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ANDREWS’ SINGULAR OVERPARTITIONS WITH ODD PARTS
M.S. MAHADEVA NAIKA, S. SHIVAPRASADA NAYAKA

Abstract: Recently singular overpartitions was defined and studied by G. E. Andrews. He
showed that such partitions can be enumerated by 65’1-(11), the number of overpartitions of n
such that no part is divisible by § and only parts = +¢ (mod §) may be overlined. In this
paper, we establish several infinite families of congruences @M(n), the number of singular
overpartitions of n into odd parts such that no part is divisible by § and only parts = i (mod §)
may be overlined. For example, for all n > 0 and @ > 0, CO3,1(4-3*T3n+7-3212) =0 (mod 8).
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1. Introduction

G.E. Andrews [2] defined combinatorial objects which he called singular overparti-
tions and proved that these singular overpartitions which depends on two param-
eters § and i can be enumerated by the function Cs;(n) which gives the number
of overpartitions of n in which no part is divisible by § and parts = i (mod 9)
may be overlined. The generating function of Cs;(n) is
i@,i(n)q” _ (qé;q‘s)oo(—ql;(.]‘s)oo(—qé’z;qé)oo' (1)
= OIS

Throughout the paper, we use the standard g-series notation, and fj is defined as

n

fr= ("0 = lim JT(1-q™).
m=1

For |ab| < 1, Ramanujan’s general theta function f (a,b) is defined as

flap)= > qri/2pnn=n/z, (1.2)

n—=—oo
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Using Jacobi’s triple product identity [4, Entry 19, p. 35|, the equation (1.2)
becomes

f (CL, b) = (—CL, ab)oo (_b7 ab)oo (&b, ab)oo
The most important special cases of f (a,b) are

5

¢ (q):=f(q —1+2Zq = (-6:0")%(@% P fT22 (1.3)
1J4
¥ (q) = f (a9 ; +1) 7@ ) o (1.4)
and -
) =fa-) =Y ()¢ T =(@0e=hHh  (15)

Andrews [2] has found the following congruence results, for each integer n > 0,
6371(971 + 3) =0 (mod 3), (16)
6371(977/ + 6) =0 (mod 3)

Recently S-C. Chen, M.D. Hirschhorn and J.A. Sellers [5] have found some
infinite families of congruences modulo 3 for C'3 1(n), Cs,1(n), Cs 2(n) and modulo
powers of 2 for C'4 1(n). For example, for all k,m > 0,

C3.1(2%(4m +3)) =0 (mod 3),
C3.1(4%(16m +6)) = 0 (mod 3). (1.9)

The authors Z. Ahmed and N.D. Baruah [1] have found some new congru-
ences for C's 1(n) modulo 18 and 36 and Cs2(n), Ci2,.4(n), Caas(n) and Cus 16(n)
modulo 2. For example, for all n > 0,

C31(48n +12) =0 (mod 18), (1.10)
C3.1(24n +22) = 0 (mod 36). (1.11)

Chen [6] has also found some new congruences for Cs1(n), C41(n) modulo
powers of 2. For example, for all m > 0,

C31(6m+5) =0 (mod 16). (1.12)

0.X.M. Yao [11] has proved some congruences modulo 16, 32, 14 for C31(n).
For example, for all n > 0,

C3.1(18n + 15) = 0 (mod 32). (1.13)

M.S. Mahadeva Naika and D.S. Gireesh [9] have found some modulo 6, 12, 16,
18, 24, 48, 72 for C'3 1(n). For example, for all n > 0,

C3.1(24n + 14) = 0 (mod 32). (1.14)
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Motivated by the above works, in this paper, we defined the function COs ;(n),
the number of singular overpartitions of n into odd parts such that no part is
divisible by 4 and only parts = +i (mod §) may be overlined. The generating
function of COs,(n) is given by

i@w(”)qnz (4742 oo (=053 )ou (051 0) o0 (1.15)

(45 4) 00 (=% %) o (=207 ¢20) o

where 0 < 7 < 6.

