
Functiones et Approximatio
XXXIX.1 (2008), 97–102

DIOPHANTINE EQUATIONS OVER GLOBAL FUNCTION

FIELDS III: AN APPLICATION TO RESULTANT FORM

EQUATIONS

István Gaál*, Michael Pohst

Dedicated to

Professor Władysław Narkiewicz

on his 70th birthday

Abstract: We give an efficient algorithm for solving resultant form equations over global function

fields. This is the first time that such equations are reduced to unit equations in two variables

and all solutions are determined.
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1. Introduction

Let f be a fixed polynomial over an integral domain R, let 0 6= r ∈ R and consider
those polynomials g ∈ R[x] for which

Res(f, g) = r. (1.1)

Under various assumptions several authors considered the above resultant type
equation mainly in the number field case, see e.g. W. M. Schmidt [12], J. H. Evertse
and K. Győry [3]. For a fixed f I. Gaál [5] gave an efficient algorithm to find all
monic quadratic g satisfying the equation. Polynomials of “small” height satisfying
the equation were calculated by I. Járási [8].

In the function field case unit equations in two variables and also several vari-
ables were considered by R. C. Mason [9], [11]. In these cases it was assumed that
the constant field is algebraically closed, both for characteristic zero and finite
characteristic.

In [6] and [7] we considered function fields over finite fields (without assuming
the constant field to be algebraically closed). We developed an algorithm for
solving unit equations in two variables and also Thue equations over such function
fields.
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Resultant type equations were until now usually reduced to unit equations in
three variables. If α1, . . . , αn ∈ R are the roots of f and β1, . . . , βm ∈ R are the
roots of g, then the identity

(αi − βk) − (αi − βl) + (αj − βl) − (αj − βk) = 0

implies
αi − βk

αj − βk

− αi − βl

αj − βk

+
αj − βl

αj − βk

= 1,

where by equation (1.1) the fractions are elements of a suitable group of S-units of
R. This approach did not enable one to derive effective results over number fields,
since no effective theorems for unit equations in three variables exist.

In this paper we are going to solve completely resultant type equations over
global function fields by reducing them to unit equations in two variables and
applying the results of [6] and [7]. This is the first time that resultant form
equations are solved completely.

2. Auxiliary results

Let k = Fq denote a finite field with q = pd elements. The rational function field
of k is k(t) as usual, and K is a finite extension of k(t) of degree n and genus g.
The integral closure of k[t] in K is denoted by OK . We assume that K is separably
generated over k(t) by an element z belonging to OK and that k is the full constant
field of K. The set of all (exponential) valuations of K is denoted by V , the subset
of infinite valuations by V∞. For a non-zero element f ∈ K we denote by v(f) the
value of f at v. For the normalized valuations vN (f) = v(f) · deg v the product
formula

∑

v∈V

vN (f) = 0 ∀f ∈ K \ {0}

holds. The height of a non-zero element f of K is defined to be

H(f) :=
∑

v∈V

max{0, vN(f)} = −
∑

v∈V

min{0, vN(f)} .

Let V0 be a finite subset of V , containing the infinite valuations. Then the non-
zero elements γ ∈ K satisfying v(γ) = 0 for all v 6∈ V0 form a multiplicative group
in K. These elements are called V0-units. (For V0 = V∞ the V0-units are just the
units of the ring OK .) We consider the unit equation

γ1 + γ2 + γ3 = 0 , (2.1)

where the γi are V0-units for a suitable set V0.
Since the next lemma will be applied frequently in this paper we excerpt it

from [6] for the convenience of the reader.
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Lemma 2.1. Let V0 be a finite subset of V and let γi (1 ≤ i ≤ 3) be V0-units
satisfying (2.1). Then either γ1

γ3

is in Kp or its height is bounded:

H

(

γ1

γ3

)

≤ 2g − 2 +
∑

v∈V0

deg v . (2.2)

Note that equation (2.1) can be written in the form

(

−γ1

γ3

)

+

(

−γ2

γ3

)

= 1

which is a unit equation in two variables.

Remark. It suffices to assume that γ1/γ3 and γ2/γ3 are V0-units which makes
the set V0 smaller, cf. the proof of Lemma 3.1 in [6].

3. Solving resultant type equations over global function fields

Let us again use the notation of Section 2 about function fields. Assume that f(x)
is a monic polynomial of degree n ≥ 2 with roots α1, . . . , αn contained in OK .
We assume that f has at least two distinct roots, say α1, α2. Let 0 6= r ∈ OK

and m ∈ N be given. Our purpose is to determine the monic polynomials g(x) of
degree m with roots β1, . . . , βm ∈ OK (m ≥ 2) satisfying

Res(f, g) = r. (3.1)

Recall that for the above polynomials

Res(f, g) =

n
∏

i=1

m
∏

j=1

(αi − βj).

Note that if all roots of g are equal to β then equation (3.1) can be written in
the form

(−1)mn(f(β))m = r.

That equation can be solved easily in the only unknown β.
Let V0 denote the set of all valuations v with v(r) 6= 0, assume that the infinite

valuations are in V0. By equation (3.1) any αi − βj (1 ≤ i ≤ n, 1 ≤ j ≤ m) is a
V0–unit (r 6= 0 implies αi 6= βj).

