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INFINITE SERIES IDENTITIES INVOLVING
QUADRATIC AND CUBIC HARMONIC NUMBERS
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Abstract: By means of the modified Abel lemma on summation by parts, we inves-
tigate infinite series involving quadratic and cubic harmonic numbers. Several infinite
series identities are established for 72 and ¢(3) as consequences.
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1. Introduction and preliminaries

For two positive real numbers a and b, define the following two se-
quences by

n

1 ; ~  (-D*
hn(a,b) = o — d hy(a,b):= _ .
(a,) ;akz—a—i—b an (a,5) ;ak—a—i—b
They contain the well-known classical harmonic-like numbers as partic-

ular cases:

H, :=h,(1,1) = Z % and O, = h,(2,1) = Z L :

During the last two decades there has been growing interest in finding
closed formulae of finite sums involving harmonic numbers. There are
several approaches to evaluate these sums. By applying derivative op-
erator to the known binomial identities and terminating hypergeometric
formulae, Chu and De Donno [9, 11, 12] established numerous summa-
tion formulae. Boyadzhiev [2] evaluated several finite sums by the Euler
transformation. Cheon and El-Mikkawy [4] studied these sums by ex-
pressing harmonic numbers in terms of the Stirling numbers of the first
kind (cf. Comtet [13, §5.6]). Flajolet and Salvy [15] developed a very
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powerful method, based on the residue technique, for the summation of
series involving harmonic numbers. Wang [20] found further formulae
concerning harmonic numbers by Riordan arrays. The most powerful
method to investigate finite harmonic sums, “partial fraction decompo-
sitions”, was introduced by Chu [7, 8] and subsequently developed by
Ge-Liu-Luo [16] and Prodinger [18].

Instead, evaluation of infinite series containing harmonic numbers can
be dated back to Euler, who discovered several surprising identities re-
lated to the Riemann zeta function. Three beautiful examples can be
reproduced as follows (cf. [1, 6, 14]):

Z et _ Z ™ _y 9%
k2’ 360 k20 32 = k2

In 1991, De Doelder [14] found numerous formulae by evaluating the
digamma function. Borwein brothers [1] reviewed some identities by
combining generating functions with Parseval’s identity about the
Fourier series in 1995. In 1997, Chu [6] devised a hypergeometric method
by examining the coefficient of a monomial across known hypergeometric
series equalities, that leads to a systematic investigation of the infinite
series expressible in the Riemann zeta function (cf. [3, 5, 17, 21]).
Sofo and Hassani [19] derived further formulae by logarithmic integrals.
Recently, Abel’s lemma on summation by parts has been modified by
Chu [10] to derive several infinite series identities involving the classical
harmonic numbers and their variants. The objective of the present work
is to explore its further applications to infinite series involving quadratic
and cubic harmonic numbers. Several remarkable formulae will be es-
tablished. Here we highlight two infinite series expressions for 72 (see
Equations (9) and (11))

2

T3y Hj
24 16 _M (k+1)(k+2)(k+3)

2 Z 02
256 £ (2k+1)(2k + 3)(2k +5)
and two other ones for ((3) (see Equations (32) and (34))
6¢(3) +19 + 19 (2k + 1)H}

kk+1 Yk +2)(k—1)

C3) -4 kO3
512 k; (2k — 3)(2k — 1)(2k + 1)(2k + 3)°
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For subsequent applications, we reproduce Abel’s lemma on summa-
tion by parts as follows. With an arbitrary complex sequence {71}, define
the backward and forward difference operators V and A, respectively,
by

(1) V1 =Tk — Tk—1 and ATy =T — Tet1,

where A is adopted for convenience in the present paper, which differs
from the usual operator A only in the minus sign. Then Abel’s lemma
on summation by parts (see [10] for a proof) may be reformulated as

(2) Q:=Y BiVA, = [AB]. — AoB1 + Y _ AtAB;

k>1 k>1

provided that one of both series is convergent and the following limit
exists:

Under certain convergence conditions, this lemma can successively be
applied. In the next section, we shall prove, by employing (2) twice,
two main transformation theorems concerning the quadratic harmonic
numbers 3 (a, b) and h?(a,b), that will yield several interesting identities
for 72, In2, and the Catalan constant G. Then in Section 3, we shall
establish, by applying (2) thrice, yet another general transformation
theorem on the cubic harmonic numbers h(a,b), from which we shall
derive further two infinite series expressions for 72 and two for ¢((3). In
order to ensure the accuracy, all the formulae displayed in this paper
have been checked numerically by appropriately devised Mathematica
commands.

