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ON THE COMMON FACTORS OF 2N - 3 AND :/'; - 2 
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Abstract: We prove that there are infinitely many natural numbers n for which the greatest 
common divbor of 2n - 3 and 3n - 2 is di visible by 2666,'i. 

1. Introduction 

A curious problem on the common factors of the numbers 2n - 3 and 3n - 2 was 
proposed by A. Schinzel in 1997. He asked for an argument rejecting the unlikely 
statement that for sufficiently large primes p the number 2n - 3 is divisible by 
p if and only if 3n - 2 is divisible by p. This has been resolved hy G. Banaszak 
(see [1]) who constructed an infinite sequence of natural numbers n 1 , n 2 , ..• with 
the property that the number 2n, - 3 has a large µrime divisor which docs not 
divide the number 3"k - 2. While this solves the Schinzel problem it only whets 
the appetite for more precise information on the common prime factors of the 
numbers 2n - 3 and 3n - 2. Clearly the ultimate question is to find the greatest 
common divisor of the numbers 271 - 3 and 3n - 2 for all n. 

Using the GP /Pari calculator one immediately encounters a pattern of values 
which seems to be a rule. The result is that for all n ::; 3000, 

o-cd(2 71 - 3 3n - 2) - { l 
b • - 5 

if n = 0, 1. 2 mod 4, 
if n = 3 mod 4. 

(1.1) 

However, it is surprising that pushing the calculations a bit further one arrives at 

gcd(23783 - 3, 33783 - 2) = 26665 = 5 · 5333 (1.2) 

instead of the expected value 5. \\re are far from understanding that phenomenon 
but in this note we do three things. First, although we are unable to prove that 
the greatest common divisor in (1.2) equals 26665, we show how to verify that 

26665 I gcd(2 3783 - 3, 33783 - 2). (1.3) 

Actually we will give several proofs for that. Second, we prove that there are 
infinitely many exceptions to the rule (1.1). In all of them the gcd is divisible by 
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26665. We find all exponents n for which the latter holds. Third, we report on 
computer calculations establishing some bounds for n where no new phenomena 
occur. Also we discuss the common divisors of an - b and bn - a for (a, b) = 
(2, 5), (2, 7), (3, 5), (3, 7), (5, 7) and find that their behaviour is pretty close to the 
case a= 2, b = 3. 

The main purpose of this paper is to prove the unexpected numerical phe­
nomenon (1.3) found by computer calculations. Computer findings do not qualify 
as proofs, at least to some authors who think that perhaps rodents in the bowels 
of the computer center are chewing on wires and altering data (see [2]). While 
in our case the computers we have used have been under full control and rodents 
have been nowhere in sight, the smaller computer animals like bugs and viruses 
are likely to inhabit some machines. So we definitely need a proof for (1.3). 

2. Three observations 

We collect here three simple facts on the regularity of appearance of divisors of 
the numbers an - b. We are interested mainly in the cases when a= 2, b = 3 or 
a = 3, b = 2 but the general case is as simple as these special cases. So we fix two 
coprime positive integers a> 1 and b > 1 and an odd prime p. Let us denote by 
tp (a) the exponent to which a belongs modp, or in other words, the order of the 
residue class a mod p in the multiplicative group of the finite field lF P = Z/pZ. 
Thus fp(a) Ip - 1. 

Theorem 2. 1. Let n and · m be natural numbers and assume tliat p I am - b. 
Then 

p I an - b ,¢::::=} n = m (mod fp(a)). 

Proof. Assume first that p I an - b and, say, n > m. Then we have 

Since a and p are coprime it follows that n = m (mod fp(a)). 
On the other hand. if n = m (mod fp(a)) and n > m say. then n 

m + dfp(a) for a nonnegative integer d. Now we have 

Hence, since p I am - b, it follows that p I an - b. 

