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HOMOGENIZATION OF A PARABOLIC DIRICHLET

PROBLEM BY A METHOD OF DAHLBERG

Alejandro J. Castro and Martin Strömqvist

Abstract: Consider the linear parabolic operator in divergence form

Hu := ∂tu(X, t)− div(A(X)∇u(X, t)).

We employ a method of Dahlberg to show that the Dirichlet problem for H in the
upper half plane is well-posed for boundary data in Lp, for any elliptic matrix of coef-

ficients A which is periodic and satisfies a Dini-type condition. This result allows us to

treat a homogenization problem for the equation ∂tuε(X, t)− div(A(X/ε)∇uε(X, t))
in Lipschitz domains with Lp-boundary data.
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1. Introduction, notation, and main results

In this paper we are interested in the well-posedness of low regularity
Dirichlet problems associated with the divergence type parabolic opera-
tor

Hu := ∂tu− div
(
A(X, t) · ∇u

)
,

for a certain periodic matrix of coefficients A. That is, we would like to
guarantee existence and uniqueness of solutions and continuous depen-
dence on the boundary data, under minimal regularity assumptions on
the coefficients and on the domain. For the upper half space

{(x, t, λ) : x ∈ Rn, t ∈ R, λ > 0},
we prove that the Lp Dirichlet problem is well-posed if A is periodic in
the λ-direction. This extends previous results for the upper half space,
where it is assumed that A is either independent of λ, or that A is a
perturbation of a matrix that is independent of λ. The theory developed
for the upper half space allows us to study homogenization problems in
bounded, time-independent Lipschitz domains.

We start by briefly putting these problems into context, mentioning
just a few papers that precede this work. For the ordinary heat equa-
tion, in which case the matrix A is simply the identity matrix, Fabes and
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Rivière [7] established the solvability in C1-cylinders. Later, Fabes and
Salsa [8] and Brown [2] extended the result to Lipschitz cylinders. For
more involved time-varying domains, the situation has been analyzed by
Lewis and Murray [13] and Hofmann and Lewis [10]. The next step
was to allow non-constant coefficients. Mitrea [14] studied the situa-
tion of A ∈ C∞; Castro, Rodŕıguez-López, and Staubach [4] considered
Hölder matrices and Nyström [17] the case of complex elliptic matrices,
but independent of one of the spatial variables.

In all previous contexts, the matrices were time-independent. Allowing
time-dependence is a very challenging problem, which has been under-
stood very recently by Auscher, Egert, and Nyström [1], following a first
order approach. They consider elliptic matrices depending on time and
all spatial variables, which are certain perturbations of matrices inde-
pendent of one single spatial direction (see [1, Section 2.15] for precise
definitions).

It is also worth noting that in almost all the aforementioned papers,
the analysis was carried out via the so called method of layer potentials,
that we will not follow this time here. We consider the parabolic Dirichlet
problem in Lipschitz cylinders for merely elliptic coefficients, depending
on all spatial variables. However, we need to assume periodicity in one
direction and a Dini-type condition in the same variable, as made precise
below.

We show that if the coefficient matrix A is time-independent and peri-
odic with period 1 in the spatial direction of the normal of the boundary,
then the Dirichlet problem is solvable. Moreover, the estimates that we
obtain for the solution are independent of the period of A. For periodic
matrices A(X) and ε > 0, we can then obtain estimates that are uni-
form in ε for the solution uε to the Dirichlet problem with coefficient
matrix A(x/ε) with period ε. In particular, we prove that, as ε → 0,
uε converges to a limit function ū that solves the Dirichlet problem with
a constant coefficient matrix Ā. A limit process of this type is called
homogenization. For elliptic operators, these estimates were obtained
by Kenig and Shen in [12]. In [12], the authors have two independent
ways of proving the estimates. The first is an approximation argument
that relies on certain integral identities, the second is through a poten-
tial theoretic method due to Dahlberg. For parabolic problems these
integral estimates are not available and we rely instead on a parabolic
version of the theorem by Dahlberg. In [11], the authors build upon the
results in [12] and prove estimates for uε − ū in L2.
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Let H denote the parabolic operator

Hu := (∂t + L)u,

where

Lu := −div
(
A(X, t)∇u

)
= −

n+1∑
i,j=1

∂xi(Ai,j(X, t)∂xju)

is defined in Rn+2 = {(X, t) = (x1, . . . , xn+1, t) ∈ Rn+1×R}, n ≥ 1; and
A = {Ai,j(X, t)}n+1

i,j=1 is an (n+ 1)× (n+ 1) real and symmetric matrix
which satisfies:

• for certain 1 ≤ Λ <∞, the uniform ellipticity condition

(1.1) Λ−1|ξ|2 ≤
n+1∑
i,j=1

Ai,j(X, t)ξiξj ≤ Λ|ξ|2, ξ ∈ Rn+1;

• independence of the time variable t,

(1.2) A(X, t) = A(X);

• periodicity in the xn+1 variable

(1.3) A(x, xn+1 + 1) = A(x, xn+1), x ∈ Rn, xn+1 ∈ R;

• a Dini-type condition in the xn+1 variable

(1.4)

ˆ 1

0

θ(ρ)2

ρ
dρ <∞,

where θ(ρ) := {|A(x, λ1)−A(x, λ2)| : x ∈ Rn, |λ1 − λ2| ≤ ρ}.
We say that Hu = 0 in an open set U ⊂ Rn+2 ifˆ

U

∇φA∇u− u∂tφdX dt = 0,

for any φ ∈ C∞c (U). In virtue of the hypothesis (1.2) and (1.4), the
xn+1 direction is of special interest. Along this paper we call λ :=xn+1.
Accordingly, ∇ :=(∇||, ∂λ) :=(∂x1

, . . . , ∂xn , ∂λ). Depending on the situa-

tion, we refer to a point in Rn+2 either as (X, t), X = (x, λ), or (x, t, λ),
with an obvious abuse of notation. The latter is convenient when we con-
sider the Dirichlet problem in the upper half space, where (x, t) denotes
a point on the boundary.

Our theorems are formulated in time-independent Lipschitz domains.
By D we denote the domain

(1.5) D := {(x, t, λ) ∈ Rn × R× R : λ > φ(x)},
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which is an unbounded cylinder in time, whose spatial base is the region
above the Lipschitz graph φ, i.e., φ satisfies

|φ(x)− φ(y)| ≤ m|x− y|, x, y ∈ Rn,

for certain m > 0. The (lateral) boundary of D is given by

∂D := {(x, t, φ(x)) : x ∈ Rn, t ∈ R}.

We shall also consider bounded Lipschitz cylinders

(1.6) ΩT :=Ω×(0, T ), where Ω is a bounded Lipschitz domain in Rn+1.

It will be assumed that Ω is a (m, r0) domain in the following sense:

For any X0 ∈ ∂Ω, there exists a Lipschitz continuous function
φ such that, after a rotation of the coordinates, one has X0 =
(x0, λ0) and

{(x, λ) : |x− x0| < r0, |λ− λ0| < mr0} ∩ Ω

= {(x, λ) : |x− x0| < r0, φ(x) < λ < mr0}.

Thus, introducing

U(x0, t0, λ0) := {(x, t, λ) : |x− x0| < r0, |t− t0| < r2
0, |λ− λ0| < mr0},

one has

(1.7) U(x0, t0, λ0) ∩ ΩT = {(x, t, λ) ∈ Rn+2 : φ(x) < λ}
∩ U(x0, t0, λ0) ∩ {0 < t < T}.

The lateral boundary of ΩT is denoted by ∂LΩT := ∂Ω × (0, T ) and
the parabolic boundary is given by ∂PΩT := Ω× {t = 0} ∪ ∂LΩT . Note
that for D as in (1.5), ∂LD = ∂PD = ∂D. On ∂LΩT and ∂D we define
Lp spaces with respect to the measure

(1.8) dσ(X, t) = dσ(X) dt,

where σ is the surface measure on ∂Ω and {(x, φ(x)) : x ∈ Rn}, respec-
tively.

We shall introduce some more notation that will be needed to state our
main results. For (X, t) ∈ Rn+1×R, we define its parabolic norm ||(X, t)||
as the unique positive solution ρ of the equation

t2

ρ4
+

n+1∑
i=1

x2
i

ρ2
= 1.
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It satisfies that ||(γX, γ2t)|| = γ||(X, t)||, γ > 0. If (x, t) ∈ Rn × R, we
let ||(x, t)|| = ||(x, 0, t)||. We define the parabolic distance from (X, t) ∈
Rn+2 to (Y, s) ∈ Rn+2 by d(X, t, Y, s) := ||(X − Y, t− s)||.

Given (x0, t0) ∈ Rn+1 and η > 0, we define the cone

Γη(x0, t0) := {(x, t, λ) ∈ Rn+2
+ : ||(x− x0, t− t0)|| < ηλ},

and the standard parabolic cube centered at (x, t) ∈ Rn+1 with side length
`(Q) = r > 0 by

Q := Qr(x, t) := {(y, s) ∈ Rn+1 : |yi − xi| < r, |t− s| < r2}.

Similarly, we consider parabolic cubes Q̃ in Rn+2 centered at (X, t) as
follows,

Q̃ := Q̃r(X, t) := {(Y, s) ∈ Rn+2 : |Yi −Xi| < r, |t− s| < r2}.

It will also be useful to introduce the set

Tr(x, t) := Qr(x, t)× (0, r).

For any function u defined in Rn+2
+ := {(x, t, λ) ∈ Rn+2 : λ > 0}, we

consider the following non-tangential maximal operator

Nη(u)(x0, t0) := sup
(x,t,λ)∈Γη(x0,t0)

|u(x, t, λ)|.

