Ay,..., A, are nonempty and finite. Let

Let c € R\ {0}. If

is a representation of ¢ in Ei(A, B), then

na
el < Z b; S min{by,...,b,}

=1
and so .
na
min{by,..., b} < ER
c
Because the sets By, ..., B, are discrete, the sets
B={nemin <)

are finite for s = 1,...,n, and so the set of fractions

F = U {E;)(lz ta; € Al,bl S Bi,Ei c {1,—1}}
i=1 *

is also finite. Every representation of ¢ in £*(A, B) must include at least one
fraction in the set F. By the pigeonhole principle, if ri 5(¢) = 0o, then there must
exist j1 € {1,...,n} such that the fraction ;, a;, /b;, € F occurs in infinitely many
representations. Let j; be the smallest integer in {1, ..., n} with this property, and
let J; = (j1). Let Ly be the (n — 1)-tuple obtained by deleting j; from (1,...,n),
that is,

Ll = (éla---aén—l) = (1,,7’1)\Jl

We obtain
c1=c¢C— €jga]1 c 5:‘:(./4L1,BL )
J1
and
i@
riLl’BLl (c1) = erlyBLl (c _ jl;- h) = 0.
J1
If ¢y =0, th
“ o 831a31 +
= b e EF(Ay,By,) CI(A,B).

J1
If ¢; # 0, then we repeat this procedure. Because riL By (c1) = 00, we obtain
12 1
j2 € {1,...,n} with jo > j; and a fraction ¢j,a;,/b;, € F that occurs in infinitely
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many representations of ¢;. Let jo be the smallest integer in {j; + 1,...,n} with
this property. Let Lo be the (n — 2)-tuple obtained by deleting j; and js from
(1,...,n), that is, Jo = (j1,72) and Lo = (1,...,n) \ Jo. Let

€5,05 €,G5, | €j,0;
C2 =C — jb2 = C( jl; = + ij ]2) Ggi(ALgaBLz)'

J2 j1 2
We have proved that
+ _ .E [ €% €j2 g _
’”ALQ,BLQ(@) =TAL, B, (C < b T Th =0
J1 J2

If ¢ = 0, then

c= T4 SRR ¢ £2(Ay,, By,) € T(AB).
J1 J2

If ¢5 # 0, then we repeat this procedure.
After s iterations, we obtain the s-tuple

']S = (.jl)"'ajs) j (17"'7”)’
the (n — s)-tuple
Li=(1,...,0)\ (j1,---,7s),

and fractions €j,a;,/b;, for i = 1,..., s such that the weighted Egyptian number

Cs :c—z% € 5i(ALS,BLS)

i=1 i
satisfies
+ _
TAL. Bp. (cs) = o0.

By Theorem 2, this is impossible if n—s = 2 and ¢s # 0. Therefore, if rilg(c) = 00,
then ¢; = 0 for some s € {1,...,n — 2} and so

c e E5(Ay,,B,,) CI(A B).
This completes the proof. -

Lemma 1. Let A be a nonempty finite set of positive real numbers and let B be
an infinite discrete set of positive real numbers. If X is a nowhere dense set of
real numbers, then

ga

Y:{x-i- b

cxeX,ac Abe B, andse{l,—l}}

is also a nowhere dense set of real numbers.
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Proof. Let a* = max(A). Because X is nowhere dense, for every open interval
(u’,v") there is a nonempty subinterval (u,v) contained in in (u',v’) such that
XN (u,v) =0. Let 0 < § < (v—u)/2 and let

y € (u+d,v—19)
for some ca

y:x—F?GY.
Ife =1and y =z + a/b, then

r<y<v—40<v

and so x < u. Therefore,

a
x<u<u+6<y:x+g

and so 6 < a/b. If e = —1 and y = x — a/b, then
u<ut+d<y<cz

and so x > v. Therefore,

a
x—gzy<v—(5<v<x

and 0 < a/b. In both cases, b < a/d < a*/§. Because A is finite and B is discrete,

the set

K:{Eg‘:aeA,beB,se{L_u, andbg‘g}

is finite. We have
Z={z+r:zeXandre K }=X+KCY

and
YNu+dv—98)=2Zn(u+d,v—9).

The set Z is the union of a finite number of translates of the nowhere dense set X.
Because a translate of a nowhere dense set is nowhere dense, and because a finite
union of nowhere dense sets is nowhere dense, it follows that Z is nowhere dense.
Therefore, the interval (u 4+ 0, v — §) contains a nonempty open subinterval that is
disjoint from Y. This completes the proof. |

Theorem 4. Let A= (A1,...,A4,) be a sequence of nonempty finite sets of posi-
tive real numbers, and let B = (B1,...,By) be a sequence of infinite discrete sets
of positive real numbers. The set E¥ (A, B) is nowhere dense.

Proof. The proof is by induction on n. If n = 1, then A = (A1), B = (By), the
set £ (A, B) is discrete, and a discrete set is nowhere dense. The inductive step
follows immediately from Lemma 1. |
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