Theorem 2.2. Suppose there is a natural number n such that 

• 

p I an - b and p I bn - a. (2.1) 

Then fp(a) = fp(b) =: f, and f I n2 - 1. l\foreover, for the smallest n satisfying 
(2.1) the following holds 

n<f<p . 
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Proof. Write A and B for the residue classes of a (mod p) and b (mod p), 
respectively. If (2.1) is satisfied, then we have 

A 11 = n and Bn = A (2.2) 

in the multiplicative group lF;. Hence B belongs to the cyclic subgroup (A) 
generated by A, and A belongs to the cyclic subgroup (B) generated by B. It 
follows that (A; = (B;, hence also 

:rviormver, from (2.2) we get An 2 = B 11 = A, whence fp(a) I n2 - 1. 
If n is the smallest nonnegative integer such that An = B, then An is one 

of the elements A0 , A1 , ... , Ae-I of the group (A;, hence O ~ n < t. • 
Theorem 2.3. If p I an - b, then 

Proof. Assume first that p I a11 - b and fp( a) I n 2 - 1. Using the notation of the 
previous proof, we have An = B and An 2 

- l = 1 in lF P. Hence also 

2 
Bn = An = A, 

as required. The other part has already been proved in Theorem 2.2. • 

3. Direct proof 

Here we show how to verify ( 1.3) \vithout using any computer aided calculations. 
So we are to show t.hat for n = 3783 the greatest common divisor of 2n - 3 and 
3n - 2 is divisible by the primes 5 and 5333. The first part is easy for we have the 
follO\ving result. 

Lemma 3.1. For a natural number n, 

5 I gcd(2 11 - 3, 3n - 2) ¢=:} n = 3 (mod 4). 

Proof. We have £,,(2) = £3 (3) = 4 and 5 I gcd(23 -3, 33 - 2). Hence taking m = 3 
and p = 5, the result follows from Theorem 2.1. • 

The second part is more involved although the result is quite similar to that 
of Lemma 3.1. 
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Lemma 3.2. For a natural number n, 

5333 I gcd(2n - 3, 3n - 2) ¢::::::} n = 3783 (mod 5332). 

Proof. We will prove the assertion in two steps. 

Step 1. 5333 I 23783 - 3. 
First observe that p = 5:133 = 5 (mod 8) so that 2 is a quadratic non­

residue modp. It follows that in lF P, 

22666 = 2(p-1)/2 = -1. 

Hence 

and the desired equality 23783 = 3 is <"quivalent to 

21117 =-3 1·n lF p· (3.1) 

So in the original problem the exponent n = 3783 is in tlw upp<:r half of the 
interval [l, p - 1], and in the reduced problem ( 3.1) the exponent lies in the lower 
half of the int<"rval [l, p - 1]. In principle the problem becom<:s easi<:r. 

\Ve use a well known method of computing the residue ak (mod m) (see, 
for instance, [5], p. 126), the successive squaring method. So first we write the 
exponent 1117 as th<: sum of 2- powers, 

1117 = 210 + 26 + 24 + 23 + 22 + 1, 

so that 
111 7 2 10 26 24 23 22 1 2 =2 -2 ,2 ·2 -2 .2. 

Next calculate the residues of 22' (mod 5333). 

2 1 = 2. 221 = 4. 222 = 16, 
94 2 

2- = 256 = 1540. 

225 = 15402 = 3748, 

226 = 37482 = 382, 

227 = 3822 = 1933. 

228 = 19332 = 3389, 

229 = 33892 = 3372, 

21() 2 
2 = 3372 = 428. 

.,., 
2~ = 256. 
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Now we compute the residue of 21117 (mod 5333) as follows. For brevity, 
write 

Then we get 
A3 = 256 · 16 · 2 = 5333 · 1 + 2859 = 2859, 

A1 = 1540 · 28,59 = 5333 · 825 + 3135 = 3135, 

A6 = 382 · 3135 = 5333 · 224 + 2978 = 2978, 

Aw = 428 · 2978 = 5333 · 238 + 5330 = -3. 

