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REAL GROMOV–WITTEN THEORY IN ALL GENERA
AND REAL ENUMERATIVE GEOMETRY:

COMPUTATION

Penka Georgieva∗ & Aleksey Zinger†

Abstract

In the first part of this work, we construct positive-genus real
Gromov–Witten invariants of real-orientable symplectic manifolds
of odd “complex” dimensions; the second part studies the orienta-
tions on the moduli spaces of real maps used in constructing these
invariants. The present paper applies the results of the latter to
obtain quantitative and qualitative conclusions about the invari-
ants defined in the former. After describing large collections of
real-orientable symplectic manifolds, we show that the genus 1 real
Gromov–Witten invariants of sufficiently positive almost Kahler
threefolds are signed counts of real genus 1 curves only and, thus,
provide direct lower bounds for the counts of these curves in such
targets. We specify real orientations on the real-orientable com-
plete intersections in projective spaces; the real Gromov–Witten
invariants they determine are in a sense canonically determined by
the complete intersection itself, (at least) in most cases. We also
obtain equivariant localization data that computes the real invari-
ants of projective spaces and determines the contributions from
many torus fixed loci for other complete intersections. Our results
confirm Walcher’s predictions for the vanishing of these invariants
in certain cases and for the localization data in other cases. The
localization data is also used to demonstrate the non-triviality of
our lower bounds for real curves of genus 1 in the present paper
and of higher genera in a separate paper.
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1. Introduction

The theory of J-holomorphic maps plays prominent roles in sym-
plectic topology, algebraic geometry, and string theory. The founda-
tional work of [19, 26, 32, 22, 6] has established the theory of (closed)
Gromov–Witten invariants, i.e., certain counts of J-holomorphic maps
from closed Riemann surfaces to symplectic manifolds. In [12], we
introduce the notion of real orientation on a real symplectic manifold
(X,ω, φ). A real orientation on a real symplectic 2n-manifold (X,ω, φ)
with n 6∈2Z induces orientations on the moduli spaces of J-holomorphic
maps from arbitrary genus g symmetric surfaces to (X,φ) commuting
with the involutions on the domain and the target and, thus, gives rise
to arbitrary-genus real Gromov–Witten invariants, i.e., counts of such
maps, for real-orientable symplectic manifolds of odd “complex” dimen-
sion n. These orientations are studied in detail in [13]. The present
paper applies the results of [13] to the computation of these invari-
ants.

Propositions 1.2 and 1.4 provide large collections of real-orientable
symplectic manifolds; they include the odd-dimensional projective
spaces and the quintic threefold, which plays a special role in the in-
teractions of Gromov–Witten theory with string theory. We also show
that the genus 1 real Gromov–Witten invariants of sufficiently positive
almost Kahler threefolds are signed counts of real genus 1 curves only;
see Theorem 1.5. The “classical” Gromov–Witten invariants in contrast
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include genus 0 contributions and generally are not integer; see (1.6).
Thus, the genus 1 real Gromov–Witten invariants provide direct lower
bounds for the counts of real genus 1 curves in many almost Kahler
threefolds.

An explicit real orientation on each complete intersection Xn;a of
Proposition 1.4 is specified in Section 2.2. This real orientation may
depend on the parametrization of the ambient projective space with its
involution, on the ordering of the line bundles corresponding to Xn;a,
and on the section sn;a cutting out Xn;a (i.e., negating some components
of sn;a may change the induced real orientation). However, we show that
the real Gromov–Witten invariants of a fixed complete intersection Xn;a

determined by this real orientation are independent of all these choices
in most cases and vanish in the subset of these cases predicted in [34];
see Theorem 1.6. In the cases not covered by the independence state-
ment of this theorem, the real Gromov–Witten invariants are expected
to vanish as well. These invariants are also preserved by linear inclu-
sions of the ambient projective space into larger projective spaces; see
Proposition 2.6. Furthermore, the signed count of real lines through a
pair of conjugate points in P2m−1 with the standard conjugation is +1
with respect to these orientations:

(1.1)
〈
H2m−1

〉P2m−1,τ2m
0,1

= +1.

Section 4.2 does for real stable maps essentially what the main result
of [17] does for relative stable maps. It describes the equivariant local-
ization data that computes the contributions to these invariants from
many torus fixed loci. If Xn;a=P2m−1 (but g is arbitrary) or g=0 (but
Xn;a is arbitrary), this description covers all fixed loci and, thus, com-
pletely determines the real Gromov–Witten invariants in these cases.
Theorem 4.6 is used in [29] to compute the genus g degree d real
Gromov–Witten invariants of P3 with d conjugate pairs of point con-
straints for g ≤ 5 and d≤ 8. The equivariant localization data of Sec-
tion 4.2 agrees with [34, (3.22)]. This implies that the spin structure on
the real locus of the quintic threefold X5;(5) used, but not explicitly spec-
ified, in [30] is the spin structure associated with our real orientation
on (X5;(5), τ5;(5)).

1.1. Real-orientable symplectic manifolds. An involution on a
topological space X is a homeomorphism φ : X−→X such that φ◦φ=
idX . By an involution on a manifold, we will mean a smooth involution.
Let

Xφ =
{
x∈X : φ(x)=x

}
denote the fixed locus. An anti-symplectic involution φ on a symplectic
manifold (X,ω) is an involution φ : X −→X such that φ∗ω=−ω. For
example, the maps
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τn : Pn−1 −→ Pn−1, η2m : P2m−1 −→ P2m−1,(1.2)

τn
(
[Z1, . . . , Zn]

)
= [Z1, . . . , Zn],

η2m

(
[Z1, . . . , Z2m]

)
=
[
Z2,−Z1, . . . , Z2m,−Z2m−1

]
are anti-symplectic involutions with respect to the standard Fubini–
Study symplectic forms ωn on Pn−1 and ω2m on P2m−1, respectively.
If

k≥0, a ≡ (a1, . . . , ak) ∈ (Z+)k ,

and Xn;a⊂Pn−1 is a complete intersection of multi-degree a preserved
by τn, then τn;a≡ τn|Xn;a is an anti-symplectic involution on Xn;a with

respect to the symplectic form ωn;a=ωn|Xn;a . Similarly, ifX2m;a⊂P2m−1

is preserved by η2m, then η2m;a≡ η2m|X2m;a is an anti-symplectic invo-
lution on X2m;a with respect to the symplectic form ω2m;a=ω2m|X2m;a .
A real symplectic manifold is a triple (X,ω, φ) consisting of a symplectic
manifold (X,ω) and an anti-symplectic involution φ.

Let (X,φ) be a topological space with an involution, i.e., a real space
in the terminology of [1]. A conjugation on a complex vector bun-
dle V over X lifting an involution φ is a vector bundle homomorphism
ϕ : V −→V covering φ (or equivalently a vector bundle homomorphism
ϕ : V −→φ∗V covering idX) such that the restriction of ϕ to each fiber
is anti-complex linear and ϕ◦ϕ = idV . A real bundle pair (V, ϕ) over
(X,φ), called a real vector bundle in [1], consists of a complex vector
bundle V −→X and a conjugation ϕ on V lifting φ. For example,

(X×Cn, φ×c) −→ (X,φ),

where c : Cn−→Cn is the standard conjugation on Cn, is a real bundle
pair. If X is a smooth manifold, then (TX,dφ) is also a real bundle pair
over (X,φ). For any real bundle pair (V, ϕ) over (X,φ), we denote by

Λtop
C (V, ϕ) = (Λtop

C V,Λtop
C ϕ),

the top exterior power of V over C with the induced conjugation. Direct
sums, duals, and tensor products over C of real bundle pairs over (X,φ)
are again real bundle pairs over (X,φ).

