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1. Introduction

Let D be a domain in Cn, {fm}m≥1 be a sequence of holomorphic
functions defined on D. A classical theorem of Vitali asserts that if
{fm}m≥1 is uniformly bounded on compact subsets of D and if the se-
quence is pointwise convergent to a function f on a subset X of D which
is not contained in any complex hypersurface of D, then {fm}m≥1 con-
verges uniformly on compact subsets of D. A striking feature of this
theorem is that we may extend, in some sense, the function f which is
a priori measurable and defined on a very small set, to a holomorphic
function entirely on D. We note, however, that the assumption on uni-
form boundedness of {fm}m≥1 is essential. Indeed, using the classical
Runge approximation theorem, it is possible to construct a sequence of
polynomials on C that converges pointwise to 0 everywhere except at
the origin where the limit is 1! In particular, the convergence is not uni-
form on any open set containing the origin. For details, see Example 1
in [6]. We are concerned with finding analogues of the mentioned above
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theorem of Vitali in which the uniform boundedness of the sequence un-
der consideration is omitted. A possible approach is to impose stronger
mode of convergence and/or the size of X. Motivated by the problem
of finding local conditions for single-valuedness of holomorphic contin-
uation, Gonchar proved in Theorem 2 of [7] the following remarkable
result.

Theorem 1.1. Let {rm}m≥1 be a sequence of rational functions in Cn
(deg rm ≤ m) that converges rapidly in measure on an open set X to a
holomorphic function f defined on a bounded domain D (X ⊂ D) i.e.,
for every ε > 0

lim
m→∞

λ2n(z ∈ X : |rm(z)− f(z)|1/m > ε) = 0.

Here λ2n is the Lebesgue measure in Cn ∼= R2n. Then {rm}m≥1 must
converge rapidly in measure to f on the whole domain D.

Much later, by using techniques of pluripotential theory, Bloom was
able to prove an analogous result in which rapidly convergence in mea-
sure is replaced by rapidly convergence in capacity and the set X is only
required to be compact and non-pluripolar (see Theorem 2.1 in [3]).
More precisely, we have

Theorem 1.2. Let f be a holomorphic function defined on a bounded
domain D ⊂ Cn. Let {rm}m≥ be a sequence of rational functions
(deg rm ≤ m) converging rapidly in capacity to f on a non-pluripolar
Borel subset X of D i.e., for every ε > 0

lim
m→∞

cap({z ∈ X : |rm(z)− f(z)|1/m > ε}, D) = 0.

Then {rm}m≥1 converges to f rapidly in capacity on D i.e., for every
Borel subset E of D and for every ε > 0

lim
m→∞

cap({z ∈ E : |rm(z)− f(z)|1/m > ε}, D) = 0.

Here cap(., D) denotes the relative capacity; a brief discussion of this
kind of capacity as well as convergence in capacity will be given in the
next section. Using a standard result which relates convergence in capac-
ity and pointwise convergence (cf. Lemma 2.2), it is not hard to check
that Theorem 1.1 follows from Theorem 1.2 (see Theorem 2.2 in [3]).
The above theorems of Gonchar and Bloom are the main inspiration for
our research. The first result of this paper, Theorem 3.1, states roughly
that if a sequence of bounded holomorphic functions is convergence fast
enough on a non-pluripolar set then the convergence is also fast uni-
formly on compact sets. Here the speed of approximation is measured
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in terms of the growth of the sup-norms of fm. The next result, much in
the same spirit of Theorems 1.1 and 1.2, deals with a version of Vitali’s
theorem for a sequence of rational functions. In Theorem 3.4 we consider
a sequence {rm}m≥1 of rational functions that is rapidly pointwise con-
vergent on a Borel non-pluripolar subset of Cn to a bounded measurable
function. Under an additional condition that the degree of the denom-
inator of rm tends to ∞ much less than m, we are able to show that
the sequence {rm}m≥1 converges rapidly in measure entirely on Cn to
a measurable function F . The main result of the paper (Theorem 3.6),
to some extent, is a generalization of Theorem 1.1 and Theorem 1.2
when the sequence {rm}m≥1 is supposed to converge rapidly to radial
boundary values of some bounded holomorphic function f defined on a
bounded domain D ⊂ Cn. More precisely, we show that if the subset
where the convergence occurs is not too small then the same type of
convergence must hold inside the domain. Moreover, we also consider
the convergence of {rm}m≥1 to f on affine subspaces of Cn. As an illus-
tration of this theorem, we establish in Proposition 4.2 an example of a
bounded holomorphic function f on the unit disk ∆ and a sequence of ra-
tional functions {rm}m≥1 with poles lying outside ∆ such that {rm}m≥1

converges rapidly pointwise to f∗, the radial boundary values of f , on a
compact subset F ⊂ ∂∆ of positive length. Nevertheless, the function f
does not extend holomorphically through any point of F .
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2. Preliminaries

For the reader convenience, we collect in this preparatory section
necessary elements of pluripotential theory that will be needed later
on. Let D be a domain in Cn. An upper semicontinuous function
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u : D → [−∞,∞) is said to be plurisubharmonic if the restriction of u
on D ∩ l is subharmonic for every complex line l. The cone of plurisub-
harmonic function on D is denoted by PSH(D). A subset E of Cn is
said to be pluripolar if for every z0 ∈ E there exists an open connected
neighborhood U of z0 and u ∈ PSH(U), u 6≡ −∞ such that u ≡ −∞
on E∩U . According to a classical theorem of Josefson, if E is pluripolar
then there exists a plurisubharmonic function u which defined globally
on Cn such that u ≡ −∞ on E. Clearly a proper complex subvariety
of D is pluripolar. On the other hand, it is not hard to show that any
subset of Cn with positive Lebesgue measure is not pluripolar.

In order to measure how close a Borel set to be pluripolar, following
Bedford and Taylor (see [9, p. 120]) we let cap(E,D) be the relative
capacity of a Borel subset E in D which is defined as

cap(E,D) = sup

{∫
E

(ddcu)n : u ∈ PSH(D), −1 < u < 0

}
.

