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ARITHMETIC PROGRESSIONS OF SQUARES,

CUBES AND n -TH POWERS
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Abstract: In this paper we continue the investigations about unlike powers in arithmetic pro-
gression. We provide sharp upper bounds for the length of primitive non-constant arithmetic
progressions consisting of squares/cubes and n-th powers.
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1. Introduction

It was claimed by Fermat and proved by Euler (see [10] pp. 440 and 635) that
four distinct squares cannot form an arithmetic progression. It was shown by
Darmon and Merel [9] that, apart from trivial cases, there do not exist three-term
arithmetic progressions consisting of n-th powers, provided n > 3. An arithmetic
progression a1, a2, . . . , at of integers is called primitive if gcd(a1, a2) = 1. A recent
result of Hajdu [11] implies that if

xl1
1 , . . . , x

lt
t (1)

is a primitive arithmetic progression in Z with 2 6 li 6 L (i = 1, . . . , t), then t is
bounded by some constant c(L) depending only on L. Note that c(L) is effective,
but it is not explicitly given in [11], and it is a very rapidly growing function of L.

On the other hand, it is known (see e.g. [12], [8], [14] and the references given
there) that there exist exponents l1, l2, l3 > 2 for which there are infinitely many
primitive arithmetic progressions of the form (1). In this case the exponents in
question satisfy the condition

1

l1
+

1

l2
+

1

l3
> 1.
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In [7] Bruin, Győry, Hajdu and Tengely among other things proved that for any
t > 4 and L > 3 there are only finitely many primitive arithmetic progressions of
the form (1) with 2 6 li 6 L (i = 1, . . . , t). Furthermore, they showed that in case
of L = 3 we have xi = ±1 for all i = 1, . . . , t.

The purpose of the present paper is to give a good, explicit upper bound for
the length t of the progression (1) under certain restrictions. More precisely, we
consider the cases when the set of exponents is given by {2, n}, {2, 5} and {3, n},
and (excluding the trivial cases) we show that the length of the progression is at
most six, four and four, respectively.

2. Results

Theorem 2.1. Let n be a prime and xl1
1 , . . . , x

lt
t be a primitive non-constant

arithmetic progression in Z with li ∈ {2, n} (i = 1, . . . , t). Then we have t 6 6.
Further, if t = 6 then

(l1, l2, l3, l4, l5, l6) = (2, n, n, 2, 2, 2), (2, 2, 2, n, n, 2).

In the special case n = 5 we are able to prove a sharper result.

Theorem 2.2. Let xl1
1 , . . . , x

lt
t be a primitive non-constant arithmetic progression

in Z with li ∈ {2, 5} (i = 1, . . . , t). Then we have t 6 4. Further, if t = 4 then

(l1, l2, l3, l4) = (2, 2, 2, 5), (5, 2, 2, 2).

Theorem 2.3. Let n be a prime and xl1
1 , . . . , x

lt
t be a primitive non-constant

arithmetic progression in Z with li ∈ {3, n} (i = 1, . . . , t). Then we have t 6 4.
Further, if t = 4 then

(l1, l2, l3, l4) = (3, 3, n, n), (n, n, 3, 3), (3, n, n, 3), (n, 3, 3, n).

Note that Theorems 2.2 and 2.3 are almost best possible. This is demonstrated
by the primitive non-constant progression −1, 0, 1. (In fact one can easily give
infinitely many examples of arithmetic progressions of length three, consisting of
squares and fifth powers.)

We also remark that by a previously mentioned result from [7], the number
of progressions of length at least four is finite in each case occurring in the above
theorems.

3. Proofs of Theorems 2.1 and 2.3

In the proof of these theorems we need several results about ternary equations of
signatures (n, n, 2) and (n, n, 3), respectively. We start this section with summa-
rizing these statements. The first three lemmas are known from the literature,
while the fourth one is new.
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Lemma 3.1. Let n be a prime. Then the Diophantine equations

Xn + Y n = 2Z2 (n > 5),

Xn + Y n = 3Z2 (n > 5),

Xn + 4Y n = 3Z2 (n > 7)

have no solutions in nonzero pairwise coprime integers (X,Y, Z) with XY 6= ±1.

