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1. Introduction 

Weyl's estimates for exponential sums have played an influential role in the subse­
quent development of analytic number theory throughout this century, especially 
so far as the theory and application of the Hardy-Littlewood method is concerned. 
Roughly speaking, Weyl [9] shows that exponential sums over polynomials in a 
single variable are small whenever the leading coefficients of these polynomials are 
badly approximated by rational numbers with small denominators. While Weyl's 
methods are by now rather well understood for exponential sums over polynomi­
als in a single variable, the corresponding body of knowledge for polynomials in 
many variables remains primitive. General methods of Birch [3], Schmidt [7] and 
Arkhipov, Karatsuba and Chubarikov [1] provide estimates substantially weaker 
than might be expected by comparison with the situation for a single variable, and 
until recently it was only for cubic forms satisfying suitable conditions (see Chawla 
and Davenport [5] and Heath-Brown [6]) and diagonalisable forms (see Birch and 
Davenport [4]) that one had estimates of quality matching those available for a sin­
gle variable. The author has very recently obtained a version of Wey l's inequality 
for exponential sums of the type 

L L e(a4>(x. y)), 
1'.S:r:<,;P I :<,;y:<,;Q 

in which 4>(x, y) is a non-degenerate binary form with integral coefficients, and 
as usual, we write e(z) to denote e21riz (see Wooley [10]). Although the quality 
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of this new bound is of strength similar to that of Wey] for a polynomial in a 
single variable, our conclusions are restricted exclusively to exponential sums over 
binary homogeneous polynomials. Our purpose in this paper is to remedy this 
technical defect. and thereby permit applications going beyond those described in 
our earlier work [10]. 

In order to describe our version of \Veyl's inequality, we require a little 
notational discussion. Suppose that <P(x, y) E Z[x, y] is a binary form of degree d 
exceeding 1. Then we say that <I> is degenerate if there exist complex numbers a 
and ;3 such that <I>(;r, y) is identically equal to (nx+ ;Jy)d. It is easily verified that 
when <I>(x. y) is degenerate, then there exist integers a, b and c with <I>(x. y) = 
a(bx + cy)d. 

Theorem. SuJJJJose that <I>(x, y) E Z[x. y] is a non-degenerate form of degree 
d 2". 3. Let </J(x,y) E JR[x,y] be any polynomial of total degree at most d- l. 
Let o: E 11, and suppose that there exist r E Z and q E N with (r. q) = l and 
la - r / qi ::; q-2 • Finally, suppose that P and Q are real numbers sufficiently large 
in terms of ihe coefficients of <I>, and sati.sf.'ving P ::=::: Q. Then for each E > 0, one 
has 

L L e(o:<P(x. y) + </J(x. y)) « p2+"(q-l + p-1 + qP-d}22-d. 
l::,.rS:P lS:,r.5,Q 

The conclusion of this theorem is identical with that of [10, Theorem 1] in 
the special ease in which </J(x. y) is identically zero, and was established in the 
case d = :1 by Chawla and Davenport [5] using rather different methods. We note 
that when d is larger than 12 or thereabouts, a trivial variant of Vinogradov's 
methods yields an estimate superior to that provided above (see [rn, §8] for the 
relevant ideas). 

Our basic strategy for the proof of the above theorem remains the same as 
that which we wrought to establish [10, Theorem 1], and is described in detail in §§2 
and 4 below. By a suitable change of variables and <left use of Ifrilder's inequality, 
we are able to estimate the exponential sum occurring in the statement of the 
theorem in terms of a simpler one amenable to a more efficient Wey] differencing 
process than would ordinarily be the case. The presence of the term </J(x. y) 
offers the possibility that the product of this differencing process will no longer be 
directly accessible via reciprocal sum technology familiar to practitioners of the 
circle method. \\'e instead develop, in §3, estimates stemming from the theory of 
uniform distribution. which ensure either that suitable estimates do indeed hold, 
or else that tllP parameter o: has good rational approximations. In the latter 
circumstance one is able to make use of familiar reciprocal sum technology to 
rlerive the desired bound. 