It is well known that relative capacity enjoys some important proper-
ties such as sub-additivity and monotone under increasing sequences.
Moreover, a deep result in Bedford–Taylor’s theory states that pluripo-
lar subsets of D are exactly subsets with vanishing relative capacity. We
also frequently appeal to Bernstein–Walsh’s inequality (see [11]) which
states that if K, L are compact sets in Cn and K is non-pluripolar, then
there exists CK,L > 0 depending only on K and L such that for any
polynomial pm in Cn of degree at most m,

(2.1)
1

m
log ‖pm‖L ≤

1

m
log ‖pm‖K + CK,L.

We recall the following types of convergence of measurable functions
which are essentially well known.

Definition 2.1. Let {fm}m≥1, f be complex valued, measurable func-
tions defined on a bounded domain D ⊂ Cn. We say that the se-
quence {fm}m≥1

(i) converges in capacity to f on X if for every ε > 0 we have

lim
m→∞

cap(Xm,ε, D) = 0,

where Xm,ε := {x ∈ X : |fm(x)− f(x)| > ε};
(ii) converges in capacity to f on D if property (i) holds true for every

compact subset X of D.

We have the following relation between convergence in capacity and
pointwise convergence.
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Lemma 2.2. Let {fm}m≥1 and f be complex valued, measurable func-
tions defined on a domain D ⊂ Cn. If {fm}m≥1 converges in capacity
to f on a Borel subset X of D, then there exists a subsequence {fmj}j≥1

and a pluripolar subset E ⊂ X such that {fmj}j≥1 converges pointwise
to f on X \ E.

Proof: Suppose that {fm}m≥1 is a sequence that converges in capacity
to f on X. For every ε > 0, the hypothesis gives

lim
m→∞

cap(Xm,ε, D) = 0,

where Xm,ε := {x ∈ X : |fm(x) − f(x)| > ε}. Hence, we can find a
strictly increasing sequence {mk} such that

cap(Xm, 1

2k
, D) <

1

2k
, ∀m ≥ mk.

Let us set Ej :=
⋃∞
k=j Xmk,

1

2k
and E :=

⋂∞
j=1Ej . By the sub-additive

property of the relative capacity we obtain

cap(E,D)≤cap(Ej , D)≤
∞∑
k=j

cap(Xmk,
1

2k
, D)<

∞∑
k=j

1

2k
=

1

2j−1
, ∀ j≥1.

It follows that cap(E,D) = 0 and hence E is a pluripolar set. Now,
for z ∈ X \ E, it is easy to check using the definition of Ej that
limk→∞ fmk(z) = f(z). We are done.

We should mention that there exists a pointwise convergence sequence
that contains no subsequence that converges in capacity. Indeed, let
{Am}m≥1 be a sequence of pairwise disjoint subsets of the unit disk ∆ ⊂
C such that infm≥1 cap(Am,∆) > 0. Then the sequence of character-
istic functions {χAm}m≥1 provides the desired example. It should be
remarked that we do not know if there exists a version of Egorov’s
theorem for convergence in capacity, i.e. every pointwise convergence
sequence contains a subsequence that converges in capacity on some
non-pluripolar subset.

We will frequently appeal to the following fundamental result of Bed-
ford and Taylor (Theorem 4.7.6 in [9]) which partly explains the role of
pluripolar sets in pluripotential theory.

Lemma 2.3. Let {um}m≥1 be a sequence of plurisubharmonic functions
on D. Assume that the sequence is uniformly bounded from above on
compact sets of D. Let

u(z) := lim sup
m→∞

um(z), z ∈ D.

Then the set {z ∈ D : u(z) < u∗(z)} is pluripolar.
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3. Rapid convergence of holomorphic functions and
rational functions

We start with the following generalization of Vitali’s theorem men-
tioned in the introduction.

Theorem 3.1. Let D be a domain in Cn and {fm}m≥1 be a sequence
of bounded holomorphic functions on D. Suppose that there exists an
increasing sequence {αm}m≥1 of positive numbers satisfying the following
properties:

(i) ‖fm+1 − fm‖D ≤ eαm .
(ii) α := infm≥1(αm+1 − αm) > 0.
(iii) There exists a non-pluripolar Borel subset X of D and a bounded

measurable function f : X → C such that

(3.1) |fm(x)− f(x)|1/αm → 0, ∀x ∈ X.
Then the following assertions hold:

(a) {fm}m≥1 converges uniformly on compact sets of D to a holomor-
phic function f .

(b) For every compact subset K of D we have limm→∞ ‖fm−f‖1/αmK =0.

Proof: We define for m ≥ 1 the function

um(z) :=
1

αm
log |fm+1(z)− fm(z)|, ∀ z ∈ D.

It follows from assumption (i) that {um}m≥1 is a sequence of plurisub-
harmonic functions on D which is uniformly bounded from above on D.
We claim that

lim
m→∞

um(x) = −∞, ∀x ∈ X.

For this, fix x ∈ X and ε ∈ (0, 1). By (3.1), there exists m0 ≥ 1 such
that

|fm(x)− f(x)| < εαm , m ≥ m0.

This implies that

um(x) ≤ 1

αm
log(εαm + εαm+1) <

log 2

m
+ log ε, ∀m ≥ m0.

The claim follows by letting ε ↓ 0. Now we set

u := (lim sup
m→∞

um)∗.

Then u ∈ PSH(D). Furthermore, by the claim proven above and Lem-
ma 2.3 we infer that u = −∞ on a non-pluripolar subset of X. Thus
u ≡ −∞ on D. In particular um converges pointwise to −∞ on D.
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Next, by Hartogs’ lemma we conclude that um tends uniformly to −∞
on compact sets of D. It follows that, given a compact subset K of D,
for every constant A > 0, there exists m(A) ≥ 1 such that

‖fm+1 − fm‖K < e−Aαm , ∀m ≥ m(A).

Using (ii) and the triangle inequality we obtain

‖fm+n−fm‖K <
∑

0≤k≤n−1

e−Aαm+k < e−Aαm

∑
k≥0

e−Akα

=
e−Aαm

1− e−Aα
.

Therefore, we may apply Cauchy’s criterion to deduce that {fm}m≥1

converges uniformly on compact sets of D to a holomorphic function f .
Moreover, by letting n→∞ in the above inequality and observing that
A can be made arbitrarily large, we get the desired rapid uniform con-
vergence on K. The proof is complete.

