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FLECK’S CONGRUENCE, ASSOCIATED MAGIC SQUARES
AND A ZETA IDENTITY

Matthew C. Lettington

Abstract: Let the Fleck numbers, Cn(t, q), be defined such that

Cn(t, q) =
∑

k≡q (mod n)

(−1)k
(t

k

)
.

For prime p, Fleck obtained the result Cp(t, q) ≡ 0(mod pb(t−1)/(p−1)c), where b.c denotes the
usual floor function. This congruence was extended 64 years later by Weisman, in 1977, to
include the case n = pα.

In this paper we show that the Fleck numbers occur naturally when one considers a symmetric
n×n matrix, M , and its inverse under matrix multiplication. More specifically, we take M to be
a symmetrically constructed n× n associated magic square of odd order, and then consider the
reduced coefficients of the linear expansions of the entries of Mt with t ∈ Z. We also show that
for any odd integer, n = 2m + 1, n > 3, there exist geometric polynomials in m that are linked
to the Fleck numbers via matrix algebra and p-adic interaction. These polynomials generate
numbers that obey a reciprocal type of congruence to the one discovered by Fleck.

As a by-product of our investigations we observe a new identity between values of the Zeta
functions at even integers. Namely

ζ(2j) = (−1)j+1


 jπ2j

(2j + 1)!
+

j−1∑

k=1

(−1)kπ2j−2k

(2j − 2k + 1)!
ζ(2k)


 .

We conclude with examples of combinatorial congruences, Vandermonde type determinants and
Number Walls that further highlight the symmetric relations that exist between the Fleck num-
bers and the geometric polynomials.
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1. Introduction

We begin by recalling Fleck’s congruence [9]. Let p be a prime and q be an integer.
In 1913 A. Fleck discovered that

∑

k≡q (mod p)

(−1)k

(
t

k

)
≡ 0

(
mod p

⌊
t−1
p−1

⌋)
(1.1)

for all positive integers t > 0. In 1977 C. S. Weisman [28] extended Fleck’s
congruence to obtain

∑

k≡q (mod pα)

(−1)k

(
t

k

)
≡ 0

(
mod p

⌊
t−pα−1

φ(pα)

⌋)
, (1.2)

where α, t are positive integers > 0, t > pα−1, φ denotes the Euler totient function
and b.c is the well-known floor function. When α = 1 it is clear that (1.2) reduces
to (1.1). Much research is current in this area [8], [6], [24].

We define the Fleck numbers, Cn(t, q), to be the numbers generated by the
generalised sum in (1.1) and (1.2), such that

Cn(t, q) =
∑

k≡q (mod n)

(−1)k

(
t

k

)
. (1.3)

These sums have many well known properties [25] such as

nCn(t, q) =
t∑

k=0

(−1)k

(
t

k

) ∑
γn=1

γk−q =
∑

γn=1

γ−q(1− γ)t, (1.4)

from which we can deduce the recurrence relation

Cn(t + 1, q) = Cn(t, q)− Cn(t, q − 1). (1.5)

By the modular definition of the sum in (1.3) we can also deduce that

Cn(t, q) = Cn(t, q + n). (1.6)

Hence when considering the Fleck numbers for any fixed value of n, we can
restrict to a two-dimensional array, T (n) of width n, constructed from the Fleck
numbers, Cn(t, q), with t increasing as we move down the page. We note that for
values of t, with t < n, the Fleck numbers are simply the binomial coefficients
±tCq.

In this paper we show that the Fleck numbers occur naturally when one con-
siders a special kind of inverse magic square [13] under matrix multiplication.
Moreover, we also show that for any odd integer, n > 3, there exist geometric
polynomials that are linked to the Fleck numbers through matrix algebra. The
two-dimensional arrays, T (n), constructed from the Fleck numbers and obeying
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the relation (1.5), can be extended upwards to include the values generated by
these geometric polynomials. These numbers appear to be new and for now we
shall refer to them simply as the geometric numbers. As with the Fleck numbers,
the geometric numbers also exhibit interesting p-adic properties [16] and the p-adic
interaction between the two sets of numbers is worthy of note. Further symmetric
relations between the geometric polynomials and the Fleck numbers can be ob-
served when one considers Vandermonde type determinants [14] constructed from
them. As a by-product of our investigations we observe a new identity between
values of the Zeta functions at even integers. Namely

ζ(2j) = (−1)j+1

(
jπ2j

(2j + 1)!
+

j−1∑

k=1

(−1)kπ2j−2k

(2j − 2k + 1)!
ζ(2k)

)
. (1.7)

Fundamentally our results stem from studying the preservation of symmetry for
square matrices under matrix multiplication. Hence, in order that we may state
all of our results fully, we now set up and develop some notation.

2. Some Definitions

The magic square [1]
8 1 6
3 5 7
4 9 2

was used in China as a hopscotch to symbolise harmony and the balance of natural
forces [20], has the property that the rows, columns and main diagonals add up to
15, and any pair of associated elements adds up to 10; two such positions within
the matrix are called associated if the centre of the line adjoining them is also the
centre of the square. More formally, an associated magic square satisfies the three
symmetry conditions (s1), (s2) and (s3), defined below.

Symmetry Conditions. Let A = (ai,j) be an n × n square matrix and c a
constant rational number. We define three symmetry conditions on A as follows:

(s1) Row and column symmetry

n∑

j=1

16i6n

ai,j = c,

n∑

i=1
16j6n

ai,j = c.

(s2) Principal diagonals symmetry

n∑

i=1

ai,i = c,

n∑

i=1

ai,(n+1−i) = c.
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(s3) Associated symmetry

ai,j + a(n+1−i),(n+1−j) =
2c

n
,

for all (i, j).

A square in which only the rows and columns sum to c (condition (s1)) is
called semi-magic. The extra condition that the two main or principal diagonals
also sum to c (conditions (s1) and (s2)) defines the standard magic square and
if the square also has the associated property (condition (s3)) then we have an
associated magic square with associated sum 2c/n. We note that condition (s3)
implies condition (s2).

A Latin square of order n is an n × n array of n different symbols, each used
n times, arranged in such a way, that each row or column of the array contains
each symbol exactly once. In our language, a Latin square is semi-magic under
formal addition of the symbols. We call a Latin square magic when both the
principal diagonals also contain each symbol exactly once (conditions (s1) and
(s2)). Traditionally the n symbols are identified with the numbers 0, 1, . . . , n− 1.

Two Latin squares B = (bi,j) and C = (ci,j) are said to be orthogonal when the
n2 ordered pairs (bi,j , ci,j) are all different, so that every possible pair of symbols
actually occurs as a pair (bi,j , ci,j). Euler observed [21] in 1779 that if B and C are
an orthogonal pair of traditional magic Latin squares of order n, then A = nB +C
is a magic square with entries 0, 1, 2, . . . , n2− 1. In this construction the auxiliary
magic Latin squares B and C are called the radix and the unit respectively. The
use of symmetry to construct the auxiliary squares motivates our results.

We now translate the properties of associated magic squares into matrix alge-
bra.

Definition. First we define the n×n permutation matrices. Let e1, · · · , en be the
unit vectors (1, 0, · · · ), (0, 1, 0, · · · ), · · · , (0, · · · , 0, 1) written as rows. A permuta-
tion of the n rows m1, · · · ,mn of an n× n matrix M can be accomplished by the
product PσM , where Pσ is the matrix with rows eσ1, · · · , eσn. Similarly MPσ has
columns kτ1, · · · , kτn where k1, · · · , kn are the columns of M , and τ is the permu-
tation inverse to σ. In particular let J be the matrix with rows en, en−1, · · · , e1,
and let K be the matrix with rows e2, · · · , en, e1. In the 3× 3 case they are

J =




0 0 1
0 1 0
1 0 0


 , K =




0 1 0
0 0 1
1 0 0


 .

The matrices J and K under multiplication generate the dihedral group D2n. The
product JMJ−1 has the original entry in row n + 1− i , column n + 1− j, where
J−1 = J . Let E be defined so that E is the n × n matrix with every entry 1.
We define any matrix that can be expressed as a linear combination of products of
powers of J , K and E to be diagonally expressible.
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We call an n × n matrix M semi-magic of weight w if M and its transpose
MT satisfy

ME = nwE = MT E. (2.1)

Traditionally a magic square contains the integers 0, 1, 2, . . . , n2−1 or 1, 2, 3, . . . , n2

and so has weight w of (n2 − 1)/2 or (n2 + 1)/2 respectively.
The condition (2.1) says that the rows and columns sum to nw. The permuta-

tion matrices Pσ are semi-magic of weight 1/n. The associated magic squares of
the title (type A for short) are the matrices M which satisfy (2.1) and also

M + JMJ = 2wE, (2.2)

which says that the sum of the two associated elements is always 2w, so the main
diagonals also sum to nw. If M satisfies (2.1) and

JMJ = M, (2.3)

then we say that M is a balanced semi-magic square (type B for short). These
conditions are linear, so the type A squares form a vector space V, which contains
the transpose MT for every M in V [11]. The matrix E is a basis matrix of V, and
M − wE is a matrix in V with weight zero. Similarly the type B squares form a
vector space W, and for n = 3 and n = 5 we give the non-trivial type B examples




1 2 3
2 2 2
3 2 1


 ,




9 13 8 2 3
12 5 6 11 1
10 4 7 4 10
1 11 6 5 12
3 2 8 13 9




.

We note that although a type B square can never be a traditional magic square,
the 5× 5 example shown above satisfies conditions (s1) and (s2).

In the next section we examine the behavior of n × n type A and B squares
under matrix multiplication [26].

3. Multiplication and Constructions

Lemma 3.1.

(1) If M and N are semi-magic with weights z and w, then MN is semi-magic
with weight nzw.

(2) If M and N are both type A, then MN is type B.
(3) If M is type A and N is type B, then MN and NM are type A.
(4) If M is type B and N is type B, then MN and NM are type B.
(5) If M is semi-magic and invertible, then M−1 is semi-magic with weight

1/n2z.
(6) If M is type B and invertible, then M−1 is also type B.
(7) If M is type A and invertible, then M−1 is type A with weight 1/n2z.
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Corollary.

