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LOCALIZATION GENUS

Jesper M. Møller and Jérôme Scherer

Abstract: Which spaces look like an n-sphere through the eyes of the n-th Postnikov

section functor and the n-connected cover functor? The answer is what we call the
Postnikov genus of the n-sphere. We define in fact the notion of localization genus

for any homotopical localization functor in the sense of Bousfield and Dror Farjoun.
This includes exotic genus notions related for example to Neisendorfer localization,

or the classical Mislin genus, which corresponds to rationalization.
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Introduction

Classically the genus of a nilpotent space X of finite type, as in-
troduced by Mislin in [19], consists of all homotopy types of nilpotent
spaces Y of finite type such that the localizations Y(p) and X(p) coincide
at any prime p. That is, spaces in the same genus as X cannot be distin-
guished from X if one looks at them through the eyes of p-localization.
Another analogous definition can be given in terms of rationalization
and p-completions [25].

We introduce in this article the notion of localization genus. A local-
ization functor L in the category of spaces (or simplicial sets), as intro-
duced by Bousfield [3] and Farjoun [9], is a homotopy functor equipped
with a natural transformation η from the identity which is idempotent up
to homotopy. The study of such functors is motivated by the fact that it
subsumes the notions of localization at a prime or a set of primes (e.g. ra-
tionalization) and p-completion, but also Postnikov sections, Quillen’s
plus-construction, and other nullification or periodization functors such
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as PBZ/p, which plays a central role in the Sullivan conjecture [18]. We

write LX for the homotopy fiber of the natural map ηX : X → LX.
We define thus two genus sets associated to L for any simply connected
CW-space X of finite type.

(1) The extended L genus set for X is the set GL(X) = {Y | LY '
LX, LY ' LX} of homotopy types Y of CW-spaces such that
LY = LX and LY = LX.

(2) The L-genus set for X is the subset GL(X) of GL(X) represented
by CW-spaces of finite type.

Our definition is suggested by the classical definition of the (comple-
tion) genus set [19], [25, Definition 3.5], and the extended (completion)
genus set studied by McGibbon in [17]. We show in fact in Proposi-
tion 2.3 that when L is rationalization, one gets back these classical
notions. To illustrate our point of view we go through the computation
of the extended rationalization genus G(Sn) of an odd sphere, Theo-
rem 3.2, and we characterize in Corollary 3.4 those elements in G(Sn)
corresponding to elements in the extended genus of the abelian group of
integers, as studied by Hilton in [13].

To tackle technically harder problems we rely on Dwyer, Kan, and
Smith’s classifying space for towers of fibrations [8], a tool which has
proven to be handy in similar situations [20]. This allows us in particular
to do explicit computations of Postnikov genus sets for odd spheres and
complex projective spaces.

Theorem 7.4. The extended Postnikov genus set G[n](S
n) of homotopy

types of spaces Y such that Y [n] ' K(Z, n) and Y 〈n〉 ' Sn〈n〉 is un-
countable, in bijection with

∏
p N+, where the product is taken over all

primes.

We also present in Section 5 a computation related to Neisendorfer’s
functor [21] and the Sullivan conjecture. The localization genus com-
putations show combined features of the space one focuses on and the
chosen localization functor. The notion of genus quantifies in which sense
it is (not) sufficient to consider a given space locally, through the eyes
of a localization functor L and the associated fiber L.
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and Deformation in Copenhagen seven years later. We would like to
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1. Notation and background

In this short section we fix our notation for spaces of maps and spaces
of self-equivalences. We also introduce some terminology related to ho-
motopical localization functors.

Let X and Y be (pointed) topological spaces. We are going to use
the following notation throughout this note:

• map(X,Y ) is the space of maps from X to Y and map(X,Y )∗ the
pointed mapping space;

• aut(X) is the topological monoid of self-homotopy equivalence of
X and B aut(X) is its classifying space;

• Aut(X) = π0(aut(X)) is the group of homotopy classes of self-
homotopy equivalences of X;

• aut∗(X) is the topological monoid of based self-homotopy equiva-
lences of X and B aut∗(X) its classifying space.

The fibration X → B aut∗(X)→ B aut(X) is the universal X-fibra-
tion [11], so that every fibration sequence over a space B with
fiberX arises from pulling back this fibration along a map B→B aut(X).
Let X be a simply connected space. In that case the localization and
completion constructions described below are well defined and classical.

• X[n] is the n-th Postnikov approximation to X and X〈n〉 is the
n-connected cover of X, for an integer n ≥ 1;

• X(p) is the localization of X at the prime p, X0 its rationalization,
and the torsion space Xτ is the homotopy fiber of the rationaliza-
tion map X → X0;

• X∧p is the p-completion of X at the prime p and the completion X∧

is the product of all p-completions.

All these constructions can be made functorial in the category of
(pointed) spaces [9] by using homotopical localization and cellularization
functors.

Proposition 1.1. Let X be a (pointed) simply connected CW-complex
of finite type. There are homotopy equivalences of unpointed or pointed
mapping spaces

map(Xτ , Xτ ) ' map(X∧, X∧), map∗(Xτ , Xτ ) ' map∗(X
∧, X∧),

aut(Xτ ) ' aut(X∧), aut∗(Xτ ) ' aut∗(X
∧).

Proof: Completing the fibration Xτ → X → X0 yields a new fibration
by the nilpotent fibration Lemma [4, II.4.8]. Hence (Xτ )∧ ' X∧, and
Sullivan’s arithmetic square [4, VI.8.1] shows that Xτ is (also) the fibre
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of the rationalization map X∧ → (X∧)0. Thus we have a natural com-
pletion map Xτ → (Xτ )∧ ' X∧ and applying the torsion functor to X∧

yields an equivalence (X∧)τ ' Xτ .
Hence, we obtain two maps, by functoriality and continuity, see [9,

1.C.8], namely map(Xτ , Xτ ) → map(X∧, X∧) and map(X∧, X∧) →
map(Xτ , Xτ ), which are homotopy inverses to each other. The same
argument applies to pointed mapping spaces, as well as to spaces of
self-equivalences.

