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ON MULTIPLE EXPONENTIAL SUMS AND THEIR
APPLICATIONS
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Abstract: We prove new estimates for the remainder terms in the known asymptotic formulas
for three famous problems, by using the contemporary bounds for triple exponential sums.
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1. Introduction

The van der Corput’s method and its two-dimensional extensions for estimating
exponential sums always play importants roles in studying many problems of num-
ber theory. In the last decades some new methods were introduced in the field of
estimating multiple exponential sums. We mention them as follows.

(a) The double large sieve inequality of [BI], which was used in [FI] for expo-
nential sums with monomials(see also [SW],[RS] for the later development).
This new method allows the simultaneous varying of many variables.

(b) The discrete Weyl’s shift technique of [HB] for bounding triple exponential
sums with monomials(see Lemma 2.1 of [W3] for the generalized version).

(c) Jia’s technique of [J](see its Lemma 13) for estimating double exponential
sums with bilinear complex coefficients(for the generalized version see (2.1)
of [W2]).

On the basis of these novel methods, in this paper we shall obtain new results
for the following three problems.

Let t(G)be the number of direct factors of a finite abelian group G(for an
explanation, see [C]), and

T (x) =
∑

t(G),

where the summation is taken over all abelian groups of order not exceeding x, x
is a sufficiently large positive number. The asymptotic formula of T (x) has been
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investigated in many papers. In particular, in [K] it was shown that

T (x) = main terms + ∆(x),∆(x) = O
(
xθ+ε

)
,

if, for d(1, 1, 2, 2; n) =
∣∣{(n1, n2, n3, n4) : n1n2n

2
3n

2
4 = n, ni ∈ Z+}

∣∣ , there holds

∑

n6x

d(1, 1, 2, 2; n) = main terms + ∆1(x), ∆1(x) = O
(
xθ+ε

)
,

where θ < 1
2 is some positive constant, and ε is any sufficiently small positive

constant. Since the estimate of ∆1(x) can be reduced to the estimate of exponential
sums which can be estimated by van der Corput’s method, work of [K] causes great
interest of number theorists for getting new permissible values of θ. In [K] an
admissible value θ = 5

12 was derived. Subsequently this was improved in [M1](θ =
83
201 ), [MS](θ = 45

109 ), [L1](θ = 2
5 ), [Y](θ = 3

8 ), [L2](θ = 7
19 ), [ZC](θ = 4

11 =
0.3636...), [LW1](θ = 21

58 = 0.3620...) and [W1](θ = 47
130 = 0.3615...). In this paper

we shall deduce the following new result.

Theorem 1.1. θ = 13
36 = 0.3611... is permissible.

To deduce Theorem 1.1, we shall use the new bound for triple exponential
sums with monomials of the recent paper [RS](which is best possible in some
sense under that setting), and we shall follow the approach of [ZC] to simplify
the arguments of [W1]. Note that in [ZC] the authors used the expansion of
the remainder term of the Dirichlet divisor problem obtained via the complex
analysis (involving the analytical theory of the Riemann zeta-function), and thus
the treatments are somewhat coincise. On the other hand, the formula of [V]
for generalized many dimensional divisor problems has been suspected by us in
another paper (from which the results of [L2] and [SW] on the distribution of
4-full integers also turn out to be invalid). If we use our recent result of [L4] for
triple exponential sums (improving Theorem 1.1 of [RS]), we can improve the error
term O(xθ+ε) to O(xθ exp(c

√
log x))(c > 0)(note that the factor “xε” can not be

reduced by the method of [RS]).
Using quite the similar arguments, we can improve the result 4

11 of [B] on the
squarefree divisor problem and the result 221

608 of [W4].

Theorem 1.2. Under the Riemann hypothesis(RH), ∆2(x) = O

(
x

13
36 + ε

)
holds.

Theorem 1.3. Under RH,
∣∣{m2 + n2 6 x, (m, n) = 1

}∣∣ = 6
π2 x + O

(
x

13
36 + ε

)
.