(i) If M is type A then M t is type A for all positive odd t and type B for all
positive even t. If M is also non-singular then the positive condition can
be removed from the above statement.

(ii) If M is type B then M t is type B for all positive t. If M is also non-
singular then the result holds for all t.

Proof. If M and N are both semi-magic with weights z and w, then

MNE = MnwE = n2zwE = NT MT E = (MN)T E,

so MN is semi-magic with weight nzw.
If M and N are both type A, then

JMNJ = (JMJ)(JNJ) = (2zE −M)(2wE −N)

= 4zwE2 − 2zEN − 2wME + MN

= 4nzwE − 2znwE − 2wnzE + MN = MN,

so MN is type B.
If M is type A and N is type B, then

JMNJ = (JMJ)(JNJ) = (2zE −M)N = 2zEN −MN = 2nzwE −MN,

so MN is type A.
If M is type B and N is type B, then

JMNJ = (JM(JJ)NJ) = (JMJ)(JNJ) = MN,

so MN is type B.
If M is semi-magic and invertible, then from (2.1)

E = nzM−1E,

and

E = nz(MT )−1E = nz(M−1)T E,

so M−1 is semi-magic with weight 1/n2z.
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If M is type B, then by (2.3)

M−1 = J−1M−1J−1 = JM−1J,

and so M−1 is also type B.
If M is type A, then we calculate

(2zE − JMJ)
(

2E

n2z
− JM−1J

)
=

4E2

n2
− 2zEJM−1J − 2

n2z
JMJE

+ (JMJ)(JM−1J)

=
4E

n
− 2zEM−1J − 2

n2z
JME + JMM−1J

=
4E

n
− 2z

n

n2z
EJ − 2

n2z
JnzE + J2,

so
4E

n
− 2E

n
− 2E

n
+ I = I.

The first factor 2zE − JMJ is just M by (2.2), so

M−1 =
2E

n2z
− JM−1J,

and hence
M−1 ∈ V.

If M is type A then by statements (2) and (3) of the Lemma, M2 is type B, M3

is type A. We inductively assume that M t is type A for t = 2k + 1, multiply by
M2, and apply statement (3) of the Lemma to complete the proof for positive odd
powers t.

If M is type A then by statement (3) of the Lemma, M2 is type B and by
statement (4) of the Lemma M2M2 = M4 is also type B. We inductively assume
that M t is type B for t = 2k, multiply by M2, and again apply statement (4) of
the Lemma to complete the proof for positive even powers t.

The proofs in the non-singular cases are similar and the second statement in
the Corollary also follows from statement (4) of the Lemma. ¥

Remark. The identity matrix In is of type B and the n × n matrix with zero
entries 0n is simultaneously of types A and B. Hence the Corollary implies that
the set of all n× n type A and type B squares is closed under multiplication and
addition and so forms a ring, R(A,B), containing the subring R(B), of all n× n
type B squares. This raises interesting questions such as “if M is type B then does
the solution to the matrix equation

M = N2

exist, and if so must N be of type A?” If this is the case then we can think of the
ring R(A,B) as being a "quadratic extension" to the ring R(B).
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From a group theory perspective, the Corollary implies that the set of all
non-singular type A and B squares over a field F forms a group, G(A,B), under
multiplication, containing the subgroup, G(B), of all n × n non-singular type B
squares. Both groups are subgroups of GL(n,F).

How do we construct squares of types A and B? If M is semi-magic, then so
is N = M − JMJ and

N + JNJ = M − JMJ + JMJ −M,

so N satisfies (2.2) with z = 0. The permutation matrices are semi-magic, and

JKrJ = K−r. (3.1)

so
Kr − JKrJ = Kr −K−r (3.2)

is a matrix in V of weight zero, and

Kr + JKrJ = Kr + K−r (3.3)

is a matrix in W of weight 2/n.
We now define the basis matrices, that along with J and E, span the vector

spaces of diagonally expressible type A and B squares.

Definition. For n = 2m + 1 and r ∈ Z let Kr be the permutation matrices of
order n and let

Ar = K2r−1 −K−(2r−1), (3.4)

and
Br = K2r + K−2r. (3.5)

Then
JArJ = −Ar ∈ V (3.6)

with weight zero and
JBrJ = Br ∈ W (3.7)

with weight 2/n.
We note that ArE = EAr = 0n and EBr = BrE = 2E.

Under the above definition, the following identities hold.

A−r = −Ar+1, Am+r = −Am+2−r, Am+1 = 0n, (3.8)
ArAs = Br+s−1 −Br−s, ArBs = Ar+s + Ar−s, BrBs = Br+s + Br−s,

(3.9)

B−r = Br, Bm+r = Bm+1−r, B0 = 2I. (3.10)

The following two Lemmas concerning vector space dimensions and enumeration
properties are stated here for completeness rather than necessity. For proofs of
these and other related results see [17].
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Lemma 3.2. For natural number n, the dimension, N , of the vector space V of
n× n type A squares, satisfies either

N 6 n2 − 2n + 3
2

, or N 6 n2 − 2n + 2
2

,

depending on whether n is odd or even respectively.
For natural number m, let n = 2m + 1 be odd. Let V ′ j V and W ′ j W

be the vector subspaces of n × n diagonally expressible type A and B squares re-
spectively. Then V ′ and W ′ are spanned by E, A1, . . . , Am, JA1, . . . , JAm and
E, B1, . . . , Bm, JB1, . . . , JBm respectively. Hence the vector subspaces V ′ and W ′

each have dimension n.

Lemma 3.3. For m ∈ N, let Dn be the total number of diagonally expressible
traditional type A squares of odd order n = 2m + 1. Then

Dn = (2m−1m!)2. (3.11)

4. Two and Three Parameter Families

Lemma 4.1. For natural number m, let n = 2m + 1, and let the three parameter
family of n× n type A squares be defined such that

M(z, y, x) = (zI − yJ)
m∑

r=1

(m + 1− r)Ar + (m(z + y) + x)E. (4.1)

Then the inverse matrix is given by

M−1(z, y, x) =
(zI − yJ)
n(z2 − y2)

A0 +
E

n2(m(z + y) + x)
.

Corollary. For some positive integer t > 1 we have

M−t(z, y, x) =
(zI − yJ)t(mod2)(z2 − y2)[

t
2 ]

nt(z2 − y2)t
At

0 +
E

nt+1(m(z + y) + x)t
, (4.2)

and

M t(z, y, x) = (zI − yJ)t(mod2)(z2 − y2)[
t
2 ]

(
m∑

r=1

(m + 1− r)Ar

)t

+ nt−1(m(z + y) + x)tE. (4.3)
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For the inverse matrix, with 0 6 t 6 m, we note the simple binomial relations

A2t
0 = (−1)t

(
2t

t

)
I +

t∑
r=1

(−1)t+r

(
2t

t + r

)
Br, (4.4)

and

A2t+1
0 =

t+1∑
r=1

(−1)t+r

(
2t + 1
t + r

)
Ar. (4.5)

Proof. ArE vanishes so that

MM−1 =
1
n

m∑
r=1

(m + 1− r)ArA0 +
E

n
=

1
n

(
m∑

r=1

(m + 1− r)(Br−1 −Br) + E

)

by (3.9)

=
1
n

(
mB0 −

m∑
r=1

Br + E

)
=

1
n

(2mI − (E − I) + E) =
(2m + 1)

n
I = I.

To see the Corollary, we have

(zI − yJ)Ar(zI − yJ) = (z2 − y2)Ar,

from which the identity (4.2) follows. Multiplying (4.2) by (4.3) then gives

M tM−t =
1
nt




(
m∑

r=1

(m + 1− r)ArA0

)t

+ nt−1E




=
1
nt

(
(nI − E)t + nt−1E

)
=

1
nt

(
nt−1(nI − E) + nt−1E

)
= I,

as required.
This highlights the natural representation of M0(z, y, x) as

M0(z, y, x) =
(

I − 1
n

E

)
+

1
n

E. (4.6)

Hence M0(z, y, x) can be thought of as the sum of two auxiliary Latin type B
squares, one of which has weight zero and the other 1/n.

To obtain the identities (4.4) and (4.5) we make repeated use of the identities
in (3.9) and then collect terms. ¥

For simplicity we now restrict our calculations to the two parameter family
M(z, y) and its inverse matrix.
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As a worked example, if n = 5, z = 5 and y = 1 then we have

M(5, 1) = (5I − J)(2A1 + A2) + 12E

= 5×

0 2 −1 1 −2
−2 0 2 −1 1
1 −2 0 2 −1
−1 1 −2 0 2
2 −1 1 −2 0

+

− 2 1 −1 2 0
1 −1 2 0 −2
−1 2 0 −2 1
2 0 −2 1 −1
0 −2 1 −1 2

+ 12E5

=

10 23 6 19 2
3 11 24 7 15
16 4 12 20 8
9 17 0 13 21
22 5 18 1 14

,

and

M−1(5, 1) =
1

5× 24
(5I − J)A0 +

1
25× 12

E

=
1

120




5×

0 −1 0 0 1
1 0 −1 0 0
0 1 0 −1 0
0 0 1 0 −1
−1 0 0 1 0

+

1 0 0 −1 0
0 0 −1 0 1
0 −1 0 1 0
−1 0 1 0 0
0 1 0 0 −1




+
1

300
E5

=
1

2.5.60

7 −23 2 −3 27
27 2 −28 2 7
2 22 2 −18 2
−3 2 32 2 −23
−23 7 2 27 −3

.

The simplicity of the inverse square is quite striking.

Definition. For natural number t > 1, let

V t
0 =

(
m∑

q=1

(m + 1− q)Aq

)t

, V −t
0 =

1
nt

At
0,

and
V 0

0 = V t
0 V −t

0 = In − 1
n

E,

so that V −t
0 can be thought of as the pseudo inverse matrix of V t

0 . Then we have

M t(z, y) = (zI − yJ)t(mod2)(z2 − y2)[
t
2 ]V t

0 + nt−1(m(z + y))tE, (4.7)

and

M−t(z, y) =
(zI − yJ)t(mod2)(z2 − y2)[

t
2 ]

(z2 − y2)t
V −t

0 +
E

nt+1(m(z + y))t
, (4.8)
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We call V t
0 and V −t

0 the fundamental matrices of M t(z, y) and M−t(z, y) respec-
tively.

