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ON SUMS OF THREE UNIT FRACTIONS WITH POLYNOMIAL
DENOMINATORS

A. SCHINZEL

Abstract: The equation m/(ax +b) = 1/F1(z) + 1/Fa(z) + 1/Fa(z) is shown to be impossible
under some conditions on polynomials ax + b and Fy, Fo, F3.
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A well known conjecture of Erdos and Straus [2] asserts that for every integer
n > 1 the equation
4 1 1 1

n Iy To T3

is solvable in positive integers x,z3,x3. Sierpinski [10] has made an analogous
conjecture concerning 5/n and the writer has conjectured that for every positive

integer m the equation
m 1 1 1
= e e (1)
nozr; X2 X3
is solvable in positive integers 1, @z, z3 for all integers n > no(m) (see [10], p. 25).
For m < 12 one knows many identities

m 1 i 1 n 1 (2)
ax%—b_Fl(@ Fa(z)  F3(a)

where a,b are integers, ¢ > 0 and F; are polynomials with integral coeflicients
and the leading coefficients positive, see [1], [5], [7], [8]. [11]. Section 28.5. It could
seem that a proof of solvability of (2) for a fixed m and n > ng{m) could be
obtained by producing a finite set of identities of the form (2) with a fixed a and
b running through the set of all residues mod a. The theorems given below show
that this is impossible.
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188 A. Schinzel

Theorem 1. Let a,b be integers, a > 0, {(a,b) = 1. If b i5 a quadratic residue
moda, then there are no polynomials Fy, Fp, F3 in Z|z| with the leading coeffi-
cients positive, satisfying (2) with m = 0mod4.

Theorem 2. Let m,a,b be integers, a > 0, m > 3b > 0. There are no polyno-
mials Fy, Fy, Fy in Z|z] with the leading coefficients positive, satisfying (2).

Theorem 1 in the crucial case m = 4 has been quoted in the book [4] (earlier
inaccurately in [3]), but the proof has not been published before. The theorem is
closely related to a result of Yamamoto [12] and the crucial lemma is a consequence
of his work. Possibly, Theorem 2 can be generalized as follows. Let k,m,a,b be
positive integers, m > kb. There are no polynomials Fy, Fz,..., Fy in Z[z] with
the leading coefficients positive such that

k
m 1
ar +b _gFi(z)'

Note that by a theorem of Sander [9] the above equation has only finitely many
solutions in polynomials F; for fixed a,b,m and k.

Notation. For § C R[z] we shall denote by 1 the set of polynomials in  with
the leading coefficient positive.

For two polynomials A, B in Z[z], not both zero, we shall denote by (A, B)
the polynomial D € Z[z]* with the greatest possible degree and the greatest
possible leading coefficient such that 4/D € Z[z] and B/D € Z[z].

Lemma 1. If A/B C,D are in Z{z], (A,B) =1 and A/B = C/D, then C =
HA, D= HB foran H € Z{z]. If (C.D) =1 then H = £1.

Proof. This follows from Theorem 44 in [6], the so called Gauss’s lemma. n
Lemma 2. The equations

n? = 4(cs — b*)b'r — s (3)
and

n?s = 4{cs — b*)b*r — 1 (4)
have no solutions in positive integers b* ¢, n,r,s.

Proof. This is a consequence of Theorem 2 in [12]: according to this theorem n?

does not satisfy either of the two congruences

2

n” = —s{mod4a™b"), (5)

ns = —1(mod4a*b*), (6)

where a*,b*, s are positive integers and s | a* + b*, while just such congruences
follow from (3) and (4) with a* = ¢s — b*. The impossibility of the congruences



On sums of three unit fractions with polynomial denominators 189

(5) and (6) is established in [12] by evaluation of the Kronecker symbol (—s/ab);
instead one can use the Jacobi symbol as follows.

(3) gives n? = (db*er — 1)s — 4b*%r, (4) gives (ns)? = (4b*ers — 1)s — 4b*2rs,
while for e = 2%¢y > 0, ey odd, we have by the reciprocity law ([6], Section 42)

e N () e (s =1
4b*es — 1 4b*es — 1 ' eq
e ()

€9

Proof of Theorem 1. It is clearly sufficient to prove the theorem for m = 4.
Assume that we have (2) with m =4. Thus

AR (z) Fa(2) Fa(z) = (ax + b) (Fa() Fa(z) + Fy (2)F3(z) + Fi(z)F2(2)).

hence
Fi{=b/a)Fo(=b/a)F3(—b/a) = 0.