Proof. The statement follows from results of Bennett and Skinner [1], and
Bruin [6]. �

Lemma 3.2. Let n > 5 be a prime. Then the Diophantine equation

Xn + Y n = 2Z3

has no solutions in coprime nonzero integers X,Y, Z with XY Z 6= ±1.

Proof. The result is due to Bennett, Vatsal and Yazdani [2]. �

Lemma 3.3. Let n > 3 be a prime. Then the Diophantine equation

Xn + Y n = 2Zn

has no solutions in coprime nonzero integers X,Y, Z with XY Z 6= ±1.

Proof. The result is due to Darmon and Merel [9]. �

Lemma 3.4. Let n > 3 be a prime. Then the Diophantine equation

X3 + Y 3 = 2Zn

has no solutions in coprime nonzero integers X,Y, Z with XY Z 6= ±1 and 3 - Z.

Proof. First note that in case of n = 3 the statement follows from Lemma 3.3.
Let n > 5, and assume to the contrary that (X,Y, Z) is a solution to the equation
with gcd(X,Y, Z) = 1, XYZ 6= ±1 and 3 - Z. Note that the coprimality of X,Y, Z
shows that XY is odd. We have

(X + Y )(X2 −XY + Y 2) = 2Zn.

Our assumptions imply that gcd(X + Y,X2 −XY + Y 2) | 3, whence 2 - XY and
3 - Z yield that

X + Y = 2Un and X2 −XY + Y 2 = V n

hold, where U, V ∈ Z with gcd(U, V ) = 1. Combining these equations we get

f(X) := 3X2 − 6UnX + 4U2n − V n = 0.

Clearly, the discriminant of f has to be a square in Z, which leads to an equality
of the form

V n − U2n = 3W 2

with some W ∈ Z. However, this is impossible by Lemma 3.1. �
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Now we are ready to prove our Theorems 2.1 and 2.3.

Proof of Theorem 2.1. Suppose that we have an arithmetic progression (1) of
the desired form, with t = 6. In view of a result from [7] about the case n = 3 and
Theorem 2.2, without loss of generality we may assume that n > 7.

First note that the already mentioned classical result of Fermat and Euler
implies that we cannot have four consecutive squares in our progression. Fur-
ther, observe that Lemmas 3.1 and 3.3 imply that we cannot have three consec-
utive terms with exponents (n, 2, n) and (n, n, n), respectively, and further that
(l1, l3, l5) = (n, 2, n), (n, n, n) are also impossible.

If (l1, l2, l3, l4, l5) = (n, 2, 2, n, 2) or (2, n, 2, 2, n), then we have

4xn
4 − xn

1 = 3x2
5 or 4xn

2 − xn
5 = 3x2

1,

respectively, both equations yielding a contradiction by Lemma 3.1.
To handle the remaining cases, let d denote the common difference of the

progression. Let (l1, l2, l3, l4, l5) = (2, 2, n, 2, 2). Then (as clearly x1 6= 0) we have

(1 +X)(1 + 3X)(1 + 4X) = Y 2

where X = d/x1 and Y = x2x4x5/x1. However, a simple calculation with Magma
[3] shows that the rank of this elliptic curve is zero, and it has exactly eight
torsion points. However, none of these torsion points gives rise to any appropriate
arithmetic progression.

When (l1, l2, l3, l4, l5, l6) = (2, 2, n, n, 2, 2), then in a similar manner we get

(1 +X)(1 + 4X)(1 + 5X) = Y 2

with X = d/x1 and Y = x2x5x6/x1, and just as above, we get a contradiction.
In view of the above considerations, a simple case-by-case analysis yields that

the only remaining possibilities are the ones listed in the theorem. Hence to
complete the proof we need only to show that the possible six-term progressions
cannot be extended to seven-term ones. Using symmetry it is sufficient to deal
with the case given by

(l1, l2, l3, l4, l5, l6) = (2, n, n, 2, 2, 2).