Definition 1.1 ([12, Definition 5.1]). Let (X,φ) be a topological
space with an involution and (V, ϕ) be a real bundle pair over (X,φ).
A real orientation on (V, ϕ) consists of

(RO1) a rank 1 real bundle pair (L, φ̃) over (X,φ) such that

(1.3) w2(V ϕ) = w1(Lφ̃)2 and Λtop
C (V, ϕ) ≈ (L, φ̃)⊗2,

(RO2) a homotopy class of isomorphisms of real bundle pairs in (1.3),

(RO3) a spin structure on the real vector bundle V ϕ⊕2(L∗)φ̃
∗

over Xφ

compatible with the orientation induced by (RO2).
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An isomorphism in (1.3) restricts to an isomorphism

(1.4) Λtop
R V ϕ ≈ (Lφ̃)⊗2

of real line bundles over Xφ. Since the vector bundles (Lφ̃)⊗2 and

2(L∗)φ̃
∗

are canonically oriented, (RO2) determines orientations on V ϕ

and V ϕ⊕2(L∗)φ̃
∗
. By the first assumption in (1.3), the real vector bundle

V ϕ⊕2(L∗)φ̃
∗

over Xφ admits a spin structure.
Let (X,ω, φ) be a real symplectic manifold. A real orientation on

(X,ω, φ) is a real orientation on the real bundle pair (TX,dφ). We
call (X,ω, φ) real-orientable if it admits a real orientation. The next
three statements, which are established in Section 2.1, describe large
collections of real-orientable symplectic manifolds.

Proposition 1.2. Let (X,ω, φ) be a real symplectic manifold with
w2(Xφ)=0. If

(1) H1(X;Q)=0 and c1(X)=2(µ−φ∗µ) for some µ∈H2(X;Z), or
(2) X is compact Kahler, φ is anti-holomorphic, and

KX =2([D]+[φ∗D]),

for some divisor D on X,

then (X,ω, φ) is a real-orientable symplectic manifold.

Corollary 1.3. Let n ∈ Z+ and a ≡ (a1, . . . , an−4) ∈ (Z+)n−4 be
such that

a1+. . .+an−4 ≡ n mod 4 .

If Xn;a ⊂ Pn−1 is a complete intersection of multi-degree a preserved
by τn, then (Xn;a, ωn;a, τn;a) is a real-orientable symplectic manifold.

Proposition 1.4. Let m,n∈Z+, k∈Z≥0, and

a≡(a1, . . . , ak) ∈ (Z+)k.

(1) If Xn;a⊂Pn−1 is a complete intersection of multi-degree a preserved
by τn,

(1.5) a1+. . .+ak ≡ n mod 2, and a2
1+. . .+a

2
k ≡ a1+. . .+ak mod 4,

then (Xn;a, ωn;a, τn;a) is a real-orientable symplectic manifold.
(2) If X2m;a ⊂ P2m−1 is a complete intersection of multi-degree a pre-

served by η2m and

a1+. . .+ak ≡ 2m mod 4,

then (X2m;a, ω2m;a, η2m;a) is a real-orientable symplectic manifold.

As indicated by the proof of Corollary 1.3 in Section 2.1, the con-
dition w2(Xφ) = 0 in Proposition 1.2 is redundant if X is a threefold.
In particular, every real compact Kahler Calabi–Yau threefold is real-
orientable.
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By Proposition 1.4, (P2m−1, τ2m) and (P4m−1, η4m) are real-orientable
symplectic manifolds. So are the complete intersection Calabi–Yau
threefolds

X5;(5) ⊂ P4, X6;(3,3) ⊂ P5, and X8;(2,2,2,2) ⊂ P7

preserved by the standard conjugation on the ambient space. Propo-
sition 1.4(1) does not apply to the two remaining projective complete
intersection Calabi–Yau threefolds,

X6;(2,4) ⊂ P5 and X7;(2,2,3) ⊂ P6,

as they do not satisfy the second conditions in (1.5). These two three-
folds are instead real-orientable by Corollary 1.3, whenever they are
preserved by the standard conjugation on the ambient space. In con-
trast to Proposition 1.4(1), Corollary 1.3 does not endow the symplectic
manifolds to which it applies with a natural real orientation.

1.2. Gromov–Witten and enumerative invariants. A symmetric
surface (Σ, σ) is a closed oriented (possibly nodal) surface Σ with an
orientation-reversing involution σ. If Σ is smooth, the fixed locus Σσ

of σ is a disjoint union of circles. If, in addition, (X,φ) is a manifold
with an involution, a real map

u : (Σ, σ) −→ (X,φ)

is a smooth map u : Σ−→X such that u◦σ = φ◦u.
For a symplectic manifold (X,ω), we denote by Jω the space of ω-

compatible almost complex structures on X. If φ is an anti-symplectic
involution on (X,ω), let

J φω =
{
J ∈Jω : φ∗J=−J

}
.

For a genus g symmetric surface (Σ, σ), possibly nodal and disconnected,
we, similarly, denote by J σΣ the space of complex structures j on Σ

compatible with the orientation such that σ∗j=−j. For J ∈J φω , a real
J-holomorphic map consists of a symmetric surface (Σ, σ), j∈J σΣ , and a
real (J, j)-holomorphic map u : Σ−→X.

Let (X,ω, φ) be a real-orientable symplectic 2n-manifold with n 6∈2Z,

g, l∈Z≥0, B∈H2(X;Z), and J ∈J φω . We denote by Mg,l(X,B; J)φ the
moduli space of equivalence classes of stable real degreeB J-holomorphic
maps from genus g symmetric (possibly nodal) surfaces with l conju-
gate pairs of marked points. By [12, Theorem 1.4], a real orientation
on (X,ω, φ) determines an orientation on this compact space, endows
it with a virtual fundamental class, and, thus, gives rise to genus g real

GW-invariants of (X,ω, φ) that are independent of the choice of J ∈J φω .
If n= 3 and c1(X) is divisible by 4, a real orientation on (X,ω, φ) also
determines a count of real genus 1 J-holomorphic curves with conjugate
and real point insertions; see [12, Theorem 1.5].
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The genus g real GW-invariants of [12, Theorem 1.4] are in general
combinations of counts of real curves of genus g and counts of real curves
of lower genera, just as happens in the “classical” complex setting. In
light of [38, Theorems 1A/B] and [41, Theorem 1.5], it seems plausible
that integral counts of genus g real curves alone can be extracted from
these GW-invariants to directly provide lower bounds for enumerative
counts of real curves in good situations. This would typically involve
delicate obstruction analysis. However, the situation is fairly simple if
g= 1 and n= 3. The statement below applies whenever it makes sense
in the context of [12, Theorems 1.4, 1.5]; see the beginning of Section 3
and (3.4).

Theorem 1.5. Let (X,ω, φ) be a compact real-orientable 6-manifold

and J ∈J φω be an almost complex structure which is genus 1 regular in
the sense of [39, Definition 1.4]. The genus 1 real GW-invariants of
(X,ω, φ) are then equal to the corresponding signed counts of real J-
holomorphic curves and, thus, provide lower bounds for the number of
real genus 1 irreducible curves in (X, J, φ).

In contrast, the genus 1 degree d complex enumerative and GW-
invariants of P3 are related by the formula

(1.6) E1,d = GW1,d +
2d−1

12
GW0,d .

This formula, originally announced as Theorem A in [15], is established
as a special case of [40, Theorem 1.1], comparing standard and “re-
duced” GW-invariants (the latter do not “see” the genus 0 curves in
sufficiently positive cases).

The genus g real GW-invariants of (X,ω, φ) with g≥2, include counts
of lower genus curves with rational coefficients, even if the real dimen-
sion of X is 6 and X is very positive. For sufficiently positive almost
Kahler real-orientable manifolds (X,ω, φ) of real dimension 6, these
contributions are determined in [28].

1.3. Real invariants of complete intersections. Explicit real orien-
tations on the real-orientable complete intersections of Proposition 1.4
are described in Section 2.2. They in general depend on some auxiliary
choices made. By studying the effect of these choices on the resulting
orientations of the moduli spaces of real maps, we establish the following
statement in Section 2.3.

Theorem 1.6. Let (X,φ) denote an odd-dimensional complete inter-
section (Xn;a, ωn;a, τn;a) or (X2m;a, ω2m;a, η2m;a) satisfying the assump-
tions of Proposition 1.4 and g, d∈Z≥0.