If f(X, t) is defined on ∂D and (X0, t0) ∈ ∂D, we say that u(X0, t0) =
f(X0, t0) non-tangentially (n.t.) if

lim
(Y,s)∈Γη(X0,t0)

(Y,s)→(X0,t0)

u(Y, s) = f(X0, t0),

where η is chosen such that ∂D ∩ Γη(X0, t0) = {(X0, t0)}, i.e η > M .
Having made such a choice of η we simply denote N(u) = Nη(u).

In all our estimates C denotes a constant that depends only upon the
dimension n, the ellipticity constant Λ and possibly m, r0.

Theorem 1.1. Suppose that A is a real and symmetric matrix satisfying
(1.1)–(1.4) and D is an unbounded Lipschitz domain defined as in (1.5).
Then, for certain 0 < δ < 1 and any f ∈ Lp(∂D), 2− δ < p <∞, there
exists a unique solution to the Dirichlet problem{

Hu = 0 in D,

u = f n.t. on ∂D,

verifying

‖N(u)‖Lp(∂D) ≤ C‖f‖Lp(∂D).
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With Theorem 1.1 in place we are able to analyze a homogenization
problem that we now describe. In addition to (1.1) and (1.2) we assume
that

(1.9) A(X + Z) = A(X), for all Z ∈ Zn+1,

and

(1.10)

ˆ 1

0

Θ(ρ)2

ρ
dρ <∞,

where Θ(ρ) := {|A(X) − A(Y )| : X,Y ∈ Rn+1, |X − Y | ≤ ρ}. That
is, A is periodic with respect to the lattice Zn+1 and satisfies a Dini
condition in all variables.

For each ε > 0, consider the operator Lε given by

Lεu := −div(Aε(X)∇u), Aε(X) := A

(
X

ε

)
.

We also need to introduce L̄,

L̄u := −div(Ā∇u),

where the matrix Ā is determined by

Ātα :=

ˆ
(0,1)n

At∇wα dy, α ∈ Rn+1,

and the auxiliary function wα solves the problem
− div(At∇wα) = 0 in (0, 1)n+1,

wα − αy is 1-periodic,ˆ
(0,1)n+1

(wα − αy) dy = 0.

Now we can state our homogenization result.

Theorem 1.2. Suppose that A is a real and symmetric matrix satisfying
(1.1), (1.2), (1.9), and (1.10). Let ΩT be as in (1.6). Then for any ε > 0
and f ∈ Lp(∂LΩT ), 2− δ < p <∞, there exists a unique solution uε to
the Dirichlet problem

(1.11)


∂tuε + Lεuε = 0 in ΩT ,

uε = f n.t. on ∂LΩT ,

uε(X, 0) = 0 in Ω,

satisfying

(1.12) ‖N(uε)‖Lp(∂LΩT ) ≤ C‖f‖Lp(∂LΩT ).



Homogenization of a Parabolic Dirichlet Problem 445

Moreover, as ε→ 0, uε converges locally uniformly in ΩT to ū, which is
the unique solution to

(1.13)


∂tū+ L̄ū = 0 in ΩT ,

ū = f n.t. on ∂LΩT ,

ū(X, 0) = 0 in Ω,

with

‖N(ū)‖Lp(∂LΩT ) ≤ C‖f‖Lp(∂LΩT ).

In the elliptic case, Theorem 1.1 and the first part of Theorem 1.2
((1.11) and (1.12)) was proved by Kenig and Shen in [12]. Building
upon [12], an error estimate of the type

‖uε − ū‖L2(Ω) + ‖N(uε − ū)‖L2(∂Ω) ≤ Cε‖ū‖H2(Ω)

is provided in [11] under the assumption that ū ∈ H2(Ω), f ∈ H1(∂Ω),
and that the matrix A is Hölder continuous. In this work we do not pur-
sue such an error estimate. In [12] the authors also treat the Neumann
and regularity problems. The theory for the Neumann and regularity
problems is based on the use of integral identities to estimate certain
nontangential maximal functions. These integral identities are not avail-
able in the parabolic case and thus homogenization of Neumann and
regularity problems remain an interesting and challenging open prob-
lem.

The main tools in our analysis are Harnack inequalities and the esti-
mation of Green’s function in terms of L-caloric measure and vice versa,
see Subsection 2.1. The main difficulty in the parabolic setting is the
time-lag that is present in these estimates. Our requiring that the ma-
trix A is time independent and symmetric leads to spatial symmetry and
time-invariance of Green’s function, see (2.9). This becomes a key point
in the proof of the parabolic version of Dahlbergs theorem in Subsec-
tion 2.3.

2. The Dirichlet Problem

We now turn to the proof of Theorem 1.1. Since D is globally defined
by a Lipschitz graph, the situation of the proof may be reduced to the
upper half space in a standard way, see for example [12, p. 905]. Thus,
the goal of this section is to solve the Dirichlet problem for the operatorH
in the upper half space Rn+2

+ with given boundary data on ∂Rn+2
+ ≡Rn+1.

Definition 2.1. We say that the Dirichlet problem forHu = 0 in Rn+2
+ is

solvable in Lp if there exists 0 < δ < 1 such that for every 2−δ < p <∞
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and every f ∈ Cc(Rn+1), the solution to the Dirichlet problem

(2.1)

{
Hu = 0 in Rn+2

+ ,

u = f n.t. on Rn+1,

verifies

‖N(u)‖Lp(Rn+1) ≤ C‖f‖Lp(Rn+1).

It can be shown that (2.1) has a unique solution by analyzing, for any
k = 1, 2, . . . , the problems

Huk = 0 in Tk(0, 0),

uk = f n.t. on Qk(0, 0),

uk = 0 on ∂LTk(0, 0) \Qk(0, 0),

uk(X,−k2) = 0 on Tk(0, 0) ∩ {t = −k2},

and define u :=limk→∞ uk which will solve (2.1). This allows us to define
the L-caloric measure ω := ωZ,τ on Rn+1, which satisfies

u(Z, τ) =

ˆ
Rn+1

f(x, t) dω(x, t),

where u is the solution to (2.1). If U is an open subset of Rn+1, we say
that u is L-caloric in U if Hu = ∂tu + Lu = 0 in U . If −∂tu + Lu = 0
in U , we say that u is adjoint L-caloric in U . The caloric measure is a
doubling measure, i.e.

(2.2) ω(Q2r(x0, t0)) ≤ Cω(Qr(x0, t0)),

see [6] for a proof. Assuming that dω and dx dt are mutually abso-
lutely continuous, we define the kernel K(Z, τ ;x, t) with respect to the
point (Z, τ) ∈ Rn+2

+ by

(2.3) K(Z, τ ;x, t) := lim
r→0

ω(Qr(x, t))

|Qr(x, t)|
.

The solution to (2.1) may thus be represented as

u(Z, τ) =

ˆ
Rn+1

K(Z, τ ;x, t)f(x, t) dx dt.
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We recall that the solvability in L2 of the Dirichlet problem in Rn+2
+

(in the sense of Definition 2.1) is equivalent to the reverse Hölder in-
equality for the kernel K (see Lemma 2.6 below):

(2.4)

(
1

|Qr(x, t)|

ˆ
Qr(x,t)

|K(Z, τ ; y, s)|2 dy ds

)1/2

≤ C

|Qr(x, t)|

ˆ
Qr(x,t)

|K(Z, τ ; y, s)| dy ds,

for all (x, t) ∈ Rn+1 and all (Z, τ) ∈ Rn+2
+ for which |(x, 0)−Z|2 ≤ |t−τ |

and τ − t ≥ 4r2. The reverse Hölder inequality is self improving in the
sense that if (2.4) holds, then there exists α > 2 such that

(2.5)

(
1

|Qr(x, t)|

ˆ
Qr(x,t)

|K(Z, τ ; y, s)|α dy ds

)1/α

≤ C

|Qr(x, t)|

ˆ
Qr(x,t)

|K(Z, τ ; y, s)| dy ds.

This is a consequence of Gehring’s Lemma [9, Lemma 3], adapted to
parabolic cubes. In turn, the reverse Hölder inequality is equivalent to
the following condition (see Lemma 2.7 below):

(2.6)

ˆ
Qr(x0,t0)

lim sup
λ→0

∣∣∣∣u(x, t, λ)

λ

∣∣∣∣2 dx dt
≤ C

r3

ˆ
T2r(x0,t0)

|u(x, t, λ)|2 dx dt dλ, r > 0,

provided that Hu = (∂t + L)u = 0 in T4r(x0, t0) and u(x, t, 0) = 0
on Q4r(x0, t0). Shortly, we call (2.6) a local solvability condition when
(2.6) holds for 0 < r ≤ 1.

If (2.1) holds for H∗ =−∂t + L instead of H = ∂t + L, we say that
u solves the adjoint Dirichlet problem. Analogously, we define the ad-
joint L-caloric measure ω∗ and the adjoint kernel K∗(Z, τ ; y, s). It is
easy to see that the adjoint Dirichlet problem is solvable if and only if
the Dirichlet problem for H is solvable by considering the change of vari-
ables t 7→ −t. This leads to analogous equivalent solvability conditions
for the adjoint Dirichlet problem. For example, (2.6) holds for caloric
functions if and only if it holds for adjoint caloric functions.

Our first step in the proof of Theorem 1.1 is to establish (2.6) for
0 < r < 1. This is achieved by localizing the operator and using the
perturbation theory developed in [16]. Then we utilize an ingenious
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technique developed by Dahlberg to show that the periodicity of A im-
plies that (2.6) also holds for all r > 1, see Theorem 2.12 below.