This proves the asserted equality (3.1) and finishes the Step 1. 

Step 2. 533312:1783 - 3 and 5333 I 3:373:3 - 2. 
In view of Theorem 2.3 the divisibility p I 33783 - 2 follows from the fact that 

p 123783 - 3 and p - 1 I 37832 - 1. The first divisibility has been established in 
Step 1 and the second divisibility is easily checked. 

We are going to use the fact that £p(2) = p - 1. This is proved in the next 
section (see Proposition 4.1). With this, the equivalence statement in Lemma 3.2 
follows from Theorem 2.1 and from Step 2. • 
Example 3.3. We could have attacked the problem directly trying to calculate 
the residue of 23783 mod 5333. Observe that 

3783 = 211 + 210 + 29 + 27 + 26 + 22 + 21 + 2° 

Hence 

and so we would have to compute the residues of 22; up to 'i = 11 and then proceed 
as above. These computations require more steps and also higher exponents occur 
than in the approach we have applied. 

Example 3.4. For further reference we want to establish that 

2117 = 355 (mod 5333). 

This can be done by using the successive squaring method. So we write 117 = 
26 + 25 + 24 + 5 and 55 = 25 + 24 + 7 and then we use the already computed 
residues of 22' modulo p = 5333. So we get 

2117 = 225 . 225 . 224 . 25 = 382 • 3748 · 1540 · 32 = 2769 (mod p). 

Similarl_y, computing the residues of 32' modulo p we get 

355 = 325 . 324 . 37 - 1790 • 4078 · 2187 = 2769 (mod p). 



226 Kazimierz Szymiczek 

This establishes the claim. However, it is interesting to notice that we also have 

3117 = 255 (mod 5333). 

We prove this in a slightly more general setting. We assert that for any natural 
numbers n, m, 

To prove this we use two facts, first 23783 = 3 and 3:3783 = 2 in IF P, and s<"cond, 
fv(2) = fv(~1) = p-1, proved in the n<"xt section (see Proposition 4.1). Then we 
have in 1Fp, 

2n = 3m {:::=:;,- 2n = 23783m {:::=:;,- n = 3783m (mod p - 1) 
{::::=;,- 3 n = 3 3 783 m {:::=:;,- :r = 2 m . 

4. Other direct proofs 

Here we give several other proofs of the fact that 5333 is a common factor of 
23783 - 3 and 33783 - 2. As remarked in Step 2 of the proof of Lemma 3.2, it is 
sufficient to establish that for p - 5333 and n = 3783 eitlwr p I 211 - 3 or p I 3n -2. 
Throughout this section we set p = 5333. 

Preliminaries. Her<" we establish several identities in the multiplicative group 
IF;. We start with some obvious decompositions in Z: 

p = 22 · ll3 + 32 , p + 2 · 35 = 11- 232 , p + 28 = 35 · 23. 

Thus we get in IF P : 

2 · 35 = ll · 232 
1 28 = 35 . 23. ( 4.1) 

The third identity squared becomes 216 = 310· · 232 , and now eliminating 232 we 
obtain 210 - ll = 2. 315 or 215 • 11 = 315 . Now raising the first identity in (4.1) to 
the power 8 we get 216 • ll 24 = 316 and combining with 215 • 11 = 315 we arrive 
at the nontrivial relation 

2 · 1123 = 3 in IF v· ( 4.2) 

Observe that we could have used once more the method of successive squaring to 
compute the residue of 11 23 ( mod p). For 23 = 24 + 22 + 3 and computing the 
residues modulo p = 5333 we get 

11 23 = 11 24 . 1122 . ll3 = 1652. 3975 • 1331 = 1652 • 389 = 2668 (mod p). 
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Hence 2 • 11 23 = 2 • 2668 = 3 (mod p). 
The identity ( 4.2) has several interesting consequences. First \Ve get 22 · 

1146 = 32 which combined with 22 • 11 3 = -32 gives 

1143 = -1. 

