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Abstract: The equation m/(ax + b) = 1/ Fi(x) + 1/ F2(x) + 1/ Fi(x) is shown to be impossible 
under some conditions on polynomials ax+ b and Fi, F2, F3. 
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A well known conjecture of Erdos and Stram, [2] asserts that for every integer 
n > 1 the equation 

4 1 1 1 
-=-+-+­
n X1 Xz X3 

is solvable in positive integers x 1, x2, X3. Sierpinski [10] has made an analogous 
conjecture concerning 5/n and the writer has conjectured that for every positive 
integer m the equation 

m 
n 

1 1 1 
+ + 

X1 X2 X3 
(1) 

is solvable in positive integers x 1 , X2, .r3 for all integers n > no(m) (see [Hl], p. 25). 
For m :::; 12 one knows many identities 

m 1 1 1 --=--+--+--
ax+b F1 (x) F2(x) }3(x)' 

(2) 

where a, b are iut.eger:,;, a > 0 and F; are polynomials with integral coefficients 
and the leading coefficients positive, sec [1], [5]. [7], [8], [ll], Section 2?-1.,5. It could 
seem that a proof of solvability of (2) for a fixed m and rz > n 0 ( m) could be 
obtained by pro<lucing a finite set of i<lentities of the form (2) with a fixed a and 
b running through the set of all residues mod a. The theorems given below show 
that this is impossible. 
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Theorem 1. Let a, b be integers, a > 0, (a, b) = 1. If b is a quadratic residue 
mod a, then there are no polynomials Fi,F2 ,F3 in Z[x] with the leading coeffi­
cients positive, satisfying (2) with m = 0 mod 4. 

Theorem 2. Let m, a, b be integers, a > 0, m > 3b > 0. There are no polyno­
mials F1 , F2 , F3 in Z[x] with the leading coefficients positive, satisfying (2). 

Theorem 1 in the crucial case m = 4 has been quoted in the book [4] (earlier 
inaccurately in [3]), but the proof has not been published before. The theorem is 
closely related to a result of Yamamoto [12] and the crucial lemma is a consequence 
of his work. Possibly, Theorem 2 can be generalized as follows. Let k, m, a, b be 
positive integers, m > kb. There are no polynomials F1 , F2, ... , Fk in Z[x] with 
the leading coefficients positive such that 

k 
m ~ 1 

ax+b = ~ Fi(x)" 

Note that by a theorem of Sander [9] the above equation has only finitely many 
solutions in polynomials Fi for fixed a, b, m and k. 
Notation. For n c ~[x] we shall denote by n+ the set of polynomials in n with 
the leading coefficient positive. 

For two polynomials A, B in Z[x], not both zero, we shall denote by (A, B) 
the polynomial D E Z[x]+ with the greatest possible degree and the greatest 
possible leading coefficient such that A/ D E Z[x] and B / D E Z[x]. 

Lemma 1. If A,B,C,D are in Z[x], (A,B) = 1 and A/B = C/D, then C = 
HA, D = HB for an HE Z[x]. If (C,D) = 1 then H = ±1. 

Proof. This follows from Theorem 44 in [6], the so called Gauss's lemma. • 
Lemma 2. The equations 

n2 = 4(cs - b*)b*r - s (3) 

and 
n2 s = 4(cs - b*)b*r - 1 (4) 

have no solutions in positive integers b*, c, n, r, s. 

Proof. This is a consequence of Theorem 2 in [12]: according to this theorem n2 

does not satisfy either of the two congruences 

n2 = -s(mod4a*b*), 

n 2s = -l(mod4a*b*), 

(5) 

(6) 

where a*, b*, s are positive integers and s I a* + b*, while just such congruences 
follow from (3) and (4) with a* = cs - b*. The impossibility of the congruences 
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(5) and (6) is established in [12] by evaluation of the Kronecker symbol (-s/ab); 
instead one can use the Jacobi symbol as follows. 

(3) gives n 2 = ( 4b*cr - 1 )s - 4b* 2r, ( 4) give8 ( ns )2 = ( 4b* crs - 1 )s - 4b*2rs, 
while for c = 2°' c0 > 0, e0 odd, we have by thP reciprocity law ( [6], Section 42) 

( -4b*2e ) = _ ( eo ) = -(-l/eo-l)/2 (4b*cs -1) 
4b*es - 1 4b*cs - 1 e0 

= -(-l)(eo-1)/2 ( C:) = -1. 

• 
Proof of Theorem 1. It is clearly sufficient to prove the theorem for m = 4. 
Assume that wP have (2) with m = -1. Thus 

hence 

If we had F; ( -b /a) = 0 for each i :::; 3, then there would exist polynomi­
als G, E Q[x]+ such that F,(:r) = (ax+ b)G;(x). Since (a, b) = l it fol­
lows from Gauss's lemma that G; E Z[x]+. Choosing an integer k such that 
(ak + h)G1(k)G2(k)G3(k) =/- 0 we should obtain 

1 1 1 4=--+--+--<3 G1 (k) G2(k) G:3(k) - ' 
a contradiction. 

