
F\mctiones et Approximatio 
XXIX {2001), 125-142 

ON SOME EXTENSIONS OF BERNSTEIN'S INEQUALITY 
FOR TRIGONOMETRIC POLYNOMIALS 

K. RUNOVSKI & H.-J. SCHMEISSER 

Abstract: We give an approach to treating inequalities of Bernstein type for trigonometric 
polynomials. Some necessary and sufficient conditions of their validity are established. 

1. Introduction 

In the present paper we study some inequalities for trigonometric polynomials of d 
variables in Lp with O < p::; +oo . Some of these inequalities like Bernstein's in­
equality for derivatives of trigonometric polynomials Tn of order at most n (see, 
for instance, 14], pp. 97-98, 104-109) 

(1.1) 

or its counterpart for the Riesz derivative (see [3], p. 427) 

(1.2) 

are well-known. Some of them like inequalities containing the fractional Laplacian 
seem to be new. 

We have worked out an unified approach for treating such inequalities based 
on methods of Fourier analysis. For O < p ::; 1 and p +oo we are able to 
give necessary and sufficient conditions providing the validity of a wide class of 
multipliers in the Lp-spaces. This enables us to give complete solutions of some 
problems. As a rule, the spaces Lp with 1 < p < +oo have better properties 
and they are more convenient to studying in difference to the cases O < p ::; 1 
and p +oo. However, this is not the case if inequalities of multiplier type are 
considered. We mention, for example, the problem of Bochner-Riesz multipliers 
that does not have a complete solution for 1 < p < +oo (see, for references, 
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[12], p. 388--394). The results of the present paper give another confirmation of 
this remark. 

The paper is organized as follows. In section 2 we describe the general pro­
blem and give some examples. In section 3 we prove some general assertions and, 
in particular, the criteria for O < p::;; 1, p = +oo mentioned above. Section 4 is 
devoted to the study of the behaviour at infinity of the Fourier transform of some 
functions. In section 5 we deal with applications. 

Henceforth, we will use the following notations: II • llri, 0 < p ::;; +oo , is the 
p-norm (the quasi-norm, if O < p < 1) on the d-dimensional torus 1'd, d E N; 

Dr= {x E lRd: !xi < r}; Dr= {x E llld: !xi ::; r}; 

T is the space of all complex or real valued trigonometric polynomials; '½. = 
span { eikx : !kl ::; ..\}. 

2. General problem and its special cases 

Let µ({) be a complex valued function defined on ]Rd. It generates a family of 
operators { A ... }>.~ 1 given by 

(2.1) 

Clearly, A>. maps T into itself. We will say that {A ... }>.~1 is of multiplier 
type and is generated by µ , so that A>.= A>.(µ). We deal with the inequality 

!IA ... (µ)tllri::; c(d;p;µ) • lltllri, t E '½., ..\ ~ 1, 

where {A ... (µ)} is generated by µ. Inequality ( *) is said to be valid for p E 
(0, +oo], if it is valid in the p-norm for all t E '½. and for all ,\ ~ 1 with some 
positive constant c( d; p; µ) that does not depend on t and ,\. 

The main problem connected with the inequality ( *) is to find its range of 
validity 0 = 0( d; µ), that is, a set of points p E (0, +oo], such that p E e if 
and only if the inequality is valid for p. 

We give some examples. 
1. Let d = 1, 1 > 0, µ({) = (i{)"Y = l{I">' e:.\.1) (~ · sgn{), that is A ... (µ) 

..\-">' · V">', where 'D">' = ix\ is the Weil derivative. Then ( *) is a Bernstein 
type inequality which has been intensively studied by many authors. In the case 
1 E N, 1 ::; p ::;; +oo it was obtained with the best possible constant 1 by S.B. 
Stechkin [11]. The case I EN, 0 < p < 1 was considered by P. Oswald, E.A. 
Storozhenko [13] and others. The sharp constant 1 was obtained by V.V. Arestov 
[1]. The Bernstein inequality for non-natural I and 1 < p < +oo is an immediate 
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consequence of the Marcinkiewicz multiplier theorem (see, for instance, [15], pp. 
178-179). Its validity for p = 1, +oo is mentioned in [3], p. 427. The general case 
'Y > 0, 'Y (:/. N, 0 < p < 1 can be found in [12] and [2]. 