Corollary 3.2. Let {pm}m≥1 be a sequence of polynomials in Cn with
deg pm ≤ m. Assume that there exists a non-pluripolar Borel subset X
of Cn and a measurable function f : X → C such that

(3.2) |pm(x)− f(x)|1/m → 0, ∀x ∈ X.

Then the following assertions hold:

(a) {pm}m≥1 converges uniformly on compact sets of Cn to a holomor-
phic function f .

(b) For every compact subset K of Cnwe have limm→∞ ‖pm−f‖1/mK =0.

Proof: Let D be a relatively compact domain in Cn. According to Theo-
rem 3.1, it suffices to prove that on the domain D, the sequence {pm}m≥1

satisfies the conditions given in Theorem 3.1. For this, we set

XN = {z ∈ X : |pm(z)− f(z)|1/m ≤ N, ∀m ≥ 1}, N ≥ 1.

By (3.2), we have
⋃
N≥1XN = X. Since X is non-pluripolar, we infer

that there must exist N0 such that XN0
is non-pluripolar. Since XN0

is
Borel, it must contain a non-pluripolar compact subset X ′. Since f is
bounded on X, we obtain

sup
m≥1

1

m
log ‖pm‖X′ <∞.

Thus, using Bernstein–Markov’s inequality we get

sup
m≥1

1

m
log ‖pm‖D <∞.
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By simple estimates we get

‖pm+1 − pm‖D ≤ eCm, ∀m ≥ 1,

where C > 0 is a constant independent of m. Thus the sequence αm :=
Cm satisfies conditions given in Theorem 3.1. We are done.

The situation is technically complicated for sequences of rational func-
tions because of the presence of poles sets. First, we need the following
concept.

Definition 3.3. Let V be an algebraic hypersurface in Cn and U be an
open subset of Cn. We define the degree of V ∩ U to be least integer d
so that there exists a polynomial p of degree d in Cn such that V ∩U =
{z ∈ U : p(z) = 0}.

Now we are able to formulate our next result.

Theorem 3.4. Let {rm}m≥1 be a sequence of rational functions on Cn
satisfying the following properties:

(i) There exist a Borel non-pluripolar subset X of Cn and a bounded
measurable function f : X → C such that

lim
m→∞

|rm(x)− f(x)|1/m = 0, ∀x ∈ X.

(ii) For every z0 ∈ Cn, there exist an open ball B(z0, r), m0 ≥ 1, and
λ ∈ (0, 1) such that

deg(Vm ∩ B(z0, r)) ≤ mλ, ∀m ≥ m0,

where Vm denotes the pole sets of rm.

Then there exists a measurable function F : Cn → C such that |rm −
F |1/m converges pointwise to 0 outside a set of Lebesgue measure 0.

For the proof we need the following elementary fact.

Lemma 3.5. Let {αm}m≥1 be a positive sequence such that αm ≤ mλ

for some constant λ ∈ (0, 1). Then the function

(3.3) F (t) =
∑
m≥1

t
m
αm

is well-defined and continuous on [0, 1).

Proof: By the assumption we have

t
m
αm ≤ tm

1−λ
, ∀ t ∈ [0, 1), m ≥ 1.
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By Weierstrass’s test, it suffices to check that∑
m≥1

δm
1−λ

<∞, ∀ δ ∈ (0, 1).

Fix δ ∈ (0, 1) and set um = δm
1−λ

. Then

um
um+1

=

(
1

δ

)(m+1)1−λ−m1−λ

=

(
1

δ

)m1−λ((1+ 1
m )1−λ−1)

=

(
1

δ

)m1−λ(1+ 1−λ
m +O( 1

m2 )−1)

= eCm
−λ+O(m−1−λ),

(
C := log

(
1

δ

))
≥ 1 + Cm−λ +O(m−1−λ), (since et ≥ 1 + t, ∀ t > 0).

It follows that

m

(
um
um+1

− 1

)
≥ Cm1−λ +O(m−λ)→∞, m→∞.

Using Raabe’s criterion, we infer that the series
∑∞
m=1 um is convergent.

This finishes the proof.

Proof of Theorem 3.4: Fix z0 ∈ Cn and an open ball U := B(z0, r) of z0

that satisfies the condition given in (ii). It suffices to prove that for a
given ε, there exist an exceptional set Aε ⊂ U of measure less than ε and
a measurable function Fε on U \Aε such that |rm−Fε|1/m converges to 0
uniformly on Uε. To this end, observe that by (ii), there exist a constant
λ ∈ (0, 1) and polynomials q′m, q′′m satisfying the following properties:

(i) rm = pm/qm, where qm = q′mq
′′
m.

(ii) αm := deg q′m ≤ mλ for every m ≥ m0 and q′′m is zero free on U .

After shrinking U and making a normalization, we may achieve that
q′′m is zero free on a fix neighborhood V of U and that

(3.4) ‖q′m‖U = ‖q′′m‖U = 1.

It follows that ‖qm‖U ≤ 1. Then by Bernstein–Markov’s inequality we
obtain

(3.5) sup
m≥1

1

m
log ‖qm‖K <∞
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for every compact subset K of Cn. We claim that there exists a compact
non-pluripolar subset X ′ of X such that

sup
m≥1

1

m
log ‖pm‖X′ <∞.

To see this, set

XN = {z ∈ X : |rm(z)− f(z)|1/m ≤ N, ∀m ≥ 1}, N ≥ 1.

By assumption (i), we have
⋃
N≥1XN = X. Since X is non-pluripolar,

we infer that there must exist N0 such that XN0
is non-pluripolar. Since

XN0
is Borel, it must contain a non-pluripolar compact subset X ′. Since

f is bounded on X, we obtain

sup
m≥1
‖rm‖1/mX′ <∞.

The claim follows by combining the above inequality with (3.5). Thus,
using again Bernstein–Markov’s inequality we derive

(3.6) sup
m≥1

1

m
log ‖pm‖K <∞

for every compact subset K of Cn. For m ≥ 1 we define

um :=
1

m
log |pm+1qm − pmqm+1|.

