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Abstract: We consider critical points of the global L2-norm of the second funda-
mental form, and of the mean curvature vector of isometric immersions of compact

Riemannian manifolds into a fixed background Riemannian manifold, as functionals

over the space of deformations of the immersion. We prove new gap theorems for
these functionals into hyperbolic manifolds, and show that the celebrated gap theo-

rem for minimal immersions into the standard sphere can be cast as a theorem about
their critical points having constant mean curvature function, and whose second fun-

damental form is suitably small in relation to it. In this case, the various minimal

submanifolds that occur at the pointwise upper bound on the norm of the second
fundamental form are realized by manifolds of nonnegative Ricci curvature, and of

these, the Einstein ones are distinguished from the others by being those that are

immersed on the sphere as critical points of the first of the functionals mentioned.
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1. Introduction

Let n and ñ be any two integers such that 2 ≤ n ≤ ñ− 1. Let (M, g)
be a closed Riemannian manifold of dimension n isometrically immersed
into a background Riemannian manifold (M̃, g̃) of dimension ñ. Thus,

we have an immersion f : M → M̃ of M into M̃ such that g = f∗g̃. It
then follows that small deformations of the metric g on M can be realized
similarly by a family ft : M → M̃ of isometric immersions into (M̃, g̃)
that deform the immersion f , and for each such deformation, we obtain
a family (M,f∗t g̃) of Riemannian metrics on M . If we attach to f a
suitable functional, we can then single out metrics g on M of this type
that are stationary under any deformation ft of the immersion f that
yields g. This is the general theme of our paper.
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We let α and H be the second fundamental form and mean curvature
vector of an immersion f : M → M̃ , respectively. If dµ = dµM denotes
the Riemannian measure on M , we define

Π(M) = Πf (M) =

∫
M

‖α‖2 dµ,(1)

Ψ(M) = Ψf (M) =

∫
M

‖H‖2 dµ,(2)

and view them as functionals defined over the space of all isometric
immersions of M into M̃ . Ψ is generally named the Willmore functional
in the literature. Willmore used it to study surfaces in R3 [11]. This
functional had been studied earlier by Blaschke [2] and Thomsen [10]
also.

We shall say that a Riemannian manifold (M, g) is canonically placed

into (M̃, g̃) if it admits an isometric immersion into the latter that is
a critical point of Π. Thus, for any family of metrics gt = ft(g̃) in M

that deforms g, g0 = g, given by a family of immersions ft : M ↪→ M̃ ,
(M, g) is canonically placed into (M̃, g̃) if f0 is a critical point of Πft .
The use of the functional Ψ instead leads to a related, and alternative,
notion of a canonical placing of (M, g) into (M̃, g̃).

In the case when the background manifold is the space form Sc = Sñc
of curvature c, we introduce for consideration a third functional given
by

(3) Θc(M) =

∫
M

(n(n− 1)c+ ‖H‖2) dµ.

When c = 1, we denote Θc simply by Θ. We view Π, Ψ, and Θ as
energies of the immersion.

The first goal of our work is the study of the critical points of lowest
energy of Π and Ψ when the background manifold is the sphere Sn+p
with its standard metric. Our results reinterpret the celebrated gap
theorem of Simons [9] in these contexts, and show that this result can
be derived as one about critical points of Ψ and Π of constant mean
curvature function, and whose density is pointwise small.

Let us begin our explanation by recalling the classical gap theorem in
a form convenient to our work:

Theorem 1 ([9, Theorem 5.3.2, Corollary 5.3.2], [3, Main Theorem],
[6, Corollary 2]). Suppose that Mn ↪→ Sn+p is an isometric minimal
immersion. Assume that the pointwise inequality ‖α‖2 ≤ np/(2p − 1)
holds everywhere. Then
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(1) Either ‖α‖2 = 0, or

(2) ‖α‖2 = np/(2p − 1) if, and only if, either p = 1 and Mn is the

minimal Clifford torus Sm(
√
m/n)× Sn−m(

√
(n−m)/n) ⊂ Sn+1,

1≤m<n, with ‖α‖2 = n, or n = p = 2 and M is the real projective
plane embedded into S4 by the Veronese map with ‖α‖2 = 4/3.