For Lipschitz cylinders ΩT = Ω× (0, T ), we say that the Lp Dirichlet
problem is solvable in ΩT if there exists 0 < δ < 1 such that for every
2 − δ < p < ∞ and for every f ∈ Cc(∂LΩT ), there exists a solution to
the Dirichlet problem

Hu = 0 in ΩT ,

u = f n.t. on ∂LΩT ,

u = 0 on Ω× {t = 0},

such that

‖N(u)‖Lp(∂LΩT ) ≤ C‖f‖Lp(∂LΩT ).

The solvability is equivalent to (2.4) and (2.6), with Qr(x, t) replaced by

∆r(X, t) = Q̃r(X, t) ∩ ∂LΩT , (X, t) ∈ ∂LΩT , and (Z, τ) ∈ ΩT ,

and with the measure dσ(X, t), see (1.8), in place of dx dt.

2.1. Preliminaries. We now recall some well known results that will be
needed for the proof of Theorem 1.1. For the Lemmas 2.2–2.5 below we
refer to [6] and the references therein. For a time-independent Lipschitz
domain D (given either by (1.5) or (1.6)), we denote by G to the Green’s
function with respect to D, with the convention that G(X, t;Z, τ) is
the Green’s function with pole at (Z, τ) ∈ D. The Green’s function
G = G(·;Z, τ), as a function of (X, t), satisfies

∂tG(X, t) + LG(X, t) = δ(X − Z, t− τ) in D,(2.7)

G(X, t) = 0 on ∂LD ∪ ∂PD.(2.8)

Since the operator L is symmetric we have G(X, t;Z, τ) = G(Z, t;X, τ).
Additionally, the time-independence of A implies that G(X, t;Z, τ) de-
pends only on the time difference t − τ . To see this we note that if
the function v(X, t) is L-caloric, then so is v(X, t + t0). It follows that
G(X, t+ t0;Z, τ + t0) satisfies (2.7) and (2.8). Combining the symmetry
in space and the time-invariance we obtain

(2.9) G(X, t;Z, τ) = G(Z, t+ t0;X, τ + t0).

We also recall the estimate

(2.10) G(X, t;Z, τ) ≤ C

‖(X − Z, t− τ)‖n+1
.
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We shall also consider the adjoint Green’s function G∗(X, t) with pole
at (Z, τ), given by

G∗(X, t) = G∗(X, t;Z, τ) = G(Z, τ ;X, t),

which is adjoint L-caloric as a function of (X, t) for t < τ .

Lemma 2.2. Let G and ω be Green’s function and the L-caloric mea-
sure of TR(x0, t0) or Rn+2

+ . Suppose |(x0, 0) − (x, λ)|2 ≤ A|t − t0|,
and (x, t, λ) ∈ TR(x0, t0) or (x, t, λ) ∈ Rn+2

+ . Then there exists a con-
stant c = c(A) ≥ 1 such that if t− t0 ≥ 4ρ2, then

c−1ρn+1G(x, t, λ;x0, t0 + ρ2, ρ) ≤ ω(x, t, λ,∆(x0, t0, ρ/2))

≤ cρn+1G(x, t, λ;x0, t0 − ρ2, ρ),

and if t0 − t ≥ 4ρ2,

c−1ρn+1G(x0, t0 − ρ2, ρ;x, t, λ) ≤ ω∗(x, t, λ,∆(x0, t0, ρ/2))

≤ cρn+1G(x0, t0 + ρ2, ρ;x, t, λ).

Lemma 2.3 (Harnack’s inequality). Let Ω be a convex domain in Rn+1.
If Hu = 0 in Ω×(t0, T0) and u ≥ 0 in Ω×(t0, T0), then if (y, σ), (x, λ) ∈ Ω
and t0 < s < t < T0,

u(y, s, σ) ≤ Cu(x, t, λ) exp

(
C
|x− y|2 + |λ− σ|2

t− s
+
t− s
R

+ 1

)
,

where R := min{dist(x, ∂Ω)2,dist(y, ∂Ω)2, s− t0, 1}.

Lemma 2.4. If Hu = 0 in T4r(x0, t0) and u ≥ 0 in T4r(x0, t0), then

u(x, t, λ) ≤ Cu(x0, t0 + 2r2, r), for all (x, t, λ) ∈ Tr(x0, t0).

Lemma 2.5. Suppose that u and v are non-negative solutions to Hu = 0
in T4r(x0, t0), continuous in T4r(x0, t0) and that u=v=0 on Q2r(x0, t0).
Then

u(x, t, λ)

v(x, t, λ)
≤ Cu(x0, t0 + 2r2, r)

v(x0, t0 − 2r2, r)
, for all (x, t, λ) ∈ Tr(x0, t0).

If u satisfies H∗u = 0 in T4r(x0, t0), then

u(x, t, λ)

v(x, t, λ)
≤ Cu(x0, t0 − 2r2, r)

v(x0, t0 + 2r2, r)
, for all (x, t, λ) ∈ Tr(x0, t0).
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Let 1 ≤ p < ∞. We say that u is locally Hölder continuous in a
domain D if there exist constants C > 0 and 0 < α < 1 verifying

(2.11) |u(X, t)− u(Y, s)| ≤ C
(
‖(X − Y, t− s)‖

r

)α( 
2Q̃

|u|p
)1/p

,

for (X, t), (Y, s) ∈ Q̃ and every parabolic cube Q̃ := Q̃r ⊂ Rn+2 such

that 2Q̃ := Q̃2r ⊂ D. Moreover, any u satisfying (2.11) also satisfies
Moser’s local estimate

(2.12) sup
Q̃

|u| ≤ C
( 

2Q̃

|u|p
)1/p

.

By the classical De Giorgi–Moser–Nash theorem [15] any solution of

Hu = 0 in 2Q̃, verifies both estimates (2.11) and (2.12). This is true
for any real matrix A satisfying (1.1), without extra regularity needed.

Additionally, if D is a time-independent Lipschitz domain and 2Q̃∩∂D 6=
∅ and if u = 0 on 2Q̃ ∩ ∂D, then

(2.13) sup
Q̃∩D

|u| ≤ C
( 

2Q̃∩D
|u|p

)1/p

,

and (2.11) holds for (X, t), (Y, s) ∈ Q̃∩D. It is well known that if (2.11)
or (2.12) hold for one single value of p, then they hold for all 1 ≤ p <∞.
We remark that (2.11)–(2.13) also hold for solutions to H∗u = 0.

Let ω be the L-caloric measure of the domain Rn+2
+ . The nonnegative

function

v(X, t) = 1− ω(X, t,Qr(x0, t0))

is L-caloric in Rn+2
+ , vanishes onQr×{0}, and hence is Hölder continuous

on Tr/2(x0, t0). It easily follows that there is a constant 0 < γ < 1

such that ω(X, t,Qr(x0, t0)) ≥ 1
2 if (X, t) ∈ Tγr(x0, t0). By Harnack’s

inequality, there exists c0 > 0 such that

(2.14) ω(x, t, λ,Qr) ≥ c0,

if (x, t, λ) satisfies λ > γr and |x − x0|2 + λ2 ≤ C1(t − t0) ≤ C2r
2 for

some C1 and C2, with c0 depending on C1 and C2. In view of Lemma 2.2,
we get that if

λ > γr and |(x0, 0)− (x, λ)|2 ≤ A(t− t0) ≤ 10Ar2,

then there is a positive constant c such that

(2.15) G(x, t, λ;x0, t0, r) ≥ cr−n−1.
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Lemma 2.6. The reverse Hölder inequality holds if and only if the
Dirichlet problem is solvable in Lp, in the sense of Definition 2.1.

Proof: We will prove that if the reverse Hölder inequality holds for α > 2,
then for any (x, t) ∈ Rn+1 and any r > 0,

(2.16) u(x, t, r) ≤ C(M(fβ)(x, t))1/β ,

uniformly in (x, t, r), where 1/β + 1/α = 1. We may clearly assume
that f ≥ 0 and hence u ≥ 0. Thus Harnack’s inequality implies that
Nu(x, t) ≤ C(M(fβ)(x, t))1/β . Choose δ > 0 so that 2− δ = β. Then if
p > 2− δ and f ∈ Lp, we obtain

‖Nu‖Lp(Rn+1) ≤ C‖f‖Lp(Rn+1),

by the Hardy–Littlewood maximal function estimate. To prove (2.16),
we write

u(x, t, r) =

ˆ
Qr(x,t)

K(x, t, r; y, s)f(y, s) dy ds

+

∞∑
j=1

ˆ
Rj

K(x, t, r; y, s)f(y, s) dy ds,

where Rj = Q2jr(x, t) \Q2j−1(x, t). By Harnack’s inequality,
ˆ
Qr(x,t)

K(x, t, r; y, s)f(y, s) dy ds≤
ˆ
Qr(x,t)

K(x, t+4r2, 2r; y, s)f(y, s) dy ds.

From the reverse Hölder inequality we obtainˆ
Qr(x,t)

K(x, t+ 4r2, 2r; y, s)f(y, s) dy ds

≤ rn+2C

(
1

rn+2

ˆ
Qr(x,t)

Kα(x, t+ 4r2, 2r; y, s)

)1/α

×

(
1

rn+2

ˆ
Qr(x,t)

|f |β
)1/β

≤ Cω(x,t+4r2,2r)(Qr(x, t))(M(fβ)(x, t))1/β

≤ C(M(fβ)(x, t))1/β .