Throughout this paper, implicit constant::- OC('urring in Vinogradov's nota­
tion « and » will depend at most on the coefficients of the implicit binary forms, 
a small positive number E, exponents d and k, and quantities occurring as sub­
scripts to the latter notations. unless otherwise indicated. \Ve write f ::=.:: g when 
f « g and g « f. Also, we use vector notation for brevity. Thus, for example. 
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the j-tuple (h 1 , ... , hj) will be abbreviated simply to h. In an effort to simplify 
our exposition, we adopt the convention that whenever c appears in a statement. 
we are implicitly asserting that the st aternent hold~ for each c > 0. 'Jote that the 
·'value" of c may consequently change from statement to statement. Finally, we 
write llo:11 to denote minyEZ lo: - YI, and adopt the convention that whenever llo:11 
is zero. then min{N. llo:11- 1 } = N. 

2. Preliminary reductions 

Let k be an integer with k 2". 3 and let <l>(x, y) E Z[x. y] be a non-degenerate 
homogeneous polynomial of degree k. Also. let <J>(x. y) E IR[x. y] be any polynomial 
of total degree at most k - 1 . Let P and Q be large real numbers with P ::=:. Q. 
and define the exponential sum F(o:) = F(o:; P. Q) by 

F(o:; P, Q) = L L e(o:<l>(.r. y) + <J>(x. y)). 
l:S::r:S:P 1 <y~Q 

We aim initially to transform F( o:) into a related exponential sum amenable to 
our modified differencing procedure, and to this end we follow closely the argument 
of [10, §2]. At this stage our argument is sufficiently close to the latter that we 
may sacrifice detail in the interests of concision. 

When <l>(x. y) E 2[.r, y] and <J>(x, y) E IR[:r, y], we describe the pair of poly­
nomials (\JI, 'l/J) as being a condensation of (<I>,¢,) when the following condition 
( C*) is satisfied. 

( C*) We have \JI ( u, v) E Z[u, v] and lj•( u. v) E IR[u. 1•] . the coefficients of \JI depend 
at most on those of <P. and the coefficients of lj• depend at must on those of 
<P and <J>. Further, the polynomial \Jl(u,v) has the same degree as <l>(.r,y). 
likewise 'l/J( u, v) has the same degree as ¢( x, y) , and \JI ( u. v) takes the shape 

k 

\JI( u. 1·) =Auk+ Buk-tvt + L Cjuk-j 1·1 . 

j=t+l 

with AB #- 0 and 2 :S t :S k. 

(2.1) 

Lemma 2.1. There is a condensation (w, 'l/J) of (<I>, cli), a positive integer D de­
pending at most on the coefficients of <l>, and a positive real number X with 
X ::=:. P, satisfying the property that for every real number o: one has 

IF(o:;P,Q)I « (logX) 2 sup IH(o;IJ;/1, 1 ;X)I, 
Ii ,EIR 

where 

H(0; /3, 1 ; X) = L L e(0\Jl(u. v) + 1/J(u, v) + (3u + ,v). (2.2) 
lu.[:S:X [v[:SX 
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Proof. Following the argument of the proofof [10, Lemma 2.2], it is a consequence 
of Lemma 2.1 of that paper that there exist integers a, b, c, d, with ad - be -=j:. 0, 
for which the polynomial \Jf(u, v) defined by 

w(u, v) = 4>(au + bv, cu+ dv) 

satisfies the conditions on \JI imposed by (C*). Write b.. = ad - be, and define 
also 

.!,( ) = ,-1.(au + bv cu+ dv) 
'f' u.v 'I-' t::.. ' t::.. . 

Then we find that ('11,1/;) is a condensation of (4>,¢). Next observe that 

'°' '°' ( (dx-by ay-cx) ) F(a;P,Q)= ~ ~ e aw ~ , t::.. +1/J(dx-by,ay-cx) . 
1:<,;x-<;P 1:<,;y:<,;Q 

Then on following the argument concluding the proof of [10, Lemma 2.2], we find 
that 

where 

IF(a; P. Q)I « (logP)(logQ) sup IH(a/ t::..k; (3. ,; X)I, 
/3.')'EIR 

X = max{ldlP + lblQ. lclP + lalQ}, 

and the conclusion of the lemma now follows immediately. • 
We require a modified reciprocal sums lemma similar to that supplied by 

Lemma 2.2 of Vaughan [8]. 

