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A SIMPLE DERIVATION OF ((1 - K) = -Bg/K 
* M. RAM J\IURTY AND MARILYN REECE 

1. Introduction 
Given a Dirichlet series of the form 

X 

F(s) ='""' an L.., ns 
n=l 

which extends to a meromorphic function (say) for all s E (C. we would like to 
invest.igate, what we call the Hurwitz series attached to F. namely, 

:x L an F(s. :r) = 
. n=I (n + .r)s 

for O ~ x < 1 . In this paper, we derive a meromorphic continuation of F ( s. x) by 
an exceedingly simple method. As a consequence, we can deduce several striking 
results. For example, if K is an algebraic number field, and 

I 
(g(s) = L N(a)s' 

n 

where the summation is over all integral ideals, then the Hurwitz series attached 
to (K(s) is 

1 
(K(s,x) = L (N(a)+x)s' 

a 

We will shmv th.:it (K ( s, .r) extend:; for all s E (C and is analytic everywhere 
except at s = 1 where it has a simple pole. It turns out that the special values 
(K(l - k, x) c.:in he written as a polynomial in x, thus giving a generalization of 
the Bernoulli polynomials (in the c.:ise I( is tot.:i lly real). 

* Research partially supported by a Killam Research Fellowship awl NSERC. 

141 



142 1\1. Ram 1\1 urty and l\Iarilyn Reece 

This work had its genesis in looking for simple proofs of the well-known 
formula ((1 - k) = -Bk/k, where ( denotes the Riemann zeta function and Bk 
is the k-th Bernoulli number. We present two such proofs below. The first proof 
has direct relevance to what was discussed above. The second, ii:; a justification 
of a 'naive' argument, and is of independent interest. We include it here for its 
novelty. At the end, we discuss the merits and demerits of each of the methods. 

Recall that the Riemann (-function, originally defined by the Dirichlet series 

X l 
((s) = L --;, 

n=l n 

for Re( s) > 1, extends to an analytic function for all s E C, apart from s = L 
where it has a simple pole. This is easily seen as follows. By partial summation. 

1= [x] s lx {x} ((s) = s --dx = -- - s · --dx. 
1 xs+I 8 - 1 1 xs+I ' 

where { x} denotes the fractional part of x. This gives the analytic continuation 
of ((s) for Re(s) > 0. We can now proceed inductively. Writing 

Jx {x} x J.n+l :i; - n x 11 udu 
--d:r = --dx = 

1 .1·s+l ~ n xs+l ~ 0 (u + n)••+l 

and integrating the last integral by parts, we get 

~ [1 udu = ! x 1 + (s+ 1) Jx {.r} 2 dx ~ Jo (u + n)••+I 2 ~ (n + l)s+l 2 I .r•+2 

and the latter integral converges for Re( s) > -1. That is. 

s s s(s + 1) J-x; {.r} 2 
((s) = - - -(((s + 1) - 1) - ~- -.-. dJ: 

s - 1 2 2 1 x-•+2 

from which we infer that ((0) = - 1/2. Thus. inductively. wc> deduc(' 

'() 1 L"' s(s+l)···(s+r-1)( ( ) ) .,s =1+--- --------(s+r -1 
s - 1 r= 1 ( r + 1) ! 

s(s + 1) · · · (s + m) f [1 ·u111 +1du 
(m + 1)! n=l Jo (u + n)••+111+1 

(1.1) 

and the infinite sum on the right hand side converges for Re( s) > -m. This 
derivation. though not well-known. is not new. For examplP. it is found in [1]. 
However, the idea of deriving tlw special values of ( ( 1 - k) from it, :,;pems to have 
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not been noticed before. Indeed, if in (1.1), we put s = 1 - m. and note that for 
r = 111 that ((s + m) has a simple pole at s = 1 - m, we obtain the recurrence 

((1 - m) 

1 (-1)"' m-l . r(m-1) 1 . = 1- - + ---'------'--- - L(-1) ~(½(1- m+ r) - 1). 
m nz ( m + 1) , = 1 r r + 1 