(1) If either φ= ηn;a, or kg = 0, or g 6∈ 2Z and d ∈ 2Z, or ai 6∈ 2Z for
all i and d−g 6∈2Z, then the genus g degree d real GW-invariants of
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(X,φ) determined by the real orientation of Section 2.2 with inser-
tions from Pn−1 are independent of the real parametrization of the
ambient projective space, the ordering of the line bundles associated
with the complete intersection, and the section sn;a cutting out the
complete intersection (X,φ).

(2) Suppose the genus g degree d real GW-invariants of (X,φ) with
insertions from Pn−1 are independent of the real parametrization
of the ambient projective space, the ordering of the line bundles
associated with the complete intersection, and the section sn;a. If
either d− g ∈ 2Z or ai ∈ 2Z for some i and g ∈ 2Z, then these
invariants vanish.

This theorem refers to the real GW-invariants provided by [12, The-
orems 1.4,1.5]. The proof we give in Section 2.3 addresses the case
of conjugate pairs of primary insertions (i.e., pullbacks of cohomology
classes on Pn−1), but it is easily adaptable to the descendant insertions
(i.e., ψ-classes). It also applies to the genus 1 real GW-invariants with
real point insertions under the conditions of [12, Theorem 1.5], because
the number of real point insertions is then even and the appropriate
analogue of the middle vertical arrow in (2.30) is, thus, still orientation-
preserving. Theorems 1.5 and 1.6(2) imply that the genus 1 odd-degree
complex enumerative invariants of P3 with pairs of the same insertions
are even, as claimed in [12, Corollary 2.6].

The last assumption in Theorem 1.6(2) is that the real invariants
of the complete intersections cut out by two different transverse real
sections sn;a and s′n;a are the same (even if the complete intersections
are not). The last conclusion of Theorem 1.6(1) is weaker, as the com-
plete intersection (X,φ) is fixed. By the next paragraph, the stronger
conclusion holds if φ = ηn;a or kg = 0. We expect that it holds in all
cases; see the next paragraph and Remark 2.4. The GW-invariants
of (X,φ) are predicted in [34] to vanish in all cases not covered by
the assumptions of Theorem 1.6(1). Conversely, the independence of
the real GW-invariants of (X,φ) of all choices and in all cases would
confirm the vanishing predictions of [34] in all cases.

In the case of the complete intersections (X2m;a, η2m;a), the space
of transverse sections is path-connected; see the proof of Theorem 1.6.
The construction of real orientations of Section 2.2 lifts over such paths.
Thus, the real orientations on these complete intersections and the re-
sulting real GW-invariants are independent of the choice of the sec-
tion s2m;a cutting out X2m;a. On the other hand, the topology of the
real locus of a (smooth) complete intersection (Xn;a, τn;a) may depend
on the choice of the section sn;a cutting out Xn;a. Thus, the real orienta-
tions of Section 2.2 for different complete intersections of multidegree a
in (Pn−1, τn) are not comparable in general. However, the resulting real
GW-invariants can still be compared. In the case of the primary in-
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sertions arising from Pn−1, these invariants are expected to be related

to the sheaf V φ̃n;a
n;a in (4.1) in a manner independent of the section sn;a.

This is, indeed, the case for the g = 0 invariants, as shown in [30]
for (X5;(5), τ5;(5)). Whenever the real GW-invariants of Xn;a are related

to V φ̃n;a
n;a as expected, they are also independent of the choice of the

section sn;a.
The projective spaces Pn−1 and P2m−1 admit “half”-dimensional torus

actions that are compatible with the involutions τn and η2m, respec-
tively; these are the torus actions appearing in [34, Section 3]. We
determine the torus fixed loci of the induced actions on the moduli
spaces of real maps and their normal bundles in Sections 5.1 and 5.2,
respectively. The resulting equivariant localization data, which is de-
scribed in Section 4.2, determines the genus g real GW-invariants of
(P2m−1, τ2m) and (P4m−1, τ4m) with conjugate pairs of constraints via
the virtual equivariant localization theorem of [16]. Since the mod-
uli spaces of real maps into these targets are smooth in the genus 0
case and all torus fixed loci are contained in the smooth locus in the
genus 1 case, the classical equivariant localization theorem of [2] suffices
in these cases. We also determine the equivariant contributions to the
real GW-invariants of the real-orientable complete intersections Xn;a

that arise from the torus fixed loci containing no maps with contracted
components of positive genus; see Theorem 4.6. In contrast to the usual
approach in real GW-theory of choosing a half-graph, our computational
algorithm allows to pick the non-fixed edges and vertices at random (one
from each conjugate pair); see Remark 4.7. Our equivariant localiza-
tion data is consistent with [34, (3.22)]. We also obtain the two types
of cancellations of contributions from some fixed loci predicted in the
Calabi–Yau cases in [34, Sections 3.2, 3.3]; see Corollary 4.8 and the
second case of Lemma 5.3.

By Theorem 1.5, the genus 1 real GW-invariants of (P3, ω4, τ4) and
(P3, ω4, η4) are lower bounds for the enumerative counts of such curves in
(P3, J0, τ4) and (P3, J0, η4), respectively. The lower bound for the num-
ber of real genus 1 degree d curves passing through d pairs of conjugate
point insertions obtained from the equivariant localization computation
of Section 4 is 0 for d=2, 1 for d=4, and 4 for d=6; see Examples 4.10
and 4.11 and [14]. The d=2 number is as expected, since there are no
connected degree 2 curves of any kind passing through two generic pairs
of conjugate points in P3. The d=4 number is also not surprising, since
there is only one genus 1 degree 4 curve passing through 8 generic points
in P3; see the first three paragraphs of [21, Section 1]. By (1.6) and [8],
the number of genus 1 degree 6 curves passing through 12 generic points
in P3 is 2860. Our signed count of −4 for the real genus 1 degree 6 curves
through 6 pairs of conjugate points in P3 is, thus, consistent with the
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complex count and provides a non-trivial lower bound for the number of
real genus 1 degree 6 curves with 6 pairs of conjugate point insertions.
The equivariant localization data of Section 4.2 is used in [28] to obtain
many non-trivial lower bounds in higher genera.

In Section 4.3, we use the equivariant localization data of Section 4.2
to give an alternative proof of Theorem 1.6(2) in the case of projective
spaces and to compare the real GW-invariants for the two involution
types; see Proposition 1.7 below. The genus 0 and 1 cases of both
of these statements appear in [4, Theorem 1.9] and [5, Theorem 7.2],
respectively (the latter presumes that genus 1 real GW-invariants of P3

can be defined).

Proposition 1.7. The genus g real GW-invariants of the real sym-
plectic manifolds (P4m−1, ω4m, τ4m) and (P4m−1, ω4m, η4m) with only
conjugate pairs of insertions differ by the factor of (−1)g−1.

The proof of Proposition 1.7 extends directly to the real GW-invari-
ants of the complete intersections (X,φ) of Theorem 1.6 whenever they

are related to the sheaf V φ̃n;a
n;a in (4.1) as expected (in particular, for

g=0).

1.4. Outline of the paper. Propositions 1.2 and 1.4 are straightfor-
ward to prove; this is done in Section 2.1. Explicit real orientations
on the real-orientable complete intersections of Proposition 1.4 are de-
scribed in Section 2.2. We establish Theorem 1.6 and note additional
properties of the real GW-invariants determined by these real orienta-
tions in Section 2.3. Theorem 1.5 is proved in Section 3. Section 4.1
introduces the equivariant setting relevant to the present situation. The
resulting equivariant localization data is described in Section 4.2; see
Theorem 4.6. Its use is illustrated in Section 4.3. Theorem 4.6 is proved
in Section 5.

We would like to thank the referee for the careful reading of this
paper and the specific comments.

2. Some examples

This section establishes Propositions 1.2 and 1.4 and, thus, provides
large collections of real-orientable symplectic manifolds. We also de-
scribe specific real orientations on the real-orientable symplectic mani-
folds of Propositions 1.4.

2.1. Real orientable symplectic manifolds. We begin by deducing
Proposition 1.2 from topological observations made in [4].