Let L be a homotopical localization functor, i.e. a coaugmented and
idempotent homotopy functor in the category of spaces. It is sometimes
more convenient to work in the Quillen equivalent category of simplicial
sets, in particular when one needs models for mapping spaces. We will
clearly say so when we do so. In practice localization functors arise as
follows. To any map f one associates a functor Lf which inverts f in
a universal way, [9] and [3]. Clever choices for the map yield homolog-
ical localization, localization at a set of primes such as rationalization,
Quillen’s plus construction, Postnikov sections, etc.

The homotopy fiber of the coaugmentation X → LX is denoted
by LX. This yields an augmented functor, examples of which include
the n-connected covers X〈n〉 and torsion spaces Xτ mentioned above.

Definition 1.2 ([9, Definition 1.A.1]). Let f be a map. A topological
space Y is f -local if map(f, Y ) is a weak equivalence. When f is of the
form A → ∗, an f -local space is called A-local (or A-null). This means
that Y = map(∗, Y )→ map(A, Y ) is a weak homotopy equivalence.

There exists an f -localization functor Lf (or A-nullification func-
tor PA when f : A→ ∗) with a natural transformation (coaugmentation)
ηY : Y → LfY such that [9, 1.C.1]:

(1) LfY is f -local for any space Y ;

(2) the coaugmentation ηY : Y → LfY is a weak homotopy equivalence
when Y is f -local;

(3) when the target T is f -local the coaugmentation induces a homo-
topy equivalence map(Y, T )← map(LfY, T ).

A map g : Y → Z is an Lf -equivalence if Lfg : LfY → LfZ is a weak
equivalence. The coaugmentation ηY : Y → LfY is an Lf -equivalence
and we will encounter other ones in this work.

We will also use a few basic facts about cellularization functors and
cellular spaces. Let us fix a pointed space A. A space B is A-cellular
if it belongs to the smallest class of spaces containing A and closed un-
der weak equivalences and pointed homotopy colimits [6]. An A-cellular
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space X is always killed by the A-nullification functor: PAX is con-
tractible. Note also that if B is A-cellular and Y is A-local, then Y is
B-local as well due to the nice behavior of mapping out of a homotopy
colimit.

2. Genus and extended genus

Let L be a homotopical localization functor as introduced in the previ-
ous section. In this section we introduce the new concept of localization
genus and explain how it is related to the classical notions of Mislin
genus and complete genus.

Definition 2.1. Let L be a localization functor and X a simply con-
nected CW-complex of finite type.

• The extended L-genus set for X is the set

GL(X) = {Y | LY ' LX, LY ' LX}
of weak homotopy types Y of CW-spaces such that LY = LX and
LY = LX.

• The L-genus set for X is the subset GL(X) of GL(X) represented
by CW-complexes of finite type.

The reason for this “generic” terminology comes from the relationship
with the classical notion of genus. Recall that Mislin’s definition [19] is
given in terms of localization at primes: Two spaces X and Y belong
to the same genus set if their localizations X(p) and Y(p) are homotopy
equivalent at every prime p. This is a stronger requirement than merely
asking for equivalent p-completions X∧p and Y ∧p , for any prime p, and
equivalent rationalizations X0 and Y0, as shown for example by Belfi and
Wilkerson in [2, Counterexample 2.1]. We will focus on the completion
genus set as in [25, Definition 3.5] and the extended completion genus
set [17].

Definition 2.2. Let X be a simply connected CW-complex of finite
type.

• The extended genus set of X is the set G(X) of homotopy types of
CW-complexes Y such that Y ∧ ' X∧ and Y0 ' X0.

• The genus set of X is the subset G(X) of G(X) represented by
CW-complexes Y of finite type.

We show now that the classical completion genus coincides with our
localization genus, when the chosen localization functor L is rationaliza-
tion. Since we restrict our attention to simply connected spaces here,
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one can choose the map f to be the wedge of degree p maps on the
2-sphere, taken over all primes p. Then the Bousfield localization func-
tor Lf coincides with rationalization on simply connected spaces since
local spaces are characterized by having uniquely p-divisible homotopy
groups for any prime p.

Proposition 2.3. Let X be a simply connected CW-complex of finite
type. The extended rationalization genus set

G0(X) = {Y | Y0 ' X0, Yτ ' Xτ}
is the extended genus set G(X) and the rationalization genus set G0(X)
coincides with the classical genus set G(X).

Proof: We use the same idea as in the proof of Proposition 1.1 to show
that Xτ ' Yτ if and only if X∧ ' Y ∧. This follows from the fact that
(Xτ )∧ ' X∧, and because Xτ is (also) the fibre of X∧ → (X∧)0.

Let us finally remark that all spaces in G(X) are finite complexes
when X is a finite complex. Indeed, when X is of finite type, the in-
tegral homology groups of any space in the genus set of X are those
of X. There is thus a Moore–Postnikov decomposition of such a space
as successive homotopy cofibers of maps between (finite) Moore spaces,
see for example [12, Chapter 8].

Example 2.4. Let P be the nullification functor [9, 1.A.4] with respect
to the wedge

∨
BZ/p taken over all primes p. Any finite complex is

BZ/p-null by Miller’s solution to the Sullivan conjecture [18]. Hence
there is a single space that looks like X through the eyes of P and P :
GP (X) = GP (X) = {X}.

We will elaborate on this in Section 5 by using Neisendorfer’s Theorem
for highly connected covers of finite complexes [21].

3. The extended rationalization genus of an odd sphere

In this section we turn our attention to a concrete example and pro-
pose an explicit computation of the rationalization genus for odd spheres.
Let n be an odd natural number. The extended rationalization genus
set of the odd-dimensional sphere Sn is according to [17, Theorem 2] an
uncountable set. We offer an explicit description of this extended genus
set and identify the elements known as pseudo-spheres. For this we will
need some elementary abelian group theory.

