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THE WORK OF WŁADYSŁAW NARKIEWICZ IN NUMBER

THEORY AND RELATED AREAS

Andrzej Schinzel

All but four Narkiewicz’s research papers and monographs concerning number
theory deal with one of the following five topics

1. polynomial mappings,
2. arithmetical functions,
3. additive problems,
4. factorization in algebraic number fields,
5. Artin’s conjecture in algebraic number fields and related topics.

We shall consider these topics successively, then deal with the four papers out
of the above classification and finally consider the four big books by the author.

1. Here belong papers [3], [5], [10], [12], [13], [68], [70]–[73], [77], [80]–[82],
[85], [86], [90], [93], [94] and the book [78]. For a field k a polynomial mapping
F : kn → kn defined by

[x1, . . . , xn] 7→ [f1 (x1, . . . , xn) , . . . , fn (x1, . . . , xn)]

is called admissible, if none of the polynomials f1, . . . , fn is linear and their leading
forms do not have any non-trivial common zero in the algebraic closure of k. A field
k is said to have the property (SP ), if for every n and every admissible polynomial
mapping F : kn → kn the conditions X ⊂ kn, F (X) = X imply the finiteness of
X . If this implication holds in the case n = 1, then k has property (P ). Further,
k has property (R), if the conditions X ⊂ k, X infinite, f ∈ k(T ) and f(X) = X
imply

f(T ) =
α + β T

γ + δT
; α, β, γ, δ ∈ k.

Finally, k has property (K), if the following is true.
Let Φ : kn → kn be an admissible polynomial mapping and let Ψ : kn → kn be

another polynomial mapping. Denote by d the minimum of degrees of polynomials
defining Φ and D the maximum of degrees of polynomials defining Ψ. If d > D, A
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is a subset of kn satisfying Ψ(A) ⊂ Φ(A) and the restriction of Ψ to A is injective,
then A is finite.

In [3], his doctorate thesis and in [4] Narkiewicz proved that if k has property
(P ), then k(X) has it also, where X is a set of elements algebraically independent
over k of arbitrary cardinality. In [13] he proved that any algebraic number field
has property (SP ) and in [73] together with F. Halter-Koch that this property as
well as property (K) is preserved under every finite extension and every purely
transcendental extension. Earlier, Lewis (1972) and Liardet (1971) proved that
all finite extensions of the rationals have property (K) and Liardet proved that
all finitely generated fields have property (R), the fact established by Narkiewicz
[5] for k = Q. In some cases one can relax the condition of admissibility and still
obtain finiteness of sets X such that F (X) = X as shown in [12] and [71]. Finite
sets X such that f(X) = X (f a polynomial) have been studied by Narkiewicz in
ten papers. More exactly, if f is a polynomial, X a set such that f(X) ⊂ X and
x0 ∈ X , then the orbit Of (x0) = {x0, f(x0), f2(x0), . . .}, where fm denotes the m-
th iterate of f . If the orbit Of (x0) = {x0, x1, . . .} is finite, xi+1 = f(xi) and k, l are
the least integers such that k < l and xk = xl, the sequence x0, x1, . . . , xl−1 consists
of two parts: the sequence x0, x1, . . . , xk−1 called a precycle and the sequence
xk, xk+1, . . . , xl−1 called a cycle. In [77] Halter-Koch and Narkiewicz proved that
in any commutative domain R of zero characteristic, which is finitely generated as
a ring, all polynomial cycles have their length uniformly bounded by a constant
B(R). For R being the ring ZK of integers of an algebraic number field K of degree
n, B(R) is bounded by a function C(n) [68]. Further, it has been proved in [81]
that in ZK there are only finitely many polynomial cycles starting from 0, 1. In
[82] Narkiewicz and Pezda deduced from the result of [68] that also the cardinality
of orbits (l in the above notation) is uniformly bounded by a constant D(n). Two
sequences x = {x1, . . . , xn} and y = {y1, . . . , yn} of distinct elements of a domain
R are called equivalent, if there exists an element a ∈ R and a unit ε ∈ R such that
for i = 1, . . . , n one has yi = a+ εxi. A finite orbit is called non-linear, if the cycle
contained in it cannot be realized as a cycle of a linear polynomial. It was proved in
[85] that if F is a finitely generated domain which is moreover a finite factorization
domain (i.e. every non-zero element of R is contained in finitely many principal
ideals), then there are only finitely many pairwise inequivalent finite non-linear
polynomial orbits included in R. In [90] Narkiewicz calculated the lengths of all
polynomial cycles for R = Z

[

1

N

]

, where N is odd or twice a prime. The lengths of
all polynomial cycles in the ring of integers Rd of the quadratic field Q(

√
d) being

calculated earlier, Narkiewicz in [93] classified all finite orbit, in Rd. Finally, in
[94] he calculated possible lengths of polynomial cycles in the ring of integers of
a cubic field with negative discriminant.