However, one can easily verify that all the possible extensions lead to a case treated
before, and the theorem follows. �

Proof of Theorem 2.3. In view of Lemma 3.3 and the previously mentioned
result from [7] we may suppose that n > 5. Assume that we have an arithmetic
progression of the indicated form, with t = 4. By the help of Lemmas 3.2 and 3.3
we get that there cannot be three consecutive terms with exponents (n, 3, n), and
(3, 3, 3) or (n, n, n), respectively. Hence a simple calculation yields that the only
possibilities (except for the ones listed in the theorem) are given by

(l1, l2, l3, l4) = (3, n, 3, 3), (3, 3, n, 3).
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Then Lemma 3.4 yields that 3 | x2 and 3 | x3, respectively. However, looking at
the progressions modulo 9 and using that x3 ≡ 0,±1 (mod 9) for all x ∈ Z we get
a contradiction with the primitivity condition in both cases.

Finally, one can easily check that the extensions of the four-term sequences
corresponding to the exponents listed in the statement to five-term ones, yield cases
which have been treated already. Hence the proof of the theorem is complete. �

4. Proof of Theorem 2.2

To prove this theorem we need some lemmas, obtained by the help of ellip-
tic Chabauty’s method. To prove the lemmas we used the program package
Magma [3]. The transcripts of computer calculations can be downloaded
from the URL-s www.math.klte.hu/~tengely/Lemma4.1 and www.math.klte.

hu/~tengely/Lemma4.2, respectively.

Lemma 4.1. Let α = 5
√

2 and put K = Q(α). Then the equations

C1 : α4X4 + α3X3 + α2X2 + αX + 1 = (α− 1)Y 2 (2)

and

C2 : α4X4 − α3X3 + α2X2 − αX + 1 = (α4 − α3 + α2 − α+ 1)Y 2 (3)

in X ∈ Q, Y ∈ K have the only solutions

(X,Y ) = (1,±(α4 + α3 + α2 + α+ 1)),

(
−1

3
,±3α4 + 5α3 − α2 + 3α+ 5

9

)

and (X,Y ) = (1,±1), respectively.

Proof. Using the so-called elliptic Chabauty’s method (see [4], [5]) we determine
all points on the above curves for which X is rational. The algorithm is imple-
mented by N. Bruin in Magma, so here we indicate the main steps only, the actual
computations can be carried out by Magma. We can transform C1 to Weierstrass
form

E1 : x3 − (α2 + 1)x2 − (α4 + 4α3 − 4α− 5)x+ (2α4 − α3 − 4α2 − α+ 4) = y2.

The torsion subgroup of E1 consists of two elements. Moreover, the rank of E1

is two, which is less than the degree of the number field K. Applying elliptic
Chabauty (the procedure "Chabauty" of Magma) with p = 3, we obtain that
X ∈ {1,−1/3}.

In case of C2 a similar procedure works. Now the corresponding elliptic curve
E2 is of rank two. Applying elliptic Chabauty this time with p = 7, we get that
X = 1, and the lemma follows. �
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Lemma 4.2. Let β = (1 +
√

5)/2 and put L = Q(β). Then the only solutions to
the equation

C3 : X4 + (8β − 12)X3 + (16β − 30)X2 + (8β − 12)X + 1 = Y 2 (4)

in X ∈ Q, Y ∈ L are (X,Y ) = (0,±1).

Proof. The proof is similar to that of Lemma 4.1. We can transform C3 to
Weierstrass form

E3 : x3 − (β − 1)x2 − (β + 2)x+ 2β = y2.

The torsion group of E3 consists of four points and (x, y) = (β− 1, 1) is a point of
infinite order. Applying elliptic Chabauty with p = 13, we obtain that (X,Y ) =
(0,±1) are the only affine points on C3 with rational first coordinates. �

Now we can give the

Proof of Theorem 2.2. Suppose that we have a four-term progression of the
desired form. Then by Lemmas 3.1, 3.3 and the result of Fermat and Euler we
obtain that all the possibilities (except for the ones given in the statement) are

(l1, l2, l3, l4) = (2, 2, 5, 5), (5, 5, 2, 2), (2, 5, 5, 2),

(5, 2, 2, 5), (2, 2, 5, 2), (2, 5, 2, 2).