Any torsion free abelian group A of rank one can be seen, up to
isomorphism, as a subgroup of Q containing Z. For each prime p, let
hp(A) = max{r ≥ 0 | 1 ∈ prA} denote the height of 1 at p. The height
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sequence of A is the sequence χ(A) = (hp(A))p of non-negative (or infi-
nite) integers. Two sequences (hp) and (kp) are similar if the sum of the
differences |hp−kp| is finite. This means that the sequences differ in only
a finite number of primes, and have ∞ in the same coordinates. A type
is a similarity class of sequences. As explained in [10, Theorem 85.1], or
[22, Theorem 10.47], isomorphism types of torsion free abelian groups
of rank one are in bijection with types.

We start now with the fibration Snτ → Sn → (Sn)0 and will use that,
since n is odd, the rationalized sphere (Sn)0 is an Eilenberg–Mac Lane
space of type K(Q, n) as well as a Moore space of type M(Q, n). The
torsion space Snτ is a Moore space M(Q/Z, n − 1). For any space Y in
the extended rationalization genus of Sn we have a fibration sequence
M(Q/Z, n − 1) → Y → K(Q, n), the homotopy long exact sequence of
which yields an exact sequence

0→ πnY → Q ∂−→ Q/Z→ πn−1Y → 0.

The idea is that the connecting homomorphism ∂ determines the homo-
topy type of Y .

Lemma 3.1. There is a bijection between isomorphism types of torsion
free abelian groups of rank one and the double coset Q×\Hom(Q,Q/Z)/Ẑ,

where the units in Q act by pre-composition and the automorphisms Ẑ
of Q/Z by post-composition.

Proof: We define two maps. The first one, α : Hom(Q,Q/Z)→{A |
A torsion free abelian of rank one} sends a homomorphism ∂ to its ker-
nel. The second one we call β. Given a subgroup A of Q, let J be the
subset of all primes consisting of those primes p for which hp(A) 6= ∞.
Then the quotient Q/A is isomorphic to ⊕p∈JZp∞ and β sends A to the
composite

Q→ Q/A
∼=−→
⊕
p∈J

Zp∞ ↪→ Q/Z.

Clearly α ◦ β sends a torsion free abelian group of rank one A to a
subgroup of Q which is isomorphic to A. Moreover, given a homomor-
phism ∂ : Q → Q/Z, the image β(Ker ∂) coincides with ∂ up to an iso-
morphism of Q (corresponding to the choice of an inclusion α(∂) ⊂ Q)
and an isomorphism of Q/Z (corresponding to the choice of an isomor-
phism Q/Ker ∂ ∼= ⊕p∈JZp∞). This proves the lemma.

We proceed now with the construction of a space Y (∂) in the ex-
tended genus G(Sn) realizing any homomorphism ∂ : Q → Q/Z as a
connecting map in the homotopy long exact sequence of the fibration
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M(Q/Z, n − 1) → Y (∂) → K(Q, n). We deduce from the bijection
[M(Q, n − 1),M(Q/Z, n − 1)] ∼= Hom(Q,Q/Z) that there exists up to
homotopy a unique map ∆: M(Q, n − 1) → M(Q/Z, n − 1) such that
πn−1(∆) = ∂. We define Y (∂) to be the homotopy cofiber of ∆. We
have therefore a cofibration sequence

M(Q/Z, n− 1)→ Y (∂)→M(Q, n)

which is seen to be a fibration sequence as well, for example by an ele-
mentary Serre spectral sequence argument. A complete characterization
of such sequences that are simultaneously fibration and cofibration se-
quences has been obtained by Alonso [1], see also Wojtkowiak [26].

Theorem 3.2. The extended genus set G(Sn) is in bijection with the
set of isomorphism classes of torsion free abelian groups of rank one.

Proof: Given a torsion free abelian group A of rank one we get a ho-
momorphism ∂ : Q→ Q/Z from Lemma 3.1 and construct as above the
space Y (∂). It realizes ∂ as connecting homomorphism in the homotopy
long exact sequence, and its kernel is a group isomorphic to A. To show
that we have indeed a bijection we must prove that the connecting ho-
momorphism determines the homotopy type of Y ∈ G(Sn). Let ∂ be
the connecting homomorphism for such a space Y and let us compare Y
and Y (∂). We have a map i : M(Q/Z, n − 1) → Y by definition of the
extended genus set and consider i ◦∆: M(Q, n− 1)→ Y , where ∆ is, as
above, the unique map, up to homotopy, realizing ∂ on πn−1. The map ∆
factors through the Postnikov section M(Q, n − 1) → K(Q, n − 1), the
second map being the homotopy fiber inclusion for M(Q/Z, n−1)→ Y .
This shows that the composite i ◦∆ is homotopically trivial. Therefore
the map i factors through the homotopy cofiber of ∆, i.e. Y (∂).

We have thus constructed a map Y (∂) → Y which induces equiva-
lences on rationalizations and torsion spaces. It is hence an equivalence
as well.

In the final part of the section we restrict our attention to the (n−1)-
connected members of the extended genus set of an odd sphere. We
begin with a review of Hilton’s investigations of the extended genus set
of Z and groups of pseudo-integers [13, 14].

Definition 3.3 ([13]). A subgroup of the full rational group Q is a
group of pseudo-integers if it contains Z but not Z[1/p] for any prime p.

Since a group of pseudo-integers is a torsion free abelian group of
rank one, in the terminology introduced at the beginning of the section,
it is characterized by its type, which consists in only finite integers hp.
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This subset of torsion free abelian group of rank one has been studied
by Hilton in [13, Theorem 2.3, 2.4].