Observe that
α1 − βi

α1 − α2

+
βi − α2

α1 − α2

= 1. (3.2)

Let V1 be the set of valuations containing V0 and those valuations occurring in
α1−α2. Then both summands in (3.2) are V1-units and Lemma 2.1 can be applied.
Note that p-th powers can usually be excluded by considering the valuations in
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V1\V0 for which the value of the numerator is zero and the value of the denominator
is not divisible by p.

If no p-th powers can occur as solutions, Lemma 2.1 gives

H

(

α1 − βi

α1 − α2

)

≤ 2g − 2 +
∑

v∈V0

deg v = c1,

whence
H(α1 − βi) ≤ c1 + H(α1 − α2) = c2.

Hence, we have to calculate all V0-units α1 − βi of height ≤ c2. This can be done
easily by using an idea of [7]. (It is much faster than calculating all V1 units of
height ≤ c1.) For all possible values of α1 − βi we test if

βi − α2 = (α1 − α2)

(

1 − α1 − βi

α1 − α2

)

is also a V0-unit. In this way we get the possible values of βi − α2 from which
the possible values of βi can be calculated and the polynomials g that are possible
solutions of (3.1) can be constructed.

4. Examples

We illustrate our method by two examples.

Example 4.1. Let k = F5 and let α be a root of

f(z) = z4 + (t + 3)z2 + 1 = 0.

Let K = k(t)(α) and denote by OK the integral closure of k[t] in K. This field is
Galois, it is in fact K = k(t)(

√
t,
√

t + 1), a biquadratic field. The roots of f are

α1 =
√

t +
√

t + 1 ,

α2 = −
√

t +
√

t + 1 ,

α3 =
√

t −
√

t + 1 ,

α4 = −
√

t −
√

t + 1 .

We are going to determine all monic polynomials g(x) of degree 4 with coefficients
in k[t] and with roots β1, β2, β3, β4 ∈ OK , satisfying

Res(f, g) = c (4.1)

with a non-zero c ∈ k. The field K has genus 0 and there are two infinite valuations
v∞,1, v∞,2, both of degree 1. We set V0 = {v∞,1, v∞,2}. Then all αi − βj are V0–
units.

The element α1 − α2 has two additional valuations vt,1, vt,2 corresponding to
the polynomial t, both of degree 1. The element α1 − α2 has value 1 at both of
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these valuations, hence p-th powers can be excluded. Let V1 = V0 ∪ {vt,1, vt,2}.
Then we obtain c2 = 4. Searching over all possible V0-units of height ≤ 4 we
obtain two possible elements βi, namely βi = 0 and βi = (4t + 3)α1 + 4α3

1. This
second element is a quadratic element, giving rise to the polynomial x2 + (t + 1).
Testing g(x) = (x2 + (t + 1))2, g(x) = x2(x2 + (t + 1)) and g(x) = x4 we find that
the only solution is g(x) = x4 with Res(f, g) = 1.

Example 4.2. Let k = F5 and let α be a root of

z5 − z − t = 0.

Let K = k(t)(α) and denote by OK the integral closure of k[t] in K. This field is
again Galois. If we denote by α1 a root of f , then the other four roots are

αi = αi−1 + 1 (i = 2, 3, 4, 5)

(Artin-Schreier extension).
We are going to determine all monic irreducible polynomials g(x) of degree 5

with coefficients in k[t] and with roots βi ∈ OK (i = 1, . . . , 5), satisfying

Res(f, g) = c · t5 (4.2)

with an arbitrary c ∈ k∗.
The field K has genus 0, there is one infinite valuation v∞ of degree 1 and

there are five valuations vt,i (i = 1, . . . , 5) corresponding to t, all of degree 1. We
set V0 = {v∞, vt,1, vt,2, vt,3, vt,4, vt,5}. Then all αi − βj are V0–units.

In this example we have α1 − α2 = −1 that is V1 = V0. We construct all
V0-units α1 − βi of height ≤ 4 and test if

βi − α2 = (−1) − (α1 − βi)

is also a V0-unit. There are 1145 such elements, and testing all possible values of βi

(of degree 5 because g is irreducible) we obtain only the solution g(x) = x5 +4x+ t
of equation (4.2) for which

Res(f, g) = 2 t5.

Consider now the solutions of equation (3.2) which are ph-th powers of the other
1145 solutions of the unit equation. Then by α1−α2 = −1 obviously also α1−βi is
a ph-th power. Using conjugations the same holds for α1+j−βi+j (j = 1, . . . , 4), as
well (the indices are to be calculated mod 5). Since αi = α1+(i−1) (i = 2, . . . , 5),
by adding 1,2,3,4 (all are 5-th powers in k) we get the remaining six differences
αi − βj from the above three differences, and we obtain, that all differences, as
well as Res(f, g) must be complete ph-th powers in K. But the right-hand side
of the equation is ct5, whence only h = 1 is possible. Testing 5th powers of all
1145 solutions of the unit equation we do not get any further solutions of equation
(4.2).

Remark. The computation of the first example took just a few seconds, the second
example took a few minutes. All computations were performed with Kash [1].
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