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HERMITE’S FORMULAS FOR ¢-ANALOGUES OF HURWITZ
ZETA FUNCTIONS

Y OSHINOBU TOMITA

Abstract: We treat Hermite’s formulas for g-analogues of the Hurwitz zeta function. As their
application, we study the classical limit of modified g-analogues of the Hurwitz zeta function.
We also treat g-analogues of the Milnor multiple gamma function.

Keywords: Riemann zeta function, Hurwitz zeta function, multiple gamma function, classical
limit, g-series.

1. Introduction

We define log z = log |z| + iargz with argz € [~7,7), and 2z° = e*!°8* for 2 €
C\ {0}. For a > 0 the Hurwitz zeta function is defined by

((s,a) = Z—% ﬁ (Re(s) > 1). (1.1)

There are various methods of continuing the Hurwitz zeta function meromorphi-
cally to the whole s-plane. One of the methods is to employ Hermite’s formula
(see [15]):

a®  a'”’ > (atiy)™ —(a—iy)~
— ; dy. 1.2
¢(s,a) 5 +571+2/0 ] Y (1.2)

We consider its g-deformation.

We take 0 < ¢ < 1 and a > 0, and write [z], = % for z € C. Then
g-analogues of the Hurwitz zeta function are defined as the function of two complex
variables s and t by the series

oo q(n+a)t
Colsita) =" mrae (Re(t) > 0). (1.3)

n=0
This research was partially supported by JSPS Global COE program “Computationism as a

Foundation for the Sciences.”
2010 Mathematics Subject Classification: primary: 11M35; secondary: 11M41



290 Yoshinobu Tomita

We obtain Hermite’s formula for (,(s, ¢, a).

Theorem 1.1. For s € C, Re(t) > 0 and |Im(t)| < 10g(2+1) we have

1 i 1— s at
Cq(svt’a) =5 _ﬂF(Sat;t""l;qa)
2 [a]3 tlogq (1.4)
L [ iyl =T o iyl |
; T Y,

where F(a, B;7; ) is Gauss’ hypergeometric function defined by

Flo,f:7:2) Zazg 2 (< (1.5

with (8)n = s(s+1)(s+2)---(s+n—1) being the rising factom’al This gives the
meromorphic continuation of (4(s,t,a) to s € C and |Im(¢)| < log( Tog(e~1) -

Next, we consider the problem of classical limits. From now on, we take ¢t :=
¢(s) and restrict ¢(s) to an s-variable linear function or a constant function as
follows:

6(s) = As—v, (A>0, vel), (1.6)
I, (Re(p) > 0).

Under this condition, (,(s, #(s),a) is defined as an s-variable holomorphic function

for Re(s) > Ry := Re(v)/A, where we take Ry = —oo if ¢(s) = p with Re(u) > 0.

Restriction on ¢t = ¢(s) can be dropped as long as (,(s, ¢(s), a) is defined as an

s-variable holomorphic function on some s-region and continued meromorphically

to a certain proper s-region, but for simplicity we skip the argument in the present

paper.
Our problem is that although it follows easily from absolute convergence that

lim (s, 0(s), ) = C(s,0)  (Re(s) > max {1, Ro}). (L.7)

it is not trivial whether the classical limit (i.e. ¢ T 1) of (,(s, ¢(s), a) itself or with
certain modification terms offers the original Hurwitz zeta function on the whole
s-plane. As a matter of fact, some cases are treated in the preceding papers as
follows.

Theorem A.
(i) [14, Corollary 3.8] (cf. [2, Theorem 2|) For m € Zso we have

lqi%l Ce(s,s —m,a) =((s,a) (s €C). (1.8)

(ii) [13, Theorem 2] We have

lim {gq(s, s,a) + (1= 7 } ={((s,a) (s eC). (1.9)

ql1 logq sin(ms)
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(iii) [12, Lemma 2| We have

(1-q)°

(15)logq} = ((s,a) (s eC). (1.10)

lim {Cq(s, 1,a) +
qT1
Moreover, Kawagoe, Wakayama and Yamasaki [3] proved the following asser-
tion in 2008.

Theorem B ([3, Theorem 2.1]). Let 9(s) be a meromorphic function on C.
Then the formula

i Gy (s, 0(s).0) = C(s,0) (5 €©) (1.11)
q

holds if and only if the function ¥ (s) can be written as ¥(s) = s —m for some
m e Z>O.