2. Proof of Theorem 1.1

For the sake of simplicity, we just quote but do not list again the existing important
results for estimating exponential sums of the literatures.
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In view of the Basic Lemma, the Proposition 2, the proof of Case 2 of Propo-
sition 1, and the arguments in treating Case 1 of Proposition 1 of [ZC], to deduce
our result it suffices to deduce that

T (M, N) : =
∑

m∼M

am

∑

n∼N

bne( 2
√

nx
m )

¿ M
1
2 N

3
4 xθ′+ 1

2 ε, θ′ = θ − 1
4 , θ = 13

36 ,

(1)

where M 6 x1−2θ, N 6 x1−2θ, δ = ε2, am = d(m)m− 1
2 M

1
2 x−δ 6 1, bn =

d(n)n−
3
4 N

3
4 x−δ 6 1, and e(ξ) = exp(2πiξ). Using (2.1) of [W2] with the exponent

pair (k, λ) = ( 1
2 , 1

2 ), we get

x−δT (M, N) ¿ M
1
2 N

3
4

(
20
√

x2M−1N2 + 36
√

x3N4 + 20
√

x2N3M−2

+ 44
√

x2M2N9 + 36
√

M6N7 + M
1
2 N− 1

4

+ 44
√

x−1M8N12 + 4
√

x−1M4
)
.

(2)

Similarly, using (2.1) of [W2] with the exponent pair ( 1
2 , 1

2 ), but with the roles of
M and N changed, we obtain

x−δT (M,N) ¿ M
1
2 N

3
4

(
20
√

x2M + 36
√

x3M4 + 20
√

x2M2N−1

+ 44
√

x2M14N−3 + 36
√

M16N−3 + 44
√

x−1M24N−5

+ N
1
4 + Mx−

1
4

)
.

(3)

Using (2.1) of [W2] with the exponent pair (k, λ) = ( 2
7 , 4

7 ), we obtain

x−δT (M, N) ¿ M
1
2 N

3
4

(
116
√

x11M9 + 20
√

x2M2N−1 + 108
√

x9M13N−8

+ 44
√

x2M14N−3 + M
1
2 N− 1

4 + N
1
4

+ 44
√

x−1M26N−6 + Mx−
1
4

)
.

(4)

Using Corollary 1 of [LW2] we obtain

x−δT (M,N) ¿ M
1
2 N

3
4

(
12
√

x2M−4N + 16
√

x2M−1 + 8
√

xN−1 + 12
√

xM

+ M
1
2 N− 1

4 + N
1
4 + 4

√
x−1M4

)
.

(5)

Our purpose is to deduce from (2), (3), (4) and (5) the following estimate

T ′(M, N) := M− 1
2 N− 3

4 x−δT (M,N) ¿ M
1
2 N− 1

4 + xθ′ . (6)
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First we note that the following terms of (2)–(5)

36
√

M6N7,
44
√

x−1M8N12, Mx−
1
4 , N

1
4 ,

12
√

xM

can be estimated trivially as O(xθ′), by using only M 6 x1−2θ and N 6 x1−2θ.
Thus, from (3) and (4) we get

T ′(M, N) ¿ 8
√

xN−1 + M
1
2 N− 1

4 + 16
√

x2M−1 +
∑

16i65

Ri + xθ′ ,

where

R1 = min
(

12
√

x2M−4N,
116
√

x11M9
)

6 572
√

x62N9,

R2 = min
(

12
√

x2M−4N,
20
√

x2M2N−1
)

6 52
√

x6N−1,

R3 = min
(

12
√

x2M−4N,
108
√

x9M13N−8
)

6 588
√

x62N−19 6 xθ′ ,

R4 = min
(

12
√

x2M−4N,
44
√

x2M14N−3
)

6 172
√

x18N,

R5 = min
(

12
√

x2M−4N,
44
√

x−1M26N−6
)

6 244
√

x25N.

(we have used N À 1). Using N 6 x1−2θ we find that R1 + R4 + R5 = O(xθ′).
Thus we get

T ′(M,N) ¿ M
1
2 N− 1

4 + 8
√

xN−1 + 16
√

x2M−1 + 52
√

x6N−1 + xθ′ . (7)

From (3) and (7) we have

T ′(M,N) ¿ 8
√

xN−1 + M
1
2 N− 1

4 + 52
√

x6N−1 +
∑

66i611

Ri + xθ′ , (8)

where

R6 = min
(

16
√

x2M−1,
20
√

x2M
)

6 x
1
9 = xθ′ ,

R7 = min
(

16
√

x2M−1,
36
√

x3M4
)

6 x0.11,

R8 = min
(

16
√

x2M−1,
20
√

x2M2N−1
)

6 52
√

x6N−1,

R9 = min
(

16
√

x2M−1,
44
√

x2M14N−3
)

6 268
√

x30N−3,

R10 = min
(

16
√

x2M−1,
36
√

M16N−13
)

6 292
√

x321N−13 6 xθ′ ,

R11 = min
(

16
√

x2M−1,
44
√

x−1M24N−5
)

6 428
√

x47N−5 6 xθ′ .