According to [13, Corollary 2.5], the extended genus set G(Z) of Z,
consisting of isomorphism classes of (not necessarily finitely generated)
abelian groups H such that H ⊗ Z(p)

∼= Z(p) for all primes p, is the set

of isomorphism classes of pseudo-integers. In other words, G(Z) is the
set of isomorphism classes of torsion free abelian groups of rank one of
∞-free types [10, §85].

Corollary 3.4. The set of (n − 1)-connected spaces in G(Sn) is in bi-
jection with G(Z). The correspondence is given by Y 7→ πn(Y ).

Proof: The spaces in the extended genus of Sn which are (n − 1)-con-
nected are characterized by the fact that the connecting homomor-
phism ∂ is surjective. In other words its kernel is a group of pseudo-
integers. We conclude by Theorem 3.2.

4. A formula to compute localization genera

In the previous section we have been able to establish a complete and
explicit list of all homotopy types in the extended rationalization genus of
an odd sphere. In general, for arbitrary spaces and arbitrary localization
functors, this is not to be expected. Following the approach of Dwyer,
Kan, and Smith in [8] to classify towers of fibrations, we propose in
this section a formula which we use later on to perform computations
of “Postnikov” and “Neisendorfer” genus. We start with the necessary
background from [8].

Let G be a space and consider the functor Φ which sends an
object of Spaces ↓ B aut(G), i.e. a map t : X→B aut(G), to the twisted
product X×tG. Dwyer, Kan, and Smith describe a right adjoint Ψ
in [8, Section 4]. They find first a model for aut(G) which is a (simpli-
cial) group and thus acts on the left on map(G,Z) for any
space Z. This induces a map r : B aut(G)→ B aut(map(G,Z)). The
functor Ψ sends Z to the projection map from the twisted product
B aut(G)×r map(G,Z)→ B aut(G). This allows them right away to
construct a classifying space for towers, in our case they will be of
length 2.

Theorem 4.1 (Dwyer, Kan, Smith [8]). The classifying space for towers

of the form Z
q−→ Y

p−→ X, where the homotopy fiber of p is G and that
of q is H, is B aut(G)×r map(G,B aut(H)).

Remark 4.2. Working with the Dwyer–Kan–Smith model means that we
deal with simplicial sets. The comparison with spaces is via the singular
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complex and geometric realization. Since the realization of a simplicial
set is a CW-complex, all spaces we construct here have obviously the
homotopy type of a CW-complex.

There is an interesting consequence of Theorem 4.1, which can be com-
pared with our former result about the classifying space of the monoid
of self-equivalences of a two-stage Postnikov piece [20, Theorem 5.3].

Theorem 4.3. Let L be a localization functor and X be a space such
that LLX is contractible. There is then a bijection between GL(X) and
the set

[LX,B aut(LX)]/Aut(LX)

of orbits for the action of the group Aut(LX) on the set [LX,B aut(LX)].

Proof: Equivalence classes of towers of fibrations Z → Y → ∗ with
successive fibres LX and LX are classified by the set of path components
of B = B aut(LX) ×r map(LX,B aut(LX)). It is clear that any such
space Z fits in a fibration LX → Z → LX, but we must show that
the map Z → LX coincides with the localization map for Z. Fibrewise
localization [9, Theorem 1.F.1] yields a natural transformation between
fibration sequences

LX //

��

Z //

��

LX

LLX // Z // LX

By assumption LLX is contractible and since by construction the map
Z → Z is an L-equivalence this proves that LZ ' LZ ' LX.

A more symmetric, but completely equivalent formulation, is

GL(X) = Aut(LX)\[LX,B aut(LX)]∗/Aut(LX).

The assumption that LLX is contractible is restrictive if we would re-
quire this for all spaces X. This would amount to imposing that the
localization functor L is a so-called nullification functor, i.e. a homo-
topical localization functor associated to a map of the form A→ ∗ such
as a Postnikov section – when A is a sphere [9, 1.A.6] – or Quillen’s
plus construction. We impose this condition however on a single space,
and this happens sometimes for localization functors that are not nulli-
fications. When X is a simply connected space of finite type and L is
rationalization, p-completion, or completion, then LLX ' ∗. These are
the main examples of interest in this note.
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According to Theorem 4.3, one can often compute an extended local-
ization genus set via a Dwyer–Kan–Smith type formula.

Corollary 4.4. The classical extended genus set of a simply connected
space X of finite type is given by G(X) = [X0, B aut(Xτ )]/Aut(X0).

5. Postnikov genus and Neisendorfer’s Theorem

As a final computational example we will compute in the following
sections the (extended) Postnikov genus of an odd sphere. We will rely
on the Sullivan conjecture and the unexpected effect of the nullification
functor PBZ/p on highly connected covers of finite CW-complexes.

Let P be the nullification functor with respect to the wedge
∨
BZ/p

taken over all primes p. Other functors that appear here are Postnikov
sections X → X[N ] and (highly) connected covers X〈N〉 → X, aka
nullification functors PSN+1 and homotopy fibers thereof PSN+1 . Hence,
when we use a Postnikov section or a connected cover we will always use
a functorial and continuous such construction. The following theorem
is due to Neisendorfer and relies on Miller’s solution to the Sullivan
conjecture [18].

Theorem 5.1 ([21, Theorem 4.1]). Let X be a simply connected finite
complex with π2(X) finite and let n ≥ 1 be a natural number. Then

P (X〈n〉) = holim (X → X0 ← X〈n0〉)

so that P (X〈n〉)τ ' Xτ and P (X〈n〉)∧ ' X∧.

For us the following consequences will be important. In particular
point (2) has a similar flavor as Proposition 1.1 and will help us com-
pute the monoids of self-equivalences which appear in the formula from
Corollary 4.4.

Proposition 5.2. Let X be a simply connected finite complex with
π2(X) finite. Suppose that π>N (X)⊗Q = 0 for some integer N . Then

(1) P (X〈N〉) ' Xτ .