If we had Fi(—b/a) = 0 for each ¢ < 3, then there would exist polynomi-
als G; € Q[z]t such that Fi(z) = (az + b)G;(z). Since (a.b) = 1 it fol-
lows from Gauss’s lemma that G; € Z[z]*. Choosing an integer k such that
(ak + b)G1(k)G2(k)G3(k) # 0 we should obtain

1 1 1
<3

=am T en T am =

a contradiction.

Hence, up to a permutation of Fy, F», F5 there are two possibilities
Fy(=b/a) = Fy(—b/a) = 0 # F5(—b/a), (7)

Fi(=b/a) = 0% Fy(~b/a)Fy(~b/a), ()

In the case (7) Fi(x) = (az + b)Gi(z) (1 = 1,2), (Fs(x), ax +b) = 1, where
Gi € Z[z]*. Let us put

D=(G1,Gs), Gi=DH, (i=1,2),
C = (ADH,H, — H, — Hy, DH,H,) = (H, + Hz,D),
D=CR, H, +H,=CS.

H;,C,R,S are in Z[z]* and we have (H,,Hy) = 1, (RHH,,S) = 1. By (2)
with m =4
ar +b - 4DH1H2 - Hy — Hs . 4331H2 -5

Fs DH, H, ~ RH,H,
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Since (axz +b,F3) =1 = (4RHH, — S, RH,Hy) and both F3 and RH;H; are in
Z[z]*, it follows by Lemma 1 that

ax + b= 4RH\Hy — S = 4(CS — Hy)HyR — S. (9)

Since b is a quadratic residue for a and C,Hy, R, S are in Z[z|t there exist
integers k and n such that

ak+b=n? and b* = Hy(k), c=C(k), r = R(k), s = S(k) arein Z",

which in view of (9) contradicts Lemma 2.
Consider now the case (8). We have here

Fl(li} = (a.x -+ b)Gl(QZ). F, = DH, {2 = 2,3)

where G, € Z[z]*, D = (Fy, F3), (Ha, Hs) = 1 and (DH,,az+b) =1 (i = 2,3),
H; € Z{z]*. Hence, by (2) with m =4

4 . 1 H; + Hg
ww1b (a1 b)G, | DH
DH>Hs  Gy(Ha + Hy)

ar +b 4G, — 1

(10)

Let us put C = (D,Hz + H3), D= CR, Hy + H; = CS, so that C. R, 8§
are in Z{z]*. Since (DHyHs,ax +b) = 1 we infer from Lemma 1 that 4G; — 1 =
(ax + b)H,, where H; € Z[z]* . Hence, by (10),

RHH, _ G,
S T H

Since (RH3H3.5) =1 = (G1.H,) and S and H, are in Z[z]*t it follows from
Lemma 1 that H, = 5, G; = RHyH; and

(az +b)S = 4G, — 1 = ARH,Hj — 1 = 4(C'S — Hy)HoR — 1. (11)

Since b is a quadratic residue moda and C.Hy, R, S are in Zlr]* there exist
integers k and n such that

ak+b=n* and b = Ho(k), ¢=C(k), r = R(k). s= S(k) arein Z".

which in view of {11) contradicts Lemma 2. u

Proof of Theorem 2. If F;(0) # 0 for all 7 it follows from (2) on substituting
z =0 that

m LA

L — <3,

b Z Fi(0) — 5

i) t
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contrary to the assumption m > 3b.
If Fi(0) # 0 for all but one 4, it follows from (2) on taking the limit for
z 0
m

R
p oo

a contradiction.
If F;(0) =0 for all i, it follows F;(z) = zG;(x), G; € Z{z]* and by (2)

3
mar 1
ax + b “Z; Gi(z)’

When 2 — o0 the terms on the left hand side are less than the limit m/a,
the terms on the right hand side are greater or equal to the limit, which contradicts
the equality.

Thus F;(0) = 0 for exactly two ¢ < 3 and we may assume without loss of
generality that '

Fi(0)=0(i=12), F30)#£0.

Arguing as in the proof of Theorem 1 we infer that F;{—b/a) = 0 for at least one
i. Hence up to a permutation of Iy, F5 there are the following possibilities:

(12) Fi(~b/ay =0(i = 1.2.3);

(13) Fi(~bja)=0(i=1,2), Fs(—bja) #0;
(14) F(=b/a)=0(i=1,3), Fa(=bja)#0;
(15) Fi(=b/a) #0(i=1,2), F3(=b/a) = 0:
(16) Fi(=bja) #0(i=1,3), Fy(—bja)=0.

We shall consider these cases successively.