Proof of Proposition 1.2. Let (X,ω, φ) be a real symplectic manifold
such that w2(Xφ)=0. We follow the proof of [4, Proposition 1.5].
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Suppose c1(X)=2(µ−φ∗µ) for some µ∈H2(X;Z). Let L′−→X be a

complex line bundle such that c1(L′) =µ and (L, φ̃) be the real bundle
pair over (X,φ) given by

(2.1) L = L′⊗Cφ∗L′, φ̃(v⊗w) = w⊗v.

A continuous orientation on the fibers of Lφ̃ −→ Xφ is given by the
elements v⊗ v with v ∈ L′|Xφ nonzero. Thus, the first requirement
in (1.3) is satisfied. Since c1(X)=2(µ−φ∗µ), the complex line bundles

Λtop
C TX and L⊗2 are isomorphic. If, in addition, H1(X;Q) = 0, [4,

Lemma 2.7] then implies that the second requirement in (1.3) is also
satisfied.

Suppose X is Kahler, φ is anti-holomorphic, and KX =2([D]+[φ∗D])
for some divisor D on X. Let L′=[−D] be the dual of the holomorphic

line bundle corresponding to the divisor D and (L, φ̃) be the real bun-
dle pair over (X,φ) defined as in (2.1). The first requirement in (1.3)

is again satisfied. In this case, (L, φ̃) is a holomorphic line bundle with
an anti-holomorphic conjugation. Since KX = 2([D]+[φ∗D]), the holo-

morphic line bundles Λtop
C TX and L⊗2 are isomorphic. If, in addition,

X is compact, [4, Lemma 2.6] then implies that the second requirement
in (1.3) is also satisfied. q.e.d.

Proof of Corollary 1.3. The assumptions imply that Xn;a⊂Pn−1 is a
threefold such that

w1

(
X
τn;a
τn;a

)
= 0, KXn;a = 2

(
[D]+[{τn;a}∗D]

)
with D = OPn−1

(
(n−a1−. . .−an−4)/4

)
.

By Wu’s relations [27, Theorem 11.14] and the first statement above,
w2(X

τn;a
τn;a )=0. The claim now follows from Proposition 1.2(2). q.e.d.

We now turn to the setting of Proposition 1.4. We will denote by c
the standard conjugation on Cn. Define another conjugation on Cn by

c′τ
(
v1, . . . , vn

)
=

{
(v̄2, v̄1, . . . , v̄n, v̄n−1), if n∈2Z;

(v̄2, v̄1, . . . , v̄n−1, v̄n−2, v̄n), if n 6∈2Z.

We also define a C-antilinear automorphism of C2m by

cη
(
v1, . . . , v2m

)
=
(
v̄2,−v̄1, . . . , v̄2m,−v̄2m−1

)
.

This automorphism has order 4.
For the purposes of equivariant localization computations, it is con-

venient to consider the involution

(2.2) τ ′n : Pn −→ Pn, τ ′n
(
[Z1, . . . , Zn]

)
=
[
c′τ (Z1, . . . , Zn)

]
.

If n ∈ 2Z, it is equivalent to the involution τn defined in Section 1.1
under the biholomorphic automorphism of Pn given by

(2.3)
[
Z1, . . . , Z2m

]
−→ [Z1+iZ2, Z1−iZ2, . . . , Zn−1+iZn, Zn−1−iZn].
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If n 6∈2Z, τ ′n is equivalent to τn under the biholomorphic automorphism
of Pn given by[

Z1, . . . , Z2m

]
−→

[
Z1+iZ2, Z1−iZ2, . . . , Zn−2+iZn−1, Zn−2−iZn−1, Zn

]
.

(2.4)

The involutions τn and τ ′n lift to conjugations on the tautological line
bundle

(2.5) γn−1 = OPn−1(−1) ≡
{

(`, v)∈Pn−1×Cn : v∈`⊂Cn
}

as

τ̃n(`, v) =
(
τn(`), c(v)

)
, τ̃ ′n

(
`, v
)

=
(
τ ′n(`), c′τ (v)

)
.

For a∈Z, we denote the induced conjugations on OPn−1(a)≡ (γ∗n−1)⊗a

by τ̃
(a)
n;1 and τ̃

′(a)
n;1 , respectively, omitting (a) for a= 1. The composition

of 2τ̃
′(a)
n;1 with the involution

2OPn−1(a) −→ 2OPn−1(a), (x, y) −→ (y, x)

is again an involution on 2OPn−1(a); we denote it by τ̃
′(a)
n;1,1.

For a∈Z+, the involution φ=η2m lifts to a conjugation on 2γ⊗a2m−1 as

η̃
(−a)
2m;1,1

(
`, v⊗a, w⊗a

)
=
(
η2m(`), (cη(w))⊗a, (−cη(v))⊗a

)
.

We denote the induced conjugations on

2OP2m−1(a) =
(
2γ⊗a2m−1

)∗
and OP2m−1(2a) ≡ Λ2

C
(
2OP2m−1(a)

)
,

by η̃
(a)
2m;1,1 and η̃

(2a)
2m;1, respectively. We note that η̃

(2a)
2m;1,1 =2η̃

(2a)
2m;1.

For φ=τ ′n, η2m, we define

φ : {1, . . . , n} −→ {1, . . . , n}

by φ(i) =

{
n, if i=n 6∈2Z;

3i−4
⌊
i
2

⌋
−1, otherwise;

(2.6)

the second case interchanges each odd integer 2k−1 with its successor 2k.
For φ=τn, we take the bijection in (2.6) to be the identity. Let

(2.7) |φ| =

{
0, if φ=τn, τ

′
n;

1, if φ=η2m.

Lemma 2.1. Let φ denote either the involution τn or τ ′n on Pn−1

or the involution η2m on P2m−1. Euler’s exact sequence of holomorphic
vector bundles

(2.8) 0 −→ Pn−1×C f−→ nOPn−1(1)
h−→ TPn−1 −→ 0

over Pn−1 commutes with the conjugation φ× c on the first term, the

conjugation dφ on the last term, and the conjugation φ̃∗n on the middle
term given by
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• nτ̃n;1 if φ=τn,
• mτ̃ ′n;1,1 if φ=τ ′n with n=2m,

• mτ̃ ′n;1,1⊕τ̃ ′n;1 if φ=τ ′n with n=2m+1,
• mη̃n;1,1 if φ=ηn with n=2m.

Proof. For i=1, . . . , n, define

Ži ∈ H0
(
Pn−1;OPn−1(1)

)
by{

Ži(`)
}(
`, (v1, . . . , vn)

)
= vi ∀ (v1, . . . , vn)∈`.

Let

Ui =
{

[Z1, . . . , Zn]∈Pn−1 : Zi 6=0
}
,

zi=
(
id, (zi1, . . . , zin)

)
: Ui −→ γn−1|Ui , zij =

Zj
Zi

= Žj(zi).

Thus, zi is a section of γn−1 over Ui, (zij)j 6=i is a holomorphic chart
on Ui, and

∂

∂zij
=
∑
j′ 6=i′

∂zi′j′

∂zij

∂

∂zi′j′

=


z−1
ii′

∂
∂zi′j

, if j 6= i′;

−z−2
ii′

(
∂

∂zi′i
+
∑

j′ 6=i,i′
zij′

∂
∂zi′j′

)
, if j= i′;

(2.9)

on Ui ∩ Ui′ with i 6= i′. The homomorphisms f and h in (2.8) are
defined by

f
(
`, λ) =

(
λŽ1

∣∣
`
, . . . , λŽn

∣∣
`

)
∀ (`, λ)∈Pn−1×C,

h(p1, . . . , pn) =
∑
j 6=i

(
pj(zi(`))− zij(`)pi(zi(`))

) ∂

∂zij

∣∣∣∣
`

∀ p1, . . . , pn∈OPn−1(1)|` , `∈Ui .
It is straightforward to check that the last homomorphism is indepen-
dent of the choice of i and that the sequence (2.8) is, indeed, exact.