We show that these possibilities cannot occur. Observe that by symmetry we may
assume that we have

(l1, l2, l3, l4) = (2, 2, 5, 5), (2, 5, 5, 2), (5, 2, 2, 5), (2, 2, 5, 2).

In the first two cases the progression has a sub-progression of the shape a2, b5, c5.
Note that here gcd(b, c) = 1 and bc is odd. Indeed, if c would be even then we would
get 4 | a2, c5, whence it would follow that b is even - a contradiction. Taking into
consideration the fourth term of the original progression, a similar argument shows
that b is also odd. Using this subprogression we obtain the equality 2b5 − c5 = a2.
Putting α = 5

√
2 we get the factorization

(αb− c)(α4b4 + α3b3c+ α2b2c2 + αbc3 + c4) = a2 (5)

in K = Q(α). Note that the class number of K is one, α4, α3, α2, α, 1 is an integral
basis of K, ε1 = α − 1, ε2 = α3 + α + 1 provides a system of fundamental units
of K with NK/Q(ε1) = NK/Q(ε2) = 1, and the only roots of unity in K are given
by ±1. A simple calculation shows that

D := gcd(αb− c, α4b4 + α3b3c+ α2b2c2 + αbc3 + c4) | gcd(αb− c, 5αbc3)

in the ring of integers OK of K. Using gcd(b, c) = 1 and 2 - c in Z, we get D | 5
in OK . Using e.g. Magma, one can easily check that 5 = (3α4 +4α3−α2−6α−3)
(α2 + 1)5, where 3α4 + 4α3 − α2 − 6α − 3 is a unit in K, and α2 + 1 is a prime
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in OK with NK/Q(α2 + 1) = 5. By the help of these information, we obtain that

αb− c = (−1)k0(α− 1)k1(α3 + α+ 1)k2(α2 + 1)k3z2

with k0, k1, k2, k3 ∈ {0, 1} and z ∈ OK . Taking the norms of both sides of the above
equation, we get that k0 = k3 = 0. Further, if (k1, k2) = (0, 0), (1, 1), (0, 1) then
putting z = z4α

4 +z3α
3 +z2α

2 +z1α+z0 with zi ∈ Z (i = 0, . . . , 4) and expanding
the right hand side of the above equation, we get 2 | b, which is a contradiction.
(Note that to check this assertion, in case of (k1, k2) = (0, 1) one can also use
that the coefficients of α2 and α3 on the left hand side are zero.) Hence we may
conclude that (k1, k2) = (1, 0). Thus using (5) we get that

α4b4 + α3b3c+ α2b2c2 + αbc3 + c4 = (α− 1)y2

with some y ∈ OK . Hence after dividing this equation by c4 (which cannot be
zero), we get (2), and then a contradiction by Lemma 4.1. Hence the first two
possibilities for (l1, l2, l3, l4) are excluded.

Assume next that (l1, l2, l3, l4) = (5, 2, 2, 5). Then we have 2x5
1 + x5

4 = 3x2
2.

Using the notation of the previous paragraph, we can factorize this equation over
K to obtain

(αx1 + x4)(α
4x4

1 − α3x3
1x4 + α2x2

1x
2
4 − αx1x

3
4 + x4

4) = 3x2
2. (6)

Observe that the primitivity condition implies that gcd(x1, x4) = 1, and 2 - x1x4.
Hence in the same manner as before we obtain that the greatest common divisor
of the terms on the left hand side of (6) divides 5 in OK . Further, a simple
calculation e.g. with Magma yields that 3 = (α+ 1)(α4 −α3 +α2 −α+ 1), where
α + 1 and α4 − α3 + α2 − α + 1 are primes in OK with NK/Q(α + 1) = 3 and
NK/Q(α4 − α3 + α2 − α + 1) = 81, respectively. Using these information we can
write