Thus, among minimal n-manifolds M ↪→ Sn+p, or critical points of
the volume functional of M , the lowest value that ‖α‖2 can achieve
is isolated and it is achieved by submanifolds inside equatorial totally
geodesic spheres, while its first nonzero value is the constant pn/(2p −
1), which is achieved by all the Clifford toruses when p = 1, or by a
minimal real projective plane of scalar curvature 2/3 in S4. We prove
here that this gap theorem can be reconstructed as a characterization of
compact Riemannian manifolds (M, g) that are isometrically embedded
into Sn+p as critical points of the functionals (2) or (3), with constant
mean curvature function and whose density is pointwise small. The
latter conditions make of the said critical points absolute minimums of
the functional (2). The gap theorem then produces two types of such
critical points, and those that achieve the upper bound for ‖α‖2 carry
metrics of nonnegative Ricci tensor. Among them, the ones that are
Einstein are distinguished by being, in addition, critical points of (1).

For a smooth immersion M ↪→ M̃ , we let νH denote a normal vector in
the direction of the mean curvature vector H, and denote by AνH and∇ν
the shape operator in the direction of νH and covariant derivative of the
normal bundle, respectively. Such a choice of νH can be made to depend
smoothly upon smooth deformations of the immersion. We consider
immersions that satisfy the estimates

−λ‖H‖2 − n ≤ traceA2
νH − ‖H‖

2 − ‖∇ννH‖2

≤ ‖α‖2 − ‖H‖2 − ‖∇ννH‖2 ≤
np

2p− 1

(4)

for some constant λ. Notice that ‖AνH‖2 = traceA2
νH is bounded above

by ‖α‖2, and so the second of the inequalities above is always true.
Our first result is the following:

Theorem 2. Suppose that (Mn, g) is a closed Riemannian manifold
isometrically immersed into Sn+p as a critical point of the functional Ψ
above, and having constant mean curvature function ‖H‖. Assume that
the immersion is such that (4) holds for some constant λ ∈ [0, 1/2).
Then M is minimal, and so it is a critical point of the functional Θ
also, 0 ≤ ‖α‖2 ≤ np/(2p− 1), and either
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(1) ‖α‖2 = 0, in which case M lies in an equatorial sphere, or

(2) ‖α‖2 = np/(2p − 1), in which case either p = 1 and Mn is the

Clifford torus Sm(
√
m/n)×Sn−m(

√
(n−m)/n) ⊂ Sn+1, 1≤m<n,

with ‖α‖2 = n, or n = p = 2 and M2 is the real projective plane
embedded into S4 by the Veronese map with ‖α‖2 = 4/3 and scalar
curvature 2/3, all cases of metrics with nonnegative Ricci tensor.

Let us now consider immersions that satisfy the estimates

−λ‖H‖2−1≤trace

(
1

‖H‖
AνH

∑
A2
νj

)
− 1

2
‖α‖2−‖∇ννH‖2 − ‖H‖2

≤‖α‖2 − ‖H‖2 − ‖∇ννH‖2 ≤
np

2p− 1

(5)

for some constant λ. Here {νj} is a local orthonormal frame of the
normal bundle, which can be chosen to be such that ν1 = νH and to
depend smoothly upon deformations of the immersion. The trace term
is homogeneous of degree two, and may be defined by continuity in the
limit in the case when ‖H‖ = 0. The details will be given below, where
we shall see also that the second of the inequalities above is always true.

Our second result distinguishes further the critical points of Ψ ob-
tained in Theorem 2.

Theorem 3. Suppose that (Mn, g) is a closed Riemannian manifold
isometrically immersed into Sn+p as a critical point of the functional Π
above, and having constant mean curvature function. Assume that the
immersion is such that (5) holds for some constant λ ∈ [0, 1). Then
M is minimal, so it is a critical point of Ψ, and of Θ also, 0 ≤ ‖α‖2 ≤
np/(2p− 1), and either

(1) ‖α‖2 = 0, in which case M lies inside an equatorial sphere, or

(2) ‖α‖2 = np/(2p − 1), in which case either n = p = 2 and M is
a minimal real projective plane with an Einstein metric embedded
into S4, or p = 1, n = 2m and M is the Clifford torus Sm(

√
1/2)×

Sm(
√

1/2) ⊂ Sn+1 with its Einstein product metric.