Denote by φ̃ the conjugation τ̃n if φ=τn, the conjugation τ̃ ′n if φ=τ ′n,
and the real bundle automorphism

(2.10) φ̃ : γ2m−1 −→ γ2m−1, φ̃(`, v
)

=
(
η2m(`), cη(v)

)
,

if φ= η2m; the square of (2.10) is −Id on each fiber. The effect of the
involutions φ on the coordinate charts is described by the relations

(2.11) Žφ(i)◦φ̃ = (−1)|φ|ic◦Ži, zφ(i)◦φ = (−1)|φ|iφ̃◦zi.
Thus,

zφ(i)φ(j)◦φ = (−1)|φ|(i+j)c◦zij ,

d`φ

(
∂

∂zij

∣∣∣∣
`

)
= (−1)|φ|(i+j)

∂

∂zφ(i)φ(j)

∣∣∣∣
φ(`)

.
(2.12)
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Denote by φ̃n the conjugation on γn−1 dual to the conjugation φ̃∗n in
the statement of the lemma. Thus,({

(p1, . . . , pn)
}(
φ̃n(v1, . . . , vn)

))
φ(i)

= (−1)|φ|ipφ(i)

(
φ̃(vi)

)
∀ p1, . . . , pn∈OPn−1(1)

∣∣
`
, v1, . . . , vn∈`.

This identity is equivalent to(
(p1, . . . , pn)◦φ̃n

)
i

= (−1)|φ|ipφ(i)◦φ̃ ∀ p1, . . . , pn∈OPn−1(1)
∣∣
`
.

The first equation in (2.11) is equivalent to

f
(
φ(`), λ̄

)
= c◦f(`, λ)◦φ̃n : nφ(`) −→ Cn ∀ (`, λ)∈Pn−1×C .

Since φ̃2 = (−1)|φ|Id, the remaining equation in (2.11) and (2.12) are
equivalent to

h
(
c◦(p1, . . . , pn)◦φ̃n

)
= d`φ

(
h(p1, . . . , pn)

)
∀ p1, . . . , pn∈OPn−1(1)|` , `∈Pn.

The last two identities imply that f and h commute with the specified
conjugations. q.e.d.

Let φ and φ̃∗n be as in Lemma 2.1 and define

φ̃K =


τ̃

(n)
n;1 , if φ=τn;

τ̃
′(n)
n;1 , if φ=τ ′n;

η̃
(2m)
2m;1, if φ=η2m.

The short exact sequence (2.8) induces an isomorphism

Λtop
C
(
TPn−1,dφ

)
= Λtop

C
(
Pn−1×C, φ×c

)
⊗ Λtop

C
(
TPn−1, dφ

)
≈ Λtop

C
(
nOPn−1(1), φ̃∗n

)
=
(
OPn−1(n), φ̃K

)(2.13)

of real bundle pairs over (Pn−1, φ).

Proof of Proposition 1.4. Under the numerical assumptions in Propo-
sition 1.4(1),(

n

2

)
− n

k∑
i=1

ai +

k∑
i=1

a2
i +

∑
i<j

aiaj ≡
(
n

2

)
+ 0 +

1

2

(
|a|2 − |a|

)
≡ 1

4

((
n−|a|

)2
+
(
n+|a|

)(
n+|a|−2

))
≡
(
n−|a|

2

)2

mod 2,

(2.14)

where |a|=a1+. . .+ak.
If Xn;a⊂Pn−1 is a complete intersection preserved by τn, the sequence

0 −→ (TXn;a,dτn;a) −→ (TPn−1,dτn)
∣∣
Xn;a

−→
k⊕
i=1

(
OPn−1(ai), τ̃

(ai)
n;1

)∣∣
Xn;a
−→ 0

(2.15)
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is a short exact sequence of real bundle pairs over (Xn;a, τn;a). If
X2m;a⊂P2m−1 is a complete intersection preserved by η2m, the odd
degrees ai come in pairs. There is, thus, a short exact sequence

0 −→
(
TX2m;a, dη2m;a

)
−→

(
TP2m−1, dη2m

)∣∣
X2m;a

−→
⊕
ai∈2Z

(
OP2m−1(ai), η̃

(ai)
2m;1

)∣∣
X2m;a

⊕
⊕
a′i 6∈2Z

(
OP2m−1(a′i), η̃

(a′i)
2m;1,1

)∣∣
X2m;a

−→ 0

(2.16)

of real bundle pairs over (X2m;a, η2m;a), where the second sum is taken
over one a′i = ai for each odd-degree pair. The two exact sequences
above determine isomorphisms

Λtop
C
(
TXn;a,dτn;a

)
⊗
(
OPn−1(|a|), τ̃ (|a|)

n;1

)
≈ Λtop

C
(
TPn−1,dτn

)∣∣
Xn;a

,

Λtop
C
(
TX2m;a, dη2m;a

)
⊗
(
OP2m−1(|a|), η̃(|a|)

2m;1

)
≈ Λtop

C
(
TP2m−1, dη2m

)∣∣
X2m;a

(2.17)

of real bundle pairs over (Xn;a, τn;a) and (X2m;a, η2m;a), respectively.
Let νn(a) = n−|a|. Under the assumptions of Proposition 1.4(1),

νn(a)∈2Z. Under the assumptions of Proposition 1.4(2), ν2m(a)∈ 4Z.
Thus, the real bundle pairs(

Lτ ;n;a, φ̃τ ;n;a

)
≡
(
OPn−1(νn(a)/2), τ̃

(νn(a)/2)
n;1

)
,(

Lη;2m;a, φ̃η;2m;a

)
≡
(
OP2m−1(ν2m(a)/2), η̃

(ν2m(a)/2)
2m;1

)(2.18)

over (Pn−1, τn) and (P2m−1, η2m), respectively, are well-defined.
By (2.13) and (2.17),

Λtop
C
(
TXn;a,dτn;a

)
≈
((
Lτ ;n;a, φ̃τ ;n;a

)∣∣
Xn;a

)⊗2
,

Λtop
C
(
TX2m;a, dη2m;a

)
≈
((
Lη;2m;a, φ̃η;2m;a

)∣∣
X2m;a

)⊗2
.

(2.19)

By (2.14),

w2

(
X
τn;a
n;a

)
=

((
n

2

)
− n

k∑
i=1

ai +
k∑
i=1

a2
i +

∑
i<j

aiaj

)
x2

=

(
n−|a|

2

)2

x2 = w1

(
L
φ̃τ ;n;a
τ ;n;a

)2
,

(2.20)
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where x is the restriction of the generator of H1(RPn−1;Z2) to X
τn;a
n;a .

Since X
η2m;a

2m;a =∅,

(2.21) w2

(
X
η2m;a

2m;a

)
= 0 = w1

(
L
φ̃η;2m;a

η;2m;a

)2
.

Therefore, (Xn;a, ωn;a, τn;a) and (X2m;a, ω2m;a, η2m;a) are real-orientable
symplectic manifolds under the assumptions in (1) and (2), respectively,
of Proposition 1.4. q.e.d.

2.2. Real orientations on complete intersections. We next de-
scribe a real orientation on each complete intersection (Xn;a, τn;a) and
(X2m;a, η2m;a) of Proposition 1.4 with

(L, φ̃) =
(
Lτ ;n;a, φ̃τ ;n;a

)
and (L, φ̃) =

(
Lη;2m;a, φ̃η;2m;a

)
,

respectively, as in (2.18). These real orientations are used to orient the
normal bundles to torus fixed loci in Section 4.

A homotopy class of isomorphisms as in (1.3) is determined by the

corresponding isomorphism (2.19). By (2.20) and (2.21), (L, φ̃) satis-
fies the first condition in (1.3). Since X

η2m;a

2m;a = ∅, this determines a

real orientation on the complete intersections (X2m;a, η2m;a) of Propo-
sition 1.4(2).

It remains to specify a spin structure as in (RO3) for the complete
intersections (Xn;a, τn;a) of Proposition 1.4(1),

Lemma 2.2. Let k∈Z≥0 and a≡ (a1, . . . , ak)∈ (Z+)k. If a satisfies
the second condition in (1.5), then

(2.22)
∣∣{i=1, . . . , k : ai 6∈2Z

}∣∣ ≡ k∑
i=1

ai mod 4.

Proof. Since

a2
i ≡

{
0, if ai∈2Z;

1, if ai 6∈2Z;
mod 4,

the left-hand side of the second equation in (1.5) equals to the left-hand
side of (2.22) modulo 4. This establishes the claim. q.e.d.