(2) There are weak equivalences

aut∗(X〈N〉) ' aut∗(Xτ ) ' aut∗(X
∧) ' aut∗(X

∧〈N〉)

of topological monoids of pointed self homotopy equivalences.

(3) The obvious map G(X) → G(X[N ]) is a bijection whenever
aut(X∧)→ aut(X[N ]∧) is surjective.
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Proof: Since X〈N0〉 is contractible we deduce from Theorem 5.1 that
P (X〈N〉) ' Xτ , which proves (1). Hence starting with X〈N〉 we see
that we get first Xτ by applying P , then X∧ by applying completion,
and finally X∧〈N〉 ' X〈N〉 by taking the N -connected cover. We work
here with pointed and continuous functors and obtain thus a chain of
weak homotopy equivalences aut∗(X〈N〉) ' aut∗(Xτ ) ' aut∗(X

∧) '
aut∗(X

∧〈N〉). This shows (2).
Wilkerson’s double coset formula for the genus set [25, Theorem 3.8]

exhibits G(X) as double coset of the so-called π∗-continuous self-equiv-
alences of (X∧)0 under the left action of aut(X∧) and the right ac-
tion of aut(X0). Clearly X and the Postnikov section X[N ] share the
same rationalization and the same rationalization of their completions
by assumption since X〈N〉 is rationally trivial. Only the groups of self-
equivalences of the completions might be distinct for X and X[N ], but
they act via rationalization so that the left action of aut(X∧) factors
through aut((X∧)0) ' aut((X[N ]∧)0). Thus, under the surjectivity as-
sumption, the double cosets agree for X and X[N ], which shows that
the map G(X)→ G(X[N ]) is bijective.

We note that G(X[N ]) can be computed from Zabrodsky’s exact se-
quence when X0 is an H-space [27, 28], [17, Theorem 4].

Definition 5.3. The (extended) N -th Postnikov genus of a space X
is the (extended) localization genus set with respect to the nullification
functor PSN+1 . We write G[N ](X) and G[N ](X) for these sets.

Hence a space Y belongs to the extended genus G[N ](X) if its N -th
Postnikov section Y [N ] coincides with X[N ] and its N -connected
cover Y 〈N〉 coincides with X〈N〉.

Theorem 5.4. Let X be a simply connected finite complex with π2(X)
finite and suppose that π>N (X) ⊗ Q = 0 for some integer N . Assume
moreover that aut(X∧)→ aut(X[N ]∧) is surjective. Then the only finite
CW-complex in G[N ](X) is X.

Proof: If Y belongs to G[N ](X), then Y 〈N〉 ' X〈N〉 and Y [N ] ' X[N ].
Thus, if Y is finite, Y ∧ ' P (Y 〈N〉)∧ ' P (X〈N〉)∧ ' X∧ by Theo-
rem 5.1 and Y0 ' Y [N ]0 ' X[N ]0 ' X0 showing that Y ∈ G(X). But
X and Y have the same image under the injective mapG(X)→ G(X[N ])
by Proposition 5.2(3), so X ' Y .

Example 5.5. The assumptions of Theorem 5.4 are fulfilled when X
is an odd sphere S2n+1 with n ≥ 1. We only have to check that ev-
ery self-equivalence of K(Z, n)∧ can be lifted to a self-equivalence of
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the completed sphere. But the former corresponds to a product of au-
tomorphisms of Z∧p , any of which can be realized by a self-equivalence

of (S2n+1)∧p .

Remark 5.6. Theorem 5.4 tells us that there are very few finite CW-com-
plexes in a Postnikov genus set. However there are many infinite CW-
complexes of finite type in the extended genus set. For example when
X = S3 and L is the third Postnikov section, the space K(Z, 3)× S3〈3〉
is obviously in the L-genus of S3. We will come back to this kind of
example with a detailed computation in the next section.

Remark 5.7. It is not always true that there is a single finite complex in
the Postnikov genus of a finite complex X. Let us consider for example
the space S2×S5 and the functor L is chosen to be the second Postnikov
section. Then (S2 × S5)[2] ' K(Z, 2) and (S2 × S5)〈2〉 ' S3 × S5. It is
easy to see that the space CP 2 × S3 also belongs to G[2](S

2 × S5). Of

course the condition of the corollary are not fulfilled since neither π2S
2,

nor π3S
2, are torsion.

It would be interesting to construct similar examples with higher Post-
nikov sections and at least 2-connected spaces, so that the π2 assumption
is trivially fulfilled.

6. Self-equivalences of connected covers of a sphere

Our next goal will be to determine the n-th Postnikov genus of an
odd sphere Sn with n ≥ 3. This will be done by using Theorem 4.3,
which involves the computation of the space of self-equivalences of the
n-connected cover Sn〈n〉. This section prepares the terrain for the genus
computation in the next section and focuses on handy properties of
aut(Sn〈n〉∧p ).

Since Sn〈n〉 is a torsion space, it is weakly equivalent to the product
of its p-completions Sn〈n〉∧p . Now

map(Sn〈n〉, Sn〈n〉) '
∏
p

map(Sn〈n〉, Sn〈n〉∧p )

'
∏
p

map

(
Sn〈n〉∧p ×

∏
q 6=p

Sn〈n〉∧q , Sn〈n〉∧p
)
.

But since Sn〈n〉∧p is p-complete and (
∏
q 6=pS

n〈n〉∧q )∧p is contractible, we see

that this mapping space is weakly equivalent to
∏
p map(Sn〈n〉∧p , Sn〈n〉∧p ).

Therefore the subspace of self-equivalences also splits as a product

aut(Sn〈n〉) '
∏
p

aut(Sn〈n〉∧p ).
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The formula in Theorem 4.3 forces us to understand certain mapping
spaces into B aut(Sn〈n〉∧p ). We start with a few elementary lemmas.

Lemma 6.1. The space B aut∗((S
n)∧p )'B aut∗(S

n〈n〉∧p ) is ΣBZ/pk-lo-
cal for any k ≥ 1.