Hence, up to a 1wrm11tation of F 1 , F2. F3 there are two possibilities 

F1 (-b/a) = 0 =/- F2(-b/a)F3(-b/a). 

In the case (7) Fi(:r) = (ax+ b)G1(.r) (i = 1, 2), (F3 (:c), a.r + b) 
G; E Z[x]+. Let us put 

D = (G1, G2), G; = DH; (i = 1, 2), 

C = (4DH1H2 - H1 - H2, DH1H2) = (H1 + H2, D), 
D = CR, H 1 + H2 = CS. 

(7) 

(8) 

1, where 

H;, C, R, S are in Z[:r:]+ and we have (H 1 , H2) = 1, (RH1 H2, S) = 1. By (2) 
with m = 4 

--= 
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Since (ax+ b, F3 ) = 1 = (4RH1H2 - S, RH1H2) and both F3 and RH1H2 are in 
Z[x]+, it follows by Lemma 1 that 

(9) 

Since b is a quadratic residue for a and C, H2, R, S are in Z[x]+ there exist 
integers k and n such that 

ak + b = n2 and b* = H2 (k), c = C(k), r = R(k), s = S(k) are in z+, 

which in view of (9) contradicts Lemma 2. 
Consider now the case (8). We have here 

F1 (x) =(ax+ b)G1 (x), Fi = DHi (i = 2, 3) 

where G1 E Z[x]+, D = (F2,F3), (H2,H3) = 1 and (DHi,ax+b) = 1 (i = 2,3), 
Hi E Z[x]+. Hence, by (2) with m = 4 

1 H2 + H3 
(ax+ b)G1 + DH2H3 . 

G1(H2 + H3) 
4G1 -1 

(10) 

Let us put C = (D,H2 + H3), D = CR, H2 + H3 = CS, so that C,R,S 
are in Z[x]+. Since (DH2H3, ax+ b) = 1 we infer from Lemma 1 that 4G1 -1 = 
(ax+ b)H1 , where H1 E Z[x]+. Hence, by (10), 

= H1. 

Since (RH2H3 ,S) = 1 = (G1 .Hi) and Sand H 1 are in Z[x]+ it follows from 
Lemma 1 that H1 = S, G1 = RH2H3 and 

Since b is a quadratic residue mod a and C, H2 , R, S are in Z[x]+ there exist 
integers k and n such that 

ak + b = n2 and b* = H2 (k), c = C(k), r = R(k). s = S(k) are in z+. 

which in view of (11) contradicts Lemma 2. • 
Proof of Theorem 2. If Fi(O) =I= 0 for all i it follows from (2) on substituting 
x = 0 that 

m 3 1 
b = L F(O) s 3, 

i=l t 
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contrary to the assumption m > 3b. 
If Fi (0) =/= 0 for all but one i, it follows from (2) on taking the limit for 

x--+0 
m 
- =±oo b . 

a contradiction. 
If F; (0) = 0 for all i, it follows Fi(x) = xGi(x), G; E Z[x] 1 and by (2) 

3 
mx ~ 1 

ax + b = L G; ( x) · 
1=1 

When x ~ oo the terms on the left hand si<le arP lPss than the limit m/a, 
the terms on the right hand side are [!;reater or equal to the limit, which contra<licts 
the equality. 

Thus Fi (0) = 0 for exactly t\•.-o i :S 3 and we may assume without loss or 
generality that 

F;(0) = 0 (i = 1, 2), 

Arguing as in the proof of Theorem 1 we infer that F;(-b/a) = 0 for at least one 
i. Hence up to a permutation of F 1 , F2 there are the followinµ; possibilities: 
(12) 

(13) 

( 14) 

(15) 

(16) 

F;(-b/a) = 0(i = L 2.3); 
Fi(-b/a)=0(i 1,2), 

F,(-b/a) =0(i= 1,3), 

F;(-b/a) =/= 0(i = L2), 

F,(-b/a) =/= 0(i = 1. 3). 

F'.1 ( -b /a) =/= 0; 

F2 ( -b / a) =I= 0: 

F3(-b/a) = 0: 

F2 ( - b /a) = 0 . 
We shall consider these cases successively. 

Case (12). Here Fi(x) = (a;r + b)G;(x). G; E Q[x]+ (i = 1, 2, 3) and by Gauss's 
lemma (a, b)G, E Z[x]+. Taking an integer k such that Gi(k) =/= 0 we obtain from 
(2) 

3 1 
m = L G(k) :S 3(a, b) :S 3b. 

i=l 1 

contrary to the assumption. 