2. The Bernstein inequality is a special case of the inequality of type ( *) 
with 

(2.2) 

where 

e = { l~Tr. i; > o 
+ o, i;::; 0 

and 'Y > 0. If, for example, E1 = E2 = ei1rfJ = ( -1 )fJ, 'Y = 2/3 > 0, the operator 
A,\(µ) can be naturally denoted by >.,-2fJ • (7J2 )fJ. It coincides (up to the multiplier 
(-l)fJ) with the Riesz derivative of order 2/3 ([3], p. 427). Since (7J2)fJ =I= 1J2fJ, 
the corresponding inequality is not of Bernstein type. However, as it will be shown 
in section 5, the range of validity of inequality ( *) generated by (2.2) does not 
depend on E1 and E2. 

3. In the multivariate case the situation is different. It will be proved in 
section 5 that the inequality of type ( *) 

d [)"ft 
~ - ::; c(d;p; 1) · >..-Ylltllv, t E 7>. , >.. 2: 1 Lax? 
j=l J 

p 

(2.3) 

with µ( i;) = t l{J 1-r exp ( i1r'Y sgn{j) , 'Y > 0, that is one of the possible exten-
j=l 2 

sions of the Bernstein type inequality to the case of several variables, is valid for 
'Y (:/. N if and only if ,,.~1 < p ::; +oo, that is, the answer does not depend on the 
dimension. 

On the other hand, the inequality 

(2.4) 

with µ({) = (-1)/J • l{l2fJ, /3 > 0, (that is also an extension of type (2.2) with 
E1 E2 = ( -1 )fJ ) is valid for f3 <:/. N if and only if d;2fJ < p ::; +oo. 

Analyzing the inequalities described above, we can observe that they are 
generated by homogeneous functions. Further studying of such type inequalities is 
one of our main aims. We will amplify a series of appropriate examples in section 5. 
On the other hand, all the material of sections 3 and 4 is applicable to inequalities 
of type ( *) without any supplementary restrictions. One of possible applications 
to inequalities generated by non-homogeneous functions will be given at the end 
of the paper. 
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3. General assertions 

By Cd we denote the class of complex valued C00 -functions with a compact 
support contained in D1. We use the symbol Rtb, where O < a < b + co, to 
denote the class of real valued non-negative radial C 00 -functions that are equal 
to 1 on Da and O outside of Db. By Rd we denote the sum of all R: b . 

As usual, the Fourier transform of a function J(f,) in L 1(Rd) is given by 

f(x) (21r)-d/2. J J(f;,)e-i{xt14 . 

JR.d 

In this section we study the inequality of type (*), where {A.x(µ)},x~ 1 is 
generated by the function µ({) which is defined everywhere on Rd. By e = 
0(d;µ) C (0,+co] we denote the range of validity of inequality(*). 

First we treat a trivial case. 

Lemma 3.1. H µ(f;.) is unbounded on D1, 0 is empty. 

Proof. There exist sequences {ks};~ C zd , { ns} ;~ C N satisfying 

Then 
lim IIAn.(µ)(eiks·)llv I (ks) I 

s--->+oo lleiks• llv sEroo µ ns +co 

and ( *) is not valid. • 
The following theorem gives the necessary condition for the validity of ( *). 

We put 

P
~ = { pp O < p s; 2 

2 < p s; +co 
p-1' 

Theorem 3.1. Let µ(f;,) be integrable in the Riemannian sense on D 1 . If 
inequality ( *) is valid for some p E (0, +co] , then µtP(x) E Li3(Rd) for any 
1/J E Cd. 

Proof. Let first O < p s; 2 . We consider the sequence of functions {Fn(x)}!~ 
given by 

{ 
n-dp • I:; µ ( ~) ,t, (~) •'*:, x E 1-,m, ~nJd 

kEZd 

0, otherwise 

(3.1) 

Clearly, the functions Fn(x), n E N, are non-negative and measurable. Let 
xo E Rd. Then there exists no E N, such that xo E [-1rn, 1rn]d for n ~ no. 
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The function µ(f;,)'¢(1;.)ei{xo of variable f;, is integrable in the Riemann sense on 
[-1,l]d. By definition of the Riemannian integral we get 

n~~(X) n-d. L µ(~)1/J(~)ei~xo = J µ(f;,)'¢(1;,)i{xodf;, 
kEZd [-1,ljd 

= (21r)d/2. µ¢(-xo) . 