The following observation follows easily, but it emphasizes the fact
that among these submanifolds, we have some that are critical points
of the total scalar curvature functional among metrics in M realized by
isometric immersions into the sphere Sn+p.
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Corollary 4. Let (M, g) be a closed Riemannian manifold that is canon-
ically placed in Sn+p with constant mean curvature function and satis-
fying (5) for some λ ∈ [0, 1). Then M is a minimal critical point of
the total scalar curvature functional under deformations of the isometric
immersion, and either ‖α‖2 = 0 or ‖α‖2 = np/(2p − 1). In the latter
case, (M, g) is Einstein and the two possible surface cases in codimension
p = 1 and p = 2 correspond to Einstein manifolds that are associated to
different critical values of the total scalar curvature.

Thus, among Riemannian manifolds of constant mean curvature func-
tion, the pointwise estimates (5), λ ∈ [0, 1), for a critical point of the
L2-norm of the second fundamental form implies that this is also a min-
imal critical point of the L2-norm of the mean curvature vector, and
therefore of the total scalar curvature functional, under deformations of
the immersion. Of course, the latter in itself does not imply necessarily
that (M, g) is Einstein, as the space of metrics on M that can be re-
alized by isometric embeddings into the sphere does not have to equal
the space of all Riemannian metrics on M . But if ‖α‖2 = np/(2p − 1),
the canonically placed submanifold (M, g) is an Einstein critical point
of the total scalar curvature functional among metrics on M that can
be realized by isometric immersions into the standard sphere Sn+p. The
cases in Theorem 1 that are excluded in Theorem 3 correspond to critical
points of Ψ that are not critical points of Π.

That the functional Π distinguishes the symmetric minimal Clifford
torus in S2m+1 from the others have been observed previously [8], cf. [5,
§3] and [7, p. 366]. It has been observed also that, even on the sphere,
the functionals Π and Ψ contain critical points that are not minimal
submanifolds [8].

It is slightly easier to prove Theorem 2 by replacing the role that
the functional Ψ plays by that of the functional Θ, and derive the same
conclusion. The point is not the use of critical points of Θ versus those
of Ψ. Rather, since the curvature of the sphere is positive, if the second
fundamental form is pointwise small in relation to the mean curvature
vector, the constant mean curvature function condition forces the critical
points of these functionals to be the same, and minimal.

The pointwise estimates (4) and (5) that we assume on the immersion
quantities ensure that the critical submanifolds (M, g) of Ψ or Π that we
consider are not too far off from being totally geodesic, among immer-
sions with constant mean curvature function. Thus, the role that the
volume functional plays in the gap theorem can be reinterpreted using
the functional Ψ, replacing accordingly the minimality condition by that
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of having a constant mean curvature function, and the estimates (4).
This singles out compact immersions into the sphere that minimize the
volume, and so Θ. This type of critical points is further distinguished
by selecting those that are canonically placed in Sn+p and satisfy the
stricter estimates (5), and among these, it singles out those for which
the metric g on M is Einstein. That the critical points of Ψ and Π are
this closely interconnected is a consequence of Gauss’ identity and the
fact that the sectional curvature of the standard metric on the sphere is
the (positive) constant 1.

Although we cast Simons’ gap theorem in this manner, Theorems 2
and 3 are both consequences of nonlinear versions of the first eigenvalue
of the Laplacian of the metric g on M , when (M, g) is a critical point
of the functionals in question of constant mean curvature function and
small density. There is a natural gap theorem for the functionals Ψ or Π
themselves that we now derive, and this is the second goal of our work.
This result is somewhat dual to that proven for minimal immersions into
spheres, and occur on quotients of space forms of negative curvature
instead.

We recall that a closed hyperbolic manifold is of the form Hm/Γ for Γ
a torsion-free discrete group of isometries of Hm. We have the following:

Theorem 5. Let M be a critical point of (2) on a hyperbolic com-
pact manifold Hn+p/Γ. If the pointwise inequality 0 ≤ ‖α‖2 − 1

2‖H‖
2 −

‖∇ννH‖2 ≤ n holds on M , then either ‖H‖2 = 0 and M is minimal,
or ‖α‖2 = 1

2‖H‖
2 + n = ‖AνH‖2 and M is a nonminimal submani-

fold whose mean curvature vector is a covariantly constant section of its
normal bundle.

Theorem 6. Let M be a critical point of (1) on a hyperbolic compact
manifold Hn+p/Γ. If the pointwise inequality

‖α‖2
((

3− n

2

)
‖α‖2 − ‖H‖2

)
≤ (n‖α‖2 + 2‖H‖2)

holds, then either ‖H‖2 = 0 and M is a minimal submanifold, or n ≤ 5,
the equality above holds, ‖α‖2 = ‖AνH‖2, and M is a submanifold whose
mean curvature vector is a covariantly constant section of its normal
bundle.

