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Abstract: We classify the second order, linear, two by two systems for which the two funda-
mental theorems for planar harmonic mappings, the Radó–Kneser–Choquet theorem and the
H. Lewy theorem, hold. They are those which, up to a linear change of variable, can be written
in diagonal form with the same operator on both diagonal blocks. In particular, we prove that
the aforementioned theorems cannot be extended to solutions of either the Lamé system of elas-
ticity, or of elliptic systems in diagonal form, even with just slightly different operators for the
two components.
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1. Introduction

“A basic requirement of continuum mechanics is that interpenetration of matter
does not occur, i.e. that in any deformed configuration the mapping giving the
position u(x) of a particle in terms of its position x in the reference configuration
be invertible”. J. M. Ball [5].

It is then a natural question to ask what systems of equations, among those
used as models for elastostatics, give rise to invertible solutions when reasonable
boundary conditions are prescribed.

In this note we shall prove by an example that the Lamé system of isotropic,
linearized elasticity in the plane, with constant Lamé coefficients, may lead to
physically unacceptable solutions, because interpenetration of matter occurs. Let
us recall here that the same phenomenon was previously found by Fosdick and
Royer–Carfagni [12] for a more involved anisotropic linear system, by elaborating
on an example due to Lekhnitskii [13]. In higher dimensions similar phenomena oc-
cur. From the mathematical point of view a basic example is due to De Giorgi [10].
In all these examples, however, a basic common feature is the presence of some
sort of point singularity in the solution itself (in dimension greater than two) or at
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least in the gradient in any dimension. Such a singularity can only be present when
the coefficients of the elliptic system are irregular, for instance discontinuous. Our
examples are different from those previously known in several ways, but the most
crucial difference is that we choose smooth and in fact constant coefficients in our
systems. Therefore our examples, besides bringing a new argument to the many
already well known, see for instance Ciarlet [8, p. 286] and the references therein,
about the limitations of linearized elasticity, shed some new light on the tightness
of certain classical properties enjoyed by harmonic mapping showing that they
cannot be easily extended even within the class of constant coefficient systems.

We now recall some fundamental properties of planar harmonic mappings, see
the book of Duren [11] for a very broad treatment of this subject.

We begin with the classical theorem of Radó, Kneser and Choquet. This theo-
rem which was first stated by Radó [22], proved by Kneser [16] immediately after
and then independently rediscovered by Choquet [7], remains the basic unequalled
result of invertibility for mappings solving an elliptic system of equations.

Let B be an open disk in the plane, let Φ : ∂B → γ ⊂ R2 be a homeomorphism
of ∂B onto a simple closed curve γ. Let u ∈ C2(B,R2)∪C(B,R2) be the solution
to the Dirichlet problem {

∆u = 0 in B,

u = Φ on ∂B.
(1.1)

Let D be the bounded region such that ∂D = γ. The Radó–Kneser–Choquet
theorem states the following.

Theorem 1.1. If D is convex, then u is a homeomorphism of B onto D.

The main reasons why this theorem remains substantially unequalled are:
(i) no analogue of this theorem holds true in dimension three or higher, as it

was shown by a striking example by Laugesen [17], see also Melas [21],
(ii) the convexity assumption on the target domain D is optimal. In fact, it is

known since Choquet [7], that if D is not convex then there exists homeo-
morphisms Φ : ∂B → ∂D, for which the injectivity of u, the solution to (1.1),
fails. See also [2] for a thorough investigation of this issue.

Nevertheless various kinds of generalizations of the Radó–Kneser–Choquet the-
orem have been obtained. Regarding harmonic mappings between manifolds, see
Schoen and Yau [23] and Jost [15]. For mappings u whose components solve a linear
elliptic equation, let us mention Bauman, Marini and Nesi [6] and also [1], [3]. It is
worth pointing out that, in these last two papers the Radó–Kneser–Choquet theo-
rem has been extended to linear elliptic equations in divergence form with merely
bounded measurable coefficients. For quasilinear equations of the p-Laplacian type
see [4].