Therefore, 

(3.2) 

Now we use the fact that 

< d(l-1/p) 
- en ' nE N, (3.3) 

p 

where c does not depend on n. For O < p :5 1 inequality (3.3) is proved in [7] 
with the help of the Poisson summation formula. The case 1 < p :5 +oo is an 
immediate consequence of the Nikolskii inequality (see, for instance, [10], p. 147) 
and (3.3) for p 1. Using inequality (*) for Wn(x) = L '¢ (~) eikx and 

kEZd 

(3.3) we have 

J Fn(x)dx = n-dp · J 
JR.d [-1rn,1rn]d 

p 

< 
p 

p 

< c' - , 
p 

where c' does not depend on n. 
Thus, we have proved that the sequence {Fn(x)}!~ fulfils all conditions 

of Fatou's lemma. Therefore, the integral of its limit can be estimated by the same 
constant, that is, 

(21r)¥ · J 1µ¢(-x)IPdx :5 c' 

JR.d 

- d and µ'¢ E L;:,(R ) . 
Let now 2 < p :5 +oo. As it follows from above, it is enough to check that 

(3.4) 
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To prove (3.4) we will apply the principle of duality. We choose 6 > 0, such that 
supp '1/,J C D1-.5 and we consider the polynomial <Pn(x) = :E i.p (~) eikx, where 

kEZd 

<p E 'R.f-.s,1 . For g E Lp we have 

An(i.p)(g; x) = L '{) ( ~) l'(k)eikx = (21r)-d · J g(x + h)<Pn(h)dh, 
kEZd '!l'd 

where 

gA(k) = (21r)-d · J g(x)e-ikxdx, k E 7/..d, 

'!l'd 

and by virtue of (3.3) 

IIAn(i.p)gllp ~ (21r)-d · J llg(x + h)IIP · l<Pn(h)ldh 
'!l'd 

= (21r)-d · ll9llp · ll<Pnll1 ~ c' · ll9llp, 

where d does not depend on g and n. 

(3.5) 

Noticing that the inequality ( *) being valid for µ is also valid for µ 
(complex conjugation of µ ) we get from (3.5) 

sup l(An(µ)Wn,9)1 = 
llgll,,:51 

= (21rt. 11:1~~1 k~d µ ( ~) 'l/,J ( ~) gA(k} 

= (21r)d. 11:i~~l k~d '1/,J (~)Ji(~)'{)(~) gA(k) 

= sup l(Wn, An(Ji)(An(i.p)g))I ~ 
llgll,,:51 

~ IIWnll~ · sup ll(An(µ)(An(i.p)g)IIP ~ C • IIWnll~ • 
P llgll,,:51 P 

The proof is complete. • 
Remark 3.1. The idea to represent An(µ)Wn(x) as an integral sum of the 
Fourier transform of the function µ'lj.J is not new. It goes back to [3] and [17], 
where it was applied to some problems in the case p = +oo. 

Now we establish the sufficient condition for the validity of inequality ( *). 

Theorem 3.2 . Let µ(fl be continuous, 0 < p ~ +oo, p"' = min(l,p) . If 
µ-ifJ(x) E Lp•(Rd) for some 'ljJ E 'R.1_ 1H, 6 > 0, then inequality(*) is valid for p. 

The proof of Theorem 3.2 repeats the proof of the theorem on the description 
of Fourier multipliers in terms of the Bessel potential -spaces [10], p. 150-151 with 
some obvious modifications. 
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Remark 3.2. The requirement of continuity µ is essential in Theorem 3.2 for 
the case O < p < l . Indeed, we consider 

_ { 1, { = 0 
µ(() - 0, otherwise. 

Then ;;J;(x) = 0, but for Wn(x) = E t/J (~) eikx we get from (3.3) 
kEZd 

li IIAn(µ)Wnllv _ li (21r)d/p > li -d(l-1/p) _ + m - m c• m n - oo, 
n->+oo IIWnllv n-.+oo IIWnllv - n-.+oo 

that is, ( *) fails. 
We will see that in many cases the condition " ;;J; E Lq(Rd)" does not 

depend on t/J E Rd. In particular, this holds for infinitely differentiable on JRd\ {0} 
functions. This observation gives the following criterion of the validity of inequality 
(*) in the case p = p*, that is, for 0 < p $ 1 and p = +oo. 