Using (3.5), (3.6), and simple estimates, we obtain that the sequence
{um}m≥1 is uniformly bounded from above on compact sets of Cn. The
key step is to show that {um}m≥1 converges uniformly to −∞ on com-
pact sets of Cn. To see this, we first observe the trivial equality

um =
1

m
log |qm+1qm|+

1

m
log |rm+1 − rm|.

It follows from (i) and (3.5) that

lim
m→∞

um(x) = −∞, ∀x ∈ X.

Since X is non-pluripolar, using the same argument as in the proof of
Theorem 3.1, we infer that {um}m≥1 must converge uniformly to −∞
on compact sets of Cn. In particular, for a given M > 0, there exists
m(M) such that

sup
U
um < −M, ∀m ≥ m(M).

Thus the following estimates hold on U

(3.7) |rm+1 − rm| <
e−Mm

|qm+1qm|
, ∀m ≥ m(M).
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Next, fix m ≥ m0, we will use an idea from [4] to estimate the size of
the subsets of U on which q′m+1q

′
m is small. More precisely, for δ ∈ (0, 1)

we set

Xm,δ := {z ∈ U : |q′m+1(z)q′m(z)| < δm},

X ′m,δ := {z ∈ U : |q′m(z)| < δm/2},

X ′′m,δ := {z ∈ U : |q′m+1(z)| < δm/2}.

It is clear that Xm,δ ⊂ X ′m,δ ∪X ′′m,δ. This implies

λ2n(Xm,δ) ≤ λ2n(X ′m,δ) + λ2n(X ′′m,δ).

Recall that λ2n denotes the Lebesgue measure in Cn. By Corollary 4.2
in [1], we have the following estimates

λ2n(X ′m,δ) ≤ Cn,r0δ
m
αm , λ2n(X ′′m,δ) ≤ Cn,r0δ

m
αm+1 .

Here Cn,r0 is a positive constant depending only on n, r0. So for every
m ≥ 1 we get

λ2n(Xm,δ) ≤ Cn,r0(δ
m
αm + δ

m
αm+1 ).

It follows that

λ2n(Aε,r0) ≤ Cn,r0
∑
m≥1

(δ
m
αm + δ

m
αm+1 ),

where Aε :=
⋃
m≥1Xm,δ. By assumption (ii) and Lemma 3.5, we can

choose δ ∈ (0, 1) so small such that the right hand side of the last
inequality is less than ε.

On the other hand, since q′′m is zero free on V if m ≥ m0, the func-
tion um := 1

m log |q′′m| is pluriharmonic on V for every m ≥ m0. By the
normalization (3.4) and Bernstein–Markov’s inequality, we obtain that
supU um = 0 for every m ≥ 1 and that the sequence {um}m≥1 is uni-
formly bounded from above on compact sets of Cn. In particular, this
sequence does not converges to −∞ uniformly on compact sets of V . It
follows that this sequence is also uniformly bounded from below on U .
Thus we get a constant C ′ > 0 such that

(3.8) inf
U

1

m
log |q′′mq′′m+1| > −C ′, ∀m ≥ m0.

Hence for z ∈ Uε := U \Aε, from (3.7) and (3.8) we deduce

|rm+1(z)− rm(z)| <

(
eC
′−M

δ

)m
, ∀m ≥ m(M).
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Hence, for M large enough such that eC
′−M < δ, by the triangle in-

equality we see that {rm}m≥1 is a Cauchy sequence on Uε. Therefore,
rm converges uniformly on Uε to a measurable Fε such that

lim
m→∞

‖rm − Fε‖1/mUε
= 0.

We are done.

Remarks. (i) We do not know if the theorem is still true without as-
sumption (ii). On the other hand, by tracking down the above proof,
we see that the conclusion of the theorem remains valid if (ii) is omitted
whereas (i) is strengthen to

lim
m→∞

|rm(x)− f(x)|1/m
γ

= 0, ∀x ∈ X,

where γ > 1 is a constant.

(ii) The proof of the theorem also shows that for any open set D ⊂ Cn
on which rm is holomorphic for every m, the convergence is rapidly
uniformly on compact sets i.e., for every compact subset K of D we
have

lim
m→∞

‖rm − F‖1/mK = 0.

In particular, F is holomorphic on D.

(iii) By considering r′m := 1/rm, it is easy to see that the theorem still
holds if assumption (ii) is written in terms of the degree of the zero sets
of rm.

The last result of this section may be regarded as a boundary version
of Bloom’s theorem (Theorem 1.2).

Theorem 3.6. Let D be a bounded domain in Cn and X ⊂ ∂D be a
compact subset. Let f be a bounded holomorphic function on D and
{rm}m≥1 be a sequence of rational functions on Cn. Suppose that the
following conditions are satisfied:

(i) For every x ∈ X, the point rx ∈ D for r < 1 and close enough
to 1. Furthermore, if u ∈ PSH(D), u < 0 and satisfies

lim
r→1−

u(rx) = −∞, ∀x ∈ X

then u ≡ −∞.
(ii) For every x ∈ X, there exists the limit

f∗(x) := lim
r→1−

f(rx).

(iii) The sequence |rm − f∗|1/m converges pointwise to 0 on X.
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Then the following assertions hold true:

(a) The sequence |rm − f |1/m converges in capacity to 0 on D.
(b) There exists a pluripolar subset E of Cn with the following property:

For every z0 ∈ D \ E and every affine complex subspace L of Cn
passing through z0, there exists a subsequence {rmj}j≥1 such that

|rmj − f |
1/mj
Dz0

converges to 0 in capacity (with respect to L). Here

Dz0 denotes the connected component of D ∩ L that contains z0.

Remarks. (i) The first condition imposed on X is local, and if ∂D is
C1-smooth at points of X then it is valid after a suitable change of
coordinates.

(ii) If X is a compact subset of the unit circle with positive Lebesgue
measure then X satisfies assumption (i). This can be seen as follows.
Let u ∈ SH(∆), u < 0, where ∆ is the unit disk in C be such that

lim
r→1−

u(rx) = −∞, ∀x ∈ X.