Therefore our work becomes to construct certain modified g-analogues of the
Hurwitz zeta function (like (1.9) or (1.10)) which go to {(s, a) on the whole s-plane
by taking their classical limit. Our result is as follows.

Theorem 1.2. Let ¢(s) be the function defined by (1.6). Then we have

(1-9q)°
log ¢

lim {<q<s,¢<s>,a> + B(6(s),1 - s>} —((s,0) (s€C),  (L12)

where B(x,y) is the beta function.
Since B(s —m,1 —s) =0 for m € Z~q, B(s,1 —s) = —— and B(1,1—s) =

sin(ms)
(1—s)~1, Theorem 1.2 includes the past results (1.8)—(1.10). For convenience, we
put Go(s,6(s),a) = ¢o(s, 6(s),a) + G2 B((s),1 - s).
Now we consider g-analogues of the Milnor multiple gamma function, i.e. cer-
tain special values of the partial derivative of (,(s, #(s),a) with respect to s.

We define g-analogues of the Milnor multiple gamma function by

) (1.13)

for r € Zso and a > 0. The usual Milnor multiple gamma function (see [4]) is
defined by
s-l—r) .

0 ~
T, (a) =exp ((%Qq(s, s+r—1,a)

T\ (a) = exp (;’sas,a)

In the case r = 1, it holds that

via Lerch’s formula [9].
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We obtain the infinite product expression for I'y ,.(a).

Theorem 1.3. Let r € Z~q and a > 0. Then we have

Ty (a) =exp{Fy.(a)} [J(1 —g*tm)~tetnla, (1.14)
n=0

where we put

Fur@) = (1= (= @) g1 - )+ (G2~ SBa(a)toga)

log ¢ log q
r—1
r =1\ (=D*¢"™ ¢"logq
— = (al log(1 —
+k_1< i ) T alogq + log( q)—l—l_q,c

with By(a) being the Bernoulli polynomial and

1) 0, (r=1)
C\T, = )
—(1+%+---+Ti1), (r=2)
2
z, (r=1)
o(r2) =9 2 1 1)\?2 1 1 :
Tl b i) - (1 d et i) b (22)
We remark that it follows from Theorem 1.2
limT, ,(a) =T,(a) (a > 0).
qT1
2. Hermite’s formula
For convenience, we put
zt
Coo(s,t,2) = ) (2.1)
! [];
Then it holds -
Co(s,t,a) =D Cols,t,a+n). (2.2)
n=0

Proof of Theorem 1.1. We use the Abel-Plana summation formula [10]. Let
f(2) be a holomorphic function in Re(z) > 0 and satisfy the following properties:

Jim [f(z £ )| =0 (Re(2) = @, Im(2) = 1)

uniformly for x € [0, z¢] with any z¢ > 0, and

oo

lim |f(z +iy)| e *™dy = 0.

Tr—00 0
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Then we have

Zf / flz dz+/ fiy e%y )dy. (2.3)

We check that (;0(s,t, z) satisfy those properties as a z-variable function. For
z,y = 0, we have

: s = s+m—1 m)(ztiy+a
Cgols, t,xtiy+a)=(1—gq) Z ( )q(t+ )(@kiy+a) (2.4)

m
m=0

by the binomial theorem, and

Coo(s,t,x iy +a)) < (1— q)Re(s)

(5 +m— ) ‘ ’ (t+m)(ztiy+a)

m
< (1 g)Rel® Z (|S|+m—1) (Re(t)+m) (z-+a)Flm(t)y
=0
<( )Re(s ( z+a) |s]| (a:Jra) Re(t)—|Im(t)|y
<(1- )Re(S)( q*)~ sl g(z+a) Re(t)—[Im(t)]y

Moreover in s € C, Re(t) > 0 and |Im(¢)| < =1y we have

log

‘Cq,O(Sa t7 x =+ Zy + CL)| 6727ry

2.5
< (1— )R (1 — ¢2)lslgmBlve=2my o (y — o0), (25)
In the same region we also have
/ [Cpo(s,t,z £ iy)| e ™dy < (1 - q)") (1 — g)Flglere) Rel® (2.6)
0

X / g MmOl e=2my gy, (x — 00).
0

Therefore when s € C, Re(t) > 0 and |Im(?)| <
Plana summation formula, and obtain