As a remarkable special case of our Theorem 1.4, which will be stated here
below, we prove that no analogue of the Radó–Kneser–Choquet theorem holds
when the diagonal Laplacian system is replaced by a Lamé system with constant
moduli of the following form

µ div
(
(∇u)T +∇u

)
+ λ∇(div u) = 0.
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More precisely, we have the following.

Theorem 1.2. Let µ, λ ∈ R with µ > 0 and µ+λ > 0. There exist a disk B ⊂ R2,
a bounded convex domain D ⊂ R2 and a smooth diffeomorphism Φ : ∂B → ∂D,
so that the unique solution u ∈ W 1,2(B,R2) to

{
µ div

(
(∇u)T +∇u

)
+ λ ∇(div u) = 0 in B,

u = Φ on ∂B

is not a homeomorphism of B onto D.

Note that the natural unknown for the Lamé system, should be the displace-
ment field δ, rather than the deformation field u. However, due to the fact the the
identity mapping I is also a solution of the Lamé system, we have trivially that δ
solves the Lamé system if and only u = I + δ solves the same system. This is the
reason why in Theorem 1.2 it is understood that the solution u is representing a
deformation field.

In Remark 2.3, we shall see that the solution fails to be an homeomorphism
in a very strong way, in fact u maps B onto a domain larger than D, moreover it
folds itself along a curve, across which the orientation is reversed.

Our next theorem is a far reaching generalization of the previous one. It
shows that the Radó–Kneser–Choquet theorem holds only if one deals with elliptic
systems of diagonal form with the same scalar elliptic operator on both components.
We need some definitions. Consider a constant coefficients second order elliptic
system of the form {

div(A∇u1 + B∇u2) = 0,

div(C∇u1 + D∇u2) = 0.
(1.2)

where A,B, C and D are 2× 2 real constant matrices, and the unknowns u1 and
u2 are real valued functions. We say that the system (1.2) is elliptic if it satisfies
the Legendre–Hadamard condition

η2
1Aξ · ξ + η1η2(B + C)ξ · ξ + η2

2Dξ · ξ > 0, for every ξ, η ∈ R2\{0}. (1.3)

This condition is weaker than the strong convexity condition, namely the positivity
of the 4× 4 matrix given in block form as

M =
(

A B
C D

)

and, as it is well known, ellipticity (1.3) is the same as rank one convexity of the
quadratic form associated to M , see [9, Theorem 5.3]. We note that there is no
loss of generality in assuming that the matrices A, B,C and D are symmetric.

Definition 1.3. We shall say that the system (1.2) is equivalent to the system
{

div(A′∇u1 + B′∇u2) = 0,

div(C ′∇u1 + D′∇u2) = 0
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if there exists a non-singular 2× 2 matrix
(

α β
γ δ

)
such that

(
A B
C D

)
=

(
α Id β Id
γ Id δ Id

)(
A′ B′

C ′ D′

)
. (1.4)

Theorem 1.4. Let the ellipticity condition (1.3) be satisfied. The following alter-
native holds.
Either

(i) the system (1.2) is equivalent to the system
{

div(A∇u1) = 0,

div(A∇u2) = 0
(1.5)

or

(ii) there exist a disk B ⊂ R2, a bounded convex domain D ⊂ R2 and a smooth
diffeomorphism Φ : ∂B → ∂D, so that the unique solution u = (u1, u2) ∈
W 1,2(B,R2) to 




div(A∇u1 + B∇u2) = 0 in B,

div(C∇u1 + D∇u2) = 0 on B,

u = Φ on ∂B

is not a homeomorphism of B onto D.

The above results show that one of the most basic properties enjoyed by planar
harmonic mappings cannot be extended to other elliptic systems in the plane. It is
then natural to ask similar questions for another fundamental property of injective
harmonic mapping. A benchmark of the theory is a result of H. Lewy [18] proving
that harmonic homeomorphisms are, in fact, diffeomorphisms. More precisely, we
have the following result.