Lemma 2.2. Suppose that X, Y and a are real numbers with X 2: 1 and 
Y 2: 1. Suppose also that D is a positive integer, and that a E Z and q E N 
satisfy la - a/qi ~ q-2 and (a, q) = l. Then 

L min{XYx-1 • llax/Dll- 1 } « XY(Dq- 1 + y-l + Dq(XY)- 1 ) log(2DqX). 
1:<,;x:<,;X 

Proof. This is immediate from the argument of the proof of [10, Lemma 3.1]. • 
We next recall the Weyl differencing lemma. Let D..j denote the jth iterate 

of the forward differencing operator, so that for any function n of a real variable 
a, one has 

b.. 1 (0(a); /3) = O(a + 8) - O(a). 

and when j is a natural number, 

We adopt the convention that ~o(O(a); (3) = O(a). 
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Lemma 2.3. Let X be a positive real number, and let O(x) be an arbitrary arithmetical function. lVrite 

T(O) = L e(O(:r)). 
lxl:SX 

Then for each natural number j there exist intervals I; 
possibly empty, satisfying 

with the property that 

I;(h) (1 < i S: j), 

IT(O)l 2 j S: (4X + 1t~J~) L .. . L Tj, 
lh11:s2x lh3 1::;2x 

and here we write 

Tj = L c(ti.1(0(x);h1,••·,hj)). 
xEJ3 r1Z 

Proof. This trivial variant of Lemma 2.3 of Vaughan [8] is recorded as Lemma 3.2 of [10]. • 
In what follows, it is convenient to define abo a two dimensional forward differencing operator ti.i.i as follows. When O(x, y) is a function of the real variables x and y, one defines 

ti.1.o(O(x, y); (3) = O(x + /3, y) - Sl(x, y) 

and 

When i and j are non-negative integers, one then defines 

by taking ti.o.o(O(x, y); (3; 1) = H(x. y), and in general by means of the relations 

~; + 1.j ( 0( X, Y); (31 , · · ·, /Ji+ 1 ; / I , · • · · 11) 
= ti. 1,0 ( ti.,,j ( 0( X, Y); /J1, · · · , (3;; /1 , · · · , r(j); /Ji+ 1) 

and 

ti.; j + 1 ( n ( X, Y); /31 , · . ·, /3;; r 1 , , · , . ')'j + l ) 
= ti.a. 1 ( ti.;.j ( O( x, y ); ,61, ... , ,8;; ,1, ... , ri): r.H1). 
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Further, we define a second two-dimensional forward differencing operator 
.6.; as follows. When 0.(x, y) is a function of the real variables x and y. one 
defines 

.6.i (0.(:r, y); 6: 1) = 0.(x + 13, Y + 1) - 0.(x, y). 
\Vhen i is a non-negative integer, one then defines 

.6.;"(0.(.1:,y); (11, .. , ,)i;'Y1, ···,'Yi) 

by taking .6.0(0.(x. y); (3: -;) = 0.(x, y), and in general by means of the relation 

.6.?+1 (0.(x, y); 61, ... , 6;+1; 11, ... , 1,+i) 

= .6.j ( _6.i ( 0. ( :.r, Y); Pl, .... 6;; ,'1, , , , , ,'i); 6;+ 1; 1,+i), 

Plainly, if one specialises variables suitably in the operator Al+J, then one obtains 
the operator .6.i . .i. It is convenient, however, to distinguish the two operators as 
above. 

An obvious variant of the argument leading to Lemma 2.3 yields the following 
Weyl differencing lemma. 