2. Infinite series involving quadratic harmonic numbers

For the Q-sum in (2), if there exist another difference pair {Aj, By}
and a constant 8 such that

=) AABy =B+ B,VA;,
k>1 E>1
then we can reformulate the €’-sum further by (2) as follows:
O =) AABy =B+ [A'B], - A{B| + Y _ A,AB;.
k>1 k>1

Substituting this ' into (2), we find, after having applied twice the mod-
ified Abel lemma on summation by parts, the following transformation
formula.
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Lemma 1. For the two difference pairs { Ay, By} and {Aj},, B}, } satisfy-
mg

(4) > AABy =B+ Y BVA;,
k>1 k>1
the following infinite series formula holds
(5) Q:=> ByVAy = +[AB| +[A'B'| . —AyB1—A\B{+> A AB;
k>1 k>1

provided that the both limits [AB]; and [A'B’]+ exist and one of the two
series displayed in (5) is convergent.

This lemma is more general than what we actually need. In fact, all
the difference pairs { Ay, Bx} and {4}, B} in this section satisfy, instead
of (4), the following simpler condition AyABj, = B}, VA}. Now we are
in position to prove two main theorems, that will lead, as particular
cases, to several infinite series identities containing quadratic harmonic
numbers.

Theorem 2 (Two infinite series identities).

a’h2(a,b) 1 1
(©) ; (ak +b)(ak +a+b) %+1§(ak+b)2’

4a3h3(a,b) 1 a+2b

(™) Z : - Z 2 :

= (ak+b)(ak+a+b)(ak+2a+Db) = (ak +b) 2ab(a+Db)
Proof: Let {By, By} be the two sequences

By := hi(a,b) and B} := hy(a,b) + hpyi(a,b)
with their differences being determined by
_ h'k (a7 b) + hk+1(CL, b)
ak+0b
1 1
ak+b ak+a+b

In order to be able to apply Lemma 1, we will consider couples of se-
quences {Ay, A} } satisfying the property AyABj, = B} VAj which is
stronger than the condition (4).

First, it is almost trivial to verify that the two sequences {Ay, A}}
given below satisfy the condition of Lemma 1

—a -1
d A, i =———;
an gk +a+ b

ABj, =

)

AB, =

Ap = ———
k ak +a—+b
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in view of their differences
2

VA= (ak+b)(3k+a+ b)’
VA= T +b)(;k:—|— atb)’
as well as the limiting relations
[AB]+ =0, AoB1 = Wib);
(A'B], =0, ALB,— m

Writing explicitly the equality corresponding to (5) and then simplifying
the result, we get the first formula (6).

The second formula (7) can be shown analogously by choosing another
couple of sequences {4y, A} } by

—2a

Ay =
T (ak +a+b)(ak+2a+0b)’

Al — -1 .
T (ak +a+b)(ak +2a+ D)’

and then computing their differences

4a?
vk = (ak +b)(ak + a + b)(ak + 2a + b)’
VA, = 2a

(ak + b)(ak +a + b)(ak + 2a + b)’

as well the limiting relations

—2a
ABl, = AnB = .
[ABl+ =0, AoB b2(a + b)(2a +b)’
e v —2a — 3b
[A'B'], =0, AoBl_b(a+b)2(2a+b)' O

The following interesting infinite series identities containing quadratic
harmonic numbers can be easily deduced from Theorem 2.
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Corollary 3 (a = b =1 in Theorem 2).

3 H,f _1 72
®) ;(kﬂ)(iﬁz)* T

H? 7 3
©) ;(kﬂ)(kfz)(km) T2 16

Corollary 4 (a =2 and b =1 in Theorem 2).

Oz 1w
(10) §(2k+1)(2k+3) RIS
0? 2 1
11 k = —— —.
(11) D (2k +1)(2k +3)(2k +5) 256 96

k>1

Theorem 5 (Five infinite series identities).

(12) Z( 2a°hi(a,b) ):Z( 1 3a+2b

= ak+a+bd)(ak+2a+b = ak+0)2  2ab(a +b)’
2a%h2(a,b) 5a — 2b 1
1 B =
(13) Z (ak—2a+Db)(ak—3a+D) 2a(a—b)(2a—b)+Z (ak+b)2’

k>1 k>0

2
a?(3ak+2a+3b)hi(a,b) (=1)* 1
(14) k _2{2 } -3

£ (ak+b)(ak+a+b)(ak+2a+Db) = ak+b a+b)b’
I S () B N e
£ (ak +b)(ak + 2a + b) ~ 2b(a+b) £ (ak +b)? ’
(16) (=D*a(2ak+a+2b)h3(a,b) 1 (—1)F _gz (—1)k
= (ak + b)(ak + a + b) ab = (ak+b)*  a ak+b’

Proof: Following the proof of Theorem 2, we first fix the sequences
{BkaBllc} by

By := hi(a,b) and B} := hy(a,b) + hpy1(a,b)
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and determine their differences by

(-1F ;
ABy = Py b{hk(a, b) + hgy1(a,b)},

—1)* (—1)*
AB, = ( - )
™ ak+b ak+a+b

To prove Theorem b5, it suffices to figure out the difference couples
{Ag, A},} according to Lemma 1. They are sketched below so that the
reader will not have difficulty to follow the approach, even though the
final confirmations for these identities are made by combining partial
fraction decompositions and the telescoping method.