Iog( =1y, We can apply the Abel-

1 oo ) oo
Ga(o:0) = 3alste )+ [ Galstiata)da i [ gy(sitandy (27)
0 0

where we put

q(a+iy)t[a + Zy](;s _ q(a—iy)t[a _ ,LyL]—s

s (2.8)

gq(sﬂt7a7y) =
We notice that [* g4(s,t,a,y)dy is holomorphic in s € C and |Im(t)| < bg?ﬁ
by the inequality (2.6). We also have

jee} 1— s at
/ Golsitiata)dr = D p 1y L1 Re()) > 0)  (29)
0 ’ tlogq
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via the integral representation of Gauss’ hypergeometric function by Euler

['(v) /1 8—1 —B— —

— | u 1—u) P11 - zu)"“du 2.10

ORI (210

in Re(y) > Re(8) > 0 and |arg(l — z)| < w. Thus we obtain the equation (1.4).
Moreover, by noting that the right hand side of (2.9) is meromorphic in (s,t) €

C? and combining the above results, the right hand side of (1.4) become meromor-

phicin s € Cand |Im(t)| < bg?ﬁ, and we conclude the proof of Theorem 1.1. W

F(o, Biv:2) =

To prove Theorem 1.2, we show the following proposition.

Proposition 2.1. Let g,(s,t,a,y) be the one defined by (2.8). For a > 0 and
(s,t) € C?, we have

. o * (a+iy)~° — (a —iy)~*
1 = . 2.11
i | 9q(s:t,a,y)dy /O T dy (2.11)
To prove Proposition 2.1, we use the following lemma.
Lemma 2.2. For0<q<1 and z € C, we have
min{1, Re(2)} < |[2],] < ¢~ max1, |2]}. (2.12)
Proof of Lemma 2.2. We notice that
1 — g7 1—|g?
(2lg = \ 0|2 0 e, > wminf1, Re(a))
We calculate as
1—q |1_{1_(1_q G +1 _1
'I’L 1 n
= = (1-9)
= z = (|z|+n—-1 _
<Z (n>’ Z(' )(1_q)n1
n=1 n=1
—lzl 1
q —|z —|z
= T = el < g max{L ).
—4q
We conclude the proof of Lemma 2.2. |

Proof of Proposition 2.1. For ¢ € [gy,1] and y € [yo,00) with go > 0 and
sufficiently large yo > 0, we calculate as

q(azl:iy)t[a + ,Ly];s
e2my — 1

< Myye 2™ [ ia kgl e (M,

_ My06727ryqa Re(t)Fy Im(t) |[a + Z-y]q|— Re(s)
x exp (Im(s) argla £ iyl,)
< My, |[a £ i)y~
X exp{|Im )™ — | Re(t)|alog go — (27 + | Im(¢)] ~10gq0)y}
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Using Lemma 2.2, when Re(s) < 0, we have

— Re(s)

|la £ iy]4] Re(s) glaziy| Re(s)

< ladiy|”
_ s a Re(s
<<a+y> Re(.)q((J +y) ()_

When Re(s) > 0, we have
lla £ dyl,|~ Re(s) max{1,a” ®e()},
Thus we have

a:i:iy)t[

q aFayl;*

e2my _ 1 < My, exp[\ Im(s)|m — [ Re(t)|alog qo

(2.13)
— (27 + | Im(¢)| - log qo) y} -H(y,a,s,q),

where we put H(y,a,s,qy) = max {1, a=Re() (a+ y)_Re(S)q(()aw) Re(=) 1 " We no-

tice that the right hand side of (2.13) is an integrable function on y € [, c0) when
qo is sufficiently near to 1. We also notice g,(s,t,a,y) is uniformly bounded on
q € [qo0,1] and y € [0, a]. Therefore by Lebesgue’s convergence theorem we obtain
the equation (2.11). This concludes the proof of Proposition 2.1. |

Remark 2.3. As a corollary of Theorem 1.1 and Proposition 2.1, we prove (1.8).
Noting

o) 1— ) a(s—1)

(a+x)(s—1) —sq :_( q)q F —1:5:d%

/0 q la + z], *dx GoTlozg (s,5 —1;8;¢%)
1 Q71qa(871)

~ s—11logq [a]g’_l

and applying Theorem 1.1, we notice that it holds “good” g-analogues of Hermite’s
formula

qa(sfl) 1 ¢g-1 qa(sfl)
s + s—1
[a]q s—11logq [a]5

+Z/oo q(aJriy)(sfl)[a + Zy];s _ q(afiy)(sfl)[a _ Zy];s
0 627ry -1

(2.14)
dy

for |Im(s)| < log?ﬁ. From this expression and Proposition 2.1, we obtain
hgl Ce(s, s —1,a) = ((s,a) (s €C). (2.15)
q