The work described above published before 1996 has been presented in Part
B of [78]. Part A has treated rings of integer-valued polynomials and described
results of Nagell, Pólya, Rédei & Szele, Skolem and many others. To this topic
belongs the paper [70] in which the following theorem was established. Let R be
a Noetherian domain of characteristic zero K its ring of quotients and Int(R) the
ring of univariate polynomials mapping R into R. Then the following conditions
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are equivalent

(i) Int(R) is generated by
(

X
i

)

(i = 0, 1, . . .)

(ii) For every rational prime p which is not invertible in R the principal ideal
generated by p is a product of distinct maximal ideals of index p in R.

2. Here belong papers [7], [8], [18], [22], [24], [27], [38]–[41], [51], [54], [56]–
[58], [88] and the book [62]. Two early papers [7] and [8] concern convolutions of
arithmetical functions. In [7] Narkiewicz defined a convolution h of two functions
f and g by the formula

h(n) =
∑

d∈An

f(d)g
(n

d

)

,

where An is a certain set of divisors of n and considered the ring RA of function
with ordinary addition and with the above convolution as multiplication. He called
a convolution regular, if it preserves multiplicativity, the ring RA is commutative,
associative and has a unit element and, moreover, the inverse function of f(n) ≡ 1
assumes for prime powers only the values 0 and −1. He proved a necessary and
sufficient condition for sets An in order that the convolution defined by them be
regular. A problem proposed in [7] concerning isomorphism of rings RA has been
solved by H. Scheid (1969).

Fourteen papers and the book [62] deal with distribution of values of multi-
plicative functions in residue classes. A sequence {an} is called weakly uniformly
distributed, briefly WUD(mod N), if the following two conditions are satisfied

(i) The set {n : (an, N) = 1} is infinite,

(ii) For every j prime to N one has

lim
x→∞

#{n ≤ x : an ≡ j(mod N)}
#{n ≤ x : (an, N) = 1} =

1

ϕ(N)
.

In [18] Narkiewicz proved the following. Let f(N) be a multiplicative function,
which is polynomial-like, i.e. for every j = 1, 2, . . . there exists a polynomial
Vj ∈ Z[x] such that for all primes p one has f(pj) = Vj(p). Denote by Rj the set

{Vj(x) : (xVj(x), N) = 1}

and let Λj be the subgroup of G(N), the multiplicative group of restricted residue
classes (mod N), generated by Rj . If not all sets Rj are empty and m is the least in-
dex such that Rm is non-empty, then the sequence f(1), f(2), . . . is WUD(mod N),
if and only if for every non-principal character χ(mod N) which is trivial on Λm

there exists a prime p such that

1 +

∞
∑

j=1

χ
(

f
(

pj
))

pj/m
= 0.
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This implies that if Λm = G(N), then the sequence {f(n)} is WUD(mod N),
which for m = 1 was already observed by Wirsing (1967). Using the above crite-
rion Narkiewicz found in [18] all integers N for which the Euler function and the
divisor function are WUD(mod N). In [36] he did this together with F. Rayner for
the function σ2 and in [58] for the function σk (k ≥ 3). If the polynomial V1 is not
a perfect power in C[x], then there is an integer D given explicitly in terms of V1

such that if (N, D) = 1, then {f(n)} is WUD(mod N), [57]. An analogous result
holds also for systems of multiplicative functions, provided one adapts appropri-
ately the notion of WUD(mod N). In [51] Narkiewicz obtained such a result for
the joint distribution of values of ϕ(n) and σ(n).

In his book [62] he considered besides the above topic also distribution mod N
of polynomial sequences, of linear recurrent sequences and of the values of an
additive function.

A little apart are papers [22], [24], [27] dealing with the counting function
of the set of n’s for which a given d is a unitary divisor of the value f(n) of
a polynomial-like multiplicative function.

Two more papers [32] and [36] concern arithmetical functions but not their
values mod N . In [32] Narkiewicz generalized some results of Levin and Făınlĕıb
(1970) and of Mirsky (1949) concerning the counting function of the set of solutions
of the equation f(n) = k, where f is a multiplicative functions and k an integer.

In [36] he proposed the following conjecture. If a function f(n) =
∑

p|n
p primes

f(p) has

a non-decreasing normal order, f(p) is nonnegative and non-decreasing, then

f(p) = O
(

(log p)1+ε
)

for every ε > 0.

The conjecture has been proved independently by Elliott (1976) and Kátai
(1977).

3. Here belong papers [1] [43], [50], [60], [61] and [74].
In [74] Narkiewicz together with Deshouillers, Granville and Pomerance proved

that 210 is the largest positive integer such that every prime in
(

n
2
, n

)

occurs in
a Goldbach decomposition of n.

4. This topic is treated in the papers [11], [14], [15], [17], [19], [21], [23], [29],
[30], [33], [34], [42], [46], [49], [52], [55], [76] which include Narkiewicz’s habilitation
thesis and in the last chapter of the book [35].