2. Preliminaries

We list a few dissection formulas to prove our main results.

Lemma 2.1 ([4, Entry 25 p. 40]). The following 2-dissection formulas hold:

1 fs fifis
BB R @1)
and 14 f2f4
1
7 1241 1 T4 4108' (2.2)
fi 2 Js 2
Lemma 2.2 ([10]). The following 2-dissection formula holds:
2 4p 2 2
B _ il o Fililsta 03
i f5fsfau I3 fi2
Lemma 2.3 (|3, Lemma 2.6]). The following 3-dissection formula holds:
fo fofls | 813 fse 2 Je 1836
- = +q + 2¢q . 2.4
fi o 3% f3fis f3 24
Lemma 2.4. The following 2-dissection formulas hold:
1 [ f3 13
_ +q 2.5
ih  BRiE TR R 25)

f2f8f12_ fifef3s
I =g R (2.6)

Equation (2.5) was proved by Baruah and K.K. Ojah [3]. Replace ¢ by —¢ in

(2.5) and using the fact that (—¢; —¢)oo = fff we get (2.6).
Lemma 2.5 ([8]). The following 3-dissection formula holds:
fofs 7 fafis
— . 2.7
fife = of2 —qfofis fsf{f (2.7)
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Lemma 2.6 (|7, Theorem 2.1]). For any odd prime p,

p=3
2. m24m p24+(Em+1)p  p2—(2m+D)p p2—1 2
= ¢ f<q 2, 7 >+q8¢(qp)~

m=0

2 2
Furthermore, ™ 2+m % (mod p) for 0 < m < %.

Lemma 2.7 ([7, Theorem 2.2]). For any prime p > 5,

f1 _ Z (—l)kq3k22+kf (_q3p2+(gk+1)p’_q3:)2(gk+1)p>

k=—Egt
k#(£p—1)/6

tp—1 p2-1

+(=1)" g fpe.
Furthermore, for —(p —1)/2< k< (p—1)/2 and k # (£p —1)/6,

32 +k , p?—1
5 F gy (modp)

3. Congruences for CO3 1(n)

Theorem 3.1. For each integer n = 0,
CO31(12n+7)=0 (mod 8),
CO31(24n+19) =0 (mod 16),
CO31(24n+7) =¢(q)fs (mod 16).
Proof. Setting 6 =3 and ¢ =1 in (1.15), we find that

o) n_ (%0933 6% (6" 4")
2003’1@)(1 C(0%09)% (¢ M (@)

Substituting (2.3) into (3.4), we obtain

© n_ fffng fsf2a
2 OO = e M g

which yields, for each n > 0,

f4f12
f1f3

20031 27’L+1)
n=0

Employing (2.4) into (3.6), we have

f12f18 2 f6f9f12f36 4 2f6f12f18f36
Ppip T g o

Z @371(271 —+ 1)(]

n=0

(2.8)

(2.9)

(3.5)

(3.6)

(3.7)
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Extracting the terms involving ¢ in the above equation and replacing ¢> by g,
we get

fifs

ng,l(@n + 1)6]” =2

. 3.8
2 [ (9
By the binomial theorem, it is easy to see that for positive integers k and m,
m=f2™  (mod 2) (3.9)
and
Zm = fim - (mod 4). (3.10)
Using (3.10) in (3.8), we obtain
> COs1(6n+1)¢" =2f; (mod 8). (3.11)

n=0

Congruences (3.1) follows by extracting the terms involving ¢>**! from (3.11).
Collecting the terms involving ¢*" from (3.11) and replacing ¢ by ¢, we get