Theorem 3.3. Let 0 < p $ l or p = +oo. Let also the function µ(() be 
continuous on ]Rd and infinitely differentiable on ]Rd\ {0}. Then inequality ( *) 
is valid for p if and only if ;;J; E L 11• (JRd) for some ( any) tp E Rd. 

Proof. It is enough to prove that the condition ";;J; E L11• (JRd)" does not depend 
on t/J E Rd. Then Theorem 2.3 will immediately follow from Theorems 3.1 and 
3.2. 

- d d d Let µtj) E Lp• (JR ) for t/J E na bl 0 < a < b < +oo and 'P E na' b', 0 < 
d<V<+oo. ' ' 
Then µcp µtp + µ(cp - t/J). Clearly, cp({) - t/J({) = 0 for { E Dmin(a,a') and 
{ E ]Rd \ Dmax(b,b') · 

Therefore, µ(cp-¢) and its Fourier transform belongs to the Schwartz space S of 
rapidly decreasing test functions. Therefore, the Fourier transform of µ( cp- tp) is 
in L11• (JRd). The proof is complete. • 
Theorem 3.4. Let µ({) be continuous on ]Rd and infinitely differentiable on 
]Rd\ {0}. Tl1en 

1. If(*) is valid for p = +oo, it is also valid for all 1 $ p $ +oo; 
2. If ( *) is valid fer some 0 < Po $ 1, it is also valid for all Po ~ p ~ +oo. 

Proof. Part 1. follows immediately from Theorems 3.3 and 3.2, If ( *) is valid for 
some O < p0 $ 1, then by Theorem 3.3 ;;J; E L110 (JRd) for some t/J E nd. Since 
;;J; decreases to O at infinity, ;;J;(x) E L11 (JRd) for Po $ p $ 1 and by Theorem 
3.3 ( *) is valid for Po $ p $ l and p = +oo. In view of part 1. it is also valid 
for 1 < p < +oo. • 
Remark 3.3. As a rule, assertions like Theorem 3.4 are proved by applying in­
terpolation theorems, whereby the information on the boundedness of a given 
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operator in two "limiting" spaces is needed. We notice that in difference to stan­
dard methods only one space ( Lpo or L00 ) was enough for us. Moreover, our 
approach does not use any specific tools of harmonic analysis. Practically, it is 
based on the definition of the Riemann integral and elementary properties of the 
Fourier transform. 

4. The Fourier transform of some functions 

In this section we will deal with the Fourier transforms of some homogeneous distri­
butions. We will study the influence of multipliers belonging to the Schwartz space 
S of rapidly decreasing test functions and satisfying some additional conditions 
on their asymptotic behavior. We use some facts of the theory of homogeneous 
distributions that can be found in [6]. It should be noticed that the technique we 
use here was partly developed in [5]. For the sake of convenience and for better 
reading we adopt Lemma 4.1 and Theorem 4.1 from [9] with full proofs. 

Definition 4.1. A function f(I;,) defined on Rd{\O} is called homogeneous of 
order a ER, if 

f (ti;,) = ta f (I;,) 
for t > 0 and I;, E ]Rd\ {0}. 

In the spherical coordinates 

f(I;,) = r 0 <P(u), r = l{I > o, U E sd-l, 

(4.1) 

(4.2) 

where sd-l is the unit sphere in Rd (as usual, we admit that s 0 consists of 
two points: 1 and -1). If in addition, f E C00 (Rd \ { 0}), then <P( u) is bounded 
on sd-l and f has at most polynomial growth at infinity; therefore, it is a 
regular element of the space S' of distributions on S, that is 

(/, cp) = J f(l;,)rp(l;,)dl;,, cp ES . 
]Rd 

We recall that for g E S' and v E Ng the derivative 1Y' g is defined by 

(1Yg,cp) = (-1)1 1111
• (g,V 11cp), cpES, (4.3) 

where 

V",,, ..,., a 111 a "" X1 ••. Xd 

The Fourier transform of g E S' is given by 

{g,rp) = (g,fj), cp ES. 

We notice that if g ES' n C00 (Rd \ {O}), the restriction of V 11g defined 
by (4.3) to So= {cp ES : supprp C ]Rd\ {O}} coincides as an element of the 
dual space Sb with the pointwise derivati_ve of g. 