For each a∈Z, let

ORPn−1(a) = OPn−1(a)τ̃
(a)
n;1 −→ RPn−1 .

The canonical orientation on

ORPn−1(2) = ORPn−1(1)⊗2 −→ RPn−1

determines a homotopy class of isomorphisms

(2.23) ORPn−1(2a) ≈ RP1×R and ORPn−1(2a+1) ≈ ORPn−1(1)

of real line bundles over RPn−1; the second isomorphism treats the last
factor of ORPn−1(1) as the remainder.
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Furthermore, the real vector bundle

4ORPn−1(1) −→ RPn−1

has a canonical orientation and spin structure. They are obtained by
taking any trivialization of the first 2ORPn−1(1) over a loop and tak-
ing the same trivialization over the last 2ORPn−1(1). These orientation
and spin structure are invariant under the interchange of the first pair
of the line bundles ORPn−1(1) with the last. The interchange of the
components ORPn−1(1) within the same pair reverses the canonical ori-
entation. By [13, Lemma 3.11], it also flips the spin structure (i.e., the
homotopy classes of the canonical trivializations and their compositions
with this interchange on the left do not differ by the compositions with
an orientation-reversing diffeomorphism of Rn on the right).

We now return to the setting of Proposition 1.4(1). Let

`0(a) =
∣∣{i=1, . . . , k : ai∈2Z

}∣∣, `1(a) =
∣∣{i=1, . . . , k : ai 6∈2Z

}∣∣
be the number of even entries in a and the number of odd entries,
respectively. The short exact sequences (2.8) and (2.15) of real bundle
pairs determine a homotopy class of isomorphisms

(
X
τn;a
n;a ×R

)
⊕
(
TX

τn;a
n;a ⊕2(L∗)φ̃

∗∣∣
X
τn;a
n;a

)
⊕

k⊕
i=1

ORPn−1(ai)
∣∣
X
τn;a
n;a

≈ nORPn−1(1)
∣∣
X
τn;a
n;a
⊕ 2(L∗)φ̃

∗∣∣
X
τn;a
n;a

(2.24)

of real vector bundles over X
τn;a
n;a . If n−|a| ∈ 4Z, (2.23) and (2.24)

determine a homotopy class of isomorphisms(
X
τn;a
n;a ×R

)
⊕
(
TX

τn;a
n;a ⊕2(L∗)φ̃

∗∣∣
X
τn;a
n;a

)
⊕
(
X
τn;a
n;a ×R`0(a)

)
⊕ `1(a)ORPn−1(1)

∣∣
X
τn;a
n;a

≈
(
n−`1(a)

)
ORPn−1(1)

∣∣
X
τn;a
n;a
⊕ `1(a)ORPn−1(1)

∣∣
X
τn;a
n;a

⊕
(
X
τn;a
n;a ×R2

)
.

(2.25)

If n−|a| 6∈4Z, (2.23) and (2.24) determine a homotopy class of isomor-
phisms (

X
τn;a
n;a ×R

)
⊕
(
TX

τn;a
n;a ⊕2(L∗)φ̃

∗∣∣
X
τn;a
n;a

)
⊕
(
X
τn;a
n;a ×R`0(a)

)
⊕ `1(a)ORPn−1(1)

∣∣
X
τn;a
n;a

≈
(
n+2−`1(a)

)
ORPn−1(1)

∣∣
X
τn;a
n;a
⊕ `1(a)ORPn−1(1)

∣∣
X
τn;a
n;a

.

(2.26)

The first terms on the right-hand sides of (2.25) and (2.26) correspond
to the first n−`1(a) and n+2−`1(a) summands of the first term on the
right-hand sides of (2.24).
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By Lemma 2.2, the ranks of the first summands on the right-hand
sides of (2.25) and (2.26) are divisible by 4. Thus, (2.25) and (2.26)
determine a homotopy class of isomorphisms(

X
τn;a
n;a ×R

)
⊕
(
TX

τn;a
n;a ⊕2(L∗)φ̃

∗∣∣
X
τn;a
n;a

)
⊕
(
X
τn;a
n;a ×R`0(a)

)
⊕ `1(a)ORPn−1(1)

∣∣
X
τn;a
n;a

≈
(
X
τn;a
n;a ×Rn+2−`1(a)

)
⊕ `1(a)ORPn−1(1)

∣∣
X
τn;a
n;a

(2.27)

over every loop in X
τn;a
n;a . Since the real bundle pair (L, φ̃) satisfies (1.3),

the real orientable vector bundle TX
τn;a
n;a ⊕2(L∗)φ̃

∗
admits a spin struc-

ture. By the first two statements of [13, Lemma 3.11], it is determined
by (2.27) and the orientation on TXφ specified by the first isomorphism
in (2.19).

2.3. The canonical orientations of the moduli spaces. By [12,
Theorem 1.3], the real orientations on (Xn;a, τn;a) and (X2m;a, η2m;a)
constructed in Section 2.2 induce orientations on the moduli spaces of
real maps into these real symplectic manifolds if n−k∈2Z (so that the
complex dimensions of these Kahler manifolds are odd). The construc-
tion of these real orientations involves some implicit choices (which are
listed explicitly in the statement of Theorem 1.6). Below we describe the
effect of these choices on the real orientations, the induced orientations
on the moduli spaces of real maps, and the resulting GW-invariants
of (Xn;a, τn;a) and (X2m;a, η2m;a). We use this description to establish
Theorem 1.6. Proposition 2.6 notes additional properties of the real
orientations of Section 2.2.

Throughout this section, we denote by (X,φ) either a fixed com-
plete intersection (Xn;a, τn;a) in (Pn−1, τn) cut out by a real holomor-
phic bundle section sn;a or a fixed complete intersection (X2m;a, η2m;a)
in (P2m−1, η2m) cut out by a real holomorphic bundle section s2m;a. Two
such sections cut out the same complete intersections if and only if they
differ by a real holomorphic automorphism of the holomorphic vector
bundle

(2.28) Ln;a ≡
k⊕
i=1

OPn−1(ai) −→ Pn−1 .

A holomorphic endomorphism Φ of (2.28) corresponds to k2 elements

(2.29) ϕij ∈ H0
(
Pn−1;OPn−1(ai−aj)

)
, i, j = 1, . . . , k.

In particular, ϕij =0 if ai<aj and ϕij∈C if ai=aj . This endomorphism
is, thus, invertible if and only if the (constant) matrix (ϕ′ij)ij given by

ϕ′ij =

{
ϕij , if ai=aj ;

0, if ai 6=aj ;
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is invertible. If φ = τn;a, Φ is real if each ϕij in (2.29) is real. The
homotopy classes of real automorphisms of (2.28) in this case are, thus,
generated by negating the individual components of (2.28). If φ=η2m;a,
the odd-degree line bundles in (2.29) are paired up. Every real holo-
morphic automorphism of the associated rank 2 real bundle pair is ho-
motopic to the identity through real holomorphic automorphisms. The
homotopy classes of real automorphisms of (2.28) in this case are, thus,
generated by negating the individual even-degree components of (2.28).

Remark 2.3. The real bundle pairs (2OP2m−1(a), η̃
(a)
2m;1,1) with a 6∈2Z

admit continuous real automorphisms not homotopic to the identity.
Their homotopy classes are characterized by their restrictions to an
equator S1 ⊂ C∗ inside of a real linearly embedded P1 ⊂ Pn−1 being
homotopic to the automorphism

(α, β) −→
(
z−1β, zα

)
.

This homomorphism extends continuously, but not holomorphically,
over Pn−1.

Whenever the choices implicitly made in Section 2.2 affect the re-
sulting real orientation on (Xn;a, φ) constructed in Section 2.2, their
effects on the induced orientations of the moduli spaces of real maps
are straightforward to determine using oriented symmetric half-surfaces
(or sh-surfaces) as in [11] and [13, Section 3.2]. A sh-surface (Σb, c)
contains ordinary boundary components and crosscaps (boundary com-
ponents with an antipodal involution) and doubles to a symmetric sur-
face (Σ, σ). The parity of the total number of the boundary components
of Σb is the parity of g+1, where g is the genus of Σ.