Moreover, using the elementary property

Co(s,s—m—1,a) = (4(s,8s —m,a) + (1 —q)¢(s—1,s —m —1,a), (2.16)
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we obtain the equation (1.8). We remark that this method of proving (1.8) is
much simpler than other ones via the Euler-Maclaurin summation formula used in
[2, Proof of Theorem 2]|[3, Proof of Theorem 1] or the contour integral representa-
tion of (4(s,t,a) in [14, Proof of Corollary 3.8].

Now we prove Theorem 1.2.

Proof of Theorem 1.2. By Proposition 2.1, we only have to consider the term
S ,ad(s)

U0 2 F (s, ¢(5); 6(s) + 1;0%).

Using Gauss’ linear transformation formula (see e.g. [8])
I (a+8—7)
L(e)I'(B)

, T —a—p)

Iy —a)l(y - p)

in |arg(z)| < m and |arg(l — z)| < m, we have

_ s ad(s)
- qu(j))longF(s, o(s); p(s) + 1;¢%)

C(1-9)¢" [(1—g")'
log g s—1

F(a,f;7;2) = (1—z)?

(2.17)

Fla,B;a+8—7+1;1—2)

F(é(s)+1—5,1;2 —5;1—q%) (2.18)

+B(o9).1- 90|
Here we notice that

Flo(s) +1—-512—s51—¢*)—1 (¢11),

and o(s) . .
1_qsqas 1_qa —s al=s
B At Vi (@11)
log q s—1 s—1
Therefore, combining the results above, we have
(1—9q)
li ——~B 1-—
i (G (5.005). ) + S L Bl 1 - )
_a’ (a+iy)~° — (a —iy)~*
T 7 / 2y — 1 dy
= ((s, a) (s€C).
This completes the proof of Theorem 1.2. ]

Remark 2.4. The difference between Theorems B and 1.2 is the definitions of
¥(s) and ¢(s). This is caused from the fact Theorems B does not assume that
¢(s,%(s),a) is defined on some region or continued meromorphically to a certain
region. Obviously, ¢(s,—1,a) = >0 ¢~ (“"™[a 4 n];* is such an example.
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Remark 2.5. We notice that the modification term (:L)_gqgsB(t,l — s) is closely
related to the “g-Zeta-Raabe formula,” which is a certain period integral.
The usual Zeta-Raabe formula is

/01 C(s,2)da =

in Re(s) < 1 (e.g. [1, Theorem 2.1]). Therefore the corresponding period integral
should be fol Cq(s,t,x)dz. This can be rewritten as

1 o0 1
/ Cq(s,t,a:)dx _ (1 - Q)S Z/ q(m+n)t(1 _ qx+n)fsdx
0 —Jo
=(1- q)s/ ¢ (1 —¢") " da
0
1—q)® [*
— _( Q) / yt—l(l _ y)—sdy
0

log q

S U’} i TP R

log g
in Re(s) < 1 and Re(t) > 0. For the topics of generalized Raabe’s formulas, see
[5, 7]-

Now we present some examples of the modified g-analogues of the Hurwitz zeta
function. Each example below is easily checked by rewriting B(¢(s), 1 — s) via the
reflection formula or the multiplication formula.

Example 2.6. Put ( (s, ¢(s),a) := (s, ¢(s),a) + MB(¢(5), 1—3s).

log g

(i) For r € Z>o we have

5(8,8+r,a):(1_‘1)s<5+r—1) ™

log g T sin(7s)
(n+a)(s+r)

+ Z 1 (Re(s) > —r).

n+a

(ii) [3, Corollary 2.4| For | € Z~o we have
(1-¢g)° (= DN(=1)’ i gt

{(s,1,a) = ogg Go)G-2 G- 3 e (s €C).
(iii) We have
F@s.5.1) =~ L=9% ™ Bls, 1/2 (Re(s) > 0).

logq 45 cos(ms)

Here we notice that (f (2s,8,1) becomes an analogy of the spectral zeta
function Z(s; SU,(2)) associated to the quantum group SU,(2), which is
introduced by Ueno and Nishizawa in [13].
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3. g-analogues of Milnor multiple gamma functions

In this section we prove Theorem 1.3.