(we have used N À 1). Thus from (8) we find that, if N > x6−52θ′ then (6)
holds.Thus, to show (6) we can assume that N < x6−52θ′ . Now from (2) we get
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(by usingM 6 x1−2θ also)

T ′(M, N) ¿ 20
√

x2M−1N2 + 20
√

x2M−2N3 + M
1
2 N− 1

4 + xθ′ ,

and thus (6) follows if M > N . Thus we can suppose that M < N < x6−52θ′ , and
we find that (3) implies (6). Thus (6) always holds.

We give other bounds for T ′(M,N), so as to we can deduce (1) by combin-
ing (6).

Obviously, for two suitable numbers M1 andM2 with 1
4M 6 M1M2 6 2M and

1 ¿ M1 ¿ M2 (by splitting the range of summation) we have (here L = log x)

T ′(M, N) ¿ L2N− 3
4 M

− 1
2

1

∑

n∼N

∑

m1∼M1

∣∣∣∣∣∣
∑

m2∈I(m1)

m
− 1

2
2 e(−f(n,m1,m2))

∣∣∣∣∣∣
, (9)

where f(n,m1,m2) = 2(nx)
1
2 m−1

1 m−1
2 , and I(m1) = (M2, min(2M2, 2Mm−1

1 )]. If

M2 > (Nx)
1
2 M−1, using first a partial summation and then the exponent pair

( 1
2 , 1

2 ), we get

∑

m2∈I(m1)

m
− 1

2
2 e(f(n, m1,m2)) ¿ M

− 1
2

2

(
(Nx)

1
4 M− 1

2 + M2M(Nx)−
1
2

)
,

and consequently

T ′(M, N) ¿ M2M−1
2 x−

1
4 + M

3
2 x−

1
2 ¿ xθ′ .

Assuming in the following that M2 < (Nx)
1
2 M−1. Using Theorem 1 of [RS]

to the triple sum of (9) we have x−δT ′(M, N) ¿ M− 1
2 N− 3

4 ( 8
√

x−1M10N7 +
4
√

M2M3N3 + NM
1
2 M

1
2
1 + 8

√
xM2M2

1 N2).

¿ 8
√

x−1M6N + 4
√

M2M + 4
√

MN + 8
√

xM−1N, (10)

where we have used M1 ¿ M
1
2 . By (6) and (10) we have

x−δT ′(M, N) ¿ 4
√

MM2 +
∑

126i614

Ri + xθ′ , (11)

where

R12 = min( 4
√

M2N−1,
8
√

x−1M6N) 6 12
√

x−1M8 6 xθ′ ,

R13 = min( 4
√

M2N−1,
4
√

MN) 6 M
3
8 6 xθ′ ,

R14 = min( 4
√

M2N−1,
8
√

xM−1N) 6 12
√

xM 6 xθ′ .

(by M 6 x1−2θ).
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Using Theorem 3 of [L3] we get

∑

m2∈I(m1)

m
− 1

2
2 e(−f(n,m1,m2)) ¿

∣∣∣∣∣
∑

u∈J

u−
1
2 e(g(u, n,m1))

∣∣∣∣∣+(M2F
−1)

1
2 +LM

− 1
2

2 ,

(12)
here J is the image of the interval I(m1) by the mapping 2(nx)

1
2 m−1

1 ξ−2(ξ ∈
I(m1)), and F = (Nx)

1
2 M−1. It is easy to see that u ∈ J implies u ' U,U =

FM−1
2 . Let C(u) = (Uu−1)

1
2 . By (2.1) of [W1] with the exponent pair ( 1

2 , 1
2 ) we

get

x−δ
∑

m1∼M1

∑

n∼N

∣∣∣∣∣
∑

u∈J

C(u)e(g(u, n,m1))

∣∣∣∣∣ ¿
6
√

(M1N)5FU4 + (M1N)
1
2 U

+ M1NU
1
2 + F−

1
2 M1NU.

Consequently, from (9) and (12) we get

x−δT ′(M, N) ¿ 4

√
xM−4M2

1 + 12

√
x2M−6N3M6

1 + 4
√

MN + xθ′ . (13)

From (11) and (13) we get(noting that M1 ¿ M
1
2 )

x−δT ′(M, N) ¿
∑

156i616

Ri + 4
√

MN + xθ′ , (14)

here

R15 = min
(

4

√
xM−4M2

1 , 4
√

MM2

)
6 x

1
12 ,

R16 = min
(

12

√
x2M−6N3M6

1 , 4
√

MM2

)
6 36

√
x2M6N3.