(2.17)
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Following the proof of [8, Lemma 2.1], it can be shown that
ˆ
Rj

K(x, t, r; y, s)f(y, s) dy ds ≤ cj
ˆ
Q2jr(x,t)

K(x, t+ 4j+1r, 2j+1r; y, s),

for a sequence cj such that
∑∞
j=1 cj < ∞. Just like in (2.17) we can

show thatˆ
Rj

K(x, t, r; y, s)f(y, s) dy ds ≤ Ccj(M(fβ)(x, t))1/β ,

which proves (2.16).
To prove the converse, suppose (x, t, λ) satisfies

(2.18) |(x0, λ)− (x, 0)| ≤ |t− t0|1/2, λ ≥ 2r.

Let f ∈ Cc(Rn+1) be a function supported in Qr(x0, t0) and u the corre-
sponding solution to the Dirichlet problem with boundary data f . Then

u(x, t, λ) =

ˆ
Qr(x0,t0)

K(y, s)f(y, s) dy ds,

where K := K(x, t, λ; ·, ·). By (2.12)

|u(x, t, λ)| ≤ C

(
1

rn+3

ˆ
Cr(x,t,λ)

|u|β dY dt

)1/β

≤ C

(
1

rn+2

ˆ
Qr(x,t)

|N(u)|β dy dt

)1/β

≤ C

r(n+2)/β

(ˆ
Qr(x,t0)

|f |β dy ds

)1/β

.

Taking the supremum over all f ∈ Cc(Rn+1) supported in Qr(x, t0) with
Lβ-norm equal to 1, we see that

(2.19)

(ˆ
Qr(x0,t0)

|K|α dy ds

)1/α

≤ C

r(n+2)/β
.

If we prove that

(2.20)

ˆ
Qr(x0,t0)

K(y, s) dy ds = ω(x, t, λ,Qr(x, t0)) ≥ c0,
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then (2.19) and (2.20) imply that for all (x, t, λ) satisfying (2.18),

(2.21)

(
1

rn+2

´
Qr(x0,t0)

|K(x, t, λ; y, s)|α dy ds
)1/α

1
rn+2

´
Qr(x0,t0)

K(x, t, λ; y, s) dy ds
≤ C

c0
.

Since (2.20) is a consequence of (2.14), (2.21) follows.

Note that (2.21) is an apriori weaker statement than (2.4) due to
the restriction (2.18). However, following the proof of (2.16), we see
that (2.21) is in fact enough to prove (2.16). By Lemma 2.1 and Theo-
rem 3.1 in [8], (2.16) implies the reverse Hölder inequality (2.4), so (2.21)
and (2.4) are actually equivalent.

Lemma 2.7. Properties (2.4) and (2.6) are equivalent.

Proof: Assume that the reverse Hölder inequality (2.4) holds. Note that
by (2.3) and Lemma 2.2,

K(Z, τ ;x, t) = lim
λ→0

G(Z, τ ;x, t, λ)

λ
.

Let Z := (x0, 5r), τ := t0 + 20r2, and G∗(x, t, λ) := G(Z, τ ;x, t, λ).
We write

u(x, t, λ)

λ
=

u(x, t, λ)

G∗(x, t, λ)

G∗(x, t, λ)

λ
.

For any (x, t̂, λ) ∈ Tr(x0, t0), we have

u(x, t̂, λ)

G∗(x, t̂, λ)
≤ sup
|t−t0|<r2

u(x, t, λ)

G∗(x, 2t̂− t, λ)
.

Since G∗ is adjoint caloric, the function v(x, t, λ) := G∗(x, 2t̂ − t, λ) is
caloric in T4r(x0, t0). Using Lemma 2.5, we see that

u(x, t, λ)

G∗(x, t, λ)
≤ C u(x0, t0 + 2r2, r)

G∗(x0, 2t− t0 + 2r2, r)
, for all (x, t, λ) ∈ Tr(x0, t0).
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Additionally, G∗(x0, 2t − t0 + 2r2, r) ≥ cr−n−1 for all such t by (2.15).
Thus, if (2.4) holds,
ˆ
Qr(x0,t0)

lim sup
λ→0

∣∣∣∣u(x, t, λ)

λ

∣∣∣∣2 dx dt
≤ C sup

|t−t0|<r2

(
u(x0, t0 + 2r2, r)

G∗(x0, 2t− t0 + 2r2, r)

)2 ˆ
Qr(x0,t0)

K2(x, t) dx dt

≤ Cu2(x0, t0 + 2r2, r)r2n+2rn+2 1

|Qr|

ˆ
Qr(x0,t0)

K2(x, t) dx dt

≤ Cu2(x0, t0 + 2r2, r)r3n+4

(
1

|Qr|

ˆ
Qr(x0,t0)

K(x, t) dx dt

)2

≤ Cu2(x0, t0 + 2r2, r)rnω2(Qr)

≤ C

r3

ˆ
T2r(x0,t0)

u2(x0, t0 + 2r2, r) dx dt dλ

≤ C

r3

ˆ
T2r(x0,t0)

u2(x, t, λ) dx dt dλ,

where the last inequality is a consequence of Harnack’s inequality.

If (2.6) holds, fix (x0, t0) and let (Z, τ) satisfy |(x0, 0)−Z|2 ≤ |t0−τ |,
zn+1 ≥ 2r, and τ − t0 ≥ 16r2. Choose u(x, t, λ) = G(Z, τ ;x, t, λ) =
G∗(x, t, λ) in (2.6), then (−∂t + L)u = 0 in T4r(x0, t0). Thus

ˆ
Qr(x0,t0)

K2(x, t) dx dt =

ˆ
Qr(x,t)

lim sup
λ→0

∣∣∣∣G∗(x, t, λ)

λ

∣∣∣∣2 dx dt
≤ C

r3

ˆ
T2r(x0,t0)

(G∗)2(x, t, λ) dx dtλ,

(2.22)

where K := K(Z,τ). By Lemmas 2.4 and 2.2,

C

r3

ˆ
T2r(x0,t0)

(G∗)2(x, t, λ) dx dt dλ

≤ C

r3
rn+3(G∗)2(x0, t0 − 9r2, r) ≤ Cr−n−2ω2(Qr(x0, t0 − 10r2))

≤ Cr−n−2ω(Q11r(x0, t0)) ≤ Cω(Qr(x0, t0))

≤ Crn+2

(
1

|Qr|

ˆ
Qr(x0,t0)

K(x, t) dx dt

)2

,
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where we used the doubling property (2.2). This together with (2.22)
shows that (2.6) implies (2.4).

2.2. Local solvability. In order to state the next lemma we shall need
to introduce some notation. Let ΩT be a Lipschitz cylinder as in (1.6)
and let S := ∂Ω × (0, T ) be its lateral boundary. If (X, t) ∈ S we let
Γη(X, t) be a parabolic nontangential cone of opening η and vertex (X, t).
We choose η so that for all (X, t) ∈ S, Γη(X, t) ∩ S = {(X, t)} in an
appropriate system of coordinates. Let

Γηr(X, t) := Γηr(X, t) ∩ {(Y, s) ∈ ΩT : d((Y, s), S) < r}.

If (X, t) ∈ ΩT , take d := d((X, t), S) the parabolic distance from (X, t)
to S and define

Q(X, t) := Q(x, t, λ) := Qd/4(x, t)× (λ− d/4, λ+ d/4),

where d = d(x, t, λ, S)/4. If H1 and H2 are two operators defined by

Hiu := ∂tu− div(Ai∇u), i = 1, 2,

where Ai = Ai(x, t, λ), let

ε(x, t, λ) := A1(x, t, λ)−A2(x, t, λ), α(x, t, λ) := sup
Q(x,t,λ)

|ε(y, s, σ)|.

Theorem 2.8 ([16, Theorem 6.5]). Suppose that

lim
r→0+

sup
(X0,t0)∈S

1

|∆r(X0, t0)|

×
ˆ

∆r(X0,t0)

(ˆ
Γηr (X,t)

α2(Y, s)

dn+3(Y, s, S)
dσ(Y, s)

)
dσ(X, t) = 0.

Then, the Dirichlet problem in ΩT is solvable for H1 if, and only if, it
is solvable for H2.

Proposition 2.9. Let A be a real and symmetric matrix satisfying (1.1),
(1.2), and (1.4). Then the local solvability condition (2.6), for 0 < r ≤ 1,
is satisfied.

Proof: Without loss of generality, it may be assumed that (x0, t0) =
(0, 0). Let φ1(λ) be a smooth function that satisfies φ1(λ) = 1 for
0 ≤ λ < 4, and φ1(λ) = 0 for λ ≥ 8. Take φ2(x) another smooth
function verifying φ2(x) = 1 for 0 ≤ |x| < 4, and φ2(x) = 0 for |x| ≥ 8.
We define the operator

H1u := ∂tu− div(A1(x, λ)∇u),
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which is given by the matrix

A1(x, λ) := φ2(λ)[φ1(x)A(x, λ) + (1− φ1(x))I] + (1− φ2(λ))I,

where I denotes the (n + 1)-dimensional identity matrix. Observe that
A1 is uniformly elliptic.

Our goal is to prove that the Dirichlet problem forH1 is solvable in T12

and thus satisfies the local solvability condition (2.6) in that domain (see
Lemma 2.7). In particular, this gives us

ˆ
Qr

lim sup
λ→0

∣∣∣∣u(x, t, λ)

λ

∣∣∣∣2 dx dt ≤ C

r3

ˆ
T2r

|u(x, t, λ)|2 dx dt dλ,

for all 0 < r < 1, whenever H1u = 0 in T4r and u(x, t, 0) = 0 on Q4r.
Notice that, when Hu = 0 in T4r, then also H1u = 0 in T4r and thus the
local solvability condition for H follows from that of H1.