Proof of Theorem 1.3. Since we have

Ce(s,s+1,a)

ds

s=—r

we calculate the right hand side for r € Zx.
We primarily notice that

(ols—7,8,0) = (1—qr° ('—1)% <s - 1>

logqg sin(mws) \ r
r

T

H= 030 (1) 0 G+ ko)

k=0
This is checked as

2 [a+n]hq (atn)s
Ce(s—m,s,a) z_: latnls
0 (a+n)s
— 1 _ —r 1 _ a+n\r q
(1-4q) nz;)( q"™) farnl
(a+n)(s+k)
1-07 33 (1) 0
Zo,;) +nlg
_r " T
=(1-gq) Z (k‘) (—1)*¢,(s,5 + k,a).
k=0
On one hand, for 1 < k < r, we calculate as
) q(a+n)(s+’f)
— k
GSCQ(S’S—'_ ) a 65 l[a+mn]g o
=logq Z (a +n)ghlatm) — Z "™ logla + n),
n=0 n=0

k
ka a q
= g™
! qu(l—qk+(1—q’“)2>
+ > gF et {log(1 - ¢) — log(1 — ¢**™)}

n=0
¢*log q)

ka
1-— 1—gk

=) " gFet log(1 — gt
n=0

: (alogq +log(1—q)+
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On the other hand, by almost the same calculation as in [6, Theorem 4.1], we have

(o(s,5,0) = (1 —q) Zq(’”‘”é gty

1 _ q Z q(n+a)9 Z (S + : - 1) q(n+a)m

m=0
[ s+m—1 q(s+m)a
= 1 — s D u————
( Q) mz::o < m ) 1— qs+m
(1 o q)sqs ( 0 1 qma > )
SO (S L ) o
1—g¢q —m 1—gq
(1 - q)sqs 1 a+n O 2 ds=0
=g Zog - s+ 0(s%) (around s = 0).
Putting
(1) (5 - 1) i m—1
- c(r+1,m) , (3.2)
sin(ms) =
and noting
s > (slogq)™1!
13 o= 3" B (a) gmiq, (around s = 0) (3.3)
m=0 '

and Bg(a) = ¢(r +1,0) = 1, we have

s 1l—q@)* " (-1)'m(s—1
(1— g1 s+( q) (' )

1—gq logqg sin(ws) \ r (3.4

34
0 m—1
=(1—q)" (—Bm () L8O 1’m>) s,
— m! log q
This equation and
1-q)"=(1-a) " +(1~q) "log(l-q)s+O0(s) (3.5)

yield

0 s—r qs (_1)7. 71' s—1
%(1_‘1) {1qs+ log g sin(ﬁS)< r )}s_o

-0 [{ T - b g1 - )
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We also notice that

_ _ a+n - r _ ké
Zlog )+ 1(k>( 1) aSCq(s,s—i—k,a)

k= s=0
r\ (—=1)Fgke q"logq
_ 1 log(1 —
> (1) T (wtosa+iogt —0)+ 2%
o0 T r
-2, (k (—1)F g Jog(1 — ¢*™)
n=0 k=

0
—~ () (=g ¢*logg
- 1 log(1 —

1(k> T \losat og(l —q) + g

_ Z(l _ qa+n)r log(l _ qa+n).
n=0

Combining the results above, we have

= —(4(s—1,s,0)

o0 ~
—Cq(s,s+1,a) P

Os

s=—1r s=0
9 A—g " (=D)'m(s—1
= % {Cq(s‘“’a” ogg sin(ws>( r )} —
e L e VN A £
N 88(1 @ {1—613 * log g Sin@“)( r )} s=0

. . " /r 0
+a-07]- Zlog )+ 3 (1) 0 s +ha)
k=1 =

=(1-q"
« {(C(’"ljglql) _ Bl(a)) log(1 — q) + <‘3(’"J;QQ) - %Bg(a) logq)

1kka kl
+Z< ) 7_); (alogq—&—log(l—q)—&-ql_ofkq)}

- Z[a + ]y log(1 — ¢"™™).
n=0

Lastly, the explicit values of ¢(r + 1,1) and ¢(r + 1,2) are checked by elementary

calculations. This completes the proof of Theorem 1.3.

Remark 3.1. In [11] g-analogues of the generalized gamma function (g-Barnes-
Milnor type) are treated. In the paper, the author studied their basic properties

such as quasi-periodicity and the multiplication formula.
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