Notice that neither of these theorems requires a priori the assumption
that the mean curvature function be constant.

We carry out our work assuming that n ≥ 2 in order to see the ef-
fect of curvature quantities. However, Theorems 5 and 6 remain true
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for n = 1, case where being minimal and totally geodesic are equiva-
lent notions, and where the two theorems yield the same result. This
dimension shows also the special nature of embedding into spheres or
parabolic spaces: There are canonically placed circles that are deforma-
tions of closed geodesics in the space form Sñc , c ≥ 0, having nonconstant
principal curvatures of changing signs.

2. Critical points of the Lagrangians

Consider a closed Riemannian manifold (M̃, g̃), and let M be a sub-

manifold of M̃ . With the metric g induced by g̃, M becomes a Riemann-
ian manifold. We denote by ∇g̃ and ∇g the Levi-Civita connections of g̃
and g, respectively, and by α the second fundamental form of the isomet-
ric immersion. The dimensions of M and M̃ are n and ñ, respectively.

We have Gauss’ identity

(6) ∇g̃XY = ∇gXY + α(X,Y ).

If N is a section of the normal bundle ν(M), the shape operator AN is
defined by

ANX = −πTM (∇g̃XN),

where in the right side above, N stands for an extension of the original
section to a neighborhood of M . If∇ν is the connection on ν(M) induced
by ∇g̃, we have Weingarten’s identity

(7) ∇g̃XN = −ANX +∇νXN.

For a detailed development of these and some of the expressions that
follow, see [4].

Gauss’ identity implies Gauss’ equation

(8) g(Rg(X,Y )Z,W ) = g̃(Rg̃(X,Y )Z,W ) + g̃(α(X,W ), α(Y,Z))

− g̃(α(X,Z), α(Y,W )).

Here, Rg stands for the Riemann curvature tensor of the corresponding
metric g, and X, Y , Z, and W are vector fields in M̃ tangent to the
submanifold M .

Let {e1, . . . , eñ} be an orthonormal frame for g̃ in a tubular neighbor-
hood of M such that {e1, . . . , en} constitutes an orthonormal frame for g
on points of M . We denote by H the mean curvature vector, the trace
of α. The immersion M ↪→ M̃ is said to be minimal if H = 0. By (8),
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the Ricci tensors rg and rg̃ are related to each other by the expression

rg(X,Y ) =

n∑
i=1

g̃(Rg̃(ei, X)Y, ei) + g̃(H,α(X,Y ))

−
n∑
i=1

g̃(α(ei, X), α(ei, Y ))

= rg̃(X,Y )−
ñ∑

i=n+1

g̃(Rg̃(ei, X)Y, ei) + g̃(H,α(X,Y ))

−
n∑
i=1

g̃(α(ei, X), α(ei, Y )),

(9)

and the scalar curvatures sg and sg̃ by the expression

sg = sg̃ − 2

n∑
i=1

ñ∑
j=n+1

Kg̃(ei, ej)−Kg̃(ei, ej) + g̃(H,H)− g̃(α, α)

=
∑
i,j≤n

Kg̃(ei, ej) + g̃(H,H)− g̃(α, α),

(10)

where Kg̃(ei, ej) is the g̃-curvature of the section spanned by the or-
thonormal vectors ei and ej , and g̃(H,H) and g̃(α, α) are the squared-
norms of the mean curvature vector H and the form α, respectively.

The critical submanifolds for the functionals Π and Ψ in (1) and (2)
under deformations of the immersion f are described in full generality
in [8, Theorem 3.10]. We recall the equations they satisfy adapted to
the case of interest here. We denote by Snc the nth dimensional space
form of curvature c. For convenience, we use the standard double index
summation convention.