When t = 2k + 1 in (4.3), then using (3.9) and (3.8) we have

V t
0 =

(
m∑

r=1

(m + 1− q)Aq

)2k+1

= V 2k+1
0 =

m∑
q=1

a(2k+1)
q Aq, (4.9)

and when t = 2k we use (3.9) and (3.10) to obtain

V t
0 =

(
m∑

q=1

(m + 1− q)Aq

)2k

= V 2k
0 =

m∑
q=0

a(2k)
q Bq, (4.10)

so that a
(2k+1)
q is the coefficient of the diagonal type A matrix Aq in the expression

(4.9) for V 2k+1
0 and a

(2k)
q is the coefficient of the diagonal type B matrix Bq in the

expression (4.10) for V 2k
0 .

Hence, when t is odd, the fundamental matrix of M t(z, y) can be written as a
linear combination of the diagonal type A matrices, A1, A2, . . . , Am, each of weight
zero, and when t is even, the fundamental matrix of M t(z, y) can be written as a
linear combination of the diagonal type B matrices, B0, B1, B2, . . . , Bm, each of
weight 2/n. We note that both fundamental matrices, V t

0 and V −t
0 , have weight

zero.
For the fundamental matrix of the inverse square M−t(z, y) we have

V −t
0 =

1
n2k+1

A2k+1
0 =

m∑
q=1

a−(2k+1)
q Aq =

1
n2k+1

m∑
q=1

b−(2k+1)
q Aq, (4.11)

when t = 2k + 1 is odd, and

V −t
0 =

1
n2k

A2k
0 =

m∑
q=0

a−(2k)
q Bq =

1
n2k

m∑
q=0

b−(2k)
q Bq, (4.12)

when t = 2k is even, and we call b
−(t)
q the reduced coefficient of Aq in the linear

expansion of V −t
0 .

Lemma 4.2. For natural number t > 1, the reduced coefficients b
−(t)
q of Aq in the

linear expansion of n× n V −t
0 are the Fleck numbers Cn(t, [ t

2 ] + q).

Proof. Using the identities (3.8), (3.9) and (3.10) it can be proven inductively
that

b(−(2k+1))
q = (−1)k+q 2k+1Ck+q +

∞∑
a=1

(−1)k+q+a
(
2k+1Ck+q−an + 2k+1Ck+q+an

)
,

(4.13)
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and

b(−2k)
q = (−1)k+q 2kCk+q +

∞∑
a=1

(−1)k+q+a
(
2kCk+q−an + 2kCk+q+an

)
, (4.14)

where we have employed tCq notation to highlight the symmetries in the expres-
sion.

The right hand sides of (4.13) and (4.14) are just rearrangements of the left
hand sides of the sum in (1.1) and (1.2). Therefore, the reduced coefficients
b
(−(2k+1))
q and b

(−2k)
q correspond exactly to the Fleck numbers Cn(t, [ t

2 ]+q). That
is, the alternating lower index summations of the binomial coefficients over the
residue class k + q (mod n) with upper indices 2k + 1 and 2k respectively.

From Fleck’s and Weisman’s congruences it follows that for n × n A0, with
n = 2m + 1 = pα, a prime power, we have

b(−t)
q ≡ 0

(
mod p

⌊
t−pα−1

φ(pα)

⌋)
, (4.15)

which, in order notation, can be written as

Ordp b(−t)
q >

⌊
t− pα−1

φ(pα)

⌋
= F (pα, t), (4.16)

say. When n = pa1
1 pa2

2 . . . par
r is not a prime power, these congruences do not in

general seem to hold and it often appears to be the case that Ordpi b
(−t)
q = 0. For

simplicity we define F (n, t) = 0 when n is not a prime power. ¥

5. Polynomials related to the Fleck numbers

Having established that the reduced coefficients of the fundamental matrix of
M−t(z, y) correspond to the Fleck numbers, we now investigate the fundamental
matrix V t

0 of M t(z, y). We begin with some lemmas.

Lemma 5.1. Let m be a positive integer and let

fk =
1

2k + 1

(
m + k

2k

)
, k > 0. (5.1)

Then (2m + 1)fk takes integer values.

Proof. We put t = m + k, r = 2k + 1 in the binomial identity
(

t

r

)
+

(
t + 1

r

)
=

2t + 2− r

r

(
t

r − 1

)
=

2m + 1
2k + 1

(
m + k

2k

)
. (5.2)

The identity is easily verified by cancellation of factorial terms on both sides. ¥

Remark. If fk is an integer for all k in 1 6 k 6 m − 1, then 2m + 1 must be
prime. It can be shown that the converse statement also holds [10].
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We now state a result from [12].

Proposition 5.2. Let λ, µ, ν, ε be integers such that λ, µ > 0 and ν > ε > 0. Then
the following binomial identities hold.

λ∑

k=0

(
λ− k

µ

)(
ε + k

ν

)
=

(
λ + ε + 1
µ + ν + 1

)
, (5.3)

“diagonals × reversed diagonals”.

λ∑

k=0

(
k

µ

)
=

(
λ + 1
µ + 1

)
, (5.4)

“summation on the upper index”.

Lemma 5.3. The following two binomial relations hold.

m−r∑

k=1

(2k − 1)
(

m + r + 1− k

2r + 1

)
=

2m + 1
2r + 3

(
m + r + 1

2r + 2

)
. (5.5)

and
m+r−q∑

k=2r+1

(
m + r + 1− k − q

1

)(
k

2r + 1

)
=

(
m + r + 2− q

2r + 3

)
. (5.6)

Proof. Using (5.3) with λ = m + r + 1, µ = 2r + 1, ν = 1 and ε = 0 gives

m−r∑

k=1

(
k

1

)(
m + r + 1− k

2r + 1

)
=

(
m + r + 2

2r + 3

)
, (5.7)

and by (5.4)
m−r∑

k=1

(
m + r + 1− k

2r + 1

)
=

(
m + r + 1

2r + 2

)
. (5.8)

Combining the two terms (5.7) and (5.8) we deduce the result (5.5)
To establish (5.6) we again use (5.3), but this time with λ = m+ r +1− q, µ =

1, ν = 2r + 1 and ε = 0. ¥

Lemma 5.4. For r > 0, let

Vr =
m−r∑
q=1

(
m + r + 1− q

2r + 1

)
Aq, Wr =

m−r∑
q=1

(
m + r − q

2r

)
Bq. (5.9)

Then we have

ArV
2
0 = n2

r−1∑
q=1

(r − q)Aq − n

m∑
q=1

(2r − 1)(m + 1− q)Aq, (5.10)
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V 2
0 = n (−3f1I + f1E −W1)) , (5.11)

V0Vr = n (−(r + 1)fr+1B0 + fr+1W0 −Wr+1) , (5.12)

V0Wr = (n− (2r + 1)) frV0 − nVr, (5.13)

and
V 2

0 Vr = n2 (Vr+1 − fr+1V0) . (5.14)

Proof. Equation (5.10) follows with some straightforward manipulation using
(3.8) and (3.9). We give the proofs for (5.11) and (5.14). The proofs for (5.12)
and (5.13) are similar although it is easy to show that together they satisfy (5.14).
By (3.9)

V 2
0 =

m∑
r=1

m∑
s=1

ArBs =
m∑

r=1

m∑
s=1

(Br+s−1 −Br−s).

Now
m∑

s=1

(m + 1− s)Br+s−1 =
m∑

s=r

(m + r − s)Bs

+
m∑

s=m+2−r

(r + s−m− 1)Bs,

(5.15)

and

−
m∑

s=1

(m + 1− s)Bs−r = −2(m + 1− r)I −
r−1∑
s=1

(m + 1 + s− r)Bs

−
m−r+1∑

s=1

(m + 1− s− r)Bs,

(5.16)

where we have used the identities in (3.10). The s multiples of Bs in (5.15) and
(5.16) cancel out completely, and collecting together the remaining terms we have

V 2
0 =

m∑
r=1

(m + 1− r)

(
−2(m + 1− r)I + (2r − 1)(E − I)− (2m + 1)

r−1∑
s=1

Bs

)

=
m∑

r=1

(m + 1− r)

(
−nI + (2r − 1)E − n

r−1∑
s=1

Bs

)
.

The coefficient of Bk in
m∑

r=2

r−1∑
s=1

(m + 1− r)Bs

is
m−k∑

j=1

j =
(

m + 1− k

2

)
, 1 6 k 6 m− 1,
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so that
m∑

r=2

r−1∑
s=1

(m + 1− r)Bs =
m−1∑

k=1

(
m + 1− k

2

)
= W1.

Hence we have
V 2

0 = n (−3f1I + f1E −W1)) ,

which is (5.11).
To obtain (5.10) we use

VrV
2
0 =

m−r∑

k=1

(
m + r + 1− k

2r + 1

)
AkV 2

0

=
m−r∑

k=1

(
m + r + 1− k

2r + 1

) (
n2

k−1∑
q=1

(k − q)Aq − n

m∑
q=1

(2k − 1)(m + 1− q)Aq

)

= n2
m−r∑

k=2

(
m + r + 1− k

2r + 1

)k−1∑
q=1

(k − q)Aq − n

m−r∑

k=1

(
m + r + 1− k

2r + 1

)
(2k − 1)V0.