It follows that fp(11) = 86. This is the only instance among small primes where 
the prime belongs mod p to a small exponent. Using GP /Pari calculator one can 
check that primes like 2, 3, 5, 7, 17, 19, 23. 29 all are primitive roots modulo p, and 
13 belongs to 2666 mod p. We will give below a direct proof that 2 and :3 are 
primitive roots modp. Another consequence of ( 4.2) is 

243 = -343 ltl lF p· ( 4.3) 

This can he obtained by raising the identity ( 4.2) to the power 43 and using 
11 13 = -1. 

Now we show that £p(6) = 31. For this it is sufficient to prove that 

This follows immediately from the identities 

11 • 17 • 215 = -1 and 17 · 315 = -1 in IF p· 

Indeed, squaring and multiplying the two identities we get 

112. 174. 530 = 1, 

(4.4) 

(4.5) 

so it remains to show that 11 2 • 174 = 6 in lFP. This involves manipulations with 
4-digit integers and for completeness we include the ( trivial) details. So we have 

11 2 -17 = 2057, 

11 2 • 172 = 2057 • 17 = 2971 (mod p ). 

11 2 . 173 = 2971 · 17 = 2510 (mod p), 

11 2 . 174 = 2510 • 17 = 6 (mod p). 

It remains to establish the identities ( 4.5). We start with the observation 

3p = 56 + 2 • 11 · 17 and 3p + 1 = 27 • 53 . 

Thus we have -5fi = 2 • 11 • 17 and 27 • 53 = 1 in IF P. Squaring tlw second and 
combining with the first gives the first identity in ( 4.5). The second can be derived 
from the first and from (4.2). For the latter implies 215 • (11 23 ) 15 = 315 , and since 
23 • 15 = 1 (mod 86), we get 210 • 11 = 315 • Now the second identity in (4.5) 
follows from the first. This finishes the proof of 631 = 1. 
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Before we prove that 2 and 3 are primitive roots (mod p) Wf' must estab-
lish two more identities in lF P. These are 

262 = 11 51 and 362 = 1125_ (4.6) 

Observe that p - 1 = 62 • 86, hence (2 62 ) 86 = I and (362 ) 86 = 1 in lF p · The cyclic 
group lF; has only one subgroup of order 86 and this is generated by 11 . Thus 
we must have 262 = 11 a and 362 = 11 b for certain positive integers a, b ~ 86. 
Actually, \Ve have a = 61 and b = 25 and that is what Wf' arf' going to prove. 

From ( 4.2) we have 22 • 11 2:1 = 6, henc:f' 262 • (11 23 )·31 = 631 . By ( 4.4) and 
23 · 31 = 25 (mod 86) we get 

262. 1125 = l. 

:\foltiplying this by 1161 and using 1186 = 1 we get the first identity in (4.6). And 
multiplying the last displayed identity by 362 we get 662 . 11 25 = 362 which com­
bined with ( 4.4) gives the second identity in ( 4.6). A further piece of information 
is provided by the following result. 

Proposition 4.1. 2 and 3 are primitive roots mod5333. 

Proof. We prove only that £p(2) = p - 1 since the other part of the proof is quite 
similar. Notice that p - 1 = 4 • 31 · 43 so that it is sufficient to show that £p(2) 
is divisible by 4, 31 and 43. We will use the following simple principle: for any 
natural number k, we have £p(2k) I £p(2). 

Step 1. 4 I £p(2). 
\Ve know that 2(P 11 12 = -1 in lFp, hence £p(2(p-l)/'1) = 4. By the principle, 

41£p(2). 