The preliminary estimate of the asymptotic behavior of the Fourier transform 
of ft/J, where t/J ES and f is homogeneous of a non-negative order, is given by 
the following 
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Lemma 4.1. If f E C 00 (JRd \ {O}) is homogeneous of order a E JR, a~ 0, then 
for any tp ES 

IN(x)I ~ c · (1 + ]xl)-[a]-d+l , x E ]Rd , (4.4) 

where c does not depend on x. 

Proof. We put m = [a]+ d - l. Let 11 E Ng and lvl1 ~ m. Then . 'D 11 f is 
homogeneous of order a - lvh as an element of S' [6], p. 75. With the help of 
remarks given above, 'D 11 f is a regular element of Sb and 

Since <I>11 (u) is bounded on sd-1 , 

1 

ll'D11 JIIL1(D1) = J J Ta-llllt+d-l. <I>11(u)drdS(u) 
sa-1 o 

1 

~ c(v) J ra-11111 +d-1dr < +oo , 

0 

(4.5) 

where dS(u) is a surface element of sd-l . Applying the Leibniz formula for 
the derivative of the product we deduce from (4.5) that 'D11 (f'lj;) E L1 (1Rd) for 
11111 ~m. 

Since f'I/J E L1 (JRd), the inequality (4.4) is valid for Ix! ~ 1. Let now 
!xi > 1. Since 

x11f¢(x) = (-i)l 11 l1v~)(x), XE ]Rd, 

we obtain for !vii ~ m, x E ]Rd 

and 

IN(x)I ~ ( L lx11 l)-l L ll'D11 (/'l,l>)IIL1(R4 ) ~ c · lxl-m , 
l111tc=m l11l1=m 

that completes the proof. • 
By Xd we denote the space of real valued radial functions t/J, such that 

'1/J(O) = l. 
Theorem 4.1. Suppose f(f,) E C00 (JRd \ {O}) is homogeneous of order a E 
JR, a~ 0 it is not a polynomial and 'lj;(f,) E Xd. Then JtP(x) E Lp(Rd) if and 
only if < p ~ +oo . 

Proof. We will prove that 

(4.6) 
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and there exist e > 0, 0 > 0 and u0 E sd-l, such that 

(4.7) 

where 

f! = f!(e,0,uo) = {x = ru: r ~ fl, u E Sd-l ,cos0 $. (u,uo) $.1}. 

Clearly, Theorem 4.1 follows from (4.6) and (4.7). Indeed, since a ~ 0, f is 

bounded on D1 and NE L00 (JRd). If d.ta < p < +oo, then c; = d-1- p(d+ 
a) < -1 and by (4.6) we get after the transfering to the spherical coordinates 

IINlltp(lltd) $. c · { 1 + j f 00r~p(d-t•I · r'-1drdS(u)} 
sa-1 1 

,; c' { 1+ r•dr} <+oo 

Let now O < p $. d.ta . Then c; ~ -1 and we obtain from ( 4. 7) 

+oo 

J J r-p(d.+a) • rd.-ldrdS(u) 

cos O..,;(u,uo) $1 e 

+oo 

= c1 
• j ra dr = +oo . 

e 

First we prove (4.6) and (4.7) for functions tjJ in 

(4.8) 

Since f is bounded on D1 \ {O}, ftp belongs to L1(JRd.). This implies (4.6) 
for lxl $. 1. Let now Ix! > 1. On the basis of the Fourier transform properties of 
homogeneous distributions [6], Theorems 7.1.16, 7.1.18, pp. 167-168, j E S' is 
homogeneous of order -( d + a) and it belongs to C00 (I~_f \ {I}) , in particular, it 
is regular on S0 and 

!(x) = r-(d.+a) · W'(u), r = lxl > o, U E sd.-l . (4.9) 

Noticing that ;f;(x ·) belongs to So for !xi > 1 and applying the properties 
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of convolution [6], Theorem 7.1.15, p. 166 as well as (4.8) and (4.9) we obtain 

IN(x)I = I < I, (J;(x - ·) > I= j J(y)¢(x - y)dy = 

= J 
lx-ylS3/4 

]id 

J(y)(J;(x -y)dy 5 max IJ(y)l · f icY)dy 5 
lx-ylS3/4 

]Rd 

5 c. max IYl-(d+a) 5 c'. lxl-(d+a) 
!x-ylS3/4 

that proves ( 4. 6). 
To prove the lower estimate we notice first that since f is not a polynomial, 

j can not be concentrated at 0 and, therefore, there exists ua E sd-l, such that 
w(ua) =I- 0. Without loss of generality we may assume that Rew(u0) > 0 . We 
choose 0 > 0 from the condition 