For fixed s, the coefficient of As in

m−r∑

k=2

(
m + r + 1− k

2r + 1

) k−1∑
q=1

(k − q)Aq

is given by (5.6). Therefore using both parts of Lemma 5.2 we have

VrV
2
0 = n2 (Vr+1 − fr+1V0) ,

and hence the result. ¥

An immediate consequence of (5.14) is that

V 3
0 + n2f1V0 = n2V1, (5.17)

and repeated use of this identity yields the result

r∑

k=0

n2(r−k)fr−kV 2k+1
0 = n2rVr. (5.18)

Applying (5.12), multiplying through by n and rearranging gives

r∑

k=0

n2(r−k)+1fr−kV 2k
0 = n2r

(
2
(

m + r

2r + 1

)
I −Wr

)
, (5.19)

where as usual we have taken

V 0
0 = I − 1

n
E. (5.20)
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Together (5.18) and (5.19) imply that the diagonal coefficients a
(t)
q of V t

0 can be
written in the form nt−1b

(t)
q , and we call b

(t)
q the reduced coefficients of V t

0 . Hence
the equations in (4.9) and (4.10) for the fundamental matrix of M t(z, y) become

(
m∑

q=1

(m + 1− q)Aq

)2k+1

= V 2k+1
0 =

m∑
q=1

n2kb(2k+1)
q Aq, (5.21)

when t = 2k + 1 is odd, and
(

m∑
q=1

(m + 1− q)Aq

)2k

= V 2k
0 =

m∑
q=0

n2k−1b(2k)
q Bq, (5.22)

when t = 2k is even. We note that by (5.19), b
(0)
0 = m, and that (5.18) and (5.19)

can also be used to obtain the characteristic polynomial of M(z, y). For a detailed
account see [17].

We now re-write (5.18) and (5.19) in terms of the reduced coefficients b
(2k)
q and

b
(2k+1)
q to obtain the following Lemma.

Lemma 5.5. For q > 1, r > 0, the reduced coefficients b
(t)
q of M t(z, y) satisfy

r∑

k=0

(
m + r − k

2(r − k)

)
b
(2k+1)
q

2(r − k) + 1
=

(
m + r − q + 1

2r + 1

)
, (5.23)

and
r∑

k=0

(
m + r − k

2(r − k)

)
b
(2k)
q

2(r − k) + 1
= −

(
m + r − q

2r

)
, (5.24)

which can be rearranged as

b(2r+1)
q =

(
m + r − q + 1

2r + 1

)
−

r−1∑

k=0

fr−kb(2k+1)
q , (5.25)

and

b(2r)
q = −

(
m + r − q

2r

)
−

r−1∑

k=0

fr−kb(2k)
q , (5.26)

respectively.

Proof. By (5.18), (5.1) and (5.9) we have

f0V
2r+1
0 = V 2r+1

0 = n2rVr −
r−1∑

k=0

n2(r−k)fr−kV 2k+1
0

= n2r

(
m−r∑
q=1

(
m + r + 1− q

2r + 1

)
Aq −

r−1∑

k=0

n−2kfr−k

m∑
q=0

n2kb(2k+1)
q Aq

)
,
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by (5.22). Hence

m∑
q=0

n2rb(2r+1)
q Aq

= n2r

(
m−r∑
q=1

(
m + r + 1− q

2r + 1

)
Aq −

r−1∑

k=0

n−2kfr−k

m∑
q=0

n2kb(2k+1)
q Aq

)
,

and comparing coefficients of Aq we have

b(2r+1)
q =

(
m + r + 1− q

2r + 1

)
−

r−1∑

k=0

fr−kb(2k+1)
q .

The proof for b
(2r)
q is similar. ¥

We note that for even powers, the coefficient of B0 = 2I is given by b
(2r)
0 , where

by (5.19)
r∑

k=0

fr−kb
(2k)
0 =

(
m + r

2r + 1

)
. (5.27)

Comparing (5.27) with (5.23) when q = 1 and taking into account that b
(0)
0 =

b
(1)
1 = m, it follows that b

(2r)
0 = b

(2r+1)
1 , for r > 0. By (5.26) it also follows that

for q > 1, b
(0)
q = −1. Hence

V 0
0 =

1
n

m∑

k=0

b
(2k)
0 =

1
n

(2mI − (E − I)),

which also satisfies (5.20).
In the case q = m we have

(
m + r − q + 1

2r + 1

)
= 0,

(
m + r − q

2r

)
= 0,

for r > 1 and r > 0 respectively. Hence

b(2r+1)
m = −

r−1∑

k=0

fr−kb(2k+1)
m , b(2r)

m = −
r−1∑

k=0

fr−kb(2k)
m , (5.28)

and as b
(1)
m = −b

(0)
m = 1, it follows that b

(2k+1)
m = −b

(2k)
m .

6. Determinant Expressions

In this section we prove that the reduced coefficients b
(2r)
q , b

(2r+1)
q , in the expres-

sions for M t(z, y), defined before Lemma 5.5, can each be expressed as a special
type of Toeplitz determinant, and we show that these determinants are related to
known determinant generators for the Bernoulli numbers [27].
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Definition. We define any r × r determinant of the form

(−1)r

∣∣∣∣∣∣∣∣∣∣∣∣∣

h1 1 0 0 . . . 0
h2 h1 1 0 . . . 0
h3 h2 h1 1 . . . 0
...

...
...

...
. . .

...
hr−1 hr−2 hr−3 hr−4 . . . 1
hr hr−1 hr−2 hr−3 . . . h1

∣∣∣∣∣∣∣∣∣∣∣∣∣

(6.1)

to be a minor corner layered determinant or MCL determinant for short. The
name comes from the minor of a1,r+1 in the (r + 1) × (r + 1) lower triangular
determinant shown below.

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 0 0 . . . 0 0
h1 1 0 0 . . . 0 0
h2 h1 1 0 . . . 0 0
h3 h2 h1 1 . . . 0 0
...

...
...

...
. . .

...
...

hr−1 hr−2 hr−3 hr−4 . . . 1 0
hr hr−1 hr−2 hr−3 . . . h1 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Lemma 6.1. Let h1, . . . , hr be given. For k = 1, . . . , r, let ∆k be the k × k MCL
determinant (6.1). Let ∆0 = 1. Then

∆r = −
r−1∑

k=0

hr−k∆k. (6.2)

Conversely, if ∆0 = 1 and ∆1,∆2, . . . , ∆r, h1, . . . , hr are real numbers satisfying
(6.2) then ∆r is given in terms of h1, . . . , hr by (6.1).

Corollary. For r > 1, let gr be defined by the recurrence relation

gr = −
r−1∑

k=0

hr−kgk, (6.3)

where g0 = 1. Then gr is given by the MCL determinant in the statement of the
lemma with ∆r = gr.

Proof. We expand the determinant along its first column starting at the r-th row
so that

(−1)r∆r = (−1)r−11r−1hr + (−1)r−21r−2hr−1 |h1|+

(−1)r−31r−3hr−2

∣∣∣∣
h1 1
h2 h1

∣∣∣∣ + . . . + h1

∣∣∣∣∣∣∣∣∣∣∣

h1 1 . . . 0
h2 h1 . . . 0
...

...
. . .

...
hr−2 hr−1 . . . 1
hr−1 hr−2 . . . h1

∣∣∣∣∣∣∣∣∣∣∣
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and hence the result. The converse follows from re-packing the original determi-
nant.

To see the Corollary, we only need to show that each gr can be expressed as a
determinant of the required form. By (6.3) we have

g1 = −h1g0 = − |h1| g0

g2 = − (h2g0 + h1g1) = − (
h2 − h2

1

)
=

∣∣∣∣
h1 1
h2 h1

∣∣∣∣ .

We inductively assume true for gr, 1 6 r 6 n, and we consider the case gn+1 in
the relation (6.3), replacing the gr with the corresponding r×r determinants. The
Corollary follows by the second assertion of the Lemma. ¥

An immediate consequence of this result, is that for r > 1, the expressions for
b
(2r+1)
m and b

(2r)
m in (5.25) and (5.26) can be expressed as MCL determinants. That

is

b(2r+1)
m = −b(2r)

m = −
r−1∑

k=0

fr−kb(2k+1)
m (6.4)

= (−1)r

∣∣∣∣∣∣∣∣∣∣∣∣∣

f1 1 0 0 . . . 0
f2 f1 1 0 . . . 0
f3 f2 f1 1 . . . 0
...

...
...

...
. . .

...
fr−1 fr−2 fr−3 fr−4 . . . 1
fr fr−1 fr−2 fr−3 . . . f1

∣∣∣∣∣∣∣∣∣∣∣∣∣

. (6.5)

Having expressed b
(2r+1)
m and b

(2r)
m as r× r MCL determinants, we now show that

there is a family of determinants that relate to the reduced coefficients b
(2r+1)
q and

b
(2r)
q , 1 6 q 6 m.

Lemma 6.2. Let the matrices Vr and Wr be defined as at the beginning of Sec-
tion 5. Then the fundamental matrix V t

0 of M t(z, y) satisfies

V 2r+1
0 = n2r

r∑

k=0

b(2k+1)
m Vr−k, (6.6)

and

V 2r
0 = n2r−1

(
2I

r−1∑

k=0

(r − k)fr−kb(2k)
m +

r∑

k=0

b(2k)
m Wr−k

)
. (6.7)

We deduce that the reduced coefficients in the fundamental matrix satisfy

b(2r+1)
q =

min(r, m−q)∑

k=0

(
m− q + k + 1

2k + 1

)
b(2r−2k+1)
m , (6.8)



Fleck’s congruence, associated magic squares and a zeta identity 185

and

b(2r)
q =

min(r, m−q)∑

k=0

(
m− q + k

2k

)
b(2r−2k)
m . (6.9)

Proof. Putting r = 0 and 1 in (6.6) gives

V0 = V0, V 3
0 = n2(V1 − f1V0),

which agrees with (5.17).
We inductively assume true so that

V 2r+1
0 V 2

0 = n2r
r∑

k=0

b(2k+1)
m Vr−kV 2

0 ,

and by (5.14) we have

V 2r+3
0 = n2r

r∑

k=0

b(2k+1)
m n2(Vr−k+1 − fr−k+1V0)

= n2r+2

(
r∑

k=0

b(2k+1)
m Vr−k+1 − V0

r∑

k=0

b(2k+1)
m fr−k+1

)
.