Proof: From Proposition 5.2(2) we know that the spaces of pointed
self-homotopy equivalences of the p-completed sphere and its n-con-
nected cover coincide. To prove the lemma we prove that the pointed
mapping space map∗(ΣBZ/p,B aut∗((S

n)∧p )) is contractible. By the
suspension-loop adjunction this mapping space is equivalent to
map(BZ/p, aut∗((S

n)∧p )). But aut∗(S
n〈n〉∧p ) consists of certain compo-

nents of map∗((S
n)∧p , (S

n)∧p ) ' map(Sn, (Sn)∧p ) = Ωn(Sn)∧p . All com-
ponents of this iterated loop space have the same homotopy type, and
they are BZ/p-local by Miller’s Theorem [18].

Lemma 6.2. The space B aut∗((S
n)∧p )'B aut∗(S

n〈n〉∧p ) is K(Z[1/p], 2)-
local.

Proof: Since K(Z[1/p], 2) is S2[1/p]-cellular it is sufficient to prove that
the above classifying space is S2[1/p]-local. We use the usual telescopic
model for this localized sphere, i.e. the homotopy colimit of the dia-

gram S2 p−→ S2 p−→ · · · . Hence we have weak equivalences

map(S2[1/p], B aut∗((S
n)∧p )) ' holim map∗(S

2, B aut∗((S
n)∧p ))

= holim Ω aut∗((S
n)∧p ).

The homotopy groups of this inverse limit are all trivial since the tower
we consider here consists of iterating multiplication by p on finite p-
groups (in particular all lim1 terms vanish).

Zabrodsky’s Lemma allows us to mix mod p and p′-local informa-
tion to deduce something integrally, compare this with Casacuberta’s
approach to Neisendorfer’s Theorem in [5, Section 7].

Lemma 6.3. Fix m ≥ 2. If a space X is K(Zp∞ ,m − 1)-local and
K(Z[1/p],m)-local, then it is K(Z,m)-local.

Proof: Since X is K(Zp∞ ,m− 1)-local, Zabrodsky’s Lemma [7, Propo-
sition 3.4] for the fibration K(Zp∞ ,m−1)→K(Z,m)→K(Z[1/p],m−1)
produces an equivalence between the pointed mapping space
map∗(K(Z,m), X) and map∗(K(Z[1/p],m − 1), X), which is assumed
to be contractible.
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Even though we are not so sure whetherB aut∗(S
n〈n〉∧p ) is p-complete,

the previous lemmas allow us to understand a third and last local prop-
erty.

Proposition 6.4. For any m ≥ 3, the space B aut∗(S
n〈n〉∧p ) is K(Z,m)-

local. In particular, it is K(Z, n)-local.

Proof: The spaceK(Zp∞ ,m−2) is
∨
BZ/pk-cellular, being a telescope of

K(Z/pk,m−2)’s which are cellular. Hence K(Zp∞ ,m−1) is
∨

ΣBZ/pk-
cellular by the commutation rule of cellularization with respect to loop
spaces [9, Theorem 3.A.2]. Lemma 6.1 implies that B aut∗(S

n〈n〉∧p ) is
K(Zp∞ ,m − 1)-local and Lemma 6.2 that it is K(Z[1/p],m − 1)-local
and hence K(Z,m)-local by Lemma 6.3.

We point out that the argument with a wedge is only necessary for
m = 3. For any larger value of m we could have gone through the same
proof with ΣBZ/p.

We turn now to spaces of unpointed self-equivalences. Unlike their
pointed analogues the classifying spaces B aut((Sn)∧p ) and B aut(Sn〈n〉∧p )
behave differently from the point of view of K(Z, n)-nullification. The
following proposition should certainly be compared to Zabrodsky’s [29,
Corollary C’], where he deals with locally finite homotopy groups in the
source.

Proposition 6.5. The space map∗(K(Z, n), B aut(Sn〈n〉∧p )) is homo-
topically discrete with Z∧p components.

Proof: Note first that K(Z,m) is ΣK(Z, 2)-local for m≥3. For m=3, this
is because the nullification PΣK(Z,2)K(Z, 3) is 1-connected with con-
tractible loop space, ΩPΣK(Z,2)K(Z, 3)=PK(Z,2)K(Z, 2)'∗ [9, 1.G Proof
of elementary facts, Theorem 3.A.1]. The case m > 3 follows by induc-
tion starting at m = 3 using [9, Theorem 1.H.1] and the path fibration
K(Z,m)→ ∗ → K(Z,m+ 1).

Now that we know that PΣK(Z,2)K(Z,m) ' ∗ for all m ≥ 3, we also
know that the implications

ΩB is K(Z, 2)-local ⇐⇒ B is ΣK(Z, 2)-local

=⇒ B is K(Z,m)-local for m ≥ 3

hold for any connected space B.
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There is a commutative diagram

K(Z∧p , n− 1) //

��

Sn〈n〉

��

// (Sn)∧p

��
∗ //

��

B aut∗(S
n〈n〉∧p )

' //

��

B aut∗((S
n)∧p )

��
K(Z∧p , n) // B aut(Sn〈n〉∧p ) // B aut((Sn)∧p )

of fibrations. One of the maps here is a homotopy equivalence by Propo-
sition 5.2(2). From the lower horizontal fibration we see that it suffices
to show that B aut((Sn)∧p ) is ΣK(Z, 2)-local. Equivalently, as we noted
above, it suffices to show that aut((Sn)∧p ) is K(Z, 2)-local: In the eval-
uation fibration aut∗((S

n)∧p ) → aut((Sn)∧p ) → (Sn)∧p , both the fibre, a
disjoint union of Ωn(Sn)∧p , and the base space, (Sn)∧p , are K(Zp∞ , 1)-
local, which follows from Miller’s theorem as stated for example in [23,
Corollary 8.6.2] by an inductive argument as in [18, Theorem 10.1]. Since
they are p-complete, both spaces are K(Z[1/p], 2)-local and we conclude
by Lemma 6.3 that they are K(Z, 2)-local. Then also the total space is
K(Z, 2)-local because every component is so by [9, Theorem 1.H.1].