Theorem 7 ([8, Theorem 3.10]). Let M be an n-manifold of codimen-
sion p isometrically immersed into the space form Sn+pc . Let {e1, . . . , en}
be an orthonormal frame of tangent vectors to M , and {ν1, . . . , νp} be
an orthonormal frame of the normal bundle of the immersion such that
H = hν1. If α(ei, ej) = hrijνr, then M is a critical point of Π if, and
only if,

2∆h = 2ch− 2h‖∇νeiν1‖
2 − h‖α‖2 + 2 traceAν1A

2
νk
,

and for all m in the range 2 ≤ m ≤ p, we have that

0=2〈ei(h)∇νeiν1, νm〉+hei〈∇
ν
eiν1, νm〉−h〈∇

ν
eiν1,∇

ν
eiνm〉+2 traceAνmA

2
νk
.
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In addition M is a a critical point of the functional (2) if, and only if,

2∆h = 2cnh− 2h‖∇νeiν1‖
2 − h3 + 2h traceA2

ν1 ,

and for all m in the range 2 ≤ m ≤ p, we have that

0 = 4ei(h)〈∇νeiν1, νm〉+ 2hei〈∇νeiν1, νm〉 − 2h〈∇νeiν1,∇
ν
eiνm〉

+ 2h traceAν1Aνm .

Finally M is a critical point of the functional (3) if, and only if, the last
p− 1 equations above hold, and the one before these is replaced by

2∆h = (3n− n2)ch− 2h‖∇νeiν1‖
2 − h3 + 2h traceA2

ν1 .

For hypersurfaces in an Einstein background (M̃, g̃), these critical
point equations can be described completely using only the principal
curvatures k1, . . . , kn. Observe that we have h = k1 + · · · + kn and
‖α‖2 = k21 + · · ·+ k2n, respectively.

Theorem 8 ([8, Theorem 3.3, Corollary 3.4]). Let M be a hypersur-

face in an Einstein manifold (M̃, g̃). Assume that k1, . . . , kn are the
principal curvatures, with associated orthonormal frame of principal di-
rections e1, . . . , en. Let ν be a normal field along M . Then M is a
critical point of the functional (1) if, and only if,

2∆h = 2(k1Kg̃(e1, ν) + · · ·+ knKg̃(en, ν))− h‖α‖2 + 2(k31 + · · ·+ k3n),

and a critical point of the functional (2) if, and only if,

2∆h = 2h(Kg̃(e1, ν) + · · ·+Kg̃(en, ν)) + 2h‖α‖2 − h3.
In particular, a hypersurface M in Sn+1

c is a critical point for the func-
tional (1) if, and only if, its mean curvature function h satisfies the
equation

2∆h = 2ch− h‖α‖2 + 2(k31 + · · ·+ k3n),

while M is a critical point of the functional (2) if, and only if, its mean
curvature function h satisfies the equation

2∆h = 2cnh+ 2h‖α‖2 − h3.

3. The Laplacian of the second fundamental form in
space forms

The Laplacian of the second fundamental form of the immersion
f : M → M̃ was initially computed by Simons [9] under the assump-
tion of minimality on f(M). Bérard [1] wrote down the general result,
though he applied it to immersions in space forms under the assump-
tion that the mean curvature vector of the immersion H was covariantly
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constant. In this section, we recall this fact in general. Once we show
the minimality of the critical points we consider of the functionals (1)
and (2), the result can be used in the same manner as before to explain
the reinterpretation of the classical gap theorem that we now make.

Given any tensor field Z on M , we set ∇2
X,Y Z = (∇gX∇

g
Y −∇

g
∇g

XY
)Z,

an operator of order 2. It is tensorial in X, Y , and its symmetric prop-
erties are captured in the relation (∇2

X,Y −∇2
Y,X)Z = Rg(X,Y )Z. The

Laplacian is given by ∇2 =
∑n
i=1(∇gei∇

g
ei −∇

g
∇g

ei
ei

), where {ei}ni=1 is a

g-orthonormal frame on M . If we think of the shape operator as the lin-
ear mapping A : ν(M)→ S(M), where S(M) is the bundle of symmetric
bilinear maps on TM , then we obtain an adjoint †A : S(M)→ ν(M) de-

fined by 〈†As,N〉 = 〈AN , s〉. Let Ã = †A ◦ A and A˜ =
∑

adAνj adAνj ,

where {νj}qj=1 is an orthonormal basis of ν(M) at the point. Finally, we

have the curvature type operators R′W and R(A)W given by

〈Rg̃ ′W (X), Y 〉=
∑
i

〈(∇g̃XR
g̃)(ei, Y )ei,W 〉+ 〈(∇g̃eiR

g̃)(ei, X)Y,W 〉,

〈Rg̃(A)W(X), Y 〉=
∑
i

2(〈Rg̃(ei, Y )α(X, ei),W 〉+〈Rg̃(ei, X)α(Y, ei),W 〉)

−〈ANX,Rg̃(ei, Y )ei〉 − 〈AW (Y ), Rg̃(ei, X)ei〉

+〈Rg̃(ei, α(X,Y ))ei,W 〉 − 2〈AW ei, Rg̃(ei, X)Y 〉,
where W is a normal vector at the point.