The first choice made in Section 2.2 is a real holomorphic parametriza-
tion of (Pn−1, τn) and (P2m−1, η2m); this, in particular, includes the or-
dering of the homogeneous components for the purposes of Lemma 2.1.
Since the group Aut(P1, η) is connected, the group Aut(P2m−1, η2m)
is also connected. A path in Aut(P2m−1, η2m) lifts to a path of holo-

morphic automorphisms of m(2OP2m−1(1), η̃
(1)
2m;1,1). Since the group of

holomorphic automorphisms of this real bundle pair over the identity is
connected, it follows that the real orientation of Section 2.2 is indepen-
dent of the choice of real holomorphic parametrization of (P2m−1, η2m).

The group Aut(P1, τ) has two connected components; the negation of
a homogenous coordinate is not homotopic to the identity. Since such
an automorphism reverses the orientation of RPn−1 whenever n∈2Z+,
this implies that Aut(Pn−1, τn) has precisely two connected components
for any n≥2. Negating a homogenous coordinate of Pn changes

(C0) the homotopy class of the surjection h in (2.8),
(C1) the homotopy class of the isomorphism in (1.3) induced by the

first isomorphism in (2.19) over every real loop in Xn;a, and
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(C2) the orientation on TX
τn;a
n;a ⊕2(L∗)φ̃

∗
induced by the isomorphism

(2.27).

By the third statement of [13, Lemma 3.11], such an interchange also
changes

(C3) the resulting spin of TX
τn;a
n;a ⊕2(L∗)φ̃

∗
over every loop in X

τn;a
n;a not

contractible in RPn−1.

For a real map u from a sh-surface Σb, the effects of these changes on
the trivializations over the boundary components of Σb are to flip

(E1) the homotopy type of trivializations of u∗(TXn;a,dτn;a) over each
crosscap,

(E2) the orientation of trivializations of u∗TX
τn;a
n;a over each ordinary

boundary component,
(E3) the spin of trivializations of u∗TX

τn;a
n;a over each ordinary boundary

component to which the restriction of u is homotopically non-
trivial as a map to RPn−1.

By [3, Propositions 4.1, 4.2], the parity of the number of the components
in (E3) is the parity of the degree d of u.

Proof of Theorem 1.6. Let η̃2m be an anti-holomorphic conjugation
on the vector bundle Ln;a in (2.28) lifting the involution η2m on P2m−1

and

H0
(
P2m−1;Ln;a

)η̃2m ⊂ H0
(
P2m−1;Ln;a

)
be the subspace of real holomorphic sections. Since the fixed locus of
the involution η2m on P2m−1 is empty, the subspace{

(s, p)∈H0
(
P2m−1;Ln;a

)η̃2m×Pn−1 : s(p)=0, rk C∇s|p<k
}

has complex codimension n in H0(P2m−1;Ln;a)η̃2m×Pn−1. Thus, its
projection to the first component has complex codimension one and
the space of regular real sections of (2.28) is path-connected. Along
with the conclusions above Remark 2.3 and in the paragraph concerning
Aut(P2m−1, η2m), this implies that the real orientation on (X2m;a, η2m;a)
constructed in Section 2.2 and the resulting real GW-invariants are in-
dependent of the real parametrization of (P2m−1, η2m), the ordering of
the line bundles associated with the complete intersection, and the sec-
tion s2m;a.

The first vanishing claim of Theorem 1.6(2) in this case follows from
Lemma 2.5 below (its g = 0 case is contained in [4, Lemma 1.9]). If
ai ∈ 2Z for some i, replacing the component si of sn;a by −si results
in the changes in (C1) and, thus, in (E1). If g ∈ 2Z, this replace-
ment, thus, changes the orientation of the moduli space of real maps
to (X2m;a, η2m;a) and the sign of the corresponding real GW-invariants.
However, by the previous paragraph, these invariants are independent
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of the choice of the section sn;a. This establishes the second vanishing
claim of Theorem 1.6(2) for φ=η2m;a.

We next consider the case φ=τn;a. A real holomorphic reparametriza-
tion of (Pn−1, τn) induced by a linear automorphism ϕ of Cn determines
a commutative diagram of the form

Mg,l(X, d)φ

��

ev // X l

��

� � //
(
Pn−1

)l
��

Mg,l(X
′, d)φ

′ ev // X ′l �
� //

(
Pn−1

)l(2.30)

with (X ′, φ′) denoting the complete intersection cut out by the section
s′n;a obtained from sn;a by a suitable transform. The middle and right
vertical arrows are orientation-preserving with respect to the canonical
complex orientations on their domains and targets. The left vertical
arrow is orientation-preserving with respect to the orientations of Sec-
tion 2.2 differing by the reparametrization of the middle term in (2.8)
by ϕ. The GW-invariants of Theorem 1.6 are the intersection num-
bers of the first horizontal arrows with the cycles represented by the
constraints.

By the commutativity of the first square in (2.30), the GW-invariants
of Theorem 1.6 are, thus, invariant under real holomorphic
reparametrizations of (Pn−1, τn). This, in particular, establishes Theo-
rem 1.6(1) for k = 0. Negating one of the OPn−1(1)-factors in (2.8) or
one of the odd-degree components si of sn;a affects (C1)–(C3) and the

orientation of Mg,l(X, d)φ through (E1)–(E3). Each of the last three

changes by itself would reverse the orientation of Mg,l(X, d)φ. Since
the parity of the number of changes (E1) and (E2) is that of g+1 and
of (E3) is that of d, negating one of the OPn−1(1)-factors in (2.8) or
one of the odd-degree components si of sn;a preserves the orientation of

Mg,l(X, d)φ if d−g 6∈2Z and reverses it otherwise. This establishes The-
orem 1.6(1) under the assumptions that ai 6∈2Z for all i and d−g 6∈2Z.
Since negating an even-degree component si of sn;a affects (C1) and (C2)

only and the orientation of Mg,l(X, d)φ through (E1) and (E2), this op-

eration preserves the orientation of Mg,l(X, d)φ if g 6∈ 2Z and reverses
it otherwise. Combined with the previous observation, this establishes
Theorem 1.6(1) under the assumption g 6∈2Z for all i and d∈2Z.

We now turn to Theorem 1.6(2) with φ=τn;a. If d−g∈2Z, negating
one of the OPn−1(1)-factors in (2.8) changes the orientation of
Mg,l(X, d)φ and, thus, the sign of the real GW-invariants of (X,φ).
If ai ∈ 2Z for some i and g ∈ 2Z, replacing si by −si changes the sign
of the real GW-invariants of (X,φ). If the genus g real degree d GW-
invariants of (X,φ) are invariant under these changes, then they must
vanish.
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It remains to consider the g = 0 case of Theorem 1.6(1). The real
GW-invariants of (X,φ) are then given by cupping the constraints with
the Euler class of the bundle (4.1) to Mg,l(Pn−1, d)τn . The proof of [30,
Theorem 3] establishes this statement for (n,a)=(5, (5)) and d 6∈2Z, but
its principles apply in general (as long as g=0). The real GW-invariants
of (X,φ) can then be computed using the equivariant localization the-
orem of [2] as in Section 4.2. If d ∈ 2Z (i.e., d−g ∈ 2Z) or ai ∈ 2Z for
some i, then all torus fixed loci contribute zero to these invariants; see
Lemma 5.3. Therefore, the g = 0 real GW-invariants vanish in these
cases and are, in particular, independent of all choices implicitly made
in Section 2.2. The same reasoning applies whenever the genus g de-
gree d real GW-invariants can be, similarly, related to Mg,l(Pn−1, d)τn

and either d−g∈2Z or ai∈2Z for some i and g∈2Z. q.e.d.

Remark 2.4. The independence of the real GW-invariants of (X,φ)
in the φ = ηn;a case is established by taking the homotopy between
two moduli spaces of real maps induced by a generic path between two
regular real sections of (2.28); it consists of regular sections in this case.
Such a path need not exist in the φ=τn;a case, but a cobordism between
the moduli space would satisfy. It would pass through spaces of real
maps into hypersurfaces with isolated real nodal points. Unfortunately,
we do not see at this point a notion of a moduli space which would be
suitable for constructing the desired cobordism.