7. The extended Postnikov genus of an odd sphere

We come now to our most sophisticated computation. We wish to
determine the extended Postnikov genus G[n](S

n) when n is odd. In
other words, we wish to understand how many spaces Y are exten-
sions of K(Z, n) by Sn〈n〉, i.e. how many spaces look like a sphere Sn

through the eyes of the n-th Postnikov section and the n-connected
cover functors. We will sometimes call these spaces “fake spheres”. We
write Snp for the fiberwise p-completion of Sn sitting in the fibration
Sn〈n〉∧p → Snp → K(Z, n). By Theorem 4.3 and the preliminary remarks
in the previous section we know that

G[n](S
n
p ) = [K(Z, n), B aut(Sn〈n〉∧p )]/{±1},

G[n](S
n) =

[
K(Z, n),

∏
p

B aut(Sn〈n〉∧p )

]
/{±1},

where we have identified Aut(K(Z, n)) with {±1}, and −1 acts on the
integers by changing the sign.
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Theorem 7.1. The set of components of the unpointed mapping space
map(K(Z, n), B aut(Sn〈n〉∧p )) is Z∧p /(Z∧p )×. It is in particular an infi-

nite, countable set. Hence, G[n](S
n
p ) is in bijection with the set N+ of

natural numbers with a disjoint base point ∗.

Proof: The homotopy fiber of the evaluation

map(K(Z, n), B aut(Sn〈n〉∧p ))→ B aut(Sn〈n〉∧p )

is homotopically discrete and identifies with Hom(Z,Z∧p ) by Proposi-
tion 6.5. Moreover the fundamental group

π1B aut(Sn〈n〉∧p ) ∼= π0 aut(Sn〈n〉∧p )

coincides with π0 aut∗((S
n)∧p ) ∼= (Z∧p )×, the p-adic units. Their action

on the p-adic integers comes from the natural action on πn(Sn)∧p . Thus
the components of the mapping space we are looking at is the quo-
tient Z∧p /(Z∧p )×.

Let N = {0, 1, 2, . . . } be the set of natural numbers and N+ the union
of N with a disjoint base point ∗. The quotient Z∧p /Z×p is in bijection with
the set N+ because any non-zero p-adic integer can be uniquely written
as pku where k ∈ N and u is a unit [24, Chapter II, Proposition 2(b)].
The extended genus set has been identified as the quotient of this set
under the action of ±1. However, since −1 in Z is sent in the p-adics to
a unit, there are no further identifications.

Construction 7.2. Here is an explicit way to construct the countable
set G[n](S

n
p ) of spaces Y with πnY ∼= Z and Y 〈n〉 ' Sn〈n〉∧p .

The fibration Sn〈n〉∧p→Snp→K(Z, n) is classified by a map c :K(Z, n)→
B aut(Sn〈n〉∧p ). The proof of Theorem 7.1 shows that there is a bijection

N+ → [K(Z, n), B aut(Sn〈n〉∧p )]/{±1}

taking ∗ to the constant map and the nonnegative integer k ∈ N to c◦pk.
Define the space Yp,∗ to be the product Sn〈n〉∧p ×K(Z, n) and Yp,k,

for k ∈ N, to be the homotopy pull-back of K(Z, n)
pk−→ K(Z, n) ← Snp ,

or, equivalently, the homotopy fibre of Snp → K(Z, n) → K(Z/pk, n),

where the second map is reduction mod pk. The bijection is then given
by

N+ −→ G[n](S
n
p )

k 7−→ Yp,k

We show now that one can detect which fake partially p-completed
sphere one is considering by a simple cohomological computation. We
will be more precise in the proof.
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Proposition 7.3. Ordinary cohomology distinguishes all elements in
the extended Postnikov genus set G[n](S

n
p ).

Proof: By Construction 7.2 these fake partially completed spheres fit
into a tower of fibrations

· · · → Yp,k+1
fk−→ Yp,k → · · · → Yp,1

f0−→ Yp,0 = Snp

with fibers K(Z/p, n−1). Let ιk denote a generator of Hn(Yp,k;Z) ∼= Z,
chosen in such a way that the image of ιk under f∗k is pιk+1.

At the prime 2 the algebra structure is sufficient to distinguish the
fakes. Notice that the mod 2 reduction of ι1 is a polynomial generator
detected in the mod 2 cohomology of K(Z/2, n−1), but ι0 is an exterior
generator. In general (2kιk)2 = 0, but (2k−1ιk)2 6= 0. This shows that if
Y is any (n − 1)-connected space with πnY ∼= Z and Y 〈n〉 ' (Sn〈n〉)∧2 ,
and ι denotes a generator of Hn(Y ;Z), then Y ' Y2,k where k is the
smallest integer such that (2kι)2 = 0. If such an integer does not exist,
then Y ' Y2,∗ for which the generator ι∗ is polynomial.

At an odd prime p, the mod p reduction of ι1 is an exterior generator
detected in the mod p cohomology of K(Z/p, n − 1), but it has an in-
tegral Steenrod operation acting non-trivially on it. The pair (P1, βP1)
of admissible monomials in the mod p Steenrod algebra yields a pair of
elements in H∗(K(Z, n);Fp) that are linked by a Bockstein, which corre-
sponds in turn to a stable operation of order p in Hn+2p−1(K(Z, n);Z).
Let us call it P1, as suggested by the identification done in [15]. In
general this integral cohomological operation acts trivially on pkιk, but
non-trivially on pk−1ιk. This shows that if Y is any space with πnY ∼= Z
and Y 〈n〉 ' (Sn〈n〉)∧p , and ι denotes a generator of Hn(Y ;Z), then

Y ' Yp,k where k is the smallest integer such that P1(pkι) = 0. Again,
if no such integer exists, then Y is Yp,∗.