Formula (12): Sequence couple

2 (=1)*
Ay = ——— d A = ;
Pkt 2a+b M ¥ (ak + a+ b)(ak + 2a +b)’
with their differences
—2a
A =
VA (ak + a + b)(ak + 2a +b)’
2(-1)"
A/ — .
vy (ak + b)(ak + 2a +b)’
as well as limiting relations
2
[AB]JF = O7 AOBl = m,
-1
[A/B/]+ - 07 ABB{ - W

Formula (13): Sequence couple

2 (—1)F

Ay = ——m d A= ;
T ak—2a+b M T Gk b)(ak —atb)
with their differences
—2a
VA, =
M7 (ak — 2a+ b)(ak — 3a + b)’
2(—1)k
VA, = )

(ak + b)(ak —2a + b)’
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as well as limiting relations

2 .
22— 2a)’

2a+0b
[A/B/]J,_ == O, AéBi == m

[ABLF = 0, AOBl =

Formula (14): Sequence couple

(ak 4+ b)(2ak + 3a + 2b) , (—1)*
A = d A, =——>—";
M7 (ak + a+ b)(ak + 2a + b) an R ak 4+ 2a+ b

with their differences

a®(3ak + 2a + 3b)

A =
VA (ak +b)(ak + a + b)(ak + 2a +b)’

(—1)*(2ak + 3a + 2b)

A/: .
VA (ak + a+ b)(ak + 2a +b)’

as well as limiting relations

(=1)* 3a+2b
AB], =2 ApBy = — -~ .
[AB]+ Z;ak+b T T ba+b)(2a+ b))’
-1
A'B'), = AB = — .
[ ]+ 07 01 b(aer)

Formula (15): Sequence couple

A (—1)k=12q
T (ak+a+b)(ak+2a+b)
Al = !

(ak+a+b)(ak+2a+b);
with their differences

(—1)k14q
(ak + b)(ak + 2a + b)’

—2a
(ak + b)(ak + a + b)(ak + 2a +b)’

VA, =

VA, =
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as well as limiting relations

—2a
AB|. =0 AgB; = .
[ABl =0, AoBy b2(a+b)(2a +b)’
-1
A'B, = AB = ————.
[ ]Jr 07 0~1 b(a+b)2
Formula (16): Sequence couple
(_1)k_1a I 1
Ap = —F—— d A = —"—;
F Tk tatb N R T Gk tat b
with their differences
VA, — (—=1)*La(2ak + a + 2b)
T T (ak +b)(ak +a+b)
—a

r_ .
Vi = (ak +b)(ak +a+b)’

as well as limiting relations

—a
AB|, = ApBy = ——;
[AB]; =0, B = ety
—2a—b
A'B, = ABl = ———. O
[ ]+ 07 0+~1 b(a+b)2

As examples of Theorem 5, we record ten remarkable infinite series
identities.

Corollary 6 (a =b =1 in Theorem 5).

(17) EZ: W’jﬁ 1—; g

(18) é Mé_m = 7{—; - i

(19) g (k + (1?;I(€k++5;iz T3 ~ 2 2)° -

(21) (_(;)j(ff(Zf)g’% =1- 7{—; —2In2.

k

I\

1
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Corollary 7 (¢ =2 and b =1 in Theorem 5).

22 2 TS = 5

23) e R

(24) 22: 2k + 1()6(];1::2?(’%% +5) 7?% - i’
(26) (-D*Ek+10Z 1 G 7

<2k +1)(2k+3) 16 8 32

I\/M

In the last two series, we have used G to denote the Catalan constant:

G=> (-1)F/(2k+1)*=0.9159. ..

k>0

3. Infinite series involving cubic harmonic numbers

Under the same condition of Lemma 1, we may apply (2) further.
Let {A}, By} be the third difference pair subject to the condition

=Y ALAB, =p+ Y B/VA
E>1 E>1

where p is a constant. Then we can manipulate the ”-sum again by (2)
in the following manner:

=Y ALAB, =p+[A"B"], — A{BY + > AJABJ.
k>1 E>1

Substituting this Q" into (5), we find, after having applied thrice the
modified Abel lemma on summation by parts, another transformation
formula.

Lemma 8. For the three difference pairs {Ay, B}, {A}, B}, and
{A}, B!} satisfying (4) and

(27) > ALABL =p+ ) B{VA]

k>1 E>1
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the following infinite series formula holds

(28) Q:=) B\VA,=[AB] + [AB], +[A"B"];
E>1

+B+p— AoBy — AGB] — AGBY + > A]ABY
E>1

provided that the three limits [AB|4, [A’B’|+, and [A'B’|L exist, and
one of the two series displayed in (28) is convergent.