We introduce yet another operator H2 through the matrix

A2(x, λ) := φ2(λ)[φ1(x)A(x, 0) + (1− φ1(x))I] + (1− φ2(λ))I,

which is easier to handle. To prove solvability for H2 we are going to
show that (2.6) holds. Hence, it is enough to show that in any unit
neighborhood N := Q1(x, t) × (λ − 1, λ + 1) of each (x, t, λ) ∈ S, the
Dirichlet problem for H2|N is solvable. When λ ≤ 1, A2(x, λ) does not
depend on λ, and in this situation the solvability has been established
previously in [3] and [17]. At unit distance from the remaining part of
the boundary, A2 = I, for which the solvability is well known.

Next, we make use of Theorem 2.8 to transfer the solvability from H2

to H1. We have that

ε(x, t, λ) :=ε(x, λ) :=A2(x, λ)−A1(x, λ) = φ2(λ)φ1(x)(A(x, λ)−A(x, 0)).

If d(x, t, λ, S) < 1 and λ > 1, then either λ > 10 or |x| > 10, which
implies ε(x, λ) = 0. If (Z, τ) belongs to the lateral boundaryS of T12

and ρ > 0 is small enough (it suffices to take ρ < min(1, 1/η)), then if
(x, t, λ) ∈ Γηρ(Z, τ), we may have ε(x, t, λ) 6= 0 only if (Z, τ) ∈ ∂T10∩{λ =
0}, in which case d(x, t, λ, S) = λ and λ < ηρ < 1. It follows that

α(x, t, λ) := α(x, λ) ≤

{
|A(x, λ)−A(x, 0)|, if (Z, τ) ∈ S ∩ {λ = 0},
0, otherwise,

for all (x, t, λ) ∈ Γηρ(Z, τ) and all (Z, τ) ∈ S. We conclude that if ρ is
small enough and (Z, τ) ∈ S, (Z, τ) 6∈ ∂T10 ∩ {λ = 0}, thenˆ

Γηr (Z,τ)

α2(x, t, λ)

dn+3(x, t, λ, S)
dx dt dλ = 0.
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If (Z, τ) ∈ ∂T10 ∩ {λ = 0}, thenˆ
Γηr (Z,τ)

α2(x, t, λ)

dn+3(x, t, λ, S)
dx dt dλ

≤
ˆ

Γηr (Z,τ)

|A(x, λ)−A(x, 0)|2

λn+3
dx dt dλ

≤
ˆ

Γηr (Z,τ)

θ2(λ)

λn+3
dx dt dλ ≤ C

ˆ ηρ

0

θ2(λ)

λ
dλ ≤ C

ˆ 1

0

θ2(λ)

λ
dλ,

(2.23)

where we used (1.4) and the fact that the measure of Γηr(Q)∩{(y, s, σ) :
σ = λ} is of order λn+2. As a consequence of (1.4) we get

lim
ρ→0

ˆ ηρ

0

θ2(λ)

λ
dλ = 0.

Therefore, since (2.23) does not depend on (Z, τ), the hypothesis of
Theorem 2.8 is verified and we conclude that H1 is solvable in T12,
because we already know that H2 is solvable in T12.

2.3. Local solvability implies (2.6) for all r>1. By localizing the
operator H we were able to prove local solvability in the previous sec-
tion. Now, using the periodicity of A we infer (2.6) for all r > 1. This
proof is based on an unpublished work of Dahlberg, which is available
in [12, Appendix]. We need the following Cacciopolli type inequality in
the proof.

Lemma 2.10. Let R > 0 and for any γ > 0, let

Ωγ := {(x, λ) : |xi| < 2R for i = 1, . . . , n, 0 < λ < γR}.
Suppose Hu = 0 in Ω4× (0, 16R2) and that u = 0 on ∂L(Ω4× (0, 8R2))∪
∂P (Ω4 × (0, 8R2)). Then

(2.24)

ˆ
Ω2×(0,4R2)

|∇u|2 dx dt dλ ≤ C

R2

ˆ
Ω3×(0,8R2)

|u|2 dx dt dλ.

Proof: Let φ(x, t, λ) := φ1(λ)φ2(t), where φ1 and φ2 are smooth cut-off
functions such that φ1(λ) = 1 for |λ| ≤ 2R, φ1(λ) = 0 for |λ| > 3R,
|φ′1| ≤ C/R and φ2(t) = 1 for |t| ≤ 4R2, φ2(t) = 0 for |t| > 8R2,
|φ′2| ≤ C/R2. The proof then follows by using uφ2 as a test function in
the weak formulation of Hu = 0 in Ω4 × (0, 8R2).

We remark that (2.24) holds with Ωγ1 and Ωγ2 in place of Ω2 and Ω3

for any 0 < γ1 < γ2 < 4, with C depending on γ1 and γ2. The following
lemma is a key tool in the proof.
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Lemma 2.11. Let R > 8 and let Ωγ be as in Lemma 2.10. Let A be
a real and symmetric matrix satisfying (1.1), (1.2), and (1.3). Suppose
Hu = 0 in Ω4×(0, 8R2) and that u = 0 on ∂P (Ω4×(0, 8R2))\{λ = 4R}.
Define

Qu(x, t, λ) := u(x, t, λ+ 1)− u(x, t, λ).

Then, for (x, t, λ) ∈ Ω2 × (0, 4R2) such that λ ≥ R, we have

|Qu(x, t, λ)| ≤ C

R

(
1

Rn+3

ˆ
Ω3×(0,8R2)

|u(x, t, λ)|2 dx dt dλ

)1/2

.

Proof: By the periodicity of A, HQu = 0 in Ω3 × (0, 8R2). Thus, for
(x, t, λ) ∈ Ω2 × (0, 4R2) such that λ ≥ R, (2.13) yields

|Qu(x, t, λ)| ≤ C

(
1

Rn+3

ˆ
KR(x,t,λ)

|Qu|2 dy ds dσ

)1/2

,

where KR(x, t, λ) := Q̃R/4(x, t, λ) ∩ (Ω4 × (0, 8R2)). Let

I := {x ∈ Rn : |xi| < 2R for i = 1, . . . , n}.

An application of the fundamental theorem of calculus, Hölder’s inequal-
ity, and Fubini’s theorem leads to

ˆ
KR(x,t,λ)

|Qu|2 dy ds dσ =

ˆ
KR(x,t,λ)

∣∣∣∣∣
ˆ λ+1

λ

∂σu(x, t, σ) dσ

∣∣∣∣∣
2

dy ds dλ

≤
ˆ
I×(0,8R2)

ˆ 9R/4

3R/4

ˆ λ+1

λ

|∇u(y, s, σ)|2 dσ dλ dy ds

≤
ˆ
I×(0,8R2)

ˆ 1+9R/4

3R/4

|∇u(y, s, σ)|2 dσ dy ds

≤
ˆ
I×(0,8R2)

ˆ 10R/4

3R/4

|∇u(y, s, σ)|2 dσ dy ds

≤ C

R2

ˆ
Ω3×(0,8R2)

|u(x, t, σ)|2 dy ds dσ,

where in the last inequality we also applied Lemma 2.10.

Theorem 2.12. Let A be a real and symmetric matrix satisfying (1.1),
(1.2), and (1.3). Assume that (2.6) holds for 0 < r ≤ 1. Then (2.6) also
holds for all r > 1.
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Proof: For the sake of simplicity we assume that (x0, t0) = (0, 0) and
write Tr := Tr(0, 0) and Qr := Qr(0, 0). We need to prove that

(2.25)

ˆ
Qr

lim sup
λ→0

(
u(x, t, λ)

λ

)2

dx dt ≤
ˆ
T2r

|u(x, t, λ)|2 dx dt dλ,

for all u such that Hu= 0 in T4r and u= 0 on Q4r. If r ≤ 6 we may
cover Qr by cubes Q1/2(xk, tk) and apply the local solvability condi-
tion (2.6) for 0< r≤ 1 to each of them to prove (2.25). Assume r > 6
and that Hu = 0 in T4r and u = 0 on Q4r. We choose a cover-
ing {Q1/2(xk, tk)}k of Qr such that Qr ⊂ ∪kQ1/2(xk, tk) ⊂ Qr+1 and∑
k χQ1/2(xk,tk) ≤ C, where C is independent of r.

By hypothesis, we have

I :=

ˆ
Qr

lim sup
λ→0

(
u(x, t, λ)

λ

)2

dx dt≤ C
∑
k

ˆ
T1(xk,tk)

|u(x, t, λ)|2 dx dt dλ.

Moreover, Lemma 2.4 gives us

u(x, t, λ) ≤ Cu(xk, tk + 2, 1), (x, t, λ) ∈ T1(xk, tk).

Thus,

I ≤ C
∑
k

|u(xk, tk + 2, 1)|2.

Let G1 be Green’s function for T8r with pole at (0,−10r2, 5r) and let
G2 be Green’s function for

{(x, t, λ) : |xi| < 8r for i = 1, . . . , n, −64r2 < t < 100r2, 0 < λ < 20r},

with pole at (0,−10r2, 15r). The boundary comparison principle (Lem-
ma 2.5) tells us that

u(xk, tk + 2, 1)

Gi(xk, tk + 2, 1)
≤ C u(0, 2r2, r)

Gi(0,−2r2, r)
, i = 1, 2.

From (2.9) and (2.15) we see that

Gi(0,−2r2, r) ≥ cr−n−1.