By integrating the expression 

m-1( ) (1-x)rn-l=L m;l (-l)'x" 

we deduce 
1 - (1 - x)"' 

m 

Putting :r = 1 gives 

rn 

so that we obtain: 

r'--0 

m-l(m-l) xr+l L (-1r--
r r + 1 r=O , 

m-1 (m -l)~ 
L r r+l 
r-() 

Theorem 1.1. For positive integers m, 

(-1),n 
m((l - m) = ( ) 

m + 1 
m-l ·.(m-1) 1 m '°'(-1)' - .. -((1-m+r). ~ r r-1 
•·=I 

Recall that the generating funrtion for the Bernoulli rnuuben; is given by 

from which we easily deduce the rerurrenre 

for n ~ 1. Our goal now is to derive the relcbrated formula in: 

Theorem 1.2. 

by induction usiug (1.6). Since 

t t 
--+­
et - 1 2 

(1.2) 

(1.3) 

( 1.4) 

( 1.5) 

( 1.6) 

( 1. 7) 

(1.8) 

(1.9) 
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is an even function, the Bernoulli numbers for odd subscripts ~ 3 vanish, and we 
can rewrite (1.9) as 

((1 - k) = (- l)k-1 ~k. (1.10) 

Then, by induction, we see that the right hand side of ( 1.6) becomes 

(1.11) 

From (1.8), it is immedi;:ite that this reduces to 

(-l)m - (-l)m (B + B + -. Bo ) - (-l)m = (-l)m-1 B 
m+l m 1 m+l 2 m 

(1.12) 

by virtue of the fact that ((0) = -½. The result is now immediate. 

2. Hurwitz zeta functions 

The method used for the Riemann zeta function easily generalizes to give the 
analytic continuation of the Hurwitz zeta function. This is partly due to the fr1ct 
that the Euler product and functional equation of ((s) were never used. In this 
aspect, the method is versatile. 

Fix O < a :s; 1. Recall that the Hurwitz zeta function ((s, a) is defined by 
the series 

ex:: 1 

((s, a) = ~ (n + a)s' 

which converges absolutely for Re(s) > 1. For Re(s) > 1, we have by partial 
summation 

r:x [x] 
((s, a) = s lo (x + a)8+1 dx (2.1) 

and as before. integration by parts leads to the formula 

al-s "'s(s+l)··•(s+r-1) 
((s,a) = - - '°'------(((s+r,a)-a-s-r) 

s - I ~ (r + 1)! 

s(s + l) · · · (s+ m) ~ [1 u 1"+ 1du 
+ (m + l)! ~ lo (u + n + a)s+m+1. 

(2.2) 

Again, the infinite sum on the right hand side converges for Re( s) > - m and we 
can easily derive the following: 
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Theorem 2.1. (s - l)((s,x) extends to an entire function in the complex µlane. 
Moreover, if we let Bn ( x) denote the k-th Bernoulli polynomial given by 

then, 

B .) ~(n)B n-j n (X = L.., . 1 x 
j=O J 

((1 - k,a) = - Bk(a). 
k 

The method of the previous section carries over mutatis mutandis and we 
leave the proof to the reader and not derive Theorem 3 in that way. Rather, we 
will give a swifter derivation of the above theorem which generalizes to a wider 
context. But before we do that, let us note that from the above, we have the 
immediate: 

Corollary 2.2. Let x be a primitive character mod q and L(s, x) be the classical 
Dirichlet L-function attached to x: 

~ x(n) 
L(s, x) = L.., ~ 3 n 

n=l 

for Rc(s) > l. Tl1en L(s, x) extends to an entire function. Moreover, if we define 
the generalized Berno1111i number Bn.x as 

q 

Bn X = qn-l L x(a)Bn (a/q). 
a=! 

thPn, L(l - n, x) = -B,,,x/n. 
Indeed, we can write L(s, x) as 

q 

q-s L x( a)(( S, a/ q) 
a=l 

and 88 
q 

I:x(a) = o 
a=! 

the pole disappears and we deduce that L ( s, x) extends to an entire function. 
In a later section, we will show yet another way of deriving both of these 

results, the method, though not simpler, is instructive and is of intrinsic interest. 
Notice that 

1 = { 1 1 } -- + ((s, x) - ((s) = ~ -- - - . 
X 8 L.., (n + x)·' ns 

n=l 

Writing the summand 88 

and using the binomial theorem, we obtain 
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Theorem 2.3. For O < x < l, we have 

-~ + ((s,:r:) - ((s) = ~ (-s)((s + r).T'. x• L r 
,·=I 

(2.3) 

The advantage of (2.3) is that it gives the analytic continuation of ((s.x) 
from a knowledge of the same for ((s). ~foreover, Theorem 2.1 is immediate since 
putting s = 1 - k reduces the sum above into a finite sum and the right hand side 
becomes -Bk(x)/k. 