Using (5.28) this reduces to

V 2r+3
0 = n2r+2

r+1∑

k=0

b(2k+1)
m Vr+1−k,

and the induction is complete.
To obtain (6.7), we simply take the above equation for V 2r−1

0 , multiply by V0

and apply (5.12). We then rearrange using (5.28) and replace b
(2k+1)
m with −b

(2k)
m .

The results (6.8) and (6.9) then follow by considering coefficients of Aq and Bq in
Vr and Wr respectively. ¥

Hence, for the odd powers of the fundamental matrix we have

b
(2r+1)
m−1 = 2b(2r+1)

m + b(2r−1)
m ,

b
(2r+1)
m−2 = 3b(2r+1)

m + 4b(2r+1)
m + b(2r−1)

m + b(2r−3)
m ,

...
...

b
(2r+1)
2 =

min(r, m−2)∑

k=0

(
m− 1 + k

2k + 1

)
b(2r−2k+1)
m ,

b
(2r+1)
1 =

min(r, m−1)∑

k=0

(
m + k

2k + 1

)
b(2r−2k+1)
m .
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Translating these equations into determinant format yields

b
(2r+1)
m−1 = (−1)r+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2 1 0 0 0 . . . 0
1 f1 1 0 0 . . . 0
0 f2 f1 1 0 . . . 0
0 f3 f2 f1 1 . . . 0
...

...
...

...
...

. . .
...

0 fr−1 fr−2 fr−3 fr−4 . . . 1
0 fr fr−1 fr−2 fr−3 . . . f1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

...
...

b
(2r+1)
2 = (−1)r+m−2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(
m−1

1

)
1 0 0 0 . . . 0(

m
3

)
f1 1 0 0 . . . 0(

m+1
5

)
f2 f1 1 0 . . . 0(

m+2
7

)
f3 f2 f1 1 . . . 0

...
...

...
...

...
. . .

...(
m+r−2
2r−1

)
fr−1 fr−2 fr−3 fr−4 . . . 1(

m+r−1
2r+1

)
fr fr−1 fr−2 fr−3 . . . f1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

b
(2r+1)
1 = (−1)r+m−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(
m
1

)
1 0 0 0 . . . 0(

m+1
3

)
f1 1 0 0 . . . 0(

m+2
5

)
f2 f1 1 0 . . . 0(

m+3
7

)
f3 f2 f1 1 . . . 0

...
...

...
...

...
. . .

...(
m+r−1
2r−1

)
fr−1 fr−2 fr−3 fr−4 . . . 1(

m+r
2r+1

)
fr fr−1 fr−2 fr−3 . . . f1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Corresponding families of determinants exist for the even power reduced coeffi-
cients b

(2r)
q . We give the first few polynomials in m for b

(2r+1)
1 and b

(2r+1)
m below.

We have

b
(1)
1 = m, b(1)

m = 1,

b
(3)
1 = b(3)

m = −m2

6
− m

6
,

b
(5)
1 =

m4

90
+

m3

45
+

2m2

45
+

m

30
,

b(5)
m =

7m4

360
+

7m3

180
+

13m2

360
+

m

60
,

b
(7)
1 = −m6

945
− m5

315
− 17m4

2520
− 31m3

3780
− 3m2

280
− m

140
,

b(7)
m = − 31m6

15120
− 31m5

5040
− 17m4

1680
− 151m3

15120
− 2m2

315
− m

420
.
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Remark. Geometric interpretations [2] are often of interest and it is well docu-
mented [22] that their exists a natural relationship between determinants of order
r + 1 and ±r! times the volume of an r-dimensional simplex. Hence one interpre-
tation of the reduced coefficient polynomials in m, b

(t)
q , is as a multiple of the

volume of a simplex, and as such, they are geometric polynomials that generate
geometric numbers for different values of m. For example, the determinant for the
coefficient b

(2r+1)
m can be written as the (r + 1)× (r + 1) determinant

(−1)r

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 0 0 0 . . . 0
1 f1 1 0 0 . . . 0
1 f2 f1 1 0 . . . 0
1 f3 f2 f1 1 . . . 0
...

...
...

...
...

. . .
...

1 fr−1 fr−2 fr−3 fr−4 . . . 1
1 fr fr−1 fr−2 fr−3 . . . f1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Here, |b(2r+1)
m /r!| is equal to the r-dimensional volume of a simplex with corners

(0, 0, 0 . . . , 0), (f1, 1, 0, . . . , 0), (f2, f1, 1, . . . , 0), . . . , (fr, fr−1, fr−2, . . . , f1).

A parallel interpretation can be made for the reduced coefficients of the fundamen-
tal inverse matrix of M−t(z, y) as they are just binomial coefficients, and these
are known [4] to represent the lattice point [18] enumerators of a simplex. The
difference here being that the volume is discrete rather than continuous.

The denominator of fr is (2r+1)! and we now highlight further the link between
the coefficients b

(2r+1)
q and the Bernoulli numbers (and so the even zeta values)

with some known results concerning MCL determinants of these denominators.

Proposition 6.3. The Bernoulli numbers, Br, are generated by the r × r MCL
determinant of factorial denominators

Br = (−1)rr!

∣∣∣∣∣∣∣∣∣∣∣∣∣

1
2! 1 0 . . . 0
1
3!

1
2! 1 . . . 0

1
4!

1
3!

1
2! . . . 0

...
...

...
. . .

...
1
r!

1
(r−1)!

1
(r−2)! . . . 1

1
(r+1)!

1
r!

1
(r−1)! . . . 1

2!

∣∣∣∣∣∣∣∣∣∣∣∣∣

, (6.10)

and the even Bernoulli numbers B2r are generated by the r × r MCL determinant
of odd factorial denominators
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B2r = (−1)r−1 2r!
2(22r−1 − 1)

∣∣∣∣∣∣∣∣∣∣∣∣∣

1
3! 1 0 0 . . . 0
1
5!

1
3! 1 0 . . . 0

1
7!

1
5!

1
3! 1 . . . 0

...
...

...
...

. . .
...

1
(2r−1)!

1
(2r−3)!

1
(2r−5)!

1
(2r−7)! . . . 1

1
(2r+1)!

1
(2r−1)!

1
(2r−3)!

1
(2r−5)! . . . 1

3!

∣∣∣∣∣∣∣∣∣∣∣∣∣

.

(6.11)

Proof. We refer the reader to [29] and [19]. A related identity is given in [27]. ¥

7. Zeta Numbers and p-adic Properties

In this section we show that a Corollary to this examination of M(z, y) is a par-
ticularly simple recurrence for the Bernoulli numbers (and so for the Riemann
zeta function at even integers) which does not appear to have been written down
before.

Lemma 7.1. Let b
(2r+1)
q be the reduced coefficient of Aq in the expansion of

M2r+1(z, y). Then for r > 1, we can write

b(2r+1)
q =

2r∑

j=0

c
(2r+1)
q,j mj , (7.1)

where

c
(2r+1)
q,2r =

−r(2q − 1)
(2r + 1)!

−
r−1∑

k=1

c
(2k+1)
q,2k

(2r − 2k + 1)!
, (7.2)

and

c
(2r+1)
m,2r = −

r−1∑

k=0

c
(2k+1)
m,2k

(2r − 2k + 1)!
, (7.3)

Proof. The coefficient of m2r+1 in
(

m + r + 1− q

2r + 1

)
,

is 1/(2r + 1)! and this always cancels with the coefficient of

1
2r + 1

(
m + r

2r

)
b(1)
q =

1
2r + 1

(
m + r

2r

)
(m + 1− q)

in (5.25). Therefore b
(3)
q is a polynomial in m of degree at most 2 and by the

recursive definition it follows that for r > 1, b
(2r+1)
q is a polynomial in m of degree

at most 2r.
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As defined in [12], let s(n, k) denote the Stirling numbers of the first kind and
let mn denote the falling factorial

m(m− 1)(m− 2) . . . (m− n + 1).

The s(n, k) count the number of permutations of n elements with k disjoint cycles
and are related to mn by the identity

mn =
n∑

k=1

s(n, k)mk.

Replacing m with m + i yields

(m + i)n = (m + i)(m + i− 1)(m + i− 2) . . . (m + i− n + 1) (7.4)

=
n∑

k=1

s(n, k)(m + i)k =
n∑

k=1

s(n, k)
k∑

j=0

(
k

j

)
mjik−j , (7.5)

and collecting terms we have

(m + i)n =
n∑

j=0

mj

n−j∑
t=0

(
j + t

j

)
s(n, j + t)it.

By (7.4) we can write (5.25) as

2r∑

j=0

c
(2r+1)
q,j mj =

(m + r + 1− q)2r+1

(2r + 1)!
−

r−1∑

k=0

(m + r − k)2r−2k

(2r − 2k + 1)!

2k∑

j=0

c
(2k+1)
q,j mj , (7.6)

and we use (7.5) to consider coefficients of m2r in (7.6). We have

c
(2r+1)
q,2r =

1
(2r + 1)!

1∑
t=0

(
2r + t

2r

)
s(2r + 1, 2r + t)(r + 1− q)t

− 1
(2r + 1)!

1∑
t=0

(
2r − 1 + t

2r − 1

)
s(2r, 2r − 1 + t)rt − 1− q

(2r + 1)!

−
r−1∑

k=1

c
(2k+1)
q,2k

(2r − 2k + 1)!
,

so that

c
(2r+1)
q,2r =

−r(2q − 1)
(2r + 1)!

−
r−1∑

k=1

c
(2k+1)
q,2k

(2r − 2k + 1)!
.

The proof for (7.3) is simpler as we start with (5.28). Corresponding recurrence
relations for the even power coefficients c

(2r)
q,2r in the polynomial b

(2r)
q can also be

derived. ¥



190 Matthew C. Lettington

In order that we may prove that the coefficients in M2r+1(z, y) are related to
the even integer Zeta numbers, we first prove the identity itself.

Lemma 7.2 (first Zeta identity lemma).

ζ(2j) = (−1)j+1

(
jπ2j

(2j + 1)!
+

j−1∑

k=1

(−1)kπ2j−2k

(2j − 2k + 1)!
ζ(2k)

)
.