Theorem 9 ([1, Theorem 2]). We have that

〈∇2α(X,Y ),W 〉 = −〈A ◦ Ã(W )(X), Y 〉 − 〈A˜ ◦AW (X), Y 〉

+ 〈Rg̃(A)W (X), Y 〉

+ 〈Rg̃ ′W (X), Y 〉+ 〈∇2
X,YH,W 〉

+ 〈Rg̃(H,X)Y,W 〉+ 〈AWY,AHX〉.

(11)

We now assume that (M̃, g̃) has constant sectional curvature c. Then
we have that

(12) Rg̃(X,Y )Z = c(〈Y,Z〉X − 〈X,Z〉Y ),

that Rg̃
′
W = 0, and that Rg̃(A)W is given by

(13) Rg̃(A)W = cn

(
AW −

2

n
〈H,W 〉1lTM

)
.
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The following result parallels [1, Corollary 3] but leaves in the term
involving the second derivatives on H that appear in (11), as we do not
assume that the mean curvature vector is covariantly constant.

Corollary 10. If (M̃, g̃) has constant sectional curvature c, then

∇2α = −(A ◦ Ã+A˜ ◦A) + cn

(
A− 1

n
〈H, ·〉1lTM

)
+∇2

·,·H +A ◦AH .

Proof: We identify the terms in the right side of (11). The first two yield

−(A ◦ Ã+A˜ ◦A). Now, by (12), we have that 〈Rg̃(H, ei)ej , α(ei, ej)〉 =

c‖H‖2, and so Rg̃(H, ·)· = c〈H, ·〉1lTM . This and (13) show that the
third and sixth terms in the right side of (11) yield the next term in the
right side of the stated expression for ∇2α. The fourth term in the right
side of (11) is zero, the next is ∇2

·,·H, and the last is A ◦AH .

We develop now a basic inequality for the analysis of (1) and (2),

still in the case when (M̃, g̃) has constant sectional curvature c. This
inequality parallels and extends that of Simons [9, Theorem 5.3.2], and
reproduces Simons’ result [9, Theorem 5.3.2, Corollary 5.3.2] when deal-
ing with critical points of our functionals that are minimal submanifolds.
As we will see, this embodies already the fact that the gap phenomenon
is one about the lowest critical values of the said functionals.

We recall Simons’ inequality [9, Lemma 5.3.1]

(14) 〈A ◦ Ã+A˜ ◦A,A〉 ≤
(

2− 1

p

)
‖A‖4,

where p is the codimension of M in M̃ . Then, by Corollary 10, we obtain
that

0 ≤ −
∫
〈∇2α, α〉 dµ

=

∫
〈A ◦ Ã+A˜ ◦A,A〉+

(
2c‖H‖2 − cn‖α‖2

)
dµ

−
∫ (
〈∇2

ei,ejH,α(ei, ej)〉+ c‖H‖2 + 〈Aα(ei,ej)ej , AHei〉
)
dµ

≤
∫ ((

2− 1

p

)
‖α‖4 + c‖H‖2 − cn‖α‖2

)
dµ

−
∫ (
〈∇2

ei,ejH,α(ei, ej)〉+ 〈Aα(ei,ej)ej , AHei〉
)
,

(15)
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inequality that when H ≡ 0 reduces to the inequality in Simons [9, The-
orem 5.3.2], the key ingredient in the proof of his gap theorem. Both of
its sides involve differential terms of second order that might cancel each
other out, and so (15) is inadequate to analyze restrictions on critical
points of (1) or (2) that are not necessarily minimal. In the proofs of
our main results, we overcome this difficulty by using instead the ellip-
tic equation that the mean curvature function h of these critical point
satisfies, Theorem 7, and the corresponding inequality that arises by the
nonnegativity of the Laplacian.

4. Critical points of the Lagrangians with small density

In this section we prove our main results.
We consider, as above, the orthonormal frame {e1, . . . , en} of tangent

vectors to (M, g) and the orthonormal frame {ν1, . . . , νp} of the normal
bundle ν(M) such that H = hν1. We write α(ei, ej) =

∑p
r=1 h

r
ijνr.