Lemma 2.4. Let X be a positive real number, and let 0.(x, y) be an arbitrary 
arithmetical function. \-Vrite 

T(0.) = L L e(0.(:r. y)). 
lxl:SX IYl:SX 

Then for each natural number j there exist rectangles T; = Ii(g: h) (1 ::; i S j), 
possibly empty, satisfying 

and 

l;(g1, ... ,g;;h1,--·,h;)s;;;;f;_1(g1,--•,gi-1:h1, ... ,h;-1) (2::;iSj), 

with the J!TOperty that 

and here we write 

3. Reciprocal sum estimates 
In order to bring our differencing argument to a successful conclusion, we require a 
reciprocal snm estimate not immediately available from the literature. Fortunately, 
the estimate that we seek is readily extracted from §3.2 of Baker [2]. We begin 
with a reciprocal sum lemma which yields diophantine approximations. 
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Lemma 3.1. Suppose that 6 is a positive number, and that a and {3 are real numbers. Let N, R and B be positive real numbers with B » N1+6 + R 1+6 . Suppose further that 

L min{N, llza + f3il- 1 } » B. 
I::,;z::,;R 

Then there exist a E Z and q E N with 

(a, q) = 1, 1::; q « N RB- 1 and \qa - al < N 6 B- 1 . (3.1) 

Proof. This is Lemma 3.3 of [2]. • 
We also require a modification of Lemma 3.2 of [2], this following from a standard transference principle. First we recall the latter lemma. 

Lemma 3.2. Suppose that a and {3 are real numbers. Let N and R be positive real numbers, and write A = N + R. Suppose further that there exist a E Z and q EN with (a,q) = 1 and \a - a/q\::; q-2 • Then one has 

L min{N, llza + f3il- 1 } « (logA)(A + q + N R/q). 
I::,;z::,;R 

Proof. Under the hypotheses of the lemma, but subject instead to \a-a/qi < q-2 , it follows from [2, Lemma 3.2] that 

L min{N, \\za + f3il- 1} « (N + qlogq)(R/q + 1). 
I::,;z$;R 

The aforementioned condition may be replaced by \a - a/qi s; q- 2 in Baker's argument without loss. Moreover, since the conclusion of the lemma is trivial for 
q > N R, we may suppose instead that q :'.S N R, and hence that log q « log A. The desired conclusion follows immediately. • 
Lemma 3.3. Suppose that a and {3 are real numbers. Let N and R be positive real numbers, and write A = N + R. Suppose further that there exist a E Z and qEN with (a,q)=l andO<ja-a/q\:'.Sq-2 • Then 

L min{N, liza+ f311- 1 } « (logA) (A+ llqa\\- 1 + NR/qa- a/). 
1$;z$;R 

Proof. By Dirichlet's theorem on diophantine approximation, there exist b E Z and r EN with 

(b, r) = 1, 1::; r ~ 2/qa - a/- 1 and Ira - b\ :'.S ½lqa - a\. (3.2) 
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Notice, in particular, that the latter inequality ensures that r # q, whence a/q # b/ r. The triangle inequality therefore yields 

But 1a - a/q\:::; q-'2, w that 

1 :::; (r + ½q) \qn - a\ ~ ½ + r\qa -- a\. 

Thus we deduce that 

r 2 (2\qn - ai)- 1 • (3.3) 

Next we observe that \o: - b/r\ :=:; ,.-2 and (b, r) = 1. so that in view of (3.2) 
and (3.3), one finds that Lemma 3.2 yields 

L min{N,\\zo:+fJ\\- 1 } « (logA)(A+r+NR;'r) 
1$z$R 

« (log A) (/1 + \qn - a\- 1 + N R\qa: - a\). 

But iqo: -a\ 2 \lqo:\\. and hence the conclusion of the lemma follows immediately.• 
Either Lemma 3.1 provides a satisfactory estimate for the reciprocal sum 

of interest to us, or else it provides a diophantine approximation which may be 
converted into a satisfactory estimate via Lemma 3.3. 