Proof. Let the j-th Bernoulli number, Bj , and the j-th Bernoulli polynomial,
Bj(x), be defined in the usual fashion, so that

Bj = − 1
j + 1

j−1∑

k=0

(
j + 1

k

)
Bk, Bj(x) =

j∑

k=0

(
j

k

)
Bj−kxk,

where B0 = 1. Then for j > 1 we have

0 = (2−2j − 1)B2j+1 = B2j+1

(
1
2

)
=

2j+1∑

k=0

(
2j + 1

k

)(
1
2

)2j+1−k

Bk

=
(

2j + 1
1

)
1

22j
B1 +

j∑

k=0

(
2j + 1

2k

)
1

22(j−k)+1
B2k.

Thus we get

(2j + 1)B2j

2
=

2j + 1
22j+1

−
j−1∑

k=0

(
2j + 1

2k

)
1

22(j−k)+1
B2k,

yielding

22j−1B2j =
1
2
− 1

2j + 1

j−1∑

k=0

(
2j + 1

2k

)
22k−1B2k

=
j

2j + 1
− 1

2j + 1

j−1∑

k=1

(
2j + 1

2k

)
22k−1B2k.

Hence, by the well-known Bernoulli-zeta even integer relation [5]

ζ(2j) =
(−1)j+122j−1π2jB2j

(2j)!
,

we can write

ζ(2j) = (−1)j+1

(
jπ2j

(2j + 1)!
+

j−1∑

k=1

(−1)kπ2j−2k

(2j − 2k + 1)!
ζ(2k)

)
,

as required. ¥
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Lemma 7.3 (coefficient lemma). We have

c
(2r+1)
1,1 = rc

(2r+1)
m,1 . (7.7)

c
(2r+1)
m,1 =

(−1)r(r!)2

r(2r + 1)!
(7.8)

c
(2r+1)
m,2r =

(−1)r(22r−1 − 1)
22r−2π2r

ζ(2r) (7.9)

c
(2r+1)
q,2r =

(−1)r(2q − 1)
π2r

ζ(2r) (7.10)

c
(2r+1)
q,2r−1 = rc

(2r+1)
q,2r . (7.11)

Proof. Equations (7.7) and (7.8) follow directly from the recurrence relations
(5.25) and (5.28). Equation (7.9) follows from the relation (7.3) and the even
integer zeta identity [5]

j∑

k=0

(−1)kπ2k

(2k + 1)!
(1− 22k−2j+1)ζ(2j − 2k) = 0, (7.12)

When r = 1 and 2 in (7.2) we have

c
(3)
q,2 =

−(2q − 1)
6

, c
(5)
q,4 =

(2q − 1)
90

,

which agrees with (7.10). Inductively assuming true in (7.2) gives

c
(2r+1)
q,2r =

−r(2q − 1)
(2r + 1)!

−
r−1∑

k=1

(−1)k(2q − 1)
π2r(2r − 2k + 1)!

ζ(2r),

and by Lemma 7.2 this implies that

c
(2r+1)
q,2r =

(−1)r(2q − 1)
π2r

ζ(2r).

Equation (7.11) then follows directly from the recurrence relation (5.25). ¥

We note that similar relations exist for the even power coefficients c
(2r)
q,s in the

polynomial b
(2r)
q . One of the most notable being that

c
(2r)
q,2r =

2(−1)r

π2r
ζ(2r).

Lemma 7.4 (second Zeta identity lemma).

ζ(2r)
π2r

=
22r−2

(22r−1 − 1)

r∑
s=1

∑

di>0

d1+d2+...+dr=s
d1+2d2+...+rdr=r

(
s

d1, d2, . . . , dr

)
(−1)s+r

3!d15!d2 . . . (2r + 1)!dr
.

(7.13)
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Proof. From (6.8) and (6.9) the reduced coefficients b
(2k+1)
m and −b

(2k)
m can be

used to express the reduced coefficients b
(t)
q of V t

0 . By (6.4) we have

b(2r+1)
m = −b(2r)

m = −
r−1∑

k=0

fr−kb(2k+1)
m , (7.14)

and repeated use of (7.14) gives

b(2r+1)
m = (−1)r

r−1∑

k1=0

k1−1∑

k2=0

. . .

kw−1−1∑

kw=0

fr−k1fk1−k2 . . . fkw−1−kwb(2kw+1)
m ,

with kw = kw−1 − 1 = 0, so that b
(2kw+1)
m = b

(1)
m = 1. Hence we can write

b(2r+1)
m = (−1)r

r−1∑

k1=0

k1−1∑

k2=0

. . .

kw−1−1∑

kw=0

fr−k1fk1−k2 . . . fkw−1−kw
, (7.15)

which is just a sum of products of fk, where the subscripts in each product sum to
r. By considering the determinant expansion (6.5) of b

(2r+1)
m we see that number

of products is 2r−1. That is, when the expressions for the sum of the products is
simplified, then ignoring sign, the sum of the coefficients of the products is 2r−1.
For example, when r = 5, we have

b(11)
m = −f5

1 + 4f3
1 f2 − 3f1f

2
2 − 3f2

1 f3 + 2f2f3 + 2f1f4 − f5.

Therefore we have established that b
(2r+1)
m is a sum of monomials of the form

±fd1
1 fd2

2 . . . fdr
r , (7.16)

with
di > 0, d1 + 2d2 + . . . + rdr = r.

We note that for a given d1 + 2d2 + . . . + rdr = r, with d1 + d2 + . . . + dj = s,
the coefficient of the product in (7.16) is the same (ignoring sign) as that in the
multinomial expansion of

(f1 + f2 + . . . + fr)s.

Hence we can write

b(2r+1)
m =

r∑
s=1

∑

di>0

d1+d2+...+dr=s
d1+2d2+...+rdr=r

(−1)s

(
s

d1, d2, . . . , dr

)
fd1
1 fd2

2 . . . fdr
r . (7.17)

From (7.9) of Lemma 7.3 the leading coefficient c
(2r+1)
m,2r of the polynomial expansion

of b
(2r+1)
m satisfies

c
(2r+1)
m,2r =

(−1)r(22r−1 − 1)
22r−2π2r

ζ(2r), (7.18)
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from which we deduce the identity

ζ(2r)
π2r

=
22r−2

(22r−1 − 1)

r∑
s=1

∑

di>0

d1+d2+...+dr=s
d1+2d2+...+rdr=r

(
s

d1, d2, . . . , dr

)
(−1)s+r

3!d15!d2 . . . (2r + 1)!dr
. ¥

Similar identities can be obtained by comparing (7.17) with (6.8) and (7.10).

Lemma 7.5 (denominator lemma). Let m and k be positive integers, with

2m + 1 = pa1
1 pa2

2 pa3
3 . . . par

r

as a product of primes. Let p1, . . . , ps be the prime factors of 2m+1 with p 6 2k+1;
only these primes can occur in the denominators of b

(2k)
m , and b

(2k+1)
m . For i 6 s,

let pi = 2vi + 1, and let k = qivi + wi, where qi and wi are positive integers with
qi > 1, 0 6 wi 6 vi − 1. Let

Q = pq1
1 pq2

2 . . . pqs
s .

Then Qb
(2k)
q and Qb

(2k+1)
q are integers.

Corollary 1. The rational numbers

(2m + 1)kb(2k)
q , (2m + 1)kb(2k+1)

q (7.19)

are integers, 1 6 q 6 m.

Corollary 2. Let ` = `(k, m) of b
(2k+1)
q be the smallest ` for which

(2m + 1)`b(2k+1)
q

is an integer, so that (2m + 1)`b
(2k)
q is also an integer. Then for (2m + 1) a prime

we have
` =

[
k

m

]
.

Proof. In the proof of Lemma 7.4 we established that b
(2k)
m and b

(2k+1)
m are both

sums of monomials of the form

±fd1
c1

fd2
c2

. . . fdj
cj

,

with
c1d1 + c2d2 + . . . + cjdj = k.

Let Dk be the minimal denominator of fk. Then Dk 6 2k + 1. We want to
establish the power of p = 2v + 1 in

Dd1
c1

Dd2
c2

. . . Ddj
cj

.
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This is at most

d1

[
2c1 + 1
2v + 1

]
+ d2

[
2c2 + 1
2v + 1

]
+ . . . + dj

[
2cj + 1
2v + 1

]
.

We note that
2ci + 1
2v + 1

6 ci

v

when 2cv + v 6 2cv + c, v 6 c, and that
[
2c1 + 1
2v + 1

]
= 0 6 c

v
,

when v > c. So the power of p in Dd1
c1

Dd2
c2

. . . D
dj
cj is at most

c1d1 + . . . + cjdj

v
6 k

v
= q +

w

v
.

The power is an integer, so it is at most q. We deduce the result of the Lemma.
To see the first Corollary we have

Qb(1)
m , Qb(3)

m , . . . , Qb(2k+1)
m ∈ N,

with
Q|(2m + 1)k.

The b
(2k+1)
q are just linear integer combinations of the b

(2j+1)
m , with 0 6 j 6 k,

and the results follows. In the second Corollary, 2m+1 is the only prime that can
occur in the denominator, and so in the proof of the Lemma we have

` = q =
[

k

m

]
. ¥

We are now in a position to compare the p-adic properties of b
(t)
q with b

(−t)
q .

That is, the Fleck numbers with the numbers generated by the determinants in
Section 6.

Lemma 7.6. For natural number m, let n = 2m + 1 be odd, let F (n, t) be defined
as in (4.16) and for pα

i an odd prime power, α > 1, let

G(pα
i , t) =

⌊
t

pi − 1

⌋
, 1 6 i 6 r.