Then we have that

(16) h =

n∑
i=1

h1ii and

n∑
i=1

hrii = 0 for 2 ≤ r ≤ p.

We denote by 〈·, ·〉 the standard metric on the space form Sn+pc . For
immersions into it, the Ricci tensor and scalar curvature of (M, g) are
such that

(17) rg(ej , ek) = (n− 1)c〈ej , ek〉+

(
hh1jk −

∑
i,r

hrijh
r
ik

)
,

and

(18) sg = n(n− 1)c+ h2 − ‖α‖2,

respectively. Thus, under the hypothesis of Theorems 2 and 3 we imme-
diately derive that sg ≥ 0 in the case when c > 0.

Proof of Theorem 2: Suppose that M ↪→ Sn+p is a critical point of Ψ of
constant mean curvature function. By Theorem 7, we must have that

(19) 0 = 2

∫
h∆h dµg =

∫
h2(2n− 2‖∇νeiν1‖

2 − h2 + 2 traceA2
ν1) dµg.

Now the trace of A2
ν1 is nonnegative and bounded above by ‖α‖2. By (4)

it follows that(
1

2
− λ
)
h2 ≤ n−‖∇νeiν1‖

2−1

2
h2+traceA2

ν1 ≤ n−‖∇
ν
eiν1‖

2−1

2
h2+‖α‖2
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is nonnegative and cannot be zero if h 6= 0. If h = 0 then ∇νν1 = 0,
and we have then that 0 ≤ ‖α‖2 ≤ n. The desired result now follows by

Theorem 1. Indeed, the Clifford torus Sm(
√
m/n)×Sn−m(

√
(n−m)/n),

1 ≤ m < n, has principal curvatures ±
√

(n−m)/m and ∓
√
m/(n−m)

with multiplicities m and n −m, respectively. In addition, by (17), its
Ricci curvature is bounded between n(m−1)/m and n(n−m−1)/(n−m),
while the real projective plane is embedded into S4 with an Einstein
metric of scalar curvature 2/3.

We pause briefly to derive an elementary result to be used in the proof
of Theorem 3. This will unravel the geometric content of the constants
that appear in the estimates (5), and the inequality of Theorem 6.

Lemma 11. Let (M, g) be a Riemannian manifold isometrically im-

mersed into a background manifold (M̃, g̃), and consider the degree 1
homogeneous function

trace
(
Aν1

∑
j A

2
νj

)
‖α‖2

.

At a critical point we have that

trace

(
Aν1

∑
j

A2
νj

)
=
‖H‖(‖α‖2 + 2‖Aν1‖2)

n+ 2‖H‖2/‖α‖2
,

the maximum occurs when ‖α‖2 = ‖Aν1‖2, and so

trace

(
Aν1

∑
j

A2
νj

)
≤ 3‖H‖‖α‖2

2
.

Proof: We have that

trace

(
Aν1

∑
j

A2
νj

)
=

p∑
k=1

n∑
i,l,s=1

h1ish
k
slh

k
li,

and so the function of the hkijs under consideration is defined by

trace
(
Aν1

∑
j A

2
νj

)
‖α‖2

=

∑p
k=1

∑n
i,l,s=1 h

1
ish

k
slh

k
li∑

k

∑
ij(h

k
ij)

2

outside the origin, and extended by continuity everywhere. Its critical
points subject to the constraints (16) are the solutions of the system of
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equations

p∑
k=1

n∑
l=1

hkulh
k
lvδ1r +

n∑
i=1

h1uih
r
iv +

n∑
s=1

h1vsh
r
su

=

(∑
k

∑
ij

(hkij)
2

)2

δuv

p∑
j=1

λjδjr,

where λ1, . . . , λp are the Lagrange multipliers. Here δ is the Kronecker
symbol. If we multiply by hruv and add in u, v, and r, we obtain the
relation

‖α‖2 trace

(
Aν1

∑
j

A2
νj

)
= λ1h‖α‖4,

while if we set u = v, r = 1 and add in u, we obtain that

‖α‖2(‖α‖2 + 2‖A2
ν1‖

2)− 2h trace

(
Aν1

∑
j

A2
νj

)
= λ1n‖α‖4.