We have to show that u ≡ −∞. Fix a point ξ ∈ ∆, by composing with
an automorphism of ∆ we may assume that ξ = 0. Then, using the
mean value inequality and Fatou’s lemma we obtain

u(0) ≤ 1

2π
lim sup
r→1−

∫ 2π

0

u(reiθ) dθ ≤ 1

2π

∫ 2π

0

lim sup
r→1−

u(reiθ) dθ = −∞.

We are done.

(iii) Part (b) of Theorem 3.6 has not been studied before by either Bloom
or Gonchar even in the case where X is a non-pluripolar subset of D.
It is inspired by a result of Sadullaev in [10] which states that locally a
holomorphic function can be rapidly approximated (in measure) if and
only if its restriction to every complex line can be rapidly approximated.

(iv) The main difficulty that leads to the passage into subsequence in (b)
lies in the fact that the complex subspace L may be disjoint from the
non-pluripolar set X, thus a direct application of (a) is not possible then.

For the proof of the theorem, we first introduce the following notation:
Let D be a bounded domain in Cn and E be a subset of ∂D. Then we
define the following variant of the relative extremal function

ωR(z, E,D) := sup{ϕ(z) : ϕ ∈ PSH(D), ϕ < 0,

lim sup
r→1−, rx∈D

ϕ(rx) ≤ −1, ∀x ∈ E}, z ∈ D.



324 N. Q. Dieu, P. V. Manh, P. H. Bang, L. T. Hung

Using the above terminology, we have the following lemma which exploits
property (i) of the set X given in Theorem 3.6.

Lemma 3.7. Let D be a bounded domain in Cn and X be a subset
of ∂D. Suppose that X satisfies condition (i) of Theorem 3.6. Then for
every sequence {Xj}j≥1 ⊂ ∂D such that Xj ↑ X we have

lim
j→∞

ωR(z,Xj , D) < 0, ∀ z ∈ D.

Proof: Assume that the conclusion is false. Since {ωR(z,Xj , D)}j≥1 is a
decreasing sequence of non-positive functions, we infer that there exists
z0 ∈ D such that

ωR(z0, Xj , D) = 0, ∀ j ≥ 1.

Fix j ≥ 1, for every k ≥ 1, we can find ϕk,j ∈ PSH(D), ϕk,j < 0 such
that

lim
r→1−

ϕk,j(rx) ≤ −1, ∀x ∈ Xj whereas ϕk,j(z0) > − 1

2k
.

Now we let ϕj :=
∑
k≥1 ϕk,j . It is easy to check that

ϕj ∈ PSH(D), ϕj < 0, lim
r→1−

ϕj(rx) = −∞,

∀x ∈ Xj whereas ϕj(z0) > −1.

Next, we set

ϕ(z) :=
∑
j≥1

1

2j
ϕj(z), ∀ z ∈ D.

It is clear that ϕ ∈ PSH(D), ϕ < 0, ϕ(z0) > −1. Now, for a given x ∈ X
we choose jx such that x ∈ Xjx . Then we have

lim
r→1−

ϕ(rx) ≤ 1

2jx
lim
r→1−

ϕjx(rx) = −∞.

This is a contradiction and the proof is thereby completed.

We also require some standard facts about compactness in the cone
of plurisubharmonic functions.

Lemma 3.8. Let {um}m≥1 be a sequence of plurisubharmonic functions
defined on a domain D in Cn. Suppose that the sequence is uniformly
bounded from above on compact subsets of D and does not converge
to −∞ uniformly on some compact subset of D. Then the following
assertions hold:

(a) There exists a subsequence {umj}j≥1 converging in L1
loc(D) to a

function u ∈ PSH(D), u 6≡ −∞.
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(b) lim supj→∞ umj ≤ u on D.
(c) lim supj→∞ umj = u outside a pluripolar subset of D.
(d) The set {z ∈ D : limj→∞ umj (z) = −∞} is pluripolar.

Proof: Assertions (a) and (b) follow from Theorem 3.2.12 in [8]. Next,
we apply again Theorem 3.2.12 in [8] to obtain u = (lim supj→∞ umj )

∗

everywhere on D. Hence, by Lemma 2.3 we get (c). Finally, (d) follows
easily from (c), so we conclude the lemma.

The final ingredient is a sufficient condition for a sequence of measur-
able functions converging in capacity to 0.

Lemma 3.9. Let {um}m≥1 be a sequence of plurisubharmonic functions
and {vm}m≥1 be a sequence of measurable functions defined on a bounded
domain D ⊂ Cn. Assume that the following conditions are satisfied:

(i) {um}m≥1 is uniformly bounded from above.
(ii) There exists a compact subset X of D such that

inf
m≥1

sup
z∈X

um(z) > −∞.

(iii) um + vm converges to −∞ uniformly on compact subsets of D.

Then the sequence {evm}m≥1 converges to 0 in capacity.

Proof: Assume otherwise, then there exists a compact subset K of D, a
subsequence {mj} and constants 0 < ε < 1, δ > 0 such that

cap(Kj , D) > δ, ∀ j ≥ 1,

where Kj := {z ∈ K : vmj < log ε}. It follows from (ii) that umj does
not go to −∞ uniformly on X. So using Lemma 3.7 and assumption (i),
we may assume, after passing to a subsequence that umj converges

in L1
loc(D) to u ∈ PSH(D), u 6≡ −∞. Next, from assumption (iii) we

infer that for every M such that M + log ε > 0 there exists jM ≥ 1 such
that

umj + vmj < −M, ∀ j ≥ jM , ∀ z ∈ K.
So for j ≥ jM we have the following inclusion

Kj ⊂ Lj := {z ∈ K : umj < −M − log ε}.
This implies

cap(Lj , D) ≥ cap(Kj , D) > δ, ∀ j ≥ jM .
Let ω be a small neighborhood of K which is relatively compact in D.
Then we have

(3.9) sup
j≥1
‖umj‖L1(ω) <∞.
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According to Definition 2.1, we may choose ϕj ∈ PSH(D), −1 < ϕj < 0
such that ∫

Lj

(ddcϕj)
n > δ.