αx1 + x4 = (−1)k0(α − 1)k1(α3 + α+ 1)k2(α+ 1)k3(α4 − α3 + α2 − α+ 1)k4z2

with k0, k1, k2, k3, k4 ∈ {0, 1} and z ∈ OK . Taking the norms of both sides of the
above equation, we get that k0 = 0 and k3 = 1. Observe that k4 = 1 would imply
3 | x1, x4. This is a contradiction, whence we conclude k4 = 0. Expanding the
above equation as previously, we get that if (k1, k2) = (0, 1), (1, 0), (1, 1) then x1

is even, which is a contradiction again. (To deduce this assertion, when (k1, k2) =
(1, 1) we make use of the fact that the coefficients of α3 and α2 vanish on the left
hand side.) So we have (k1, k2) = (0, 0), which by the help of (6) implies

α4x4
1 − α3x3

1x4 + α2x2
1x

2
4 − αx1x

3
4 + x4

4 = (α4 − α3 + α2 − α+ 1)y2

with some y ∈ OK . However, after dividing this equation by x4
1 (which is certainly

non-zero), we get (3), and then a contradiction by Lemma 4.1.
Finally, suppose that (l1, l2, l3, l4) = (2, 2, 5, 2). Using the identity x2

2 + x2
4 =

2x5
3, e.g. by the help of a result of Pink and Tengely [13] we obtain

x2 = u5 − 5u4v − 10u3v2 + 10u2v3 + 5uv4 − v5
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and
x4 = u5 + 5u4v − 10u3v2 − 10u2v3 + 5uv4 + v5

with some coprime integers u, v. Then the identity 3x2
2 − x2

4 = 2x2
1 implies

(u2 − 4uv + v2)f(u, v) = x2
1 (7)

where

f(u, v) = u8 − 16u7v − 60u6v2 + 16u5v3 + 134u4v4

+ 16u3v5 − 60u2v6 − 16uv7 + v8.

A simple calculation shows that the common prime divisors of the terms at the
left hand side belong to the set {2, 5}. However, 2 | x1 would imply 4 | x2

1, x
5
3,

which would violate the primitivity condition. Further, if 5 | x1 then looking at the
progression modulo 5 and using that by the primitivity condition x2

2 ≡ x2
4 ≡ ±1

(mod 5) should be valid, we get a contradiction. Hence the above two terms are
coprime, which yields that

f(u, v) = w2

holds with some w ∈ Z. (Note that a simple consideration modulo 4 shows that
f(u, v) = −w2 is impossible.) Let β = (1 +

√
5)/2, and put L = Q(β). As

is well-known, the class number of L is one, β, 1 is an integral basis of L, β is
a fundamental unit of L with NL/Q(β) = 1, and the only roots of unity in L are
given by ±1. A simple calculation shows that

f(u, v) = g(u, v)h(u, v)

with

g(u, v) = u4 + (8β − 12)u3v + (16β − 30)u2v2 + (8β − 12)uv3 + v4

and

h(u, v) = u4 + (−8β − 4)u3v + (−16β − 14)u2v2 + (−8β − 4)uv3 + v4.

Further, gcd(6, x1) = 1 by the primitivity of the progression, and one can easily
check modulo 5 that 5 | x1 is also impossible. Hence we conclude that g(u, v) and
h(u, v) are coprime in the ring OL of integers of L. Thus we have

g(u, v) = (−1)k0βk1z2

with some k0, k1 ∈ {0, 1} and z ∈ OL. Note that as 2 - x1, equation (7) implies
that exactly one of u, v is even. Hence a simple calculation modulo 4 shows that
the only possibility for the exponents in the previous equation is k0 = k1 = 0.
However, then after dividing the equation with v4 (which cannot be zero), we
get (4), and then a contradiction by Lemma 4.2.

There remains to show that a four-term progression with exponents
(l1, l2, l3, l4) = (2, 2, 2, 5) or (5, 2, 2, 2) cannot be extended to a five-term one.
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By symmetry it is sufficient to deal with the first case. If we insert a square
or a fifth power after the progression, then the last four terms yield a progression
which has been already excluded. Writing a fifth power, say x5

0 in front of the
progression would give rise to the identity x5

0 + x5
4 = 2x2

2, which leads to a con-
tradiction by Lemma 3.1. Finally, putting a square in front of the progression is
impossible by the already mentioned result of Fermat and Euler. �
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