In [11] and [15] Narkiewicz proved that if h(K), the class number of an algebraic
number field K is greater than 1, then almost all integers of K have a non-unique
factorization and if K is normal, almost all rational integers have a non-unique
factorization. Moreover, if h(K) ≥ 3, then almost all integers of K have factor-
izations of distinct lengths and if K is normal, almost all rational integers have
factorizations of distinct lengths. The assumption of normality has been removed
in [33]. In [17] and [21] Narkiewicz gave an asymptotic formula for the number
of positive rational integers n ≤ x in a given arithmetical progression which have
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a unique factorization in a given quadratic field. In [29] he gave an asymptotic
formula for the number of non-associated integers of a field K whose norms do
not exceed x in absolute value and which have in K a unique factorization into
irreducibles. If h(K) ≥ 3 the function C(K) log log n with a certain position C(K)
serves as a normal order for the number of factorizations of distinct lengths of a ra-
tional integer n in K [42]. If h(K) ≥ 2 and f(n) is the number of factorizations of
n into irreducibles, then log f(n) has the normal order C1(K) log n · log log n [50].

The papers [46], [52], [55] and [76] deal with problems in finite abelian groups
related to the factorization problems in algebraic number field. The relevant group
is the class group of a field. [46] and [55] have been the beginning of a large theory
on the border of number theory, group theory and combinatorics expounded in
the monograph Geroldinger and Halter-Koch (2006).

5. Here belong papers [64]–[67] and [96]. In [64] Narkiewicz adapts the method
used by Heath-Brown (1996) for primitive roots in Abelian fields.

Let k be an abelian field and let L be a cyclotomic field containing it. As-
sume that if L is generated by the f -th roots of unity, then f is divisible by 16.
Identifying the Galois group of L with the multiplicative group G(f) of restricted
residue classes (mod f) assume that the intersection H ′ of the subgroup H of G(f)
corresponding to K with {1mod 8} is not contained in the union

⋃

p|f

Hp,

where Hp denotes for odd primes p dividing f the subgroup of G(f) consisting of
residue classes congruent to unity (mod p) and H2 denotes the subgroup of residue
classes congruent to unity (mod 16).

If now a1, a2, a3 are integers of K which are multiplicately independent and
satisfy the following conditions

(i) (N(aj), 3f) = 1 for j = 1, 2, 3
(ii) none of the norms of aj , aiaj, a1a2a3 (i, j = 1, 2, 3; i < j) is a square of

a rational integer,

then at least one of the ai’s is a primitive root for infinitely many prime ideals of
K of the first degree.

Using essentially the same ideas the author proves in [66] the following theorem
about units.

If K 6= Q is a real abelian algebraic number field, then there exist infinitely
many prime ideals P of first degree in K such that every non-zero residue class
mod P contains infinitely many units with the exception of at most two such fields.
If such exceptional fields exist at all, then either there is only one of them which is
of degree 3, or they are all quadratic. In [96] Narkiewicz deduced from this result,
by a slight modification of the argument of Harper and Ram Murty (2004), that
if K is a real quadratic field or a cubic field with a negative discriminant, then K
is Euclidean (not norm - Euclidean) with at most two exceptions. This has been
known earlier only for quadratic fields with discriminant less than 100.
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6. The four papers not fitting in the above classification are [25], [26], [89]
and [95]. The first two deal with the relative different of a number field. In [89]
Narkiewicz and Pezda deduced from a classical conjecture of Dickson (1904) that if
f(x) = (ax+b)(cx+d) is a polynomial with rational integral coefficients, satisfying
a > 0, c > 0 and ad−bc 6= 0, then for every natural r there exists an integer N such
that f(x)/N represents at least r distinct primes. In [95] Jarden and Narkiewicz
proved that if R is a finitely generated integral domain of zero characteristic, then
for every n there exist elements of R which are not sums of at most n units.

7. Besides research papers and monographs Narkiewicz wrote six survey papers
[20], [37], [45], [75], [79], [83], a popular booklet [31], a textbook [44] in Polish,
translated into English as [59] and three big monographs [35], [63] and [84].

The textbook which had three Polish editions is characterized by a variety of
topics treated and methods used. It treats congruences, diophantine equations,
arithmetical functions, primes, sieve methods, geometry of numbers, additive num-
ber theory, probabilistic number theory, diophantine approximation and uniform
distribution mod 1, algebraic numbers and p-adic numbers in sufficient detail to
give the reader the flavor of the subject.

Among the monographs the chief place is occupied by [35] Elementary and
Analytic Theory of Algebraic Number Fields, which is a real encyclopedia of al-
gebraic number theory the class-field theory excepted. The bibliography of over
3700 items enhances the value of the book, which has had three editions.

The book [63] Classical Problems in Number Theory gives an information on
the state of knowledge up to 1986 concerning several problems. In research on
primitive roots, on Catalan’s problem, on Waring’s problem and in smaller degree
on the class number problem there has been a progress during the last twenty
years, thus a revised version of the book would be welcome.

The third monograph [84] The development of Prime Number Theory from Eu-
clid to Hardy and Littlewood presents prime number theory in chronological order.
It has six chapters (Early Times, Dirichlet’s Theorem an Primes in Arithmetic Pro-
gressions, Čebyšev’s Theorem, Riemann’s Zeta-function and Dirichlet Series, The
Prime Number Theorem, The Turn of the Century) and is very rich in historical
detail.
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