1 
ReW(u) ~ 2ReW(u0 ), u E sd-i, cos20 5 (u, ua) 5 1. 

Let e > 1 be so large that the conditions x E fl(e, 0, ua), IY - xi 5 i imply 
y E 0(1, 20, u0) . Then we obtain for x E fl(e, 01 uo) 

l,N(x)I = j J(y)(J;(x -y)dy > 
lx-ylS3/4 

> J IYl-(d+a) . Rew ( 1:1) ;j;(x - y)dy > 
lx-y!S3/4 

~ ~Ret/J(uo) · j IYl-(d+a)(j;(x - y)dy > 
lx-yfS3/4 

~ 2-(d+a)-1 . ReW(x) . jxj-(d+a) J (J;(y)dy = 
]Rd 

= c. lxl-(d+a) ' 

where c = 2-(d+a)-l • ReW(u0 )(21r)d/2 • t/J(0) > 0. The inequality (4.7) is proved. 
Let now t/J be an arbitrary function in Xd. We set 

Clearly, 
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where 1/J1 E Xd and 

Therefore, 
f ( t;,)t/J( t;,) = J( t;,)<p( t;,) + af ( t;,) · it;,1 2 

• 1/J1 ( t;,) . (4.10) 

Noticing that the function g(f;,) = f(t;,)1(1 2 belongs to C00 (Rd \ {O}) and 
is homogeneous of order a+ 2, we obtain from Lemma 4.1 that 

l~(.x)I $ c(l + lxl)-(d+[a]+l) , .x E Rd . (4.11) 

From (4.6) for function in xt, (4.10) and (4.11) we get for .x E Rd 

IRi(x)I $ I.N{x)I + !al -1~1 (.x)I $ 

$ c' ( 1 + lxl-(d+a) + lxl-(d+[a]+l)) $ c" ( 1 + l.xl-(d+a)) 

The estimate (4.6) is proved for all t/J E Xd. 
We put 

~ { (21a!c) r=-t.T} rJ = max rJ, -- , 
C2 

where c and c2 are the constants from (4.11) and (4.7) respectively. Then for 

!xi?: e 
(4.12) 

From (4.7) for functions in xg, (4.11) and (4.12) we have for .x E fl(e, 0, uo) 

IN(x)I ~ lh(x)I - lal -1~(.x)I ~ 
~ c2lxl-(d+a) - c!al . lx!-(d+[a]+l) ~ 

~ lxl-(d+a) . ( c2 c!al. lxl-(1-{a})) ~ c; lxl-(d+a) . 

The proof of Theorem 4.1 is complete. • 
d 

By yd we denote the set of functions t/J(f;,) = II 1/lj({j), where "Pj E 
j=l 

X 1 , j = 1, ... ,d. 
d 

Theorem 4.2. Let f(t;,) = I:: /j(f;,j ), Ji E C00 (R \ {O} ), j = 1 ... , d, Jj be 
j=l 

homogeneous of order 1 E JR, 1 ~ 0 and at least one of them be not a polynomial. 
Let also t/J(f;,) E yd. Then Ri(x) E L 11(Rd) if and only if 1.:_.., < p $ +oo. 

Proof. Using the Fourier transform properties for the tensor product (see, for 
instance, [16], p. 134), we get 

d d 

N(x) = L Mi(xj). II ;J;:,(.x11) • (4.13) 
j=l 
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Let i!-r < p 5 +oo. We put N = [~] + 1, so that Np > 1. Since 

;j;;, E S(R), we derive from (4.13) and (4.6) with d = 1 (obviously, it is valid for 
polynomials as well) 

d. d. 

HN\11;,P(Jid) 5 c · L f (1 + \x31)-p(l+-r)dxj · IJ f (1 + \x,,1)-NPdx,, < +oo . 

3=1 Ji ~~~ Ji 
Let now O < p 5 i!-r . Without loss of generality, Ji is not a polynomial. 

Because of ( 4. 7) with d = 1, we get 

(4.14) 

for t 2:: fl or for t 5 -fl, where fl ~ 1. We will assume that (4.14) is valid 
for t ~ fl. We consider a point X 0 = ( xg, ... , x~) E Ra-i such that ;j;, ( xe) =f. 
0, v 2, ... ,d. Then for some <r > 0 

d. 