Lemma 3.4. Suppose that 6 is a positfre number, and that o: ,rnd 11 are real 
numbers. Let N and R be large real m1mhers, and write B = N 1+15 + Rl+r5. 
Then 

L min{N. \\zo: + e11- 1 } « B + (logB) L min{NR/q. \jqnl/- 1 }. (3.4) 
l$q<BN- 0 

Proof. If the left hand side of (3.4) is at most B, then the conclusion of the 
lemma is immediate. Then we may suppose that 

L min{N, \\zo: + m1- 1 } » B, 
1$z$R 

whence Lemma 3.1 shows that there exist a E Z and q E N satisfying (3.1). In 
particular, it is apparent that \o:- u./q\ ~ q-2 and (a,q) = 1, and so it follows 
from Lemma 3.2 that 

L min{"V, l\zo + Bjj- 1 } « IJ + (log B)(q + N R/q). 
1$z$R 
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FurthPrmorP, when o: i- a/ q. we deduce from Lemma 3.3 that 

L min{N. llzo + s11-l} « B + (log B) (llqoll-l + N Rlqo: - al). 
1:::0:z<:-' R 

Since (3.1) impliPs that 

we deduce that in any case, 

L min{N. llzo + 311- 1 } « B + (log B) min{NR/q. llqoll- 1 } 

1<,'.z::O:R 

~ B + (logB) 

This completes the proof of the lemma. 

4. Differencing the auxiliary exponential sum 

• 

Our primary apparatus now assembled in thP previous sections. we begin our 
differencing process in earnest. \Ve start by considering the situation in which 
\J!(u. v) takes the shape (2.1) with t = k. so that for fixed integers A and B 
depending at most un the cocfficient.c; of <I>. 011e has \J!(u. c) = A.1/ +Bl'". In this 
case the argnment is classical and routine. On recalling the detinition (2.2) and 
applying Lemma 2.4. we obtain 

IH(o/D:d.,:X)j2'-1 « x2··-2A-

gE[-2x.2xJ 1 - 1 hE. 2x.2x1r- 1 (.r.y)Eh-1 

(4.1) 
where h-1 = h- 1 ( g. h) i,; a reetangular set of integer pairs contained in [-X. X]2. 
and 

Since 

1,.-1 =6.;_ 1 (;(Ar' +By')+1)(r.y)+3x+ 1y:g:h). 

u·(.r. y) has degree k - l. it is apparent from the defo1ition of 6.* that 
} 

6.~._ 1 (i:'(:r. y) + 3J· + 1 y: g: h) 

is ind0pendent of .r and y. A simple calculation. rnureover. revt>als that 

where 



92 Trevor D. Wooley 

The number of terms x, g counted by the summation in ( 4.1) with g1 ... gk-1 
equal Lo zero is O(X'- 1), and similarly for y,h. Thus, on applying a familiar 
bound to estimate the sums over x and y in (4.1), and making use of a simple 
estimate for the divisor function, we obtain 

IH(a/D;/3,r:X)l 2k-l «x2k-'.2k(xk-l +X" L min{X.Jlmn/Dll- 1}f, 
l:Scm :Scl\l 

(4.2) 
where Al = max{JAI, JBJ}k!(2Xl- 1 . Suppose that n satisfies the hypotheses 
uf the statement of the theorem. Then on recalling that D depends at most 
on the coefficients uf <I>, an application of Lemma 2.2 to ( 4.2) reveals that when 
1 .::;; q < X k , one has 

\Vhen q 2 Xk. meanwhile. we may appeal to the trivial Pstimate 

and hence the estimate ( 4.3) holds no matter how large q may be. 
Consider next the situation in which IJ!(u. v) takes the shape (2.1) with 

2 St.::;; k - l. We first view the exponential sum H(0;/3. 1·;X) as a sum over L'. 
so that on applying Holder's inequality, and then making use of Lemma 2.3. we 
deduce that 

IH(0;/3.,:X)l 21
-l « x 2'- 1

- 1 LIL e(01J!(u,u) +w(u,v) +,v)\ 
lul:ScX lvi:SX 

«x2'-t-l L L JK(0;X:h;v)J. 
hE'.-2X.2X]'- 1 t•El(h) 