> COs1(12n+1) =2f7 (mod 8). (3.12)
n=0
Substituting (2.2) into (3.8), we find that
o 16 4 4 £4 ¢4
> COs1(6n+1)q" =2 f} fﬁg + 8qf41{:6 J;S , (3.13)
7m0 2 fs i 2 Ji2
which implies that,
o0 4. £4 ¢4
> COs1(12n+T)q" = 8f2£3];4. (3.14)
n=0 fl fG
Using (3.9) in (3.14), we get
Y COs.1(12n+7)q" = 8f]  (mod 16). (3.15)

n=0

Extracting the terms involving ¢*"*! from (3.15) we get (3.2).
Collecting the terms involving ¢?" from (3.15) and replacing ¢* by ¢, reduces
to

> C0s51(24n +7)q" = 8f] (mod 16), (3.16)

n=0
Using (3.9) in (3.16), we get

2

i@3’1(24’n +7)q" =38 (2) fa  (mod 16). (3.17)

n=0 h

Using (1.4) in (3.17), we arrive at (3.3). |



200 M.S. Mahadeva Naika, S. Shivaprasada Nayaka

Theorem 3.2. For any prime p =5 (mod 6), « > 1, and n > 0, we have
> C0s51(20°n + p*)¢" = 20(q)1b(q°)  (mod 4). (3.18)
n=0

Proof. Using (3.9) in (3.6), we obtain

e 1318
> COs.1(2n+1)g" =222°5  (mod 4). (3.19)
n=0 f1f3
Using (1.4) in (3.19), we get
> CO31(2n+1)¢" = 20(q)p(¢%) (mod 4). (3.20)
n=0
Define
> 9(n)g" = v(@)b(d?). (3.21)
n=0
Combining (3.20) and (3.21), we find that
ZCOg 12n+1)g" =2 g(n)g" (mod 4). (3.22)
n=0 n=0
Now, we consider the congruence equation
2 2 4 2 4
k;_k—i-?)-m;_mz p8 (mod p), (3.23)

which is equivalent to

(2k+1)>+3-(2m+1)*>=0 (mod p),

p—1
2

p = 5 (mod 6), the congruence relation (3.23) holds if and only if both k = m =
. Therefore, if we substitute (2.8) 1nt0 (3 21) and then extractlng the terms in

pe—1
7

where 0 < k,m < and p is a prime such that (;3) = —1. Since (° 3) = —1 for

2

we find that

> 2 — 2 2
(o ]921) " = ola),
0

n=

which implies that

G

1) 7 = V(@) (3.24)
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and for n > 0,

P
g (p2n + pi + 5 ) =0, (3.25)

where ¢ is an integer and 1 < ¢ < p — 1. By induction, we see that for n > 0 and
a >0,

g <p2o‘n + pza;l> = g(n). (3.26)

Replacing n by p?*n + pzc;_l in (3.22), we arrive at (3.18). |

Theorem 3.3. For any prime p =5 (mod 6), a > 1, and n > 0, we have

i COs1 (24> 0+ Tp*) = (=1)* 5 (g) fs  (mod 16). (3.27)
n=0
Proof. Define -
> an)g" = v(q) fa. (3.28)
n=0
Combining (3.3) and (3.28), we see that
i@m(%n +7)q" = i a(n)¢™ (mod 16). (3.29)
n=0 n=0

Now, we consider the congruence equation

K2+ k 3m +m T -7
4. = .
5 + 5 5 (mod p), (3.30)

which is equivalent to
3-2k+1)2+(12m+2)>=0 (mod p),

where # <m < prl, 0<k< 1’2;1 and p is a prime such that (*73) = —1.

Since (_73) = —1 for p = 5 (mod 6), the congruence relation (3.30) holds if and

only if m = ipﬁ_l and k = %. Therefore, if we substitute (2.8) and (2.9) into

(3.28) and then extracting the terms in which the powers of ¢ are pn + 77’224_7, we
arrive at
o0
2 -7 2_ - 2
Y a (pn + p24> gt = (—1) T T (g7 fape- (3.31)
n=0

Dividing by ¢~# " on both sides of (3.31) and on simplification, we find that

[e’e) 2 =
> a <pn+ 7p24 7) ¢ = (-1 () fap,
n=0
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which implies that