TI - 0 !tfJ,,(x,,)12:: a> 0, x,, E U(x,,), v= 2, ... ,d, (4.15) 
v=2 

where U(xe) = {t: It - xel < <r}. From (4.14) and (4.15) we obtain for x E 
[fl, +oo) x U(X0), where U(X0 ) U(xg) x ... x U(x~) c R_d.-l, that 

d. 

IMi(x1)! · fI l;j;,(x,,)12:: c2alx1l-(1+-r) . (4.16) 
v=2 

d. 
In (4.16) for d = 1 we put IT = 1, a= 1, that is, (4.16) coincides with (4.14) 

v=2 
in this case. 

Let 
d. d. 

M = max L(l + lxjl)-(1+-r) · fI (1 + lxvl)-(2+-r) . 
(x2,.,.,Xd)EU(X0) j=

2 
..,=2 
v,#j 

By (4.6) we have for x E [fl, +oo) x U(X0 ) 

d. d. 

J = L IM,(xj)I · IT l;j;':,(xv)I < 
j=2 

d. d. 

5 C1 L(l + !xJl)-(1+-r) · l¢i(x1)I · fI 1¢v(xv)I < 
j=2 

d. d. 

5 c(l + !x11-<2+-r)) · L(l + lxjl)-(1+-r) · fI (1 + lxvl-(2+-r)) 5 
j=2 

(4.17) 
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We put 

~ { 2d } (! = max e, -- . 
c2 • a 

Then for lx1 I 2 e 
'I 1-1 c2a c2a-c x1 2 2 . 

From (4.13), (4.16)-(4.18) we get for x E [e, +oo) x U(X 0 ) 

d 

IN(x)I 2 IM!(x)I · IT l;p:(xv)I - J 2 
v=2 

and, therefore, 

+oo 

IIN(x)llip(JRd) 2 j j IN(x)!Pdx1dx2 ... dxd 

U(X0 ) U 
+oo 

2 c~ar. J dx2 ... dxd J x~p(l+-y)dx1 = +oo. 

U(X0 ) U 

The proof is complete. 

5. Inequa]ities for trigonometric po1ynomia1s 

(4.18) 

• 

Theorem 5.1. Let µ(() E C 00 (R.d\ {O}) be homogeneous of order a ER, a> 0 
and µ(O) = 0. If µ({) is not identical with a polynomial on Rd\ {O}, then 
inequality ( *) is valid if and only if d!a < p ~ +oo. 

Taking into account that Xd c Rd we immediately obtain Theorem 5.1 
from Theorems 3.3, 3.4 and 4.1. • 

d 

Theorem 5.2. Let µ(() LµJ({j), where µ3 E C00 (R \ {O}), µj(O) 0, 
j=l 

j 1, ... , d, µj be homogeneous of order I E R, 'Y > 0 and at least one of 
them do not be identical with a polynomial on R \ { 0}. Then inequality ( *) is 
valid if and only if 

7
~ 1 < p ~ +oo . 

Taking into accout that Yd C Rd we immediately obtain Theorem 5.2 from 
Theorems 3.3, 3.4 and 4.2. • 
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Before we formulate some consequences of Theorems 5.1 and 5.2, we recall 
the exact definitions of operators we need. For our purposes it will be enough to 
define them on the space of trigonometric polynomials T. Henceforth, 

t(x) = L Ckeikx E T . 
kEzd 

I. The partial Weil derivative of order 1 > 0 on x; is an operator given 
by 

L (ik;)'"Yckeikx, ((±i)"t 
kEZd 

-.!.:!.l.) e 2 • 

2. The power of the Laplacian ~ '"Y, 1 E JR, 1 > 0 is defined by 

~'"Yt(x) = L(-l)"tlkl2'"Yckeikx,((-l)"t =ei1r-y). 
kEZd 

We notice that in the one-dimensional case this operator is called the Riesz deri­
vative (see [3], p. 427). 

3. The conjugate operator is defined for polynomials of one variable by 

~t( ) • "' k ikx x = -i • L..t sgn · eke . 
kEZd 

Theorem 5.3. Suppose d = 1, 'YE JR, 'Y > 0. Then the inequality 

(5.1) 

is valid if and only if -rii < p :$ +oo. 