The idea is worth considerable generalization. Suppose 

X 

F(s) =" a,, Lns 
n~l 

extends as a meromorphic function to the entire complex plane. Then, we can 
define for O ~ x < 1, the associated Hurwitz series as 

Lx an 
F(s,x)= ( )' n+x" 

n=l 

and dcdure 

Theorem 2.4. F(s, x) extends as a meromorphic function for alls in the complex 
plane and we have 

F(s, x) = F(s) + t ( ~s) F(s + r):rr. 

In particular, 

k-l (k I) F(l - k, x) = F(l - k) + ~ ~ . F(l - k + r)x'. 

This simple theorem has remarkable consequences. Firstly, it sa,.vs that if the 
special values of F(l - k) are all rational numbers, then so are F(l - k,x) for x 
rational. In the special case that F( s) is the Dedekind zeta function of a totally 
real number field K, we have, by a result of Siegel [5] that (K(l - k) E Q for k 
positive. We deduce immediately that (K(l - k, x) is also rational for x rational. 
In fact. we have: 

Theorem 2.5. Let K be a totally real algeoraic numlJer field and (K ( s, x) the 
Hurwitz zeta function attached to (K ( s). Then, for positive integers k, (K ( 1 -
k,x)EQ[x]. 

Let us remark that if K is not totally real, then (,<(1-k) = ll for all positiw 
integers k ~ 2. In addition (K(O) = 0 unless K is an imaginary quadratic field. 
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in which case it is -h/111 where h is the class number of K and w is the number 
of roots of unity in K. 

3. Another derivation 

There is a "naive'' way of deriving Theorem 1.2 which has very much the spirit of 
Euler. Observe that, ignoring questions of convergence, we have 

so that we obtain the identity 

f ( -1 l ~:\- k) Xk = f e _ nx. 

k=U n=l 

As the right haud side of (3.1) converges to 

1 

we immediately deduce 

((-k) = (-l)kBk+l 
k+l 

(3.1) 

which is essentially (1.9). Observe that (3.1) is actually false since the right hand 
side has a pole at x = 0 and the left hand side is regular there. However, we will 
indicate how a modified forrn of (3.1) can be rigorously deduced by considering 
the vertical line integral 

l 12+ix 
-. :1--~r(s)((s)ds. 
2m 2-i:x 

The justification comes from the use of Stirling's formula (which we recall below) 
and contour integration. Ag.:iin, the method also \Vorks for deriving Coroll.:iry 2.2 
for classical Dirichlet L-functions and Theorem 2.1 for Hurwitz (-functions. 

Recall that ( ( s) satisfies the functional equation 

(3.2) 

where r( s) denotes the r-function. Since the r-function is regular everywhere 
except at s = 0, -1, -2, ... , where it has simple poles, we see that ((.s) has 'trivial 
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zeros· at s = -'2k for k a positive integer. One can use the functional equation 
and Euler's formula for ((2k) to deduce (1.9). 