> W=7\ , ipo1
>+ T )0t = 0 v, (3.32)
n=0
and for n > 0,
Tp? — 7
a (p2n+pz‘+ p24 > —0, (3.33)

where 4 is an integer and 1 < ¢ < p — 1. Combining (3.28) and (3.32), we see that
forn >0,

? — 7 p—
a (p2n—|- p24 ) = (1) a(n). (3.34)
By (3.34) and mathematical induction, we deduce that for n > 0 and o > 0,
2a 7p2a -7 o =1
alpnt g — | = (—=)* 75 a(n). (3.35)
Replacing n by p?*n + 7p n (3.29), we arrive at (3.27). [ |

Theorem 3.4. For alln >0 and a > 0,

CO31(36n+21)=0 (mod 8), (3.36)
C03,1(36n+3)=C03,1(12n+1) (mod 8), (3.37)
CO31(4-3°Pn+7.3*T2) =0 (mod 8), (3.38)
CO31(36n+33)=0 (mod 8), (3.39)
CO31(18n +15) = CO3 1(6n+5) (mod 8). (3.40)

Proof. Equating the coefficients of ¢3"*! from both sides of (3.7), dividing by ¢
and then replacing ¢® by ¢, we arrive at

e 2 r3
> COs.(6n+3)q" = QW. (3.41)
n=0
Using (3.10) in (3.41), we obtain
Z 1 (61 + 3)q" J;jj;}; (mod 8). (3.42)

Substituting (2.4) into (3.42), we get

- _fhfls L, fefSfiafs |, o fofafisfs
2 COui(6n+3)q" = 270 E8 + 27 2 4TSS (mod 8),

(3.43)
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which implies that for all n > 0,

Z CO31(18n +3)¢" = fi‘zfg (mod 8). (3.44)
n=0 i1ty

Using (3.10) in (3.44), we have

> COs1(18n+3)q" = 2f; (mod 8). (3.45)
n=0

Equating the coefficients of ¢>" ™! from both sides of (3.45), dividing by ¢ and then
replacing ¢? by ¢, we arrive at (3.36).
Extracting the terms involving ¢>" from (3.45) and replacing ¢ by ¢, we get

> C03.1(36n+3)q" =27 (mod 8). (3.46)
n=0

In view of congruences (3.46) and (3.12), we obtain (3.37).
Extracting the terms involving ¢®"*! from (3.43), dividing by ¢ and then re-
placing ¢® by ¢, we have

Z COs51(18n + 9)¢" Fif3fafn (mod 8). (3.47)
n=0 fl fG
Using (3.10) in (3.47), we get
o A o Jaf12
Z CO31(18n+9)¢" = (mod 8). (3.48)
2 ks
In view of congruences (3.48) and (3.42), we get
@3,1(1871 + 9) = @3@(6% + 3) (mod 8) (349)

Utilizing (3.49) and by mathematical induction on «, we arrive at
CO31(2-3°"n +3°%2) = CO3,1(6n+3) (mod 8). (3.50)

Using (3.36) in (3.50), we obtain (3.38).
From (3.43), we have

i 1(18n+15)¢" = fojff” (mod 8). (3.51)
1

Using (3.9) in (3.51), we get

1),
Z (180 + 15)¢" = 4fafef12  (mod 8). (3.52)
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Congruences (3.39) follows extracting the terms involving ¢*"*! from (3.52).
Extracting the terms involving ¢®"*2 from (3.7), dividing by ¢*> and then re-

placing ¢ by ¢, we obtain

2@371(6’”4—5)(] f2f‘}f6f12.
n=0 1

Using (3.9) in (3.53), we have

3" COy1(6n+5)q" = 4fafsf12 (mod 8).

n=0

Combining (3.52) and (3.54), we arrive at (3.40).

Theorem 3.5. For alln >0 and a > 0,

CO31(12n+7) =0 (mod 8),
CO31(12n+11) =0 (mod 8),
CO31(108n +63) =0 (mod 8),
CO31(108n +99) =0 (mod 8),
CO31(972n +567) =0 (mod 8),
CO31(972n +891) =0 (mod 8),
CO31(12-9*"?n +3.9°72) = CO3 1(108n +27) (mod 8).