Theorem 1.5 (H. Lewy). Let u = (u1, u2) : B → R2 be a harmonic mapping.
If u is invertible, then

detDu 6= 0 for every (x, y) ∈ B. (1.6)

Also in this case the validity is limited to two dimensions. J. C. Wood [24]
found a third degree polynomial harmonic mapping which provides a counterex-
ample in dimension three. On the positive side, Hans Lewy [19] recognized that,
in three dimensions, if u is the gradient of an harmonic function and it is a home-
omorphism, then it is a diffeomorphism. This result was extended to any dimen-
sion in the remarkable paper by Gleason and Wolff [14]. In a different direction,
several generalizations of Lewy’s theorem have been achieved in dimension two
when the components of u satisfy the same linear elliptic equation of the form
div(σ∇ui) = 0. For the case of sufficiently smooth σ see [6]. When σ is allowed to
be discontinuous, weak forms of Lewy’s theorem have been obtained in [1] and [3].
A version for p-Laplacian type equations can be found in [4].
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In the next theorem, we show, by means of examples, that Theorem 1.5 cannot
be extended to an arbitrary elliptic system with constant coefficients, unless, again,
the systems has the special form (1.5).

Theorem 1.6. Let the ellipticity condition (1.3) be satisfied. The following alter-
native holds.
Either
(i) the system (1.2) is equivalent to the system (1.5)

or
(ii) there exists a polynomial solution to

{
div(A∇u1 + B∇u2) = 0 in B,

div(C∇u1 + D∇u2) = 0 on B

which is a homeomorphism of a closed disk B onto u(B) and such that in
the center of the disk, denoted by O, we have

det Du(O) = 0.

Remark 1.7. It may be evident that the Radó–Kneser–Choquet and the H. Lewy
theorems continue to hold for any system of the form (1.5), since it can be ele-
mentarily reduced to a Laplacian diagonal system via a linear change of the in-
dependent coordinates. It is although rather remarkable that Theorems 1.4, 1.6
show that the Radó–Kneser–Choquet and the H. Lewy theorems do not extend to
very slight perturbations of the Laplacian diagonal system such as, for instance,
the following one {

u1
xx + u1

yy = 0,

(1 + ε)u2
xx + u2

yy = 0

where ε is any positive number.

2. Proofs

In what follows, when no ambiguity occurs, we shall identify points (x, y) ∈ R2

with column vectors
(
x
y

)
. Also, for θ ∈ R, we shall denote cθ = cos θ , sθ = sin θ.

For the proofs of Theorems 1.4 and 1.6 we shall make use of the following two
propositions, which we will prove at the end of this section.

Proposition 2.1. Let the ellipticity condition (1.3) be satisfied. If the system (1.2)
is not equivalent to (1.5), then there exists θ ∈ [0, 2π] and a quadratic polynomial
p(x, y) = 1

2 (ax2 + 2bxy + cy2) such that
(

u1

u2

)
=

(
cθ −sθ

sθ cθ

)(
x2 + y2

p(x, y)

)

is a solution to (1.2).
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Proposition 2.2. Let the ellipticity condition (1.3) be satisfied. If the system
(1.2) is not equivalent to (1.5), then there exists θ ∈ [0, 2π] and a cubic polynomial

q(x, y) =
1
2

(
a
x3

3
+ bx2y + cxy2 + d

y3

3

)

such that (
u1

u2

)
=

(
cθ −sθ

sθ cθ

)(
x(x2 + y2)

q(x, y)

)

is a solution to (1.2).

Proof of Theorem 1.4. We assume that (1.2) is not equivalent to (1.5). We
choose θ according to Proposition 2.1 and we write

Rθ =
(

cθ −sθ

sθ cθ

)
.

Being linear mappings solutions to (1.2), we have that also the following is solution
to (1.2) (

u1

u2

)
= Rθ

(
x2 + y2 − 1
ky + p(x, y)

)

where k 6= 0 is a constant to be determined later on.
We choose B =

{
(x, y) ∈ R2 :

(
x− 1

2

)2 + y2 < 5
4

}
. We have

x = −1 + x2 + y2 on ∂B.