Step 2. 31 I £p(2). 
We use the already proved fact that 2n = 3 in lFP for n = 3783 (see Step 1 

in Lemma 3.2). Thus Wf' have 2 11 + 1 = 6 -/- 1 and since n + 1 = 172 · 22 it follows 
that 2172 -/- 1. On the other hand p - 1 = 172. 31 so that 2172 = 2(p--lJ/31 -/- 1. 
It follows that £p(2 172 ) = 31, and so 31 divides £p(2). 

Step 3. 43 j £p(2). 
We know that £P(11) = 86 and since gcd(til,86) = 1, also £p(11 61 ) = 86. 

Hence, by ( 4.6), we have £ p(262 ) = 86 and so 86 I £p(2). • 

Second proof. This is based on the equality 631 = 1 in lF P (see ( 4.4) ). Set 
n = 3783. From (4.2) \Ve get 

But n + 1 = 23 • 11 • 43 is divisible by 86, the order of 11 in the group :?\,, hence 
2"+ 1 = 3n+l. In lFp write a for the common value of 2n • 3- 1 and 3n • 2 1 Then 

271 = 3a and 3n = 2a (4.7) 
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and it remains to show that a= 1. First we show that dl:3 = 1. Using ( 4.3), we 
have 

243n = 343. a43 = -243. (14,3' 

hence 243(n-l) = a/13 . But 43(n - 1) = (p - 1)/2 · 61, so we get 

_ 1 = (-l)°1 = (2(p-1J/2)61 = -a43_ 

Hence a4:i = 1. 

The second step is to show that a2 = 1. From (4.7) we get 671 = 6a2 

and so 5n- l = a.2. On the other hand 31 In - 1 and 631 = 1, so it follows that 
1 = 5n-l = a2. 

Clearly a43 = 1 and a.2 = 1 give a= 1. Henrr 271 = 3, as desired. 

Third proof. Here we will use the equality 255 = 3117 in F P established m 
Example 3.4. Observe that 

3783===55-5013 (modp-1) and 117-5013===1 (modp-1). 

Thus raising 255 = 3117 to the power 501:3 we get in FP 

It is interesting to notice that the equality 255 = 3117 can also be established by 
using the identiti<"s (4.2) and (4.6). Indeed. by the latter, 3124 = 1150 . and by 
( 4.2) we have 37 = 11 75 • 27. Combining these we get 

3117 = 11-25. 2-7 = 1161.2-7 = 2,55 
' 

the latter by ( 4.6). 

Fourth proof. Observe that 3783 = 61 2 + 61 + l, and by ( 4.6) we have 361 · 3 = 
1 l 2r, . This gives 

361 2
• 361 = (1125)61 = 1163, 

sine<" 1186 = 1 and 25 • 61 = 63 (mod 86). Finally 

3378,3 = 361 2 . 361 . 3 = 3 . 116,3 = 2 
' 

the latter by the identity ( 4.2) which is equivalent to 3 • 1163 = 2. 

5. There are infinitely many exceptions 

We have been directing our effort to prove that the expected pattern of the values 
of gcd(2n - 3, 3n - 2) breaks dmvn for the value n = 3783. But from Lemma 3.2 it 
follows that, in fact, there are infinitely many exceptions. We describe completely 
the exponents n for which 26665 = 5 • 5333 is a common divisor of 271 - ;3 and 
3n - 2. 
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Proposition 5.1. For a natural number n, 

26665 I gcd(2n - 3, 3n - 2) ¢=> n = 3783 (mod 5332) 

Proof. Combine the lemmas 3.1 and :1.2. • 
We are unable to prove that the greatest common divisor of 2n - 3 and 

3n - 2 for the values of n specified in the proposition actually equals 26665. 
However, using the GP/Pari calculator (version 2.0.17 brta) we have computed 
the gcd(2n - 3,3 11 - 2) for 101 consecutive numbers of the form n = 3783 + 5332x 
( x = 0, 1, ... , 100), the largest being n = 536983. In all cases the gcd equals 
26665. (Notice that the number 3336983 - 2 has 256207 decimal digits.) 