By a version of Chern–Levine–Nirenberg’s inequality (see Theorem 2.1.7
in [2]) we obtain for every j ≥ jM the following estimates

δ <

∫
Lj

(ddcϕj)
n≤ 1

M + log ε

∫
K

|umj |(ddcϕj)n≤
CK,ω

M + log ε
‖umj‖L1(ω).

Here CK,ω is a positive constant dependent only on K, ω. By letting
M → ∞ and applying (3.9) we get a contradiction. The proof is com-
plete.

Proof of Theorem 3.6: (a) After removing from X a pluripolar subset
(possibly empty), we may assume that rm(z) ∈ C for every z ∈ X and
m ≥ 1. Since f∗ is bounded on X, from assumptions (ii) and (iii) we
infer that

sup
m≥1

1

m
log |rm(x)| <∞, ∀x ∈ X.

For N ≥ 1 we let

XN :=

{
z ∈ X : sup

m≥1

1

m
log |rm(z)| ≤ N

}
.

It follows that X =
⋃
N≥1XN . Since X is non-pluripolar, we deduce

that there exists N0 ≥ 1 such that X ′ := XN0
is non-pluripolar. Now

we write rm = pm/qm with qm is normalized so that ‖qm‖X′ = 1. For
m ≥ 1, we define the following plurisubharmonic functions on D

um :=
1

m
log |pm − qmf |, vm :=

1

m
log |qm|.

We claim that the sequence {um}m≥1 converges to −∞ uniformly on
compact sets of D. For this purpose, observe that, since X ′ is non-
pluripolar, Bernstein–Walsh’s inequality (2.1) implies that the sequence
{vm}m≥1 is uniformly bounded from above on compact sets of Cn. By
the choice of X ′, using Bernstein–Walsh’s inequality (2.1) again, we
deduce that the sequence 1

m log |pm| is uniformly bounded from above
on compact sets of Cn as well. It follows, using easy estimates and
the assumption on boundedness of f , that the sequence {um}m≥1 is
uniformly bounded from above on compact sets of D. For k, j ≥ 1 we
let

Xk,j = {x ∈ X : |rm(x)− f∗(x)|1/m < 1/j, ∀m ≥ k}.
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By the assumption we have Xk,j ↑ X as j →∞. Now, fix a point z0 ∈ D.
In view of Lemma 3.7 and assumption (i), we can find kj(z0) (depending
on j and z0) such that

(3.10) ωR(z0, Xk,j , D) < 0, ∀ k ≥ kj(z0).

On the other hand, for x ∈ Xk,j and m ≥ k we have

lim sup
r→1−

um(rx) = vm(x) +
1

m
log |rm(x)− f∗(x)| ≤ A1 − log j.

Here A1 := supm≥1 supx∈D vm(x) is a finite constant. Now we set

A2 := sup
m≥1

sup
x∈D

um(x).

Then by the above reasoning A2 is also a finite constant. By combining
all of this and taking into account the definition of ωR(·, E,X), we arrive
at the following estimate

(3.11) um(z0) ≤ A2 + (A1 − log j)ωR(z0, Xk,j , D), ∀m ≥ k.

By putting (3.10) and (3.11) together and letting m → ∞ and then
j →∞ we derive that

lim
m→∞

um(z0) = −∞.

Since this is true for every z0 ∈ D and since {um}m≥1 is uniformly
bounded from above on D, by Hartogs’ lemma we infer that um must
converge uniformly to −∞ on compact sets of D. This is our claim.

Finally, for every z lying outside the pole sets of rm we note the
following trivial equality

um(z) := vm(z) +
1

m
log |rm(z)− f(z)|.

Hence, using Lemma 3.8, we conclude that |rm − f |1/m converges to 0
in capacity on D.

(b) By what we have proved in (a), the sequence vm := 1
m log |qm|

is uniformly bounded from above on compact sets of Cn. Moreover,
vm does not tend to −∞ uniformly on a compact set of Cn. Thus, by
Lemma 3.8(d), there exists a pluripolar subset E of Cn such that

lim sup
j→∞

vm > −∞ on D \ E.

We will show that E has the desired property. For this, fix a point
z0 ∈ D \E. Let L be an affine complex subspace passing through z0 and
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let Dz0 be the connected component of D ∩ L that contains z0. Choose
a subsequence {vmj}j≥1 such that

inf
j≥1

vmj (z0) > −∞.

Let v′j and v′′j be the restrictions to Dz0 of the two sequences vmj
and 1

mj
log |rmj − f |. According to the results provided in (a), we have

v′j + v′′j converges uniformly to −∞ on compact sets of Dz0 . So using

again Lemma 3.8 we conclude that ev
′
j converges rapidly in capacity to 0

in Dz0 . We are done.

4. Explicit constructions of rapid convergence

The goal of this section is to provide an example of a sequence of
rational functions satisfying the assumptions of Theorem 3.6. More pre-
cisely, we will construct a sequence of rational functions {rm}m≥1 with

poles lying outside ∆ such that {rm}m≥1 converges rapidly pointwise
to f∗ on some compact subset of ∂D. Here f∗ is the radial boundary
values of a bounded holomorphic function f defined on the unit disk ∆.
We begin with a general criterion which guarantees rapid convergence of
certain infinite products.

Proposition 4.1. Let {rm}m≥1 be a sequence of rational functions, D a
domain in Cn, and {βm}m≥1 a sequence of positive numbers. Suppose
that the following conditions are satisfied:

(i) {rm}m≥1 is locally uniformly bounded on D.

(ii) limm→∞
(∑∞

j=m+1 βj
) 1
m = 0.

(iii) There exists a non-pluripolar subset X of D such that for every
x ∈ X, there exists a constant Mx > 0 such that∣∣∣∣ rm(x)

rm−1(x)
− 1

∣∣∣∣ ≤Mxβm, ∀m ≥ 2.

Then the sequence {rm}m≥1 converges rapidly uniformly on every com-
pact subset of D to a holomorphic function f on D.