Theorem 7.4. The extended Postnikov genus set G[n](S
n) of homotopy

types of spaces Y such that Y [n] ' K(Z, n) and Y 〈n〉 ' Sn〈n〉 is un-
countable, in bijection with

∏
p N+, where the product is taken over all

primes.

Proof: We apply Theorem 4.3 and the identification B aut(Sn〈n〉) '∏
pB aut(Sn〈n〉∧p ) obtained above. Theorem 7.1 shows that the set of

unpointed homotopy classes [K(Z, n), B aut(Sn〈n〉)] is uncountable, in
bijection with

∏
pN+. The action of the group Aut(K(Z, n)) ∼= {±1} is

trivial at each prime since −1 is a unit in the p-adic integers, thus so is
the action globally.
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Elaborating a little bit on Construction 7.2, one can construct explic-
itly all these fake spheres.

Construction 7.5. We identify [K(Z, n), B aut(Sn〈n〉)] with
∏
pN+.

An element in this set is a sequence K = (kp) consisting either of a
natural number or the base point ∗ for each prime p. For each such
sequence consider the homotopy pull-back YK of the diagram∏

p

Yp,kp →
∏
p

K(Z, n)
∆←− K(Z, n),

where the spaces Yp,kp have been built in Construction 7.2, the first map
is the product of n-th Postnikov sections, and the second arrow is given
by the diagonal inclusion. The homotopy fiber of the map YK → K(Z, n)
is the product

∏
p S

n〈n〉∧p ' Sn〈n〉. For any prime p the restriction to

B aut(Sn〈n〉∧p ) yields Yp,k which is classified by kp. This describes all

spaces in G[n](S
n).

Thus we have a good handle on all these fake spheres Sn. What
is so special about the good old Sn among them? The answer is in
Theorem 5.4, see also Example 5.5.

Proposition 7.6. Let Y be a space such that Y [n] ' K(Z, n) and
Y 〈n〉 ' Sn〈n〉. Then, if Y is a finite complex, Y has the homotopy
type of Sn.

Finally we address the question of what happens when one changes the
n-th Postnikov section for a higher one. The result will basically remain
the same. An explicit computation would prove to be more difficult, but
the concrete examples of fake spheres we have produced serve equally
well now.

Proposition 7.7. Let Y be an element in the extended Postnikov genus
G[n](S

n
p ), and m ≥ n. For any large enough prime p we have that

Y [m] ' Snp [m] and Y 〈m〉 ' Snp 〈m〉.

Proof: Since Y has been constructed so that Y 〈n〉 ' Sn〈n〉∧p , the same is
true for a higher connected cover. The claim about the m-th Postnikov

section follows by choosing p >
m− n+ 3

2
so π∗S

n has no p-torsion in

degrees < m.
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This implies again that, for any m, there are uncountably many ho-
motopy types of spaces which look like odd spheres through the eyes of
the m-th Postnikov section and m-connected cover. We end the section
with a related computation of the extended Postnikov genus of complex
projective spaces.

Theorem 7.8. The extended Postnikov genus set G[2n+1](CPn) is un-
countable for any n ≥ 1.

Proof: Let C = CPn[2n+1] be the (2n+1)-st Postnikov section of CPn.
The homotopy fiber of the inclusion CPn ↪→ CP∞ = K(Z, 2) is the
sphere S2n+1, so that we have fibration sequences K(Z, 2n+ 1)→ C →
K(Z, 2) and S2n+1〈2n+1〉 → CPn → C where S2n+1〈2n+1〉 decomposes
as
∏
p S

2n+1〈2n + 1〉∧p . Obstruction theory shows that the (2n + 9)-st

Postnikov section induces a bijective map [CPn,CPn] → [C,C] so that
self-maps of CPn and of C are classified up to homotopy by their effect
on H2(−;Z), see for example [16, Theorem 2.2]. In particular, Aut(C) ∼=
Aut(CPn) ∼= Z× = {±1} has two elements.

According to Theorem 4.3, G[2n+1](CPn) is identified with the set

[C,B aut(S2n+1〈2n + 1〉)]/Z×. Instead of computing this explicitly we
will content ourselves with the more modest goal of showing that it is
uncountable. Let c : C → B aut(S2n+1〈2n + 1〉) be the classifying map
for the standard CPn. We have seen that B aut(S2n+1〈2n + 1〉) splits
as a product

∏
pB aut(S2n+1〈2n + 1〉∧p ), and so the classifying map c

decomposes as a product c =
∏
p cp ◦ ∆, where ∆: C →

∏
p C is the

diagonal map and cp : C → B aut(S2n+1〈2n + 1〉∧p ). For any sequence
M = (mp)p ∈

∏
p Z of integers, let PnM be the space classified by

∏
cp ◦∏

mp ◦∆: C →
∏
BAut(Xp). For example CPn and C×S2n+1〈2n+1〉

correspond respectively to the constant sequences (1) and (0).
Consider now the restriction of one of the components cp ◦ mp to

the fiber K(Z, 2n + 1). The degree mp map on CPn induces the de-
gree mn+1

p map on the 2n-connected cover S2n+1, so that this restric-

tion corresponds to the class of mn+1
p in the coset Z∧p /(Z∧p )× we have

obtained in Theorem 7.1. In particular, choosing a non-invertible ele-
ment mp = pk, this restriction represents a different homotopy class in
[K(Z, 2n + 1), BAut(S2n+1〈2n + 1〉∧p )]. In fact for any choice kp ∈ N,

the sequences (pkp) yield an uncountable number of homotopy types of
fake complex projective spaces. Indeed the spaces Pn

(pkp )
are all distinct

since the homotopy pull-back of Pn
(pkp )

→ C ← K(Z, 2n+1) is homotopy

equivalent to the fake sphere described by the sequence ((n+ 1)kp) as
in Construction 7.5.
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