At the moment, the gcd(2n - 3, 3n - 2) have been computed for all n ::::; 
200000 and the pattern set by (1.1) works all right except for n = :1783 (mod 5332), 
where in all cases the gcd equals 26665. The calculations in the range 80000 ::::; 
n::::; 200000 have been performed on a 500 1v1Hz Pentium III IBM ;\Jetfinity 3000 
machine. They took 412 hours of computer work. 
Remark. If we are interrsted only in showing that there ar<' infini t.ely many integers 
n satisfying 2n = 3 and 3n = 2 in lF P, then there is an easy and immediate proof 
that, if this holds for one exponent m, then it holds for infinitely many exponents. 

2 For as we have already observed, 2m = 3 and 3m = 2 imply 2m = 3m = 2 and 
2 • 

3m = 2m = 3, hence for any natural number k we have 

m2k 2k 
2 = 2 and :1 m = 3. 

It follows that 

Hence all exponents m 2k+I solve our problem if m does. 
Notice that this agrees with Lemma 3.2. According to the Lemma we must 

have m = 3783 (mod p-1) and since 37832 = 1 (mod p-1), we have m2k+l = 
37832k+l ::::3783 (modp-1). Henceforn=m2kJl wehavepl gcd(2n_3_3n_2) 
by Lemma 3.2. 

6. Prime divisors of the numbers an - b and bn - a 

\Ve continue to assume that a > 1 and b > 1 are coprime integers. \Ve say that a 
prime number p is an ( a, b )- divisor if there exists a natural number n such that 

p I an - b and p I b11 - a. 

Thus, for instance, the primes 5 and 5333 are (2, 3)- divisors and we do not know 
any others. 

It is tempting to look at some other values of a and b. Using GP /Pari 
calculator we have verified (in 450 hours of a modest computer work) that for 



On the common factors of 2n - 3 and 311 - 2 231 

n s; 50000 only the following prime numbers occur as ( a, b )- divisors for a, b E 
{2, 3, .5, 7}. 

.5. 533:~ 
3, 1031. 1409 
5, 13,61,67,211,19423 
2.7,2333,8537, 13757,37123 
2, ,5, 79, :300673 
2,17,97,227251 

are (2, 3)-divisors, 
are (2, 5)-divisors, 
are (2, 7)-divison,, 
are (3, 5)-divisors, 
are (3, 7)-divisors, 
are ( 5, 7)-divisors. 

Although this evidence is very limited and discouraging we are ready to conjecture 
that for any relatively prime natural numbers a, b the set of prime (a, b)- divisors 
is infinite. 

Clearly, first one would like to know that each sequence an - b has infinitely 
many prime divisors. This however is a well known fact (see, for instance, [4, 
Aufgabe VIII.107]; I owe this reference to A. Schinzel). 

A modern proof runs as follows. Suppose p 1 , ... , Pk are all prime divisors 
of the numbers of the form an - b, where n E N. Let S be the set of primes 
consisting of the prime factors of a and of all the p 1 , ... , Pk. We consider the ring 
() of S- integers in the field Q of rational numbers. It follows that for any n E N 
there are nonnegative integers n 1 , ... , O:k such that 

n . OJ Dk _ b a - P1 ··.Pk - · 

Hence with a 1 = 1/b and a2 = -1/b the equation 

has infinitely many solutions in S- units X1 = a and X2 = pr 1 • • · pr" . This 
contradicts a ,vell known result of van der Poorten, Schlickewei and Evertse (see 
[3, p. 191). 

Another conjecture we want to make goes in the opposite direction. The 
numerical results (see ( 1. 1)) suggest that three of the successive four couples 2n - 3 
and 3n - 2 arc relatively prime. Yet ,ve do not know whether there are infinitely 
many exponents n for which the numbers 2n - 3 and 3n - 2 are relatively prime. 
The conjecture is that there are infinitely many such exponents. 
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