Then when n = pα we have

Ordp b(−t)
q b(t)

q >
⌊

t− pα−1

φ(pα)

⌋
−

⌊
t

p− 1

⌋
= F (pα, t)−G(pα, t), (7.20)

and when n = pa1
1 pa2

2 . . . par
r is not a prime power then

Ordpi b(−t)
q b(t)

q > −
⌊

t

pi − 1

⌋
= −G(pα

i , t), 1 6 i 6 r. (7.21)
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Proof. From (5.21) and (5.22) we can write the diagonal coefficients of V t
0 as

nt−1b
(t)
q , where by Lemma 7.5, we have

Ordpi
b(t)
q > −

⌊
t

pi − 1

⌋
= −G(pi, t), 1 6 i 6 r. (7.22)

Combining (4.16) and (7.22) when n = pα then gives (7.20). The inequality (7.21)
follows immediately from the definition that F (n, t) = 0 when n is not a prime
power. ¥

Experimentally it often seems to be the case that the inequality signs in (7.20)
and (7.21) can be replaced with equality signs.

An interesting relation between the b
(−t)
q and the b

(t)
q is given in the following

lemma.

Lemma 7.7. Let n = 2m + 1 and t = 2k + 1 be positive odd integers. Let x and
y be the respective vectors (b(−t)

1 , b
(−t)
2 , . . . , b

(−t)
m ) and (b(t)

1 , b
(t)
2 , . . . , b

(t)
m ), so that x

and y are both of dimension m. Then

x.y =
m∑

r=1

b(−t)
q b(t)

q = −m, (7.23)

Proof. The result follows directly from the identity

V t
0 V −t

0 = In − 1
n

E, ¥

When equality holds in (7.20) and (7.21), and taking into account the prime
powers already present in the vector entries, it is interesting to note that the dot
product x.y generates the prime powers

p

⌊
t

p−1

⌋
−

⌊
t−pα−1

φ(pα)

⌋

or p

⌊
t

pi−1

⌋

i , 1 6 i 6 r,

depending on whether n is a prime power or not. It is also interesting to note that
for large values of t and n the rational vectors x and y are almost perpendicular.

We conclude this section by considering Table 1 (p. 38), the extended array
formed from the b

(t)
q and the b

(−t)
q when m = 5. The array links the geometric

numbers, generated by the geometric polynomials b
(t)
q , to the b

(−t)
q (and so the

Fleck numbers) through a relation of the type given in (1.5).
Let P11(t, q) denote the entry in row t and column q of the array, so that for

t > 0, P11(−t, q) = b
(−t)
q = C11(t, b t

2c+ q). Then moving down the array from odd
to even row values of t, we have the relation

P11(t− 1, q − 1) = P11(t, q)− P11(t, q − 1),
whereas for even to odd row values of t. we have

P11(t− 1, q) = P11(t, q)− P11(t, q − 1),
with a factor of 11 removed between row 0 and row −1.

Further observations on congruences modulo n and relations between the b
(−t)
q

and the b
(t)
q are given in the next section.
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8. Fleck Quotients and other Determinants

For positive integer n, we define the Fleck quotients to be the n numbers

n−F (n,t)Cn(t, q) = n−F (n,t)
∑

k≡q (mod n)

(−1)k

(
t

k

)
, 0 6 q 6 n− 1, (8.1)

so that the Fleck quotients take integer values for all integers n. When n = p, a
prime, a result by Z. W. Sun and D. W. Wan [25] determines the Fleck quotients
modulo p. Their results (not stated here) imply the following proposition.

Proposition 8.1. Let t and c be natural numbers and p a prime with t = c ×
φ(p)− 1. Then the reduced coefficients b

−(t)
q (and so the Fleck quotients) of Aq in

the linear expansion of p× p V −t
0 , satisfy

p−F (p, t)
(
b
(−t)
1 , b

(−t)
2 , . . . , b

(−t)
m−1, b

(−t)
m , 0,−b(−t)

m ,−b
(−t)
m−1, . . . ,−b

(−t)
2 ,−b

(−t)
1

)

≡ (−1)c (m, m− 1, . . . , 2, 1, 0,−1,−2, . . . ,−(m− 1),−m) (mod p), (8.2)

and when t = c × φ(p), then the reduced coefficients b
−(t)
q of Bq in the linear

expansion of p× p V −t
0 , satisfy

p−F (p, t)
(
b
(−t)
1 , b

(−t)
2 , . . . , b(−t)

m , b
(−t)
0 ,−b(−t)

m , . . . ,−b
(−t)
2 ,−b

(−t)
1

)

≡ (−1)c−1 (1, 1, . . . , 1, 1, 1, . . . , 1, 1) (mod p). (8.3)

We note that a permutation of the expression (8.2) also holds when t = p.
For n = pα a prime power, with α > 2, there exist symmetries modulo p but

not modulo n.

With regard to the entries in the n×n square V t
0 , generated by the polynomial

b
(t)
q , we again look for symmetries modulo n that are either all different or all
equal. The observations are stated below as a conjecture, and it is assumed that
the value of m has been substituted in the polynomial b

(t)
q .

Conjecture 8.2. Let m, t and c be natural numbers and n = 2m + 1 an odd
integer. Then the geometric numbers generated by the geometric polynomials in
m, b

(t)
q , satisfy

(1) For n = p a prime, and t = c× φ(p) + 1, the reduced coefficients b
(t)
q of Aq

in the linear expansion of p×p V t
0 , satisfy the congruence given in (8.2) but

with the b
(−t)
q replaced with b

(t)
q and F (p, t) replaced with −G(p, t).

(2) For n = p a prime, and t = c × φ(p), the reduced coefficients b
(t)
q of Bq in

the linear expansion of p × p V t
0 , satisfy the congruence given in (8.3) but

with the b
(−t)
q replaced with b

(t)
q and F (p, t) replaced with −G(p, t).

(3) For n = pα a prime power, with α > 2, there exist symmetries for the
reduced coefficients b

(t)
q modulo p.
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(4) For n = p1p2 . . . pr, a square free number, where the pi are the odd prime
factors of n, let

w(n) = φ(p1)φ(p2) . . . φ(pr).

Then for t = c× w(n) + 1 we have

p
G(p1,t)
1 p

G(p2,t)
2 . . . pG(pr,t)

r

×
(
b
(t)
1 , b

(t)
2 , . . . , b

(t)
m−1, b

(t)
m , 0,−b(t)

m ,−b
(t)
m−1, . . . ,−b

(t)
2 ,−b

(t)
1

)

≡ (m,m− 1, . . . , 2, 1, 0,−1,−2, . . . ,−(m− 1),−m) (mod n), (8.4)

and when t = c× w(n), then

p
G(p1,t)
1 p

G(p2,t)
2 . . . pG(pr,t)

r

×
(
b
(t)
1 , b

(t)
2 , . . . , b

(t)
m−1, b

(t)
m , b

(t)
0 ,−b(t)

m ,−b
(t)
m−1, . . . ,−b

(t)
2 ,−b

(t)
1

)
.

≡ − (1, 1, . . . , 1, 1, 1, 1, 1, . . . , 1, 1) (mod n). (8.5)

(5) Let v(n) = LCM (φ(p1), φ(p2), . . . φ(pr)) < w(n). Then there exist values
of c with t = c × v(n) or t = c × v(n) + 1, that ignoring sign, satisfy the
congruence relations given in (8.4) and (8.5).

From a symmetry perspective, Proposition 8.1 and Conjecture 8.2 tell us
when there exist natural numbers n, t and integers k such that either nkV −t

0

or nkV t
0 ≡ ±V0 (mod n). When this occurs, then by Euler, we know that ei-

ther (nI − J)nkV −t
0 or (nI − J)nkV t

0 contain all of the residue classes (mod n2),
and so (mod n2), satisfies the conditions of a traditional associated magic square.
Hence the cycles of the residue classes (mod n) determine the cycles of symmetry
(mod n2).

Further symmetric relations between the Fleck numbers, b
(−t)
q , and the geo-

metric polynomials, b
(t)
q , can be observed when one considers Vandermonde type

determinants constructed from them. Knuth defines the r × r Vandermonde ma-
trix V = (ai,j) by the simple relation ai,j = xj

i . The determinant of V is then
given by the product ∏

16j6r

xj

∏

16i<j6r

(xj − xi).

Although b
(t)
q b

(s)
q 6= b

(t+s)
q , surprisingly symmetric products are obtained when one

considers the determinant of the r × r matrix ai,j = b
(j)
i , and for certain values

of s ∈ Z, when one considers the determinants of the r × r matrices defined by
ai,j = b

(2j−1+2s)
i and ai,j = b

(2j+2s)
i . Some of these observations are stated below

as a conjecture in which r denotes the determinants size and s the j-shift across
the b

(j)
i .
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Conjecture 8.3.

(1) For natural number r, let D′
m(r, 0) be the r × r determinant defined such

that

D′
m(r, 0) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

b
(1)
1 b

(2)
1 b

(3)
1 . . . b

(r)
1

b
(1)
2 b

(2)
2 b

(3)
2 . . . b

(r)
2

b
(1)
3 b

(2)
3 b

(3)
3 . . . b

(r)
3

...
...

...
. . .

...
b
(1)
r−1 b

(2)
r−1 b

(3)
r−1 . . . b

(r)
r−1

b
(1)
r b

(2)
r b

(3)
r . . . b

(r)
r

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (8.6)

Then, ignoring sign, D′
m(r, 0) is given by the expression

m(m− 1)(m− 2) . . . (m− k + 1)
k!

.
(2m− 1)(2m− 3) . . . (2m− (2k − 1))

(2k + 1)!!
,

when r = 2k is even, and

m(m− 1)(m− 2) . . . (m− k)
(k + 1)!

.
(2m− 1)(2m− 3) . . . (2m− (2k − 1))

(2k + 1)!!

when r = 2k + 1 is odd.

We note that the above two expressions can be represented by the more con-
cise single expression

D′
m(r, 0) =

(
2m
r

)

r + 1

(2) For natural number r, let Dm(r, 0) be the r × r determinant defined such
that

Dm(r, 0) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

b
(1)
1 b

(3)
1 b

(5)
1 . . . b

(2r−1)
1

b
(1)
2 b

(3)
2 b

(5)
2 . . . b

(2r−1)
2

b
(1)
3 b

(3)
3 b

(5)
3 . . . b

(2r−1)
3

...
...

...
. . .