We now select Φ. We set

M =
(

1 0
0 k

)
, Ψ(x, y) =

(
x

y + 1
kp(x, y)

)
, Φ(x, y) = RθMΨ(x, y).

A straightforward calculation shows that when

k > |b| (2.1)

Ψ is a homeomorphism of ∂B onto a closed convex curve Γ. Consequently Φ is
also a homeomorphism of ∂B onto the closed convex curve γ = RθMΓ.

Let D be the bounded convex domain such that ∂D = γ. It is easy to check
that D ⊂ RθMS where

S =

{
(v1, v2) ∈ R2 :

1−√5
2

6 v1 6 1 +
√

5
2

}
.

However
u(0, 0) = −RθM

(
1
0

)
/∈ RθMS. ¥
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Remark 2.3. Note that we can compute the Jacobian determinant of u in terms
of the coefficients of p and obtain detDu = 2kx+2(b(x2−y2)+ (c−a)xy). Hence
the Jacobian determinant vanishes at (0, 0) and, in fact, it changes sign across its
nodal line

H =
{
(x, y) ∈ R2 : kx + (b(x2 − y2) + (c− a)xy) = 0

}
.

which is always a hyperbola (unless a = b = c = 0 when it degenerates in a straight
line). Note that kx + (b(x2− y2) + (c− a)xy) is positive in (1, 0) zero in (0, 0) and
negative in (−1, 0) because of (2.1). See Figures 1 and 2 where the behaviour of u
and its Jacobian determinant are depicted in the specific case of the Lamé system.

For the proof of Theorem 1.6 we shall make use of the following topological
lemma due to Meisters and Olech [20].

Lemma 2.4. Let u : B → R2 be a C1 mapping. Assume that there exists a finite
set S in B such that detDu > 0 at each point of B \ S and that the restriction of
u to ∂B is a homeomorphism. Then u is a homeomorphism of B onto u(B).

Proof. This lemma is a special case of Theorem 1 in [20], see also Corollary 2. ¥

Proof of Theorem 1.6. We assume again that (1.2) is not equivalent to (1.5).
We choose θ and q according to Proposition 2.2. Being linear mappings solutions
to (1.2), we have that also the following is solution to (1.2)

(
u1

u2

)
=

(
cθ −sθ

sθ cθ

)(
x(x2 + y2)
y + q(x, y)

)
.

It is now easy to check that, once we have chosen the polynomial q according to
Proposition 2.2, the following two properties hold. First there exists a positive
radius r such that one has det Du(x, y) > 0 if (x, y) ∈ Br(O)\{O}, where we have
set O = (0, 0), and second detDu(O) = 0. Choose 0 < ρ < r, and denote by

Φ = u
∣∣
∂Bρ(O)

.

A very simple calculation shows that Φ maps ∂B in a one to one way onto a closed
curve γ provided one has

2 + bρ2 > 0 and 3 + dρ2 > 0.

Let D be the bounded domain such that ∂D = γ. Therefore the hypotheses of
Lemma 2.4 are satisfied and we can conclude that u is a homeomorphism of Bρ(O)
onto D. ¥

Proof of Theorem 1.2. It suffices to verify that the Lamé system is not equiv-
alent to any elliptic system of the form (1.5). In fact it can be rewritten in the
form (1.2) with the following choices

A =
(

2µ + λ 0
0 µ

)
, B = C =

(
0 µ+λ

2
µ+λ

2 0

)
, D =

(
µ 0
0 2µ + λ

)
.
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Now B, C and D can be scalar multiples of A only if µ + λ = 0, which contradicts
the assumption µ + λ > 0. ¥

Remark 2.5. Note that our assumptions µ > 0, µ + λ > 0 correspond to the
strong convexity assumption, which, as is well known, is stronger that the ellipticity
condition (1.3).

In the following picture we illustrate our results for the case of the Lamé system.
We choose λ = µ = 1. With this choice, condition (2.1) takes the form k > (1 +√

10)λ+3µ
λ+µ and, for the picture we have chosen the limiting value k = 2(1 +

√
10).