In 17:{4, Euler derived the beautiful formula 

~(2k) = (-l)k-1 (27r)'2"B21.-
(, (2k)! ' (3.3) 

by taking the logarithmic derivatives of the identity 

X ( t2) sin('rrt) = 1rt g 1 - n2 (3.4) 

to deduce 
X 

1rt cos 1rt " k) 2k . = 1 - 2 L.., ((2 t . 
Slll 7r/ 

k=I 

(3 5) 

Observing that the left hand side of (3.5) is 

(3.G) 

and using (1.7) to expand the right hand side of (:to), we easily deduce (3.3). 
It seems that Euler (see Ayoub [2]) preferred this derivation of (3.3) to his 

original one which employed the use of divergent series. Indeed, Euler's 'divergent 
series' proof considers the related series 

= 

and shows that it is Abel-summable. That is, he shows the limit 

exits by considering 

X 

}~~1- I)-ltnkxn 
n=l 

' 2 3 1 f ( x) = 1 -- x + :r - .r + • · • = -­. l+x 

and noticing that the limit in q11estion is 

Using this derivation, he conjectured in 17 49 a relationship between ((1 - s) and 
((s), a full century before Riemann actually proves the functional equation in 
1859. Weil suggests that Riemann was aware of Euler's work (sec [2, p. 1083]). 
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Given the functional equation (3.2), it is then an easy matter to deduce (1.9) 
from (3.3) simply by using the fact 

7r 
f(s)r(l - 8) = -.-

sm ris 

and the functional equation sr(s) =I'(s+l), aswellastlieidentity r(l/2) = VJr. 
We recall Stirling's formula (see Titchmarsh [7, p. 151] for example): 

1 logr(z) = (.2: - 1/2) logz - z + 2 log2ri + 0(1/lzl) (3.7) 

uniformly for z satisfying -rr + t5 S arg z S rr - t5 for any fixed t5 with O < t5 < rr. 
As a consequence, we have 

(3.8) 

for auy fixed real value CT, and ltl----, oo. Let us recall that r(s) has simple poles 
at s = -k with k a non-negative integer. Moreover, the residue of f(s) at s = -k 
is (-1 l / k!. Using this, as well as the calculus of residues, one derives the familiar 
formula 

l 12+ix 
1c -x = -. x-sqs)ds. 

2rrz 2-ix 

Thus, if 
:x: 

F(.s) =La: 
n 

n=l 

is a Dirichlet series absolutely convergent in Re( s) > 1, we have 

(3.9) 

We also need the fact that ( ( (/ + it) has polynomial growth in It I for fixed 
CT. That is, we need some bound of the form 

for some constant A (that may depend on CT) as ltl----, oc. This can be deduced in 
one of two ways. One could use the Phragmen-Lindclof theorem and the functional 
equation, or one can proceed more elementarily by using ( 1.1). Thus, in this 
derivation, we can dispense with the use of the functional equation by using (1. 1) 
to deduce the necessary polynomial growth to justify the moving of the contours 
below. 

By (3.6), we have 

:xi l 12+ix L e-nx = -. X- 5 [(s)((s)ds. 
2rrz 2 _;:x: n=l 
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The left hand side is convergent for ex > 1 , and easily summed to be 

1 

Since ((s) has polynomial growth in ltl for any fixed a, we can move the line of 
integration to the left and pick up the contribution first from the pole at s = 1 of 
((s) and then from the poles at s = -k, for k = 0, 1, 2, ... of r(s). We obtain 

= :x k k ( ~ -nx _ - l ~ ( -1) X ( -k) 
L., e - x + L., k! . 
n=l k=O 

(3.10) 

Again by the functional equation and Stirling's formula, 

for some ronst;:int r:. 
Also, from (3.7). we have logk! = klogk - k + O(logk), we deduce that 

(3.10) converges for O < x < 8 with 8 sufficiently small. Multiplying through 
(3.10) by .r gives 

:r Lx (-lt((-k):rk 
--1+ ~---
e2' - 1 k! 

k=O 

and we immediately deduce (1.9). 
A similar method can he used for Dirichlet L-functions. If x is a primitive 

character (mod q), the Dirichlet L-series L(s, x) defined by 

L(s. x) = ~ x(n) 
L., n' 
11-1 

converges for Re(s) > 0 (if x is not the trivial character) and extends to an 
entire function. ~Ioreover, it satisfies a functional equation similar to (3.2) (see 
Davenport [3]). 