...
b
(1)
r−1 b

(3)
r−1 b

(5)
r−1 . . . b

(2r−1)
r−1

b
(1)
r b

(3)
r b

(5)
r . . . b

(2r−1)
r

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (8.7)
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Then, ignoring sign, we have

Dm(r, 0) =
m

1
(m− 1)2

22

(m− 2)3

33
. . .

(m− k + 1)k

kk

× (m− k)k

(k + 1)k

(m− k − 1)k−1

(k + 2)k−1
. . .

(m− (r − 2))2

(r − 1)2
(m− (r − 1))

r

× (2m− 1)
3

(2m− 3)2

52

(2m− 5)3

73
. . .

(2m− (2k − 3))k−1

(2k − 1)k−1

× (2m− (2k − 1))k

(2k + 1)k

(2m− (2k + 1))k−1

(2k + 3)k−1
. . .

× (2m− (2r − 5))2

(2r − 3)2
(2m− (2r − 3))

(2r − 1)
, (8.8)

when r = 2k is even, and

Dm(r, 0) =
m

1
(m− 1)2

22

(m− 2)3

33
. . .

(m− k + 1)k

kk

× (m− k)k+1

(k + 1)k+1

(m− k − 1)k

(k + 2)k
. . .

(m− (r − 2))2

(r − 1)2
(m− (r − 1))

r

× (2m− 1)
3

(2m− 3)2

52

(2m− 5)3

73
. . .

(2m− (2k − 3))k−1

(2k − 1)k−1

× (2m− (2k − 1))k

(2k + 1)k

(2m− (2k + 1))k−1

(2k + 3)k−1
. . .

(2m− (2r − 5))2

(2r − 3)2

× (2m− (2r − 3))
(2r − 1)

, (8.9)

when r = 2k+1 is odd. As with the previous case, the above two expressions
can be represented by a more concise single expression. Namely

Dm(r, 0) =
[ r−1

2 ]∏

k=0

(
2m−2k

2r−4k−1

)
(

2r−2k
2r−4k−1

) . (8.10)

The first few polynomials for Dm(r, 0) are given by

Dm(1, 0) = m, Dm(2, 0) = m(m− 1)(2m− 1)/6,

Dm(3, 0) = m(m− 1)2(m− 2)(2m− 1)(2m− 3)/180,

Dm(4, 0) = m(m− 1)2(m− 2)2(m− 3)(2m− 1)(2m− 3)2(2m− 5)/75600.
(8.11)
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(3) For natural number r, and s ∈ Z, define Dm(r, s) such that

Dm(r, s) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

b
(1+2s)
1 b

(3+2s)
1 b

(5+2s)
1 . . . b

(2r−1+2s)
1

b
(1+2s)
2 b

(3+2s)
2 b

(5+2s)
2 . . . b

(2r−1+2s)
2

b
(1+2s)
3 b

(3+2s)
3 b

(5+2s)
3 . . . b

(2r−1+2s)
3

...
...

...
. . .

...
b
(1+2s)
r−1 b

(3+2s)
r−1 b

(5+2s)
r−1 . . . b

(2r−1+2s)
r−1

b
(1+2s)
r b

(3+2s)
r b

(5+2s)
r . . . b

(2r−1+2s)
r

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (8.12)

Then for r > |s| with s negative (ignoring determinant sign) we have

Dm(r, s) = Dm+s(r + s, 0), (8.13)

and for r > s with s positive (ignoring determinant sign) we have

Dm(r, s) =
1

(2m + 1)s
Dm+s(r + s, 0), (8.14)

where Dm+s(r + s, 0) means that we consider the (r+s)×(r+s) determinant
defined in (8.7), with m replaced with m + s.

For values of r and s that do not satisfy the conditions stated in (8.13) and
(8.14) the equalities do not appear to hold. We give the examples when r = 5,
s = −2 and s = 0.

Dm(5,−2) =
(m− 2)

1
(m− 3)2

22

(m− 4)
3

(2m− 5)
3

(2m− 7)
5

,

Dm(5, 0) =
m

1
(m− 1)2

22

(m− 2)3

33

(m− 3)2

42

(m− 4)
5

× (2m− 1)
3

(2m− 3)2

52

(2m− 5)2

72

(2m− 7)
9

An interesting question concerns when D(r, s) ∈ Z. Initial investigations suggest
that this is true when 2m + 1 is a prime and r 6 m− s.

Similar results to the expression in (8.10) have been observed by Bacher in his
study of determinants of matrices related to the Pascal triangle, the most relevant
of which are detailed below. For proofs of these and other related results we refer
the reader to [3].

Proposition 8.4. Let Ps,t(m) = (pi,j) be the m × m matrix with coefficients
pi,j =

(
i+j+s+t

i+s

)
, 0 6 i, j < m, and Qs(2m) = (qi,j) be the 2m × 2m matrix with

coefficients qi,j =
(
2s+i+j−1

s+j

)− (
2s+i+j−1

s+j−1

)
, 0 6 i, j < 2m. Then for s, t, m > 0 we

have

det(Ps,t(m)) =
s−1∏

k=0

(
m+k+t

t

)
(
k+t

t

) ,
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and
√

det(Qs(2m)) =
s−1∏

k=1

(
2m+2k

k

)
(
2k
k

) . (8.15)

The first polynomials

Rs(m) =
√

det(Qs(2m)) =
s−1∏

k=1

(
2m+2k

k

)
(
2k
k

) ,

are identical to those generated by Dm(r, 0), where we seem to have

Dm(r, 0) = Rr+1(m− r). (8.16)

Bacher considers the sequences S(m) = ((Rs(m))s=0,1,2,... (for fixed m), and notes
that they also appear in [15]. In fact S(1) is the sequence of Catalan numbers
(1, 1, 2, 5, 14, 42, . . .), and the sequence S(m) appears in the m-th row of the upper
triangle of the Catalan Number Wall, the first few rows of which are given below.

1 1 1 1 1 1 1 1 . . .
1 1 2 5 14 42 132 429 . . .

1 1 3 14 84 594 4719 . . .
1 1 4 30 330 4719 . . .

1 1 5 55 1001 . . .
1 1 6 91 . . .

. . . . . . . . . . . .

(8.17)

We now give a brief definition of Number Walls [7], [23] (or quotient-difference
tables to give the more traditional name) as described by Michael Somos.

Definition. Let . . . , a(−2), a(−1), a(0), a(1), a(2), . . . be a sequence of numbers
and define the r × r Hankel matrix Hr,s = (hi,j), 1 6 i, j 6 r, with coefficients
hi,j = a(s− r + i + j − 1). Similarly define the r × r Toeplitz matrix Tr,s = (ti,j),
1 6 i, j 6 r, with coefficients ti,j = a(s + i− j), so that the matrices Hr,s and Tr,s

are reflections of each other.
Denote the determinant of matrix A by |A|. The determinants of the Hankel

matrices, |Hr,s|, form a Hankel number wall H, while the determinants of the
Toeplitz matrices, |Tr,s|, form a Toeplitz number wall T . As one consequence of
Jacobi’s identities on matrices, we have

|Hr,s|2 = |Hr,s+1| × |Hr,s−1| − |Hr+1,s| × |Hr−1,s|, (8.18)

|Tr,s|2 = |Tr,s+1| × |Tr,s−1|+ |Tr+1,s| × |Tr−1,s| (8.19)

among other identities.

The array in (8.17) forms half of a Hankel Number Wall and so satisfies the
properties of (8.18).
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With the definitions in place, let n = 2m + 1, and we consider the array

. . . Dm(1,−2) Dm(1,−1) Dm(1, 0) nDm(1, 1) n2Dm(1, 2) . . .

. . . Dm(2,−2) Dm(2,−1) Dm(2, 0) nDm(2, 1) n2Dm(2, 2) . . .

. . . Dm(3,−2) Dm(3,−1) Dm(3, 0) nDm(3, 1) n2Dm(3, 2) . . .

. . .
...

...
...

...
... . . .

. . . Dm(m,−2) Dm(m,−1) Dm(m, 0) nDm(m, 1) n2Dm(m, 2) . . .
(8.20)

where we ignore the sign of Dm(r, s) and taken all values to be positive.
For entries in the array whose values of r and s satisfy the conditions stated

in (8.13) and (8.14), then taking account the relation (8.16), it is to be expected
that the these entries correspond to a portion of the triangle in (8.17).

What is perhaps not quite so expected is that the array splits into two sides,
where both the left and the right sides obey the Hankel Number Wall relation
(8.18), except from where the sides meet in a diagonal of ones. This is most
clearly illustrated with an example and we give the case for m = 5 in (8.20) below.

. . . 1716 462 126 35 10 3 1 5 55 1331 42592 1449459 . . .

. . . 28314 2772 294 35 5 1 4 30 330 4719 86515 1955239 . . .

. . . 28314 1386 84 7 1 3 14 84 594 4719 40898 380666 . . .

. . . 4719 165 9 1 2 5 14 42 132 429 1430 4862 . . .

. . . 121 11 1 1 1 1 1 1 1 1 1 1 . . .
(8.21)

When the numbers in (8.21) are replaced by those generated by the relation (8.18),
then they remain unchanged, apart from the diagonal of ones (shown in bold)
which are replaced by

√
11 in this case or

√
2m + 1 in general. We note that this

discrepancy in the Number Wall can be removed by multiplying the diagonals by
the required powers of n.

Omitting the powers of n in the array (8.20), and so the powers of 11 in array
(8.21), leaves the Number Wall properties unchanged, although the right-hand
side of the array would then consist of rational numbers whose denominators are
powers of 2m + 1. By Fleck’s congruence, when n is a prime, the left-hand side of
the array contains increasing powers of n, further highlighting the p-adic symmetry
that exists within relations between the b

(−t)
q and the b

(t)
q .

To conclude, Fleck’s and Weisman’s congruences are instances of a fundamental
relationship between Fleck numbers, formed from sums of binomial coefficients,
and prime numbers. It appears to be the case that the geometric polynomials
in m, b

(t)
q , and the numbers that they generate, are in fact closely linked to this

fundamental relationship and as such they may well be worthy of further study.
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