Proof. Substituting (2.5) into (3.6), we obtain

f8f12 f£f224

> COs1(2n+1)q"

+ 2¢q
— 7 f2 fo £ f2 1813
which implies that
f2 ft
CO31(4n+3
;) saldn 80" =20 -
Using (3.10) in (3.63), we get
Z CO31(4n + 3)q" = ?22 (mod B).
n=0

(3.53)

(3.54)

(3.62)

(3.63)

(3.64)

Extracting the terms involving ¢®"*! and ¢3"*? from (3.64) we get (3.55) and

(3.56).
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Extracting the terms involving ¢®" from (3.64) and replacing ¢ by ¢, we have

o0 2
> COs1(12n 4 3)" = f% (mod 8). (3.65)
n=0 ‘fl
Substituting (2.4) into (3.65) and equating the terms ¢>"*+2, we obtain
o~ f3 13 1
> COs3,1(36n +27)¢" = 22372 (mod 8). (3.66)
n=0 fl f6
Using (3.10) in (3.66), we have
> CO3.(36n+27)g" =25 (mod 8). (3.67)

n=0

3n+1 and

Congruences (3.57) and (3.58) follows extracting the terms involving ¢
" *2 from (3.66).

Extracting the terms involving ¢®" from (3.67) and replacing ¢ by ¢, we have

> COs51(108n +27)¢" = 2f{  (mod 8), (3.68)
n=0
which implies that
> C0;51(108n +27)¢" = 2f7 f;  (mod 8). (3.69)
n=0
Employing (2.7) into (3.69) and equating the terms involving ¢®"*2, we obtain
> " COs1(324n + 243)q™ = 232 (mod 8). (3.70)
n=0
Using (3.10) in (3.70), we get
> C0s.1(324n + 243)¢" = 2§ (mod 8). (3.71)

n=0

Extracting the terms involving ¢®"! and ¢*""2from (3.71), we arrive at (3.59)
and (3.60).
Extracting the terms involving ¢3" from (3.71) and replacing ¢* by ¢, we obtain

o0
> C031(972n + 243)¢" = 27 (mod 8). (3.72)
n=0

In view of congruences (3.72) and (3.68), we get

CO3,1(972n + 243) = CO51(108n + 27)  (mod 8). (3.73)

Utilizing (3.73) and by mathematical induction on «, we arrive at (3.61). |
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Theorem 3.6. For alln >0 and o > 0,

CO31(24n +14) =0 (mod 8),
CO341(4-3%T2n +2.3%%2
CO3,1(108n + 27

@3 1(7271 + 6

=3C031(24n +6) (mod 8),
=3C031(24n +2) (mod 8),

= = D O T — —

C031(72n+42) =0 (mod 8),
CO31(72n+66) =0 (mod 8),
CO31(24n +22) =0 (mod 8),
CO3.1(36n +30) = CO31(12n 4+ 10)  (mod 8).

Proof. From (3.5), we have

S w31
2 O (20)q" = s o

Substituting (2.5) into (3.82) and equating the terms ¢?"*1,

;}0031 (4n +2)q" fg;‘;

Using (3.10) in (3.83), we obtain

> COs1(4n+2)q" = ;(flfg) (mod 8).
n=0 3

Employing (2.7) into (3.84), we have

N n_ o fofs 18 fofis o [3 I
cCO = —
2 COsildn+2)q" =25 =207 — 4

which implies,

> COs1(12n+2)q" = 2573
n=0 fl fﬁ

Using (3.10) in (3.86), we have

(mod B).

Z COs1(12n 4 2)¢" = 2f2  (mod 8).

Congruence (3.74) follows extracting the terms involving ¢?"** from (3.87).

Extracting the terms involving ¢*" from (3.87), we arrive at

i 1(24n +2) =27 (mod 8).