Note that, in order to facilitate visibility, the coordinates in the u1 and the u2

directions are scaled differently.

Figure 4: ∂B and its image Φ(∂B).

Figure 5: Left: circles Cr of varying radii and the nodal line of the Jacobian (a hyperbola)
drawn within B. Right: the images U(Cr).

Proof of Proposition 2.1. We look for θ ∈ [0, 2π] and a quadratic polynomial
p(x, y) = 1

2 (ax2 + 2bxy + cy2) such that
(

u1

u2

)
=

(
cθ −sθ

sθ cθ

)(
x2 + y2

p(x, y)

)
(2.2)

is a solution to (1.2).
Since the Hessian matrices of ui are constant, the system (1.2) is equivalent to

the following two equations

(−sθF + cθG)
(

a
b
c

)
= Y,
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where
F =

(
a11 2a12 a22

c11 2c12 c22

)
, G =

(
b11 2b12 b22

d11 2d12 d22

)

and Y =
(

Y 1

Y 2

)
is a vector of known data, possibly depending on θ. Given θ,

the above system has at least one solution if the rank of −sθF + cθG is two and
consequently we find a solution of the form (2.2) to (1.2). If this were not the case,
then for every θ there exists φ such that

cφ(−sθA + cθB) + sφ(−sθC + cθD) = 0. (2.3)

Choosing θ = 0 yields that B and D are linearly dependent. Similarly, by choosing
θ = π

2 , we get that A and C are linearly dependent. Recalling that, by ellipticity
(1.3), A and D are positive definite, and hence nontrivial, we obtain that B = σD
and C = γA for suitable constants σ, γ ∈ R. Plugging these linear dependencies
into (2.3) and using once more ellipticity, we obtain that also D is a scalar multiple
of A. In conclusion B,C and D are scalar multiples of A. ¥

Proof of Proposition 2.2. We look for θ ∈ [0, 2π] and a cubic polynomial

q(x, y) =
1
2

(
a
x3

3
+ bx2y + cxy2 + d

y3

3

)

such that (
u1

u2

)
=

(
cθ −sθ

sθ cθ

)(
x(x2 + y2)

q(x, y)

)

is a solution to (1.2). This time the Hessian matrices of ui are of the form xH1+yH2

for suitable constant matrices H1 and H2 and thus (1.2) imposes the following four
conditions

(−sθF + cθG)
(

a
b
c
d

)
= Y,

where

F =




a11 2a12 a22 0
0 a11 2a12 a22

c11 2c12 c22 0
0 c11 2c12 c22


 , G =




b11 2b12 b22 0
0 b11 2b12 b22

d11 2d12 d22 0
0 d11 2d12 d22


 ,

and Y ∈ R4 is a data vector. We make use of the following linear algebra fact.
Given any two 2× 2 symmetric matrices

M =
(

m11 m12

m12 m22

)
and S =

(
s11 s12

s12 s22

)
,

if we have

det




m11 2m12 m22 0
0 m11 2m12 m22

s11 2s12 s22 0
0 s11 2s12 s22


 = 0,
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and either M or S is positive definite, then M and S are linearly dependent.
This fact may be verified in many ways, for instance with the aid of Gaussian
elimination. Assume that (−sθF + cθG) is singular for every θ, then we must have
that the matrix (−sθC + cθD) is a scalar multiple of (−sθA + cθB) at least for all
those θ for which (−sθA + cθB) is positive definite. Equivalently, switching the
roles of A,B and D, C, if (−sθC + cθD) is positive definite, then (−sθA + cθB) is
a scalar multiple of (−sθC + cθD). Recalling that the matrices A,D are positive
definite by ellipticity, and choosing θ = 0, 3π

2 , we deduce B = σD and C = γA
for suitable constants σ, γ ∈ R. Moreover, it is evident that there exists an open
interval I containing 3π

2 for which (−sθA + cθB) remains positive definite as long
as θ ∈ I. Thus, for all θ ∈ I, there exists φ such that (2.3) holds true, and from
now we can argue similarly as in the proof of Proposition 2.1. ¥
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