Proof. The inequality (5.1) is of type (*). The operator A>.(µ) ;.--r -C)<'Y) is 

generated by the function µ(~) = i-sgnf(ei.?- -~i +e-¥-C.) that is homogeneous 
of order 'Y and it is not a polynomial for each real 1 > 0. Now inequality (5.1) 
follows immediately from Theorem 5.1. • 

Theorem 5.3 is a direct extension of a classical result on the conjugate func­
tion, namely, if 'Y 0 , the inequality (5.1) is valid if and only if 1 < p < +oo 
(see, for instance, ([8], Chapter 4). For 1 > 0 this inequality seems to be new 
even for natural 1 . 

Theorem 5.4. Suppose 'Y > 0, 1 ¢ N. Then the inequality 

(5.2) 

is valid if and only if -r! 1 < p :$ +oo . 
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d 

Proof. The inequality (5.2) is of type ( *), where A>.(µ) = >.,--r · L £:r, and 
j=l , 

µ(€) = "£ (e1¥ · (€J)+ + e-1¥ • ({j)-:1'..) satisfy the conditions of Theorem 5.2. • 
j=l 

In the case d = l inequality (5.2) is of Bernstein type (see, for references, 
section 1). Theorem 5.4 is one of its possible extensions to the case of several 
variables. 

The following theorem gives another extension, in which the answer will 
already depend on the dimension. 

Theorem 5.5. Suppose 1 > 0, 1 (/. N. Then the inequality 

is valid if and only if d:2-r < p ~ +oo . 

Proof. (5.2) is of type (*), where A>.(µ) = >.,-27 . ,1."Y, 

homogeneous of order 21 and it is not a polynomial for 
5.5 is the special case of Theorem 5.1. 

(5.3) 

µ( €) ei1r-r . 1€12-r is 

1 (/. N . Thus, Theorem 

• 
The approach to treating inequalities for trigonometric polynomials we have 

worked out in this paper find further applications apart from inequalities generated 
by homogeneous functions. We give only one example. 

Let g C Rd be a bounded set. For 21r-periodic functions f in L1 we 
consider the partial sums of its Fourier series 

Sf (f;x) = L fA(k)eikx, >.. > 0, 
kE>.9 

(5.5) 

where ,\Q {k E zd : ~ E Q} . As is well-known (see, for instance, [8], Chapter 
4), in the classical case d = 1, g = [-1, 1} the sequence of norms of operators 
sf in L1 and L 00 is unbounded. The same result is valid if g = [-1, 1 Jd or 
g D 1 . We will show that this fact remains valid for a wide class of sets g. 
Theorem 5.6. Suppose g C Rd has a. positive measure and the measure of its 
boundary is equa.l to O. Then for X L1 or X L00 

-.- g 
hm 11S>. llx ..... x = +oo. >.-,+oo 

Proof. Without loss of generality, Q C D1 . Clearly, 

Sf(f;x) = L Xg (~) fA(k)eikx' 
kEZd 

where Xg({) is the characteristic function of g. Noticing that Xg is discon­
tinuous only on ag with measure 0 we obtain by the Lebesgue criterion that 
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Xg is integrable in the Riemann sense on D 1 . Obviously, Xg does not coincide 
almost everywhere with a continuous function; therefore, the Fourier transform of 

• d -
the function Xg({) = Xg(01/!({)' where 1/1 E n1-e 1 l 0 < E: < l, g C D1-e' 
can not belong to £ 1 (Rd). Hence, by Theorem 3. i the inequality of type ( *) 
generated by µ = Xg fails for p 1 and p +oo, that is, for each c > 0 
there exists >. = >.(c) ~ 1 and t E 'E., such that, 

l!Sf t!lx > c • lltllx . (5.6) 

Noticing that for f EX and >. ~ 1 

11sr fllx = (21r)-d j f(x + {) { L eikx} di; < 
~d kE>.Q X 

::S (21r)d · llfllx · L eikx < 
kE>.Q 1 

::; card {>.Q n zd} · llf llx ::S (2>. + l)d · ll!llx , 

we obtain that lim >.(c) = +oo. Then we get from (5.6) that 
c-->+oo 

-1.-11 gll -1·-( !ISfllx)-rm s). X X ~ Im sup II II - +oo >.-->+oo _, >.-->+oo tET>. t X 

The proof is complete. • 
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