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SYMMETRIC g-BERNOULLI NUMBERS AND POLYNOMIALS
HEDI ELMONSER

Abstract: In this work we are interested by giving a new g-analogue of Bernoulli numbers and
polynomials which are symmetric under the interchange g <+ ¢~ and deduce some important
relations of them. Also, we deduce a g-analogue of the Euler-Maclaurin formulas
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1. Introduction

In literature, g-analogue of some special functions like a g-exponential, g-Gamma,
g-Betta and g-Bessel functions have been studied intensively for 0 < g < 1.

In ([4]), G.Dattoli and A.Torre introduced a q-Bessel functions of index which
are symmetric under the interchange ¢ «++ ¢~!'. The authors use a generating
function obtained owing a product of symmetric g-exponential functions ([16],[17]).

Recently, Kamel Brahim and Yosr Sidomou (|2]) introduced a symmetric
q-Gamma and g-Betta functions and extended the symmetric g-Bessel function
of real index.

In the present paper, we introduce a symmetric g-Bernoulli polynomials and
g-Bernoulli numbers and give some applications.

This paper is organized as follows: In Section 2, we present some results about
quantum calculus and symmetric quantum calculus that will be useful in the se-
quel. In Section 3, we study the symmetric g-exponential function. In Section 4
and 5, we introduce and study symmetric g-Bernoulli polynomials and symmetric
g-Bernoulli numbers. As an application we introduce in Section 6 a g-analogue of
Euler-MacLaurin formulas.

2. Symmetric quantum calculus

We recall some usual notions and notations used in the g-theory (see [5] and [8]).
Throughout this paper, we assume g > 0, g # 1.
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For a € C, the g-shifted factorials are defined by

n—1
(@qo=1, (a:q)n=[J(1-0aq")=(1—-a)1-ag)..(1-ag""),
i=0
We denote
1—-4q"
[x]qil_qa SUG(C,
and
— q:c _ qfx
x| = , zeC
, q—q!
We also denote
- (¢; O)n
nly! = kl, = , n €N,
[ ]q kl;[l[ ]q (1 _ q)"

and

The g-binomial coefficient is defined by

(Z)qzm k=0,1,...,n

Similarly we can define the symmetric g-binomial coefficient by

One can see that

1) [a], = 2],

2) [z +y], = ¢"l2], + ¢yl

3) (Z)q = @%-
4) [a], = ¢~ @ Va,

The symmetric g-derivative l~)q of a function f is given by

f(qx) f(qflx)

(D, f)(0) = f'(0) provided f’(0) exists.
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We have the following relation
ﬁqf(x) = quf(q_lx)
where (@)~ fao)
x) — flqx
D =
of (@) (1-q)x
The following properties hold ([8])

1) Dy(f(x) + g(x)) = Dyf (x) + Dyg(a),

2) Dy(f(x)g(x)) = 9(a~ @)Dy f (@) + f(qz) Dyg(),
3) Dgz" = [n] a""",
)

4) Dy(x — a)n = f?%v]q(x — a)Z_ ) Whelge (x— a)Z = (z—q¢" ta)(x — ¢"3a)(z —
¢"~’a)..(x —q "*'a) and (z —a), = 1.

n —~n
In the particular case a = 0, we have (z —0), = (z), = 2".
The following result is a g-analogue of the Gauss binomial formula

(v+a), = kf:_o @qan_kxk. (1)

Provided that the series converges, the symmetric g-integral or g-integral is
given by ([8])

/Oaf(fv)daxa(ql(J) S ),

n=1,3,...

/ " fa)dge = / ' Fa)dgr / (@) dge,

and
/ f@dg=("—q >  ¢"flg"a).
0 n=+1,+3,...
The g-integral satisfy the following properties

Lemma 1.

a) If F is any anti q-derivative of the function f, namely lNDqF = f, continuous
at x =0, then

/Oa f(@)dgz = F(a) — F(0),

b) For any function [ we have



184 Hédi Elmonser

c) We have
b

b
/ f(a~ @)Dy fg(x)dge = f(b)g(b) — f(a)g(a) —/ 9(qz) D, f (x)dge.

a

Proof. 1) We have

/Oa f@)dgz =alg™ —q) > ¢"DyF(q"a)

n=1,3,...

=- [F(q"'a) = F(¢"'a)] = F(a) - F(0).

2) We have

~ z 1 qx q lz
Dq/o ft)dgt = G—q = [/o f(t)dat—/o f(t)dq”t]

=—< > g ) - Y q"lf(qnlx)) = f(z).

n=1,3,... n=1,3,...
3) From the symmetric g-product derivative rule. |
3. Symmetric g-exponential function

The classical exponential function e* has two different natural g-extensions ([13])
one of them denoted by e,(z) and given by

where z € C|z| < 1 and 0 < ¢ < 1.

The function e4(z) can be considered as formal power series in the formal
variable z and satisfies the relation lim,_,; e4((1 — q)z) = €7.