Case (12). Here Fy(z) = (az + b)G;i(x), G; € Qz]* (i = 1,2,3) and by Gauss’s
lemma (a,b)G, € Z[z]*. Taking an integer k such that G;(k) # 0 we obtain from

(2) .

m= };m-) < 3(a,b) < 3b,
contrary to the assumption.
Case (13). Here Fi(z) = z{az + b)G.(z), G; € Qz]* (i=1,2)

1 N 1 4 az + b
zG1(z)  2Ga(x) Fs

Ty =

and taking the limit for & — oo we infer that F3 = cx +d, where ¢ = a/m. Hence

1 1 b—md
Gy (G + cr+d’
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For z large enough the first two terms are positive, hence b~ md < 0 and d > 0.

Without loss of generality Go(—d/c) =0, hence Gy = (cz + d)H2(z), Hy €
Q[ L

. X
0=I1Ln;m +b—md,
thus G(z) = ¢/(md — b) and
md~b+ 1 b—md (md-b)d 1
cT zlcx+d)H,  cx+d zlez+d)  zlez+d)Hy

This is impossible, since for z large encugh both terms on the right hand side are
positive.
Case (14). Here F, = z{az + b)Gy, F5 = G2, F3 = (az + b)G3, where G; €
Q=™ (1=1,2,3) and

0=

1 axr +b 1
= —0 + + =
oGy Gy (i3
The first and the second term on the right hand side are greater than their limits
for © — ¢, the third term is greater or equal, while the left hand side is constant:
this gives a contradiction.

Case (15). Here F; = zG;, (i = 1,2), F3 = (az + b)G3, where G; € Z[z]*,
Gi(—bja) #0 (i =1,2), Gz € Q[z]* and
mT 1 1 T
= + + :
ar+b  Gi(z)  Ga(r) (az+ b)Gs(x)
If G3 ¢ @1 all three terms on the right hand side are greater than or equal to their

limits for z — oo, while the left hand side is less than the limit, a contradiction.
Hence G3 =g € Q7 and

m

(m—l/g)xz_l_ 1

ar +b Gy G_g’
which contradicts G;Ga(—b/a) # 0.

Case (16). Here Fy = 2G,, F» = z{az + b)G2, where G, € Z[z]*, G, € Qz]*

and
mx 1 1 T

. 17

aa+b G T azibG: R (17

If deg F3 = 0 we take the limit for 2 — oo and obtain m/a = oo, a contradiction.
If deg Fi3 > 1, when o — oo the left hand side of (17) is less than its limit.

while all three terms on the right hand side are greater than or equal to their
limits, which gives a contradiction. Thus

degFs =1, Fy =cx +d, where c € Z7, d/ec # b/a. (18)
We consider four subcases:
(i) deg Gy > 1;
(ii) deg Gy =1, G1/F3 € Q;
(iii) deg Gy =1, G} /F3 € Q;

(iv) deg G, = 0.
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Subcase (i). Taking the limit for £ — oo we infer from (17) and (18) that o = em

and
mzx 1 1 T

cma:+b: 5;+ (emx + B)Ga +ca:+d:'
z{md — b) _cma:+b+ 1

cx%—d Gl a‘g"

hence md —~b > 0, d > 0. When = — oo the left hand side of (18) is less than its
limit, while both terms on the right hand side are greater than or equal to their
limits, which gives a contradiction.

(19)

Subcase (ii). As in the subcase (i) we have md—b >0, d > 0. Let G| = ez + f,
e>0, f/fe#b/a,d/c. 1t follows from (19) that

Gy =g YHex + d){ex + f). g€ QF
and substituting z = 0 we obtain

b g
—_— . .
0 —f+—, g bd < 0

a contradiction.
Subcase (iii). Let G; = e '(cz + d), e € Q1. We obtain from (17) and (18)

mr 1 +x+e
at +b  (ax+b)Gy  cx+d

hence Gy = f~!(cz +d), f € Qt and substituting z = 0

f e
0=~ 4 —;
td

=1 f=-be <0,

a contradiction.

Subcase (iv). Let G, = g. It follows from (17) and (18) that Gy = ¢™!{cz + d),
e€Q*,
mx 1 e z

a3:+b:§+ (ax + b)(ex + d) +(;93+a’

and multiplying both sides by (az + b){cx + d)

(egm — ac — ag)z® + (dgm — bg — ad — be)z — bd — e = 0.

Hence
(20) cgm —ac—ag =0,
(21) dgm — bg — ad ~ be = 0,

(22) bd + e =0,
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which is impossible, since (20) gives gm —a = ag/c > 0, (21) gives

d = (bg + be)/(gm — a) > 0, contrary to (22). |
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