From (6) and (14) we finally achieve that(see (11) for R13)

x−δT ′(M, N) ¿ R17 + R13 + xθ′ ,

where R13 ¿ xθ′ , and

R17 = min
(

36
√

x2M6N3,
4
√

M2N−1
)

6 24
√

xM6 ¿ xθ′ .

Thus (1) always holds, and the proof of Theorem 1.1 is finished.

3. Proof of Theorem 1.2

Again let θ = 13
36 . Then similarly with p. 134 of [B] it suffices to deduce that

S(M, N) :=
∑

m∼M

∑

n∼N

AmBne

(
2n

1
2 x

1
2

m

)
¿ xθ′+ ε

2 , (15)



On multiple exponential sums and their applications 161

where 1 6 M, N 6 x1−2θ, θ′ = θ − 1
4 and Am = µ(m)m− 1

2 , Bn = d(n)n−
3
4 (µ(m)

and d(n) are the Mobius function and the Dirichlet divisor functions respectively).
Using quite the same method we get as (6) the following(δ = ε2)

x−δS(M, N) ¿ M
1
2 N− 1

4 + xθ′ . (16)

Using the decomposition of Vaughan’s type forµ(.)(see [J] for instance), for any
function f we have

∑

m∼M

µ(m)f(m) =
∑

U<r6 2M
V

µ(r)
∑

rh∼M

bhf(hr)−
∑

r6UV

c(r)
∑

rh∼M

f(rh), (17)

where U and V are two parameters with 1 6 U, V 6 M, the additional coefficients
are real numbers satisfying bs, c(s) ¿ d(s). We use (17) with the choice U =
MN− 1

2 x−2θ′ , and V = M2x−4θ′ . Note that UV ¿ M/V , thus to get (15) it
suffices to show both

S1 := M− 1
2 N− 3

4


 ∑

n∼N

∑

rh∼M,r∼R,h∼H

anbrche(g(r, h, n))


 ¿ xθ′+ ε

3 , (18)

and

S2 := M− 1
2 N− 3

4


 ∑

n∼N

∑

rh∼M,r∼R,h∼H

anbre(g(r, h, n))


 ¿ xθ′+ ε

3 , (19)

where |an| , |br| , |ch| 6 1, g(r, h, n) = 2x
1
2 n

1
2 (rh)−1, in (18) we have U ¿ R ¿

M/V, and in (19) we have R ¿ U. Let F = (xN)
1
2 M−1. To deduce (18), we first

use (2.1) of Lemma 2.1 of [W3], and this gives

x−δS1 ¿ 12
√

F 2M2NR + 4
√

N−1H2 + 4
√

NR2 + 4
√

F−2NM2

¿ 12
√

xN2R + 4
√

NR2 + xθ′ :=
∑

16i62

Pi + xθ′ . (20)

(using R À Uand M ¿ x1−2θ). By Theorem 1 of [RS] we get

x−δS1 ¿ 4
√

FH + 4
√

RM + 4
√

NH2 + F−
1
2 MN

¿ 8
√

xNM−2H2 + 4
√

NH2 + xθ′ :=
∑

16i62

Gi + xθ′ . (21)

(using R ¿ M/V and M ¿ x1−2θ). Let Q = 4
√

M2N−1. Note that an estimate
similar with (16) holds if we write rh = m in S1. Thus by (16), (20) and (21) we
have

x−δS1 ¿
∑

16i62

∑

16j62

Tij + xθ′ , Tij = min(Pi, Gj , Q).
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We can deduce by the usual method that

T11 ¿ min
(

32
√

x3N5, Q
)
¿ 52

√
x3M10 ¿ xθ′ ,

T12 ¿ min
(

28
√

x2M2N5, Q
)
¿ 24

√
xM6 ¿ xθ′ ,

T21 ¿ min
(

12
√

xN2, Q
)
¿ 20

√
xM4 ¿ xθ′ ,

T22 ¿ min
(

4
√

MN, Q
)
¿ M

3
8 ¿ xθ′ .

Thus (18) always holds. We then note that (19) is very easy to derive when we
first use the B-process of van der Corput’s method to the variable h(see the proof
of Lemma 2.2 of [W3], for instance), and then use Theorem 1 of [RS]. We omit
the routine details.

The proof of Theorem 1.2 is thus finished.

4. Proof of Theorem 1.3

From p.70 of [W4] and the treatment for proving Theorem 1.2, we easily see that
Theorem 1.3 follows exactly by using the same procedures.
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