It follows that

(2.26) I ≤ Cr2n+2|u(0, 2r2, r)|2
∑
k

G1(xk, tk + 2, 1)G2(xk, tk + 2, 1).
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From (2.9), Harnack’s inequality, using the fact that tk ≤ r2 and r > 6
and Lemma 2.2 we find that

G1(xk, tk + 2, 1) = G1(xk, tk + 2, 1; 0,−10r2, 5r)

= G1(0, 10r2 + 2tk + 6, 5r;xk, tk + 4, 1)

≤ CG1(0, 13r2, 5r;xk, tk, 1) ≤ Cω1(Q1(xk, tk + 4)),

where ω1 is the L-caloric measure for T8r with respect to (0, 13r2, 5r).
Applying Harnack’s inequality to G2, wee see that G2(xk, tk + 2, 1) ≤
CG2(x, t, 1) for all (x, t)∈Q1(xk, tk+4). Going back to (2.26), we obtain

I ≤ Cr2n+2|u(0, 2r2, r)|2
∑
k

ω1(Q1(xk, tk + 4))G2(xk, tk + 2, 1)

≤ Cr2n+2|u(0, 2r2, r)|2
∑
k

ˆ
Q1(xk,tk+4)

G2(x, t, 1) dω1(x, t)

≤ Cr2n+2|u(0, 2r2, r)|2
ˆ
Q8r

G2(x, t, 1) dω1(x, t).

To estimate this last integral we use Lemma 2.11. Let QG2(x, t, λ) :=
(x, t, λ + 1) − (x, t, λ). Then HQG2 = 0 in T8r since the coefficient
matrix A is periodic in the λ variable. Thus

QG2(0, 13r2, 5r)=

ˆ
∂LT8r

QG2 dω1

=

ˆ
Q8r×{8r}

QG2 dω1 +

ˆ
Q8r×{0}

G2(x, t, 1) dω1.

(2.27)

Using Lemma 2.11, we find that for (x, t, λ) ∈ Qr × [5r8r],

|QG2(x, t, λ)| ≤ C

r

(
1

rn+3

ˆ
Dr

|G2| dy ds dσ
)1/2

,

where

Dr := {(x, t, λ) : |xi| < 8r, −64r2 < t < 100r2, 0 < λ < 10r}.

From Lemma 2.11 and the fact that |G2| ≤ Cr−n−1 in Dr, we get
that |QG2(x, t, λ)| ≤ Cr−n−2 in Q8r× [5r, 8r]. Using this in (2.27) yields
the estimate ˆ

Q8r×{0}
G(x, t, 1) dω1 ≤ Cr−n−2.

This leads to the estimate

I ≤ Crn|u(0, 2r2, r)|2.
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An application of (2.12) finishes the proof:

I ≤ Crn|u(0, 2r2, r)|2 ≤ Crn 1

rn+3

ˆ
Q̃r/2(0,2r2,r)

|u(x, t, λ)|2 dx dt dλ

≤ C

r3

ˆ
T2r

|u(x, t, λ)|2 dx dt dλ.

2.4. Solvability. As a consequence of Proposition 2.9, Theorem 2.12,
and Lemma 2.7, we know that the reverse Hölder inequality (2.4) holds.
Thus the following proposition follows now directly from Lemma 2.6.

Proposition 2.13. Suppose that A is a real and symmetric matrix satis-
fying (1.1)–(1.4). Let f ∈Cc(Rn+1). Then, there exists 0<δ<1 (which
depends only in the dimension n and the constants appearing in (1.1)
and (2.6)) such that the solution to the classical Dirichlet problem{

Hu = 0 in Rn+2
+ ,

u = f n.t. on Rn+1,

verifies, for any 2− δ < p <∞,

‖N(u)‖Lp(Rn+1) ≤ C‖f‖Lp(Rn+1).

2.5. Uniqueness. Moving forward to the proof of Theorem 1.1, we
start by showing that a solution to

(2.28)


Hu = 0 in Rn+2

+ ,

u = f n.t. on ∂Rn+2
+ = Rn+1,

‖N(u)‖Lp(Rn+1) ≤ C‖f‖Lp(Rn+1),

where f ∈ Lp(Rn+1) and p > 1, is unique. The proof relies on the
following lemma.

Lemma 2.14. Let u, v be weak solutions to H(u) = 0 and H∗(v) = 0
in Q2R(0, 0)× (r/8, 4r), for certain R ≥ r > 0, such that at least one of
the solutions is nonnegative. Then,

ˆ 2r

r

ˆ
QR(0,0)

(
|∇u(y, s, σ)||v(y, s, σ)|+ |u(y, s, σ)||∇v(y, s, σ)|

)
dy ds dσ

≤ C

r

ˆ 4r

r/8

ˆ
Q2R(0,0)

|u(y, s, σ)||v(y, s, σ)| dy ds dσ.

Proof: Suppose that u ≥ 0, the case of v ≥ 0 follows analogously. It
is possible to take points (xj , tj , λj) ∈ QR(0, 0) × (r, 2r), j = 1, . . . , N ,
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such that

QR(0, 0)× (r, 2r) ⊂
N⋃
j=1

Q̃r/4(xj , tj , λj) and

N⋃
j=1

Q̃r(xj , tj , λj) ⊂ Q2R(0, 0)× (r/8, 4r).

Then, an application of Hölder’s inequality, Cacciopoli’s inequality,
and (2.12) yieldˆ 2r

r

ˆ
QR(0,0)

|∇u||v| dy ds dσ

≤
N∑
j=1

ˆ
Q̃r/4(xj ,tj ,λj)

|∇u||v| dy ds dσ

≤
N∑
j=1

(ˆ
Q̃r/4(xj ,tj ,λj)

|∇u|2 dy ds dσ

)1/2(ˆ
Q̃r/4(xj ,tj ,λj)

|v|2 dy ds dσ

)1/2

≤ C
N∑
j=1

1

r

(ˆ
Q̃r/2(xj ,tj ,λj)

|u|2 dy ds dσ

)1/2(ˆ
Q̃r/4(xj ,tj ,λj)

|v|2 dy ds dσ

)1/2

≤ C r
n+3

r

N∑
j=1

(
sup

Q̃r/2(xj ,tj ,λj)

u
)(

sup
Q̃r/4(xj ,tj ,λj)

|v|
)

≤ C

r

N∑
j=1

(
sup

Q̃r/2(xj ,tj ,λj)

u
)ˆ

Q̃r/2(xj ,tj ,λj)

|v| dy ds dσ

≤ C

r

N∑
j=1

ˆ
Q̃r(xj ,tj ,λj)

u|v| dy ds dσ ≤ C

r

ˆ 4r

r/8

ˆ
Q2R(0,0)

u|v| dy ds dσ,

where in the penultimate step we also used Harnack’s inequality (Lem-
ma 2.3).

The following proposition implies uniqueness since the difference of
two solutions to (2.28) satisfies its hypothesis.

Proposition 2.15. Let u be a weak solution of Hu = 0 in Rn+2
+ such

that N(u) ∈ Lp(Rn+1), for certain 1 < p <∞, and

(2.29) u(x, t, λ) −→ 0, as λ→ 0+, for a.e. x ∈ Rn, t ∈ R.
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Assume also that K(Z, τ ; ·) ∈ Lp
′
(Rn+1) for all (Z, τ) ∈ Rn+2

+ , where

p′ is conjugate to p. Then, u ≡ 0 in Rn+2
+ .

Proof: Fix (Z, τ) ∈ Rn+2
+ and let G∗(X, t;Z, τ) be Green’s function re-

lated to the adjoint operator H∗ = −∂t +L on Rn+2
+ with pole at (Z, τ).

For each ` ∈ N, we take the following auxiliary functions:

• ϕ ∈ C∞c (Rn), s.t. supp(ϕ) ⊂ B(0, `/2), ϕ ≡ 1 in B(0, `/4), and
|∇ϕ| ≤ C1/`;

• φ ∈ C∞c (R), s.t. supp(φ) ⊂ (−`2/2, `2/2), φ ≡ 1 in (−`2/4, `2/4),
and |φ′| ≤ C1/`2;

• ψ ∈ C∞c (R), s.t. supp(ψ) ⊂ (1/(2`), 2`), ψ ≡ 1 in (1/`, `), |ψ′| ≤ C`
in (1/(2`), 1/`), and |∇ψ| ≤ C1/` in (`, 2`).

Then, for ` ∈ N big enough, we can write

u(Z, τ) = −
ˆ
Rn+2

+

[
∂sG

∗(Y, s;Z, τ) + divY
(
A(Y ) · ∇YG∗(Y, s;Z, τ)

)]
× u(Y, s)ϕ(y)ψ(σ)φ(s) dY ds

=

ˆ
Rn+2

+

G∗ϕψ ∂s(uφ) dY ds

+

n+1∑
i,j=1

ˆ
Rn+2

+

φai,j ∂YjG
∗∂Yi(uϕψ) dY ds

=

ˆ
Rn+2

+

G∗ϕψ ∂suφ dY ds+

ˆ
Rn+2

+

G∗ϕψ uφ′ dY ds

+

n+1∑
i,j=1

ˆ
Rn+2

+

φai,j ∂YjG
∗ u ∂Yi(ϕψ) dY ds

−
n+1∑
i,j=1

ˆ
Rn+2

+

φG∗∂Yj
(
ai,j ∂Yiuϕψ

)
dY ds

=

ˆ
Rn+2

+

G∗ϕψ uφ′ dY ds

+

n+1∑
i,j=1

ˆ
Rn+2

+

φai,j ∂YjG
∗u ∂Yi(ϕψ) dY ds

−
n+1∑
i,j=1

ˆ
Rn+2

+

φG∗ai,j ∂Yiu ∂Yj (ϕψ) dY ds,
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where Y := (y, σ) with y ∈ Rn and σ > 0. Hence,

|u(Z, τ)|≤ C

(
1

`2

ˆ 2`

1/(2`)

ˆ
`2/4<|s|<`2/2

ˆ
|y|<`/2

|G∗||u| dy ds dσ

+ `

ˆ 1/`

1/(2`)

ˆ
|s|<`2/2

ˆ
|y|<`/2

(|∇G∗||u|+ |G∗||∇u|) dy ds dσ

+
1

`

ˆ 2`

`

ˆ
|s|<`2/2

ˆ
|y|<`/2

(|∇G∗||u|+ |G∗||∇u|) dy ds dσ

+
1

`

ˆ `

1/`

ˆ
|s|<`2/2

ˆ
`/4<|y|<`/2

(|∇G∗||u|+|G∗||∇u|) dy ds dσ

)
=: I1 + I2 + I3 + I4.