Proof: It follows from assumptions (i) and (iii) that the infinite prod-
uct r1

∏
m≥1

rm+1

rm
converges pointwise to a complex valued, measurable

function g on X. We claim that rm converges rapidly pointwise to g
on X. For this, we write fj := rj/rj−1 for j ≥ 2. Fix x ∈ X.

|g(x)− rm(x)| = |rm(x)|

∣∣∣∣∣∣
∞∏

j=m+1

fj(x)− 1

∣∣∣∣∣∣ .
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In view of (iii) we obtain the following estimates when m is sufficiently
enough∣∣∣∣∣∣

∞∏
j=m+1

fj(x)− 1

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∞∏

j=m+1

(
1 + (fj(x)− 1)

)
− 1

∣∣∣∣∣∣
≤

∞∏
j=m+1

(
|fj(x)− 1|+ 1

)
− 1

≤
∞∏

j=m+1

(
Mxβj + 1

)
− 1 ≤ exp(

∞∑
j=m+1

Mxβj)− 1

≤ 2Mx

∞∑
j=m+1

βj .

Here we use the inequality et ≤ 1 + 2t, 0 ≤ t � 1 and
∑∞
j=m+1 βj → 0

as m → ∞. Notice that, from (i) we get a constant Cx > 0 such that
|rm(x)| ≤ Cx for every m ≥ 1. Therefore

|g(x)− rm(x)| ≤ 2CxMx

∞∑
j=m+1

βj .

The claim now follows from (ii). Finally, it suffices to apply remark (ii)
after the proof of Theorem 3.4 to reach the desired conclusion.

For a precise construction, we first fix a compact subset F of the unit
circle ∂∆ = {z ∈ C : |z| = 1} which is of positive length but is nowhere
dense in ∂∆. In particular, F satisfies condition (i) of Theorem 3.6. This
can be done by taking a Cantor set C ⊂ (−1, 1) with the same property
and then taking F := ∂∆∩π−1(C), where π is the orthogonal projection
from ∂∆ onto the real axis.

Proposition 4.2. There exist a countable subset A of C \∆ with F ⊂
A, a sequence {rm}m≥1 of rational functions on C, and a holomorphic

function f : C \ A → C which is bounded on ∆ such that the following
properties holds true:

(a) The poles of {rm}m≥1 are included in A for every m ≥ 1.

(b) {rm}m≥1 converges rapidly uniformly on compact sets of C\A to f .

(c) {rm}m≥1 converges rapidly pointwise on F = A\A to f∗, the radial
boundary values of f .

(d) f does not extend through any point of F to a holomorphic func-
tion.
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The proof proceeds through two lemmas. For the first one, we need
to introduce some notation. We index (N∗)2 = {(m,n) : m,n ≥ 1}
by the graded lexicographic order, that is (m,n) ≺ (p, q) if and only if
m+ n < p+ q, or m+ n = p+ q but m < p. Let ind(m,n) is the index
of (m,n) in the ordered sequence. Simple computation gives

ind(m,n) =
(m+ n− 2)(m+ n− 1)

2
+m.

Hence, max(m,n) ≥
√

ind(m,n)
2 for all m,n ≥ 1.

Lemma 4.3. There exists a double-indexed sequence {rmn} ⊂ (0, 1) such
that the corresponding graded lexicographic sequence {sj}j≥1 satisfies the
condition

lim
n→∞

 ∞∑
j=n

(1− sj)

 1
n

= 0.

Proof: Fix a real number a > 1. We will prove that the sequence defined

by rjk = 1 − a−j
4−k4 satisfies the condition. Indeed, we know that

rjk = sind(j,k) and max(j, k) ≥
√

ind(j,k)
2 . We have

∞∑
j=n

(1− sj) =
∑

ind(j,k)≥n

(1− rjk) ≤
∑

j≥b
√

n
2 c

(1− rjk) +
∑

k≥b
√

n
2 c

(1− rjk).

Next, we estimate each term in the last expression. We see that

∑
j≥b
√

n
2 c

(1− rjk) =
∑

j≥b
√

n
2 c

a−j
4−k4 =

 ∑
j≥b
√

n
2 c

a−j
4


∑
k≥1

a−k
4



≤ a−(b
√

n
2 c)

4

 ∞∑
j=0

a−j

2

=
a2

(a− 1)2
a−(b
√

n
2 c)

4

.

Hence,
∞∑
j=n

(1− sj) ≤
2a2

(a− 1)2
a−(b
√

n
2 c)

4

.

The last estimate implies the desired limit.

Lemma 4.4. Let a = eiθ and b = reiξ with 0 ≤ θ, ξ ≤ π
2 . Then

|1− b̄a| ≥ 2

π
|θ − ξ|.
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Proof: We write

|1− b̄a| = |1− rei(θ−ξ)| =
√

(1− r cos(θ − ξ))2 + (r sin(θ − ξ))2

=
√

1 + r2 − 2r cos(θ − ξ) ≥ | sin(θ − ξ)| ≥ 2

π
|θ − ξ|,

where in the last estimate we use the inequality sin t ≥ 2
π t for all 0 ≤

t ≤ π
2 .

Lemma 4.5. There exists a sequence B = {αj}j≥1 ⊂ ∆ such that

(a) F is the set of accumulation points of B.

(b) limn→∞
(∑∞

j=n+1(1− |αj |)
) 1
n = 0.

(c) For all ξ ∈ F,
∑∞
j=1

1−|αj |
|1−ᾱjξ| <∞. Moreover,

lim
k→∞

 ∞∑
j=k+1

1− |αj |
|1− ᾱjξ|

 1
k

= 0.

Proof: We use an argument of Colwell in [5]. The set ∂∆ \ F is a
countable union of disjoint open arcs. Let A be the set of end-points of
these arcs. We write

A={am, bm : m ≥ 1}, |am|= |bm| = 1, ϕm=arg am < arg bm = ψm.

For each m,n ≥ 1, we define two double-indexed sequences by

ξmn = ϕm +
1

2

(
ψm − ϕm

2π

)n
, ηmn = ψm −

1

2

(
ψm − ϕm

2π

)n
.

Notice that, for fixed m, ξmn ↓ ϕm and ηmn ↑ ψm. We let tmn := 1 −
(1−rmn)

(
ψm−ϕm

2π

)n
< 1−rmn where the rmn are defined in Lemma 4.3.

Let us set

cmn = tmne
iξmn , dmn = tmne

iψmn .