2t-l 

where I(h 1 •... ,ht-d is an interval ufintegers contained in [-X.X], and 

/{(0:X:h;v) = L e(~o.t-1(01J!(u,v)+11'l(u,v);h)). 
1111,SX 

Dut now applying Lemma 2.3 to the latter exponential sum, \VP obtain 

JL(0: X: g. h: v)I, 
gE[-2X.2XJk-t- 1 

where 

( 4.4) 

(4.5) 

L(O;X;g.h;v)= L e(~k-t-u-1(01J!(u,1•)+1/·(u,v);g;h)). (4.6) 
11EJ(g) 
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and J (91, •.. , 9k-t- 1) is an interval of integers contained in [-X, X] . On combin­
ing (4.4) and (4.5) through the medium of Holder's inequality, we conclude thus 
far that 

L IL(0; X; g. h; v)I. (4.7) 
gE[-2X.2X]k-t-l hE[-2X.2X] 1 - 1 vEl(h) 

We next examine the argument of the exponential sum L resulting from our 
differencing procedure. Suppose that the coefficient of uk-t-Ivt in 1/J(u, v) is >.., 
that the corresponding coefficient of uk-tvt-I is µ, and that the corresponding 
coefficient of uk-t-Ivt-I is ,c Then in view of (2.1), a modicum of computation 
reveals that 

~k-t-1.t-1(0\J!(u. v) + 'lj1(u. v): g: h) 
= 0 (B~A--t-I (uk-t; g)~t-1 (vt; h) + Ct+I~k-t-I (uk-t-1; g)~t-1 (vt+1; h)) 

+ >..~k-t-I (uk-t-I: g)~t-1 ( vt: h) + µ~k-t-l (uk-t; g)~t-1 (vt-1; h) 
A ( k-t- I ) A ( t-1 h) + K~k-t-I U ; g ~t-1 V : • 

l\foreover, a simple calculation reveals that ~k-t-duk-t- 1 : g) is independent of 
u, and further that 

~k-t-1 ( uk-t: g) = ½(k - t)!91 ... 9k-t-I (2u + 91 + . • • + 9A·-t-d• 

Also, one has 

and 

Write 

11(0, µ: g, h; v) 

= (k- t)!(t - l)!h1 ... ht-191 .. ·9k-t-l (½Bt(2v + h1 + ... + ht-d0 + µ). 

Then it follows from ( 4.6) that whenever 11(0, µ; g, h; v) is non-zero, one has 

IL(0;X;g,h;v)I « min{X, 1111(0,µ;g.h;v)ll- 1}. 

But as a consequence of Lemma 3.4, one has 

L min{X, 1111(0, µ; g, h: v)ll- 1} · 
vEJ(h) 

« xi+e + X 0 L min{X2 /r, llrB(k - t)!t!h1 ... ht-191 .. • 9k-t-1011-l }. 
1$;r$;X 
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whence an elementary divisor function estimate leads to the upper bound 

L IL(0;X;g.h:v)I 
gE[-2X.:.lXJk-t-l hE[-:!X.2XJ 1 - 1 i,EJ(h) 

« xk-l+tc + X 0 L mi11{Xk /m. llrn0ll- 1}, 
l::Sm::SM 

where J\J = t!(k - t)!IBl(2Xl- 1. Thus we deduce from (4.7) that 

IH ( a/ D: 6. --y; X) l2k-
2 

« x2k-l_l+c + x2k-1_A-+c L min{Xh"jm. I/ma/ Dll-1 }. 

l::Sm::SM 

But by Lemma 2.2. under the hypotheses of the statement of the theorem. one has 

L min{Xk /m. /lmn/ Dll- 1} « X1.(q- 1 + x-1 + qX-1.) log(2qX). 
l::SmS_Al 

and thus. when 1 ::; q ::; Xk. we arrive at the upper bound 

v\'hen q > xi.·, meanwhile, the latter estimate follows from a trivial upper bound 
for H(o/D;3. 1 :X). 

On recalliug the treatment of the diagonal case concluding with (4.3). ,ve 
have now only to apply Lemma 2.1 in order to deduce that under the hypotheses 
of the statement of the theorem. one has 

which pro\·ides the desired rnnclusion. 
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