Case (13). Here Fi(x) = x(ax + b)G,(x), G; E Q[x]+ (i = 1, 2) 

1 l ax+b m= ---+---+--:rG1 (x) xG2(x) F3 

and taking the limit for x--+ oo we infer that F'.1 = cx+d, where c = a/m. Hence 

1 l b - md 
0=-+-+--

xG1 xG2 ex+ d 
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For x large enough the first two terms are positive, hence b- md < 0 and d > 0. 
Without loss of generality G2(-d/c) =0, hence G2 = (cx+d)H2(x), H2 E 

Q[x]·+, 
. ex+ d 

0 = hm G ( ) + b - md, 
x-->X X I X 

thus G1 (x) = c/(md - b) and 

0= md-b + l + b-md = (md-b)d + 1 . 
ex x(cx + d)H2 ex+ d x(cx + d) x(cx + d)Ih 

This is impossible, since for x large enough both terms on the right hand side are 
positive. 

Case (14). Here F1 = x(ax + b)G1, F2 = xG2, F., = (ax+ b)G3 , where G; E 
Q[x]+ (i = 1, 2, 3) and 

l ax+ b l 
m=--+--+-. 

xG1 xG2 G3 
The first and the second term on the right hand side are greater than their limits 
for x ---; x, the third term is greater or equal, while the left hand side is constant: 
this gives a contradiction. 

Case (15). Here Fi = xG;, (i = 1, 2), F3 = (ax+ b)G3, where G; E Z[x]+, 
G;(-b/a) # 0 (i = 1, 2), G3 E Q[x]+ and 

mx l 1 x 
--=--+--+-----. 
ax+ b G1 (x) G2(x) (ax+ b)G3(x) 

If G3 (/. (Q+ all three terms on the right hand side are greater than or equal to their 
limits for x ---; oo, while the left hand side is less than the limit, a contradiction. 
Hence G3 = g E Q+ and 

(m-1/g)x 1 1 
------+-

ax+b -G1 G2' 

which contradicts G 1 G2(-b/a) # 0. 

Case (16). Here F1 = xG1, F2 = x(ax + b)G2, where G1 E Z[x]+, G2 E Q[x]+ 
and 

mx l 1 x 
-- = - + ---- + -. 
ax+ b G1 (ax+ b)G2 F., 

(17) 

If deg F3 = 0 we take the limit for x ---; oo and obtain m/a = oo, a contradiction. 
If deg F3 > 1, when x ---; oo the left hand side of (17) is less than its limit, 

while all three terms on the right hand side are greater than or equal to their 
limits, which gives a contradiction. Thus 

degF3 = 1, F3 =ex+ d, where c E z+, d/c # b/a. (18) 

We consider four subcases: 

( i) 
(ii) 

(iii) 

(iv) 

degG1 > 1; 

deg G1 = 1, Gi/ F3 (/. Q; 

deg G 1 = 1, G i/ F3 E (Q; 

degG1 = 0. 
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Subcase (i). Taking tlw limit for x----+ oo we infer from (17) and (18) that a= cm 
and 

mx 1 1 x --- = -.- + ----- + --· 
cm.r + b G 1 (r:mx + b)G2 ex+ d' 
x ( md - b) cmx + b 1 

d + G2' c.r + G1 

(19) 

hence md - b > 0, d > 0. When x----+ oo the left hand side of (18) is less than its 
limit, while both terms on the right hand side are greatn than or equal to their 
limits, which gives a contradiction. 

Subcase (ii). As in the subcase (i) we have md- b > 0, d > 0. Let G 1 = e:r + /, 
e > 0, f /e =I= b/a, d/c. It follows from (19) that 

G2 = g- 1 (ex+ d)(ecr + !). g E Q+ 

and substituting .r = 0 WP obtain 

a contradiction. 

b g 
O = f + df: g = -bd < 0, 

Subcase (iii). Let G 1 = e- 1 (cx + d), e E Q+. We obtain from (17) and (18) 

mx 1 x + e 
--= . +--
ax+b (a.T+b)G-.2 r.T+d' 

hence G2 = 1-1 (ex+ d), f E Q+ and substituting x = 0 

f e 
0 = bd + d: / = -be < 0, 

a contradiction. 

Subcase (iv). Let G 1 = g. It follows from (17) and (18) that G2 = C 1(cx+d), 
e E Q+, 

mx l P .r --=-+-----+-­ax + b g ( ax + b) ( ex + d) ex + d 

and multiplying both sides by (ax+ b)(ex + d) 

Hence 
(20) 

(21) 

(22) 

(cgm - ac - o.g)x2 + (dgm - bg - ad - bc)x - bd- c = 0. 

cgm - ac - ag = (), 
dgm bg - ad - be = 0, 

bd+e=O, 
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which is impossible, since (20) gives gm - a= ag/c > 0, (21) gives 
d = (bg + bc)/(gm - a)> 0, contrary to (22). 
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