We order two sequences {cmn} and {dmn} by using the graded lexico-

graphic order to get two new sequences {c̃n}n≥1 and {d̃n}n≥1 respec-
tively. Let B := {αn}n≥1 be the following sequence

c̃1, d̃1, c̃2, d̃2, . . . , c̃n, d̃n, . . .

It is easily seen that F is the set of accumulation points of B and
B ⊂ {z : |z| ≤ 1, 0 ≤ arg z ≤ π

2 }. From Lemma 4.3 we also have



332 N. Q. Dieu, P. V. Manh, P. H. Bang, L. T. Hung

limn→∞
(∑∞

j=n+1(1− |αj |)
) 1
n = 0, since

∞∑
j=n+1

(1− |αj |) ≤
∞∑

j=bn2 c

(1− |c̃j |+ 1− |d̃j |)

=
∑

ind(j,k)≥bn2 c

(1− |cjk|+ 1− |djk|)

≤
∑

ind(j,k)≥bn2 c

2(1− rjk) = 2
∑
j≥bn2 c

(1− sj).

To prove the last property, we remark that if ξ = eiθ ∈ F , then θ 6= argα
for all α ∈ B. More precisely, ∀m,n ≥ 1,

|θ − arg cmn| ≥
1

2

(
ψm − ϕm

2π

)n
, |θ − arg dmn| ≥

1

2

(
ψm − ϕm

2π

)n
.

On the other hand, 1 − |cmn| = 1 − |dmn| = (1 − rmn)
(
ψm−ϕm

2π

)n
. We

obtain from Lemma 4.4 the following estimates

1− |cmn|
|1− c̄mnξ|

≤ π

2

1− |cmn|
|θ − arg cmn|

≤ π(1− rmn).

The same inequality as above holds true for dmn. Thus,
∞∑
j=1

1− |αj |
|1− ᾱjξ|

=

∞∑
m,n=1

(
1− |cmn|
|1− c̄mnξ|

+
1− |dmn|
|1− d̄mnξ|

)

≤ 2π

∞∑
m,n=1

(1− rmn) <∞.

For the last assertion, note that
∞∑

j=k+1

1− |αj |
|1− ᾱjξ|

≤
∑

ind(m,n)≥b k2 c

(
1− |cmn|
|1− c̄mnξ|

+
1− |dmn|
|1− d̄mnξ|

)

≤ 2π

∞∑
ind(m,n)≥b k2 c

(1− rmn).

By Lemma 4.3, the k-th root of the last term tends to 0 as k →∞. This
completes the proof of the lemma.

Proof of Proposition 4.2: Let B := {αj}j≥1 ⊂ ∆ be the sequence in
Lemma 4.5. Let us set

fj(z) =
|αj |
αj

αj − z
1− ᾱjz

, rm(z) =

m∏
j=1

fj(z).



Vitali’s Theorem Without Uniform Boundedness 333

Let A := { 1
ᾱj

: j ≥ 1}. Then the set of accumulation points of A is F .

We fix a compact set K ⊂ C \A. For j ≥ 1 and z ∈ K we have

|fj(z)− 1| =
∣∣∣∣ (αj + |αj |z)(1− |αj |)

αj(1− ᾱjz)

∣∣∣∣ ≤MK(1− |αj |),

where MK > 0 depends only on K and A. Now, Lemma 4.5(a) and
Proposition 4.1 imply the second assertion. For rapid convergence at ξ ∈
F , we write

|fj(ξ)− 1| =
∣∣∣∣ (αj + |αj |ξ)(1− |αj |)

αj(1− ᾱjξ)

∣∣∣∣ ≤ 4
1− |αj |
|(1− ᾱjξ)|

,

when j is big enough. Using the same arguments as in the proof of
Proposition 4.1 we obtain∣∣∣∣∣∣

∞∏
j=m+1

|αj |
αj

αj − ξ
1− ᾱjξ

− 1

∣∣∣∣∣∣ ≤ 8

∞∑
j=m+1

1− |αj |
|1− ᾱjξ|

.

On the other hand, by Theorem 1 in [5], we have limn→∞ rn(ξ) = f(ξ).
Thus, we can find Mξ > 0 such that |rn(ξ)| ≤Mξ for all n ≥ 1. Hence,

|f(ξ)− rm(ξ)| ≤ 8Mξ

∞∑
j=m+1

1− |αj |
|1− ᾱjξ|

.

Assertion (c) now follows from Lemma 4.5(c). Finally, we observe that
since the zero set of rm is exactly {α1, . . . , αm} and since every point of F
is an accumulation point of {αm}m≥1, the limiting function f can not
be extended holomorphically through any point of F . This completes
the proof.
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ics 127, Birkhäuser Boston, Inc., Boston, MA, 1994.

[9] M. Klimek, “Pluripotential theory”, London Mathematical Soci-
ety Monographs. New Series 6, Oxford Science Publications, The
Clarendon Press, Oxford University Press, New York, 1991.

[10] A. Sadullaev, A criterion for fast rational approximation in Cn,
(Russian), Mat. Sb. (N.S.) 125(167), no. 2 (1984), 269–279.

[11] J. Siciak, Extremal plurisubharmonic functions in Cn, Ann. Polon.
Math. 39 (1981), 175–211.

Nguyen Quang Dieu and Phung Van Manh:
Hanoi National University of Education

136 Xuan Thuy street

Cau Giay, Hanoi
Vietnam

E-mail address: dieu vn@yahoo.com

E-mail address: manhlth@gmail.com

Pham Hien Bang:
Thai Nguyen University of Education
Luong Ngoc Quyen, Thai Nguyen
Vietnam
E-mail address: phamhienbang@yahoo.com

Le Thanh Hung:
College of Education
Trung Trac, Vinh Phuc

Vietnam

E-mail address: thanhhungcdsp@gmail.com
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darrera versió rebuda el 29 de gener de 2015.

http://dx.doi.org/10.1090/S0002-9939-1966-0193243-6
http://dx.doi.org/10.1090/S0002-9939-1966-0193243-6
http://dx.doi.org/10.2307/2975578

	1. Introduction
	Acknowledgements.

	2. Preliminaries
	3. Rapid convergence of holomorphic functions and rational functions
	4. Explicit constructions of rapid convergence
	References