Let Cy[[z,y]] be the complex associative algebra with 1 of formal power series

oo

1k
E CkiYy T

k,1=0

with arbitrary complex coefficients ¢ ; and where z, y satisfy the relation zy = qyx.
In the algebra Cy[[z,y]], the function e,(z) satisty the following relation ([14])

eq(r +y) = eq(y)eq(z).

A symmetric g-exponential (symmetric under the interchange q <> ¢ 1) is
defined by D. S. McAnally in ([16],[17] ):

gq(z) = Z "Z/iﬂ

for z € C and ¢ €]0, 1[U]1, +o0].
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The function €,4(z) can be considered as formal power series in the formal
variable z and satisfies the relation lim,_,; &,(z) = €”.
The function €,(z) can be extended in the following way:

—_~— N

ez +y) = Z (:Eiiy)q,
n=0 [Tl]q'

in the particular case when y=0, we have

’éq(x+0)=z(iizzi—=€q(x).

Using (1), we have the following lemma

Lemma 2. In the commutative algebra C[[x,y]] we have the identity
eq(z +y) = eq(y)éq ().

Proof. We have

4. Symmetric g-Bernoulli polynomials

The classical Bernoulli polynomials B,,(z) are defined by the generating function

n! er —1

io: By (z) __* T
n=0

The Bernoulli numbers are defined through the relation B,, = B,(0).
The g-Bernoulli polynomials By, (z,h | q) ([3], [10]) are defined by g-generating
function

X 4 h 1P SN Bz, h
= I+ qjx(—l)J(l_(])jﬂ:ZWt”, heZ, zeC.
; ’ n=0 ’
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Note that
(}1_}1% B, (z,h | q) = Bp(x).

The g-Bernoulli numbers are defined through the relation B, (h | ¢) = B,(0,h | q).
In ([6]) the authors gave another approach to study the g-Bernoulli polyno-
mials. They defined the g-Bernoulli polynomials B, (z, ¢) by g-generating function

z

S Bulw, ) = (1 - g)z).
[n] er—1
n=0 q

They proved that

B =3 (3) o

k=0

where b, (q) = %’;[n]q! is a g-analogue of the Bernoulli numbers.

In this paper we use the same approach in ([6]) to define and study a g-analogue
of Bernoulli polynomials which is symmetric under the interchange q < ¢~ !.

Let B(t) be the generating function of the classical Bernoulli numbers ([15])

By Do 2

n! e? —

Then we get
) " k
B =2 T (5) =22 (o) ot

Also, on exponent

~

B(%)em’ — B(t)e!® = B(a, ).

Now we will define a q-analogue of the generating function B (t) as

where En(q) is a g-analogue of the Bernoulli numbers. By using the g-difference

operator D, we get

o T k 7 k77N
BByt = 3 W ppge o 52 0@ iy (k) bo(g)z" "
n=0 q

mq! n=o [n]g! [k —n],! o \"

This procedure will suggest the following g-analogue of Bernoulli polynomials

Bute) = 3 () gt
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Also,
_ o 0u(@) 50 (o~ 2 k) - S @) 5
B, (Dg)eq(xt) = —— Dy ( —t ) =) — ——> Dy
7;) [n],! ;;) (k]! kz=o [K],! T;J [n],!
o) ko
= I;)[’];L]'Bk(x’Q) = B($7t7q)'

Using these notations we can define the symmetric g-Bernoulli polynomials

Definition 1. The symmetric g-Bernoulli polynomials En(x, q) are defined by

;Bn@,q)i{]! = (), 2)

where limg_,; En(x, q) = B, (z), By(x) are the ordinary Bernoulli polynomials.

Proposition 1.

Proof.
«© pes Z2 _ > ZnJrl
ZDan(xaQ)N = e leq(z‘r):ZB”(x’q)N
n=1 n q! n=0 [n]q'
= Z Bh_1(z,q) ——— = Z [n]an—l(x7Q) —.
n=1 n — 1](1' n=1 [n]q’

Proposition 2. In the commutative algebra C|[z,y]] we have the identity
_ no
Bu(x+y,9) = (k> y" " Bi(z,q). (3)
q

k=0

Proof. We have

o0 n

> B+ y,q>§]q! = (=0 +y) = =18 (2)E (22)
= e4(2y) (ez_lgq(zx)> = e4(2y) ;Bn(x, q) 7{] .

q
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Also,

Which achieves the proof. |

The relation (3) is a g-analogue of the classical relation

BAx+y>=§f(Zﬁﬂ*Bum7

k=0

where B, (z) are ordinary Bernoulli polynomials([1]).

5. Symmetric g-Bernoulli numbers

Definition 2. For n > 0, En(q) = B,(0,q) are called symmetric g-Bernoulli
numbers.

We have the following result

Lemma 3. We have 5

ba(g) = a1 (4)

where limg_,q gn(q) = by, b, are the ordinary Bernoulli numbers.