A simple algebraic manipulation yields the stated equality at critical
points, and the statement about the maximum is then clear. As we have
assumed that n ≥ 2, the inequality follows.

Proof of Theorem 3: Proceeding as above, by Theorem 7 we must have
that

0 = 2

∫
h∆h dµg

=

∫
h2
(

2− 2‖∇νeiν1‖
2 − ‖α‖2 + 2 trace

1

h
Aν1

∑
k

A2
νk

)
dµg.

(20)

If estimates (5) hold for λ ∈ [0, 1), then h = 0 and so M is a min-
imal submanifold, and ∇νν1 = 0. The desired result now follows by
Theorem 1. The argument is parallel to the one already used in the
proof of Theorem 2. It suffices to add that the symmetric Clifford torus
Sm(

√
1/2)× Sm(

√
1/2) ⊂ S2m+1 is Einstein.

Proof of Corollary 4: There only needs to be observed why these Rie-
mannian manifolds are critical points of the total scalar curvature under
deformations of the metric g in M that can be realized by an isometric
immersions of M into Sn+p. By (10), we have that∫

sg dµg = n(n− 1)µg(M) + Ψ(M)−Π(M) = Θ(M)−Π(M),
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where µg(M) is the volume of the isometrically immersed manifold.
The critical manifold M is separately a critical point of the function-
als µg(M), Ψ(M), and Π(M) under deformations of the immersion,
hence a critical point of their linear combination above.

Remark 12. It is worth observing that the Klein bottle, a nonoriented
manifold of zero Euler characteristic, can be embedded into R4 and there-
fore into S4. But no embedding of such can be a critical point of Π of
constant mean curvature function satisfying estimates (5).

Remark 13. The attentive reader may have observed that we present
Theorems 2 and 3 for immersions into spheres in order to reinterpret the
classical gap theorem. If we were to use the characterization of critical
points given by Theorem 7 for immersions into parabolic spaces (c =
0), we would obtain corresponding gap theorem results for immersions
into this type of spaces that have constant mean curvature function and
satisfy the pointwise inequality −λ‖H‖2 ≤ ‖α‖2 − ‖H‖2 − ‖∇ννH‖2
instead. In this case, dealing with critical points of (1) or (2) allows
for the different range of values of λ for which we can still draw the
conclusion. The detailed formulation of the statements so obtained are
left to that astute reader.

Proof of Theorem 5: By Theorem 7 we have that

(21) 0 ≤ 2

∫
h∆h dµg =

∫
h2(−2n−2‖∇νeiν1‖

2−h2+2 traceA2
ν1) dµg.

But 0 ≤ traceA2
ν1 ≤ ‖α‖

2, and so

−2n− h2 + 2 traceA2
ν1 ≤ −2n− h2 + 2‖α‖2 ≤ 0.

It follows that either h = 0, or that

−2n− h2 + 2 traceA2
ν1 = −2n− h2 + 2‖α‖2 = 0, ∇νeiν1 = 0.

In the latter case, we have that hrij = 0 for all r ≥ 2, and the vector H =
hν1 is a covariantly constant section of the normal bundle ν(M). The
desired result follows.

Proof of Theorem 6: We use once again the critical point equation given
by Theorem 7, and obtain that

0 ≤ 2

∫
h∆h dµg

=

∫
h2
(
−2− 2‖∇νeiν1‖

2 − ‖α‖2 + 2
1

h
traceAν1

∑
j

A2
νj

)
dµg.
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By Lemma 11, we have that

−2− ‖α‖2 + 2
1

h
traceAν1

∑
j

A2
νj ≤ −2− ‖α‖2 + 2

3‖α‖2

n+ 2‖H‖2/‖α‖2
,

and the stated inequality is equivalent to the right side of this expression
being nonpositive. Thus, either h = 0 or the right hand side of the
expression above vanishes and the equality holds, and ∇νν1 = 0. In the
latter case, hrij = 0 for all r ≥ 2 and H = hν1 is a covariantly constant
section of ν(M).
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darrera versió rebuda el 25 de setembre de 2015.

http://arxiv.org/abs/1501.00164v1
http://dx.doi.org/10.2307/1970556
http://dx.doi.org/10.1007/BF02954615
http://dx.doi.org/10.1007/BF02954615

	1. Introduction
	2. Critical points of the Lagrangians
	3. The Laplacian of the second fundamental form in space forms
	4. Critical points of the Lagrangians with small density
	References