=3°"1C0;31(12n+6) (mod 8),

(mod ),

(3.83)

(3.84)

(3.85)

(3.86)

(3.87)

(3.88)
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Extracting the terms involving ¢®"*! from (3.85), dividing by ¢ and then re-
placing ¢>" by ¢, we have

> COs1(12n+6)q" = fgj:;f@’ (mod 8). (3.89)
n=0
Using (3.10) in (3.89), we get
> COs1(12n +6)¢" = 6(f1fo)fsfo  (mod 8). (3.90)

n=0

Substituting (2.7) into (3.90), we arrive at

N TO I 1 2 f3 i
> COs.1(12n 4 6)q" = 6552 — 6q/fs fofofrs — 12¢° =252 (mod 8), (3.91)
0 fis fs
which implies that for all n > 0
e [R—
> C031(36n+18)¢" = 2f1 f2f3fs  (mod 8). (3.92)
n=0
In the view of congruence (3.92) and (3.90), we have
CO3.1(36n +18) =3C03,1(12n +6) (mod 8). (3.93)

Utilizing (3.93) and by mathematical induction on «, we arrive at (3.75).
Employing (2.6) into (3.90), we get
f318 1
fif34

118 134

272, (mod 8). (3.94)

> COs.1(12n+6)g" = 6 — 6q

n=0

Extracting the terms involving ¢?" from (3.94) and replacing ¢ by ¢, we obtain

o~ n_ o STFLSG
> C0s.1(24n 4 6)q" = 623455 (mod 8). (3.95)
n—0 fz f12
Using (3.10) in (3.95), we have
> C031(24n +6)q" = 6f7f3  (mod 8). (3.96)
n=0

Combining (3.96) and (3.69), we obtain (3.76).
Extracting the terms involving ¢3" from (3.91) and then replacing ¢* by ¢, we
get
1313
&

> COs4(36n + 6)g" = 6 (mod 8). (3.97)
n=0
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Using (3.10) in (3.97), we have

> C031(36n +6)q" = 6f; (mod 8). (3.98)
n=0

Congruences (3.78) follows by extracting the terms involving ¢*"** from (3.98).
Extracting the terms involving ¢*" from (3.98) and then replacing ¢* by ¢, we
get

> CO3.1(72n 4 6)q" = 6ff (mod 8). (3.99)
n=0
Combining the equations (3.99) and (3.88), we arrive at (3.77).
Equating the coefficients of ¢3"*2 from both sides of (3.91), dividing by ¢* and
then replacing ¢3 by ¢, we have

Z C03.1(36n + 30)¢" fifs (mod 8). (3.100)
n=0 f3

Using (3.9) in (3.100), we obtain
Z CO3.1(36n 4 30)¢" = 4fof2  (mod 8). (3.101)

Extracting the terms involving ¢>**! from (3.101), we arrive at (3.79).
Equating the coefficients of ¢3"*2 from both sides of (3.85), dividing by ¢? and
then replacing ¢* by g,

f3 fé

> COs1(12n+10)q" = 4

mod 8). 3.102
2,608 s etd (3:102)

Using (3.9) in (3.102), we have
> COs.1(24n +22)q" = 4f2f§  (mod 8). (3.103)

n=0

Congruences (3.80) follows by extracting the terms involving ¢*"*! from (3.103).
In the view of congruences (3.103) and (3.101), we get (3.81). |

Theorem 3.7. For all integers n > 0,
CO3.(12n4+6) =0 (mod 6), (3.104)
@3’1(1211 +10) =0 (mod 6). (3.105)

Proof. By the binomial theorem, it is easy to see that for positive integers k and
m7

™= f3m (mod 3). (3.106)
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Using (3.106) in (3.83), we obtain

_ofs

2@371(4’04—2)(]“ = f4.
3

n=0

(3.107)

Extracting the terms involving ¢3"*1 and ¢3"*2 from (3.107), we arrive at (3.104)
and (3.105). n
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