Proof. Putting z = 0 in equation (2), we get

&) n n
~ z z z
Z bp=—= z Z bn—
n=0 [n}q' er—1 n=0 !
Then )
bula) = 220,
Also,
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The knowledge of the Bernoulli numbers and the lemma (4) allows us to de-
terminate the symmetric gq-Bernoulli numbers. The first five of them are:

~ ~ 1 =~ ﬁ = =~ [2] [3] [4]
=1 — — q — — ql~lqgl™lq
b[) 5 b1 2 5 b2 12 5 b3 07 b4 7720

Using the properties of the ordinary Bernoulli numbers b,, ([8]), we can prove that

. gn(q) =0Vn odd and n > 3

nln (Q)i
e Jm'*o’

n—1 1)7 n +1((1) 1771
Proposition 3. For anyn > 1
-1 ~
K nPB]('T7q) _ n' xn—l
A = :
=0 7], [n—1] !

Proof. The case where n = 1 is obvious. If we assume that the relation is true

for some k > 1, we have

Z k+1P Z k+1P
[ 4 [J]q!
e -
= (k:+1)2‘j ’“ij
j=0 [j]q!
= (k+ 1)7’“! gt
[k —1],!

_ kD ((’fj 1)!mk> '

Then
k+1)!
(I) ( !k

Put x = 0, then

o
<
—~
=
=

k+1P‘

j=0
Using the second property of gj(q), we get ¢ = 0. Hence, by induction, relation is
|

true for any positive integer.



190 Hédi Elmonser

Proposition 4.

Proof. Let

It suffices to show that (i) F,(0,q) = bn(q) for n > 0 and (i) DyF,(z,q) =

[n)] an_l(x, q) for n > 1, since these two properties uniquely characterize By(z, q).
The first property is obvious. As for the second property,

Ean(x,q) = S (") Ek(q)[n = k]qxn—k—l

k=0 k q
= S TR
_ [ ]q' _ bk(q)xn—k—l
=0 [n— k — 1], k]!
. n 1 n— | _
= [n], it ——by.(q)a" !

and the proof follows. [ ]

The knowledge of g-Bernoulli numbers allow us to determine the g-Bernoulli poly-
nomials. The five of them are listed below.

EO(%Q) =1,

Biw.a) = .

n 2 ﬁq ii]q
Balw,q) =27 = 5w 2(31)’
_ Bl, , 2,8,

STIRTC T

(B4, 5 [21,08],04],
ST TCT) i 30(4!)

Lemma 4. The Symmetric g-Bernoulli polynomials have the following symmetry
property

(—1)"Bn(=2,9) = Bu(z,q) + [n] 2", ¥n>1.
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Proof. The case where n = 1 is obvious. If we assume that the relation is true
for some k > 1, we get

Dy (=1 Brss(—2,0)) = (=1 [k + 1], Bi(~2,q)

= [k +1],By(x,q) + [k + 1] [K] 2"

= Dy (Brsa(w,a) + [k +1],2")

then _ B o
(—1)*' Begi(—2,q) = Bega(@,q) + [k +1] 2% + .
Put z = 0, then N
((*1)“1 —Dbrr1(q) = ¢

but ((—1)**1 — 1) = 0 if k is an odd number and bri1(g) = 0 if k is an even
number. Then ¢ = 0 and hence, by induction, the relation is true ¥n > 1. |

Lemma 5.

/xé (t q)dﬂf o §n+1(x7Q) — B”Jrl(a’q)
n\% qv ’
a [n+1],

Proof. By using ﬁqén(t, q) = [n]qén,l(t, q), then we get

x ~ 1 x ~
/ Bn(ta Q)dat T —— / Bn+1(t7 Q)dq~t

1,
1 ~ En x, fén a,
e R
[n+1], [n+1],

6. A symmetric q-Euler Maclaurin formulas

Let the function P(z) = By(z — [z],¢), in which [z] means the greatest integer
< z. The function P(z) is periodic P(z + 1) = P(x). Also,

t+1
/P dgt = P(x)dgt,  Vt>0.
t

We employed P(z) in obtaining a symmetric g-analogue of the Euler-Maclaurin
formulas (]18]).

Theorem 1.

if / Fla~ " 0)dge + / P(g2)D, f (2)dgz,

=0

where f(x) is differentiable.
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Proof. First we write

n

n . k _
| P@Dus@iz =3 [ P@)Dyfa)dge.
0 k—1

k=1

Now

k _ k 1. ~
| P@Bu@sr = [ (@ =k+)Buf(w)iga

-1 k-1
and we integrate by parts to obtain
k - 1 k ~
[ Pan)bus@)ze =@~ b+ Df@IE - [ fa 0D, P@)da
k—1 k—1
then

k N -~ k
/k Plge) Dy f(@)dge = LETIEZD 0 iy

1 2 k—1
TOESICI

n

/0 " Plgr) Dy f(w)dze = 3 £ (k) -

k=0

and the proof follows.
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