By employing this lemma, we can prove the following general theorem.

Theorem 9 (Two infinite series identities).

2a3h3 (a,b) 4 1
2 E\® _
(29) kz>1 (2ak 4+ a + 2b)(2ak —3a + 2b)  a(2b—a) +kz>0 (ak + b)2’
(30) Z 2a3(2ak — a + 2b)h}(a,b) 3 1
= (ak+b)(ak+a+b)(ak—a+b)(ak—2a+b)  ab(b— a)
1
2
= (ak + D)3

Proof: Similar to the preceding proofs, we shall fix the sequences { By,
By, B’} by

By == hi(aa b)v

By, == hi(a,b) + hy(a,b)hyi1(a,b) + i (a,b),

Bl/i?/ = hk-‘rl(a‘a b)v

with their differences being given by

h%(a, b) + hi(a,b)hrs1(a,b) + h%_H(a, b)
ABy =

—(ak +b) ’
AB — a(2ak +a+2b)  3(2ak +a+2b)hiyi(a,b)
k7 (ak +b)2(ak + a +b)? (ak +b)(ak+a+b)
ABj = 1

ak+a+b
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Then the first formula (29) can be confirmed by specifying in Lemma 8
the triple sequences {Ay, A}, A}'} by

—(ak +b)
Ak = y
a(2ak + a + 2b)(2ak — a + 2b)
-1

Al =

R 2a2(2ak + a + 2b)

" — _3 .

T 203 (ak +a+ )’

and evaluating their differences
1
VA, = ,
"7 (2ak + a + 2b)(2ak — 3a + 2b)
1

Al =

VA a(2ak + a + 2b)(2ak — a + 2b)’
3
vAl/ — .
F 7 2a3(ak 4+ b)(ak +a+ D)’
as well as limiting relations
1

AB], = ApB = —————;
[ ]+ 07 01 ab2(a2—4b2)’

—(3a? 4 9ab + 7b?)
A/B/ — Al B/ — ( .
ABL =0 B = gt b2 a + 25)

—3(a+ 2b)
AIIB// — O A//B// — .
[ J+ T T 903b(a 4 b)?
However, one should be careful about the constants § = 0 and p, which
can be evaluated by combining partial fractions with the telescoping
method:
-1 1

p:%;(ak+b)2(ak+a+b)2

:Z{a4(a;+b) _a“(ak}ra”)}

k>1

1 1
B kz>1 {2@3(ak +b)2 * 2a3(ak +a + b)2}

"~ 2a%(a+b)2  ad “ (ak +a+0b)*
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As for the second formula (30), it can be done by letting alternatively

in Lemma 8 the triple sequences {Ay, A}, A}'} by

Ay = =

T alak —a+b)(ak +a+b)
Aj = -

k7 2a2(ak + b)(ak + a + b)’

Al = —3 .
R 2a3(ak + a + b)2’

and then determining their differences

VA, — 2ak —a+ 2b
¥~ (ak +b)(ak + a+ b)(ak — a+ b)(ak — 2a + b)’
1

r_
v = a(ak +b)(ak +a+b)(ak —a+b)’

VA — 3(2ak + a + 2b) _
¥ 2a2(ak 4 b)2(ak + a + )2’

as well as the limiting relations
1

[AB]+ =0, AoB1 = m%

P o —(3a® +9ab+ Tb?)
4B =0, ABy = 2a2b3(a +b)3 '

—3(a+ 2b)
A//B// — O A//B// — .
[ ]-‘r ) 01 2a3b(a+b)3
Also in this case, we have § = 0 and another non vanishing constant

-1 2ak 4+ a + 2b

p:%§(ak+b)3(ak+a+b)3

=2 {2a4(a11 102 2a%(ak i a+ b)Q}

k>1

1 1
B kZN {2a3(ak +b)3 + 2a3(ak + a + b)3}

b 1 1
" 2a(a+b)3 _Eé(akﬂwb)?
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As consequences of Theorem 9, we display below four infinite series
identities involving cubic harmonic numbers.

Corollary 10 (a = b =1 in Theorem 9).

H} 24 + 72
(31) > : = :
£ 2k —1)(2k +3) 12
(2k+ 1)H} 6¢(3) + 19
(52) kk1k2k1: 12
= k(k+1)(k +2)(k —1)
Corollary 11 (a =2 and b =1 in Theorem 9).
O3 26 + >
(33) > k = 7
= +)(k—1) 8
kO3 7¢(3) —4
34 = .
(34) k; (2k — 3)(2k — 1)(2k + 1)(2k + 3) 512
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