By the partial summation method outlined above for ((s), one can deduce 
that L(s. x) has polynomial growth in ltl for any fixed a. By (3.9), we have 

i= :x:(n)e-nx = ~ 1·2+,x .T 5 r(s)L(s, x)ds. 
n=l 27fl 2-i:x 

(3.11) 

Moving the line of integration to the left, and picking up the contribution from 
the poles of r( s) , we deduce that the right hand side of the above equation is· 
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The left hand side of (:3.11) can be evaluated as follows: 

f x(n)e-nx = L x(b) ( L e-m') 
nc..cl b (modq) nccb (modq) 

= t, x(b) ( ~ e-(qr+b)x) 

q e-bx 
= LX(b) 1- e-qx 

b=l 

q (q-bh 

= L x( b) ;qx _ l 
b=l 

Recall that the Bernoulli polynomials Bk(x) defined in Theorem 2.1 are given by 
the generating function 

Thus, ,vriting 

we see that 

Since 
q 

eCl-b/q)xq 

eqx - l ' 

LX(b) = 0, 
b=l 

the polar term theu di::;appears, and we deduce 

(-ql q ( b) L(-k,x) = --Lx(b)Bk+r 1- - . k+l q 

Note that 

so that 

Thus, (3.12) becomes 

b=l 

te(l-x)t (-t)cx(-t) 

et-1 e-t-1 

Bk,x L(l - k, x) = -T 

(3.12) 

(3.13) 

(3.14) 
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where 

Bk.x = l-1 f x(b)Bk (~) . 
b=l q 

This method of contour integration can also be applied to the Hurwitz zeta 
function. This function has a functional equation of the following form: for a > l, 

((1 - s, a)= (~~is { e-1ris/2 F(a, s) + e1ris/2 F(-a, s)} (3.15) 

where 
00 e21rina 

F(a, s) = I:-8-. 

n=l n 

If a -/- l, this representation is also valid for a > 0. (See Apostol [l, p. 257]) 
We don't need the functional equation (3.15) to derive our result. Again, all 

we need is to know that it has polynomial growth in any bounded vertical strips. 
This can be deduced from (2.2) as indicated earlier for the Riemann ( case. In 
addition, one has 1((-k,a)I ~ Ceklogk_ 

Thus, we deduce as before 

f e-(n+a)x = x-1 + f (-lt(~~k, a)xk 

n=O k=O 

The left hand side is 
e(l-a)x = ~ Bk(l - a)xk-1 
ex - l L,,, k! 

k=O 

so that comparing coefficients, we obtain 

((1- k,a) = - B1r~a). 

by an application of (3.13). 

4. Concluding remarks 

(3.16) 

Certainly the treatment given in sections 1 and 2 is elementary requiring only a 
knowledge of basic calculus. It seems to not have been noticed before. Most books 
(see for example [8]) that derive (1.9) do so using elaborate contour integration. 
In [l] for example, (1.1) is given but its application to deriving (1.9) is unnoticed 
and the author chooses the method of contour integration. There is also a paper of 
Stark [6] and Ramaswami [4] that overlap in parts with section 1 in their treatment 
of the zeta function. Neither of these papers discuss the applicability of the method 
to general Dirichlet series. On the other hand, the treatment in section 3, though 
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it demands a knowledgP of contour integration and some basic knowledge of thP 
growth of the r-function, also seems to be new. 

HowPver. we must remark that this is essentially the limitation of this met hod. 
Indeed, for the power series 

~ (-ll F(-k)x' 
~ k! 
k=O 

to converge, we arc forcPd to takP a function F satisfying 

IF(-k)[ ~ Ce/,;logk_ 

Such an estimate is not satisfied for Dirichlet series attached to modular forms ( or 
£-functions attached to higher GLn for that mat !Pr). · 

As a historical note, we remark that while the analytic continuation and 
functional equation of the (-function wPre proved by Riemann in 1860, it was 
not until 1882 that Hurwitz introduced his ( function and proved the analogue 
of Riemann's theorem. His goal was to extend L(s, x) as an entire function and 
derive its functional equation. 

The interest in (1. 9), and its analogues for the Dirichlet £-functions and 
Hurwitz zeta functions lies in the key role they play in the p-adic continuations 
of th0 Riemann (-funct.ion, Dirichlel £-functions and the Hurwitz (-functions, 
respectively. 

Acknowledgements. \Ve would like to thank Hershy Kisilevsky, Yiannis Petridis 
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