Next, an application of Lemma 2.14 gives us

I3 ≤
C

`2

ˆ 4`

`/8

ˆ
|s|<`2/2

ˆ
|y|<`/2

|u||G∗| dy ds dσ.

By (2.10),

(2.30) G∗(Y, s;Z, τ) ≤ C

(|Y − Z|+ |s− τ |1/2)n+1
≤ C

`n+1
,

when `2/4 < |s| < `2, `/2 < σ < 4`, or `/8 < |y| < `, provided that ` is
sufficiently large. Hence,

I1(Z, τ)+I3(Z, τ) ≤ C

`n+2

ˆ
|s|<`2

ˆ
|y|<`

|N(u)(y, s)| dy ds

≤ C

`(n+2)/p
‖N(u)‖Lp(Rn+1)−→ 0, as `→∞.

(2.31)

On the other hand,

I2(Z, τ)≤C
ˆ
|s|<`2

ˆ
|y|<`
M2/`(u)(y, s)

(
1

1/`

ˆ 2/`

1/(4`)

G∗(y, s, σ;Z, τ)

σ
dσ

)
dy ds

≤C‖M2/`(u)‖Lp(Rn+1)

∥∥∥∥∥ 1

1/`

ˆ 2/`

1/(4`)

G∗(y, s, σ;Z, τ)

σ
dσ

∥∥∥∥∥
Lp′ (Rn+1)

,

where Mr(u) denotes the truncated vertical maximal function given by

Mr(u)(x, t) := sup
0<λ<r

|u(x, t, λ)|.
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Since

G∗(y, s, σ;Z, τ)

σ
=
G(Z, τ ; y, s, σ)

σ
,

we have

lim
σ→0

G∗(Z, τ ; y, s, σ)

σ
= K(Z, τ ; y, s),

by Lemma 2.2 and the definition of K. By the Lebesgue differentiation
theorem, we deduce that

lim
`→∞

∥∥∥∥∥ 1

1/`

ˆ 2/`

1/(4`)

G∗(y, s, σ;Z, τ)

σ
dσ

∥∥∥∥∥
Lp′ (Rn+1)

≤C‖K(Z, τ ; ·)‖Lp′ (Rn+1)<∞.

Moreover, since M2/`(u) ≤ N(u) ∈ Lp(Rn+1), the assumption (2.29)
implies

(2.32) I2(Z, τ) −→ 0, as `→∞.

To estimate I4, we write

I4 =
C

`

N∑
j=0

ˆ 2j+1/`

2j/`

ˆ
|s|<`2/2

ˆ
`/4<|y|<`/2

(|∇G∗||u|+ |G∗||∇u|) dy ds dσ,

where N = log2 `
2. By Lemma 2.14 and (2.30),

I4 =
C

`

N∑
j=0

ˆ 2j+1/`

2j/`

ˆ
|s|<`2/2

ˆ
`/4<|y|<`/2

(|∇G∗||u|+|G∗||∇u|) dy ds dσ

≤C
N∑
j=0

2−j
ˆ 2j+2/`

2j/(8`)

ˆ
|s|<`2/2

ˆ
`/4<|y|<`/2

|G∗||u| dy ds dσ

≤C
N∑
j=0

1

`n+2

ˆ
|s|<`2/2

ˆ
`/4<|y|<`/2

N(u) dy ds

≤CN 1

`n+2

ˆ
Q`

N(u) dy ds

≤ C log2 `
2

`(n+2)/p
‖N(u)‖Lp(Rn+1) −→ 0, as `→∞.

(2.33)

Therefore, since (Z, τ) was taken arbitrary in Rn+2
+ , putting together

(2.31), (2.32), and (2.33), we conclude u ≡ 0 in Rn+2
+ .
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2.6. Proof of Theorem 1.1.

Proof of Theorem 1.1: Let f ∈ Lp(Rn+1), with 2 − δ < p < ∞; where
0 < δ < 1 was determined in Proposition 2.13. We can take functions
{fk}k∈N ⊂ Cc(Rn+1) such that fk → f , k → ∞, in Lp(Rn+1). Then,
for each k ∈ N, call uk the solution provided in Proposition 2.13 with
boundary data fk, which satisfies the estimate

‖N(uk)‖Lp(Rn+1) ≤ C‖fk‖Lp(Rn+1).

We also have that

‖N(uj − uk)‖Lp(Rn+1) ≤ C‖fj − fk‖Lp(Rn+1), j, k ∈ N,

and from here we infer that there exists a function u such that uk → u,
k → ∞, uniformly on compact sets of Rn+2

+ . Moreover, standard argu-
ments guarantee that u is a weak solution of the Dirichlet problem{

Hu = 0 in Rn+2
+ ,

u = f n.t. on Rn+1,

verifying

‖N(u)‖Lp(Rn+1) ≤ C‖f‖Lp(Rn+1).

For the fact that u = f n.t. on Rn+1 we refer to [6]. On the other hand,
the uniqueness is a consequence of Proposition 2.15, since the kernel
K(Z, τ ; y, s) ∈ Lp′(Rn+1), for all (Z, τ) := (z, σ, τ) ∈ Rn+2

+ . Indeed, by
duality,

‖K(Z, τ ; ·)‖Lp′ (Rn+1) = sup
g

∣∣∣∣ˆ
Rn+1

K(Z, τ ;x, t)g(x, t) dx dt

∣∣∣∣=sup
g
|vg(Z, τ)|

≤ C sup
g

( 
Q̃σ/2(Z, τ)|vg|p

)1/p

≤ Cσ−(n+3)/p sup
g
‖N(vg)‖Lp(Rn+1)

≤ Cσ−(n+3)/p sup
g
‖g‖Lp(Rn+1) ≤ Cσ−(n+3)/p <∞.

Here the supremum was taken over all g ∈ Cc(Rn+1) such that
‖g‖Lp(Rn+1) ≤ 1; vg is the solution to the Dirichlet problem with bound-
ary data g and in the third inequality we used (2.12).

3. Homogenization

We divide the proof of Theorem 1.2 in three steps.
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3.1. Proof of (1.11) and (1.12) for D. By making the change of vari-
ables (x, t, λ) 7→ (y, s, σ) given by (x, t, λ) := (εy, ε2s, εσ), the boundary

∂D := {(x, t, λ) = (x, t, φ(x))}

is transformed into

∂Dε := {(y, s, σ) = (y, s, φε(y))},

where φε(y) := ε−1φ(εy). Note that φ and φε have the same Lipschitz
constant.

Let

vε(y, t, σ) := uε(εy, ε
2s, ελ) and fε(y, s, φε(y)) := f(εy, ε2s, φ(εy)).

Then,

(3.1)

{
∂tuε + Lεuε = 0 in D,

uε = f n.t. on ∂D,

holds if, and only if,

(3.2)

{
∂svε + Lvε = 0 in Dε,

vε = fε n.t. on ∂Dε.

By Theorem 1.1, (3.2) has a unique solution that satisfies

‖N(vε)‖L2(∂Dε) ≤ C‖fε‖L2(∂Dε).

Changing back to the (x, t, λ) coordinates, we get that (3.1) has a unique
solution verifying the estimate

‖N(uε)‖L2(∂D) ≤ C‖f‖L2(∂D).

3.2. Proof of (1.11) and (1.12) for ΩT . We are going to prove that
the kernel Kε associated to the caloric measure ωε for ∂t + Lε on ∂LΩT
satisfies the reverse Hölder inequality.

Let (x0, t0, λ0) ∈ ∂LΩT . Then, after rotating the coordinates if nec-
essary, one has by (1.7)

(3.3) ΩT ∩ U(x0, t0, λ0) = {(x̃, t̃, λ̃) : λ̃ > φ(x̃)} ∩ U(x0, t0, λ0).

In the new (rotated) coordinates (x̃, t, λ̃), ũ(x̃, t, λ̃) := u(x, t, λ) solves a
parabolic equation of the same type,

∂tũ− div(Ã∇ũ) = 0,

but in general Ã will not be periodic in λ̃.
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Suppose that the representation of (x̃, λ̃) in the original coordinates is

given by λ̃ := lν, ν ∈ Rn+1, |ν| = 1, and x̃ := x̂ in the (x, λ) coordinates.

Then, Ã has period λ̃0 = l0ν in λ̃ if and only if

(3.4) A(x̂+ (l + l0)ν) = Ã(x̃, λ̃+ λ̃0) = Ã(x̃, λ̃) = A(x̂+ lν).

From the periodicity ofA we see that (3.4) holds if and only if l0ν ∈ Zn+1.
Since |ν| = 1 this is equivalent to

(3.5) ν =
ν0

|ν0|
, ν0 ∈ Zn+1 \ {0}.

However, since φ is Lipschitz, there is room to rotate the coordinates
further to obtain (3.5), while maintaining the representation (3.3). Thus

we may assume that Ã is periodic in λ̃.

We extend φ to Rn, preserving its Lipschitz norm, and let D :=
{(x, t, λ) : λ > φ(x)}. Denote by KD

ε the kernel associated to D,
with respect to (z, τ, l) ∈ ΩT ∩ U(x0,t0,λ0) such that τ − t0 ≥ 4r2 and

|(z, l) − (x0, λ0)|2 ≤ τ − t0. From the first part of the proof we know
that the Dirichlet problem for ∂t + Lε in D is solvable in L2. Thus KD

ε

satisfies the reverse Hölder inequality, by Lemma 2.6.

Let KΩT
ε be the kernel associated to ΩT , with respect to (z, τ, l). We

need to show that(
1

rn+2

ˆ
∆r

|KΩT
ε |2 dσ

)1/2

≤ C

rn+2

ˆ
∆r

|KΩT
ε | dσ,

for any
∆r := ∆r(x0, t0, λ0), r < r0.

We recall that the measure σ was defined in (1.8). Let GΩT
ε be Green’s

function for ΩT and let GDε be Green’s function for D. We denote by
G∗ΩTε and G∗Dε the corresponding adjoint Green’s functions with pole
at (z, τ, l).

If ∆λ(x̂, t̂, λ̂) ⊂ ∆r and λ > 0 is small enough,

ωΩT
ε (∆λ)

λn+2
≤ CG

∗ΩT
ε (x̂, t̂− 4λ2, λ̂+ 2λ)

λ

= C
G∗Dε (x̂, t̂− 4λ2, λ̂+ 2λ)

λ

G∗ΩTε (x̂, t̂− 4λ2, λ̂+ 2λ)

G∗Dε (x̂, t̂− 4λ2, λ̂+ 2λ)

≤ CG
∗D
ε (x̂, t̂− 4λ2, λ̂+ 2λ)

λ

G∗ΩTε (x0, t0 − 2r2, λ0 + r)

G∗Dε (x0, t0 + 2r2, λ0 + r)

≤ Cω
D
ε (∆λ(x̂, t̂−8λ2, φ(x̂, t̂−8λ2)))

λn+2

G∗ΩTε (x0, t0−2r2, λ0+r)

G∗Dε (x0, t0+2r2, λ0+r)
,
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where we used (2.2) and (2.5). Taking λ→ 0, it follows that

KΩT
ε ≤ CKD

ε

G∗ΩTε (x0, t0 − 2r2, λ0 + r)

G∗Dε (x0, t0 + 2r2, λ0 + r)
.

Since KD
ε satisfies the reverse Hölder inequality,(
1

rn+2

ˆ
∆r

|KΩT
ε |2 dσ

)1/2

≤ CG
∗ΩT
ε (x0, t0 − 2r2, λ0 + r)

G∗Dε (x0, t0 + 2r2, λ0 + r)

(
1

rn+2

ˆ
∆r

|KD
ε |2 dσ

)1/2

≤ Cω
∗D
ε (∆r)

rn+2

G∗ΩTε (x0, t0 − 2r2, λ0 + r)

G∗Dε (x0, t0 + 2r2, λ0 + r)

≤ CG
∗D
ε (x0, t0 − 2r2, λ0 + r)

r

G∗ΩTε (x0, t0 + 2r2, λ0 + r)

G∗Dε (x0, t0 + 2r2, λ0 + r)
.

Using Corollary 2.3. in [6], we see that

G∗Dε (x0, t0 − 2r2, λ0 + r)

G∗Dε (x0, t0 + 2r2, λ0 + r)
≤ C.

Whence, using Lemma 2.2 and the doubling property (2.2), we obtain(
1

rn+2

ˆ
∆r

|KΩT
ε |2 dσ

)1/2

≤ Cω
ΩT (∆r(x0, t0 − 4r2, φ(x0, t0 − 4r2)))

rn+2

≤ Cω
ΩT (∆6r(x0, t0, λ0))

rn+2

≤ Cω
ΩT (∆6r(x0, t0, λ0))

rn+2

≤ 1

rn+2

ˆ
∆r

KΩT
ε dσ.

Thus KΩT
ε satisfies the reverse Hölder inequality, which proves (1.11)

and (1.12) for ΩT , using once again Lemma 2.6.

3.3. Proof of (1.13). We now turn to the homogenization result. Since
the domain ΩT is bounded, the Lp norm of uε in ΩT can be estimated
by the Lp norm of its non tangential maximal function:

‖uε‖Lp(ΩT ) ≤ C diam(ΩT )‖N(uε)‖Lp(∂LΩT ) ≤ C diam(ΩT )‖f‖Lp(∂LΩT ).
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Let Q̃r be a parabolic cube in Rn+2 of size r such that dist(Q̃r, ∂D) ≥ r.
From the De Giorgi–Moser–Nash estimate (2.12), it follows that

(3.6) sup
Q̃r/2

|uε|≤
(

C

rn+3

ˆ
Q̃r

|uε|p dx dt dλ
)1/p
≤ C diam(ΩT )

r(n+3)/p
‖f‖Lp(∂LΩT ).

Thus uε is uniformly bounded with respect to ε in L2(K) for any compact
subset K ⊂ ΩT . By Caccioppoli’s inequality, ‖∇uε‖L2(K) is uniformly
bounded in ε. Let

BR(X0) := {X ∈ Rn+1 : |X −X0| < R}

and let H1(BR(X0)) be the Sobolev space defined through the norm

‖v‖H1(BR(X0)) := ‖v‖L2(BR(X0)) + ‖∇v‖L2(BR(X0)),

and let (H1(BR(X0)))∗ be its dual space. Choose X0 and t1 < t2 such
that BR(X0)× (t1, t0) is compactly contained in ΩT . From the equation

∂tuε + Lεuε = 0,

we see that ∂tuε is uniformly bounded in L2((t0, t1); (H1(BR(X0)))∗).
It follows from standard results in homogenization theory (see [5,

Chapter 11]) that {uε}ε>0 has a subsequence that converges weakly with
respect to the norm

‖u‖W(BR(X0)×(t1,t2)) := ‖u‖L2(BR(X0)×(t1,t2)) + ‖∇u‖L2(BR(X0)×(t1,t2))

+ ‖∂tu‖L2((t0,t1);(H1(BR(X0)))∗),

to a function ū which satisfies ∂tū+ L̄ū = 0 in BR(X0)× (t1, t2).
We shall also need to extract a convergent subsequence of the Ker-

nel Kε. If

(3.7) (x, t, λ) ∈ BR(X0)×(t1, t2) and dist(BR(X0)×(t1, t2), ∂ΩT ) ≥ 2r,

we get as in (3.6),∣∣∣∣ˆ
∂LΩT

Kε(x, t, λ;Y, s)f(Y, s) dσ(Y ) ds

∣∣∣∣= |uε(x, t, λ)|

≤ C diam(ΩT )

r(n+3)/p
‖f‖Lp(∂LΩT ).

It thus follows by duality that ‖Kε(x, t, λ; ·, ·)‖Lq(∂LΩT ) is bounded uni-
formly in ε for (x, t, λ) as in (3.7), where q is the conjugate exponent
of p. This clearly implies that

‖Kε‖Lq(BR(X0)×(t1,t2)×∂LΩT )
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is bounded uniformly in ε. Thus, for a subsequence,

Kε −→ K̄, as ε→ 0, weakly in Lq(BR(X0)× (t1, t2)× ∂LΩT ).

Suppose {uε1} converges weakly in W(BR(X0)× (t1, t2)) to ū. Then,
there is a subsequence {ε2} of {ε1} such that Kε converges weakly to K̄
in L2(BR(X0)× (t1, t2)× ∂LΩT ), as ε→ 0, along {ε2}. This yields

ū(x, t, λ) =

ˆ
∂LΩT

K̄(x, t, λ;Y, s)f(Y, s) dσ(Y ) ds.

Since this holds for any set of the type BR(X0)×(t1, t2) that is compactly
contained in ΩT , we conclude that for a certain subsequence of {ε}ε>0,

uε −→ ū, weakly in Wloc(ΩT ),

and
Kε −→ K̄, weakly in Lqloc(ΩT )× Lq(∂LΩT ),

where
∂tū+ L̄ū = 0 in ΩT ,

ū(x, t, λ) =

ˆ
∂LΩT

K̄(x, t, λ;Y, s)f(Y, s) dσ(Y ) ds in ΩT .

It remains to prove that K̄ is indeed the kernel associated to ∂t+L̄.
That is, we need to show that ū = f n.t. on ∂LΩT . Assume that f
is smooth. Then by the De Giorgi–Moser–Nash estimate (2.13), uε is
uniformly continuous up to the boundary, with estimates uniform in ε.
Thus, uε converges uniformly to ū in any neighborhood N of the bound-
ary, for a subsequence, and ū = f on N ∩∂D. Since ∂tū+ L̄ū = 0 in ΩT
we see that

ū(x, t, λ) =

ˆ
∂LΩT

K̄(x, t, λ;Y, s)f(Y, s) dσ(Y ) ds

solves the Dirichlet problem (1.13) when f is smooth. Since smooth
functions are dense in L2, this proves that K̄ is the kernel associated
to ∂t + L̄.

Finally, taking into account that all convergent subsequences have the
same unique limit ū, we conclude that uε converges locally uniformly,
and locally weakly in W(ΩT ), to the solution ū of (1.13).
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