Lemma 2.5. Suppose m, d∈Z+ and g, l∈Z≥0. If d−g∈2Z, then

Mg,l

(
P2m−1, d

)η2m = ∅ .

Proof. It is sufficient to establish this statement for l= 0 and m= 1
(after composition with a projection to a generic real line). By the
Riemann–Hurwitz formula [18, p219], a genus g degree d cover of P1

has 2(d+g−1) branched points in P1, counted with multiplicity. Any
such cover is determined by the branched points and some combina-
torial data. Suppose some combinatorial data is compatible with the
involution η2 on P1 and some (necessarily fixed-point-free) involution
on the domain. We take the limit of such real covers by bringing all
of the branched points to a pair of conjugate points. The restriction
of the limiting map to each non-contracted component of the domain
then has no branched points; any such component is, thus, a P1 and the
degree of the limiting map is 1. Denote by g0 the sum of the geometric
genera of the contracted components and by N the number of nodes of
the domain of the limiting map. Thus,

(2.31) g = d−N + 1 + g0.

Since the fixed locus of (P1, η) is empty, g0, N ∈ 2Z. The claim, thus,
follows from (2.31). q.e.d.
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Since the involutions τn and τ ′n on Pn−1 are related by the auto-
morphisms (2.3) and (2.4), the construction of real orientations in Sec-
tion 2.2 applies with only minor changes to complete intersections in-
variant under the involutions τ ′n. For such complete intersections, some
of the odd-degree sections si may be paired up (the sections correspond-

ing to the real bundle pairs (2OPn−1(a), τ̃
′(a)
n;1,1)). However, the ordering

of the sections within each such pair is not fixed (because the automor-

phism φ̃ in the proof of Lemma 2.1 is of order 2 in this case). The same
invariance considerations as in the τn case apply with the involution τ ′n.

We next note some properties of the real orientations constructed in
Section 2.2.

Proposition 2.6. (1) Let m,n∈Z+, k∈Z≥0, and

a≡(a1, . . . , ak) ∈ (Z+)k.

If the real orientations on (Xn;a, τn;a) and (X2m;a, η2m;a) constructed
in Section 2.2 are independent of the choices made, then they are
also invariant under the inclusions

(2.32)
(
Pn−1, τn

)
−→

(
Pn, τn+1

)
,
(
P2m−1, η2m

)
−→

(
P2m+1, η2m+2

)
as coordinate subspaces. If the induced orientation on the moduli
space of genus g degree d real maps is independent of these choices,
then it is also invariant under the inclusions (2.32).

(2) Let m ∈ Z+. The signed count of real lines through a pair of con-
jugate points in (P2m−1, τ2m) with respect to the real orientation of
Section 2.2 is given by (1.1).

Proof. (1) The first inclusion in (2.32) replaces Xn;a with Xn+1;a′ ,
where a′ is tuple obtained from a by adding 1 as the last component.
The only effect of this change on (2.25)–(2.27) is to increase the coef-
ficients `1(a) in front of ORPn−1(1)

∣∣
X
τn;a
n;a

by 1. There is no effect on

the homotopy class of the isomorphism in (1.3) induced by the first

isomorphism in (2.19) or on the spin structure on TX
τn;a
n;a ⊕2(L∗)φ̃

∗
.

The second inclusion in (2.32) replaces X2m;a with X2m+2;a′ , where
a′ is tuple obtained from a by adding 1 as the last two components.
There is no effect on the homotopy class of the isomorphism in (1.3)
induced by the second isomorphism in (2.19).

(2) Suppose firstm∈2Z. The real part of the first line bundle in (2.18)
is then orientable. By [13, Theorem 1.5], the orientation on

(2.33) M0,1(P2m−1, 1)τ2m = M0,1(P2m−1, 1)τ2m

induced by the real orientation of Section 2.2 is the orientation induced
by the associated spin structure on TRP2m−1. The latter is induced by
the canonical spin structure on 2mORP2m−1(1) via Euler’s sequence as
in [4, Section 5.5]. The claim now follows from [4, (1.21)].
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Suppose now m 6∈2Z. The real part of the first line bundle in (2.18)
is then non-orientable. By [13, Theorem 1.5], the orientation on (2.33)
induced by the real orientation of Section 2.2 agrees with the orientation
induced by the associated relative spin structure if and only if m+1∈4Z.
This is the relative spin structure in the sense of [7, Theorem 8.1.1]
associated with the oriented rank 2 real vector bundle

OP2m−1(−m) −→ P2m−1,

and the canonical spin structure on

2mORP2m−1(1)⊕OP2m−1(−m)
∣∣
RP2m−1 ≈ 2mORP2m−1(1)⊕ 2ORP2m−1(1)

≈ 2(m+1)ORP2m−1(1).

The orientation on (2.33) induced by this relative spin structure agrees
with the orientation induced by the relative spin structure associated
with the oriented rank 2 real vector bundle OP2m−1(1) and the canonical
spin structure on

2mORP2m−1(1)⊕OP2m−1(1)
∣∣
RP2m−1 ≈ 2(m+1)ORP2m−1(1),

if and only if m+1 ∈ 4Z. Thus, the first and the third orientations
on (2.33) are the same. The second relative spin structure is the rela-
tive spin structure of [4, Remark 6.5]. The claim now follows from [4,
Remark 1.11].

The equality of the first and third orientations on (2.33) above can
be seen in another way as well. The former is the orientation obtained
as in [10] by adding 2ORP2m−1(−m) to TP2m−1 and using the canonical
spin structure on

2mORP2m−1(1)⊕ 2ORP2m−1(−m) ≈ 2(m+1)ORP2m−1(1).

By [13, Remark 3.10], the resulting orientation on (2.33) depends only
on the latter (in contrast to the relative spin orientations). Thus, we can
replace ORP2m−1(−m) by ORP2m−1(1). By [13, Corollary 3.8(1)], the re-
sulting orientation on (2.33) agrees with the third orientation on (2.33).

q.e.d.

Remark 2.7. The computation of the number (1.1) in [4] in both
cases is confirmed through a second argument; see Corollary 5.4 and
the paragraph above Remark 6.9 in [4]. It is also indirectly confirmed
by the two proofs of [13, Proposition 3.5].

3. Proof of Theorem 1.5

We assume that (X,ω, φ) is a compact real-orientable 6-manifold,

B ∈ H2(X;Z)−{0}, l, k ∈ Z≥0, and µ1, . . . , µl∈H∗(X;Q)



REAL GROMOV–WITTEN THEORY III 441

are such that
l∑

i=1

(degµi−2) + 2k =
〈
c1(X), B

〉
,

and either k=0 or

〈c1(X), B′〉 ∈ 4Z ∀B′∈H2(X;Z) with φ∗B
′=−B′

and µ1, . . . , µl = PDX(pt).

We fix J ∈J φω as in the statement of Theorem 1.5.

3.1. Real GW- and enumerative invariants. For g ∈Z≥0, denote
by Mg,l;k(B) the moduli space of real genus g degree B X-valued J-
holomorphic maps with l conjugate pairs of marked points and k real
points and by

Mg,l;k(B) ⊂Mg,l;k(B)

the subspace of maps from smooth domains. The construction of Prym
structures of [25] over R provides a real analogue of the perturbations ν
of [33] over the Deligne–Mumford moduliMg,l;k of real curves. For a φ-

invariant perturbation ν, denote by Mg,l;k(B; ν) the moduli space of real
genus g degree B X-valued (J, ν)-holomorphic maps with l conjugate
pairs of marked points and k real points and by

Mg,l;k(B; ν) ⊂Mg,l;k(B; ν)

the subspace of maps from smooth domains. Let

ev: Mg,l;k(B; ν) −→ X l×(Xφ)k,[
u, (z+

1 , z
−
1 ), . . . , (z+

l , z
−
l ), x1, . . . , xk, j

]
−→

(
u(z+

1 ), . . . , u(z+
l ), u(x1), . . . , u(xk)

)
be the total evaluation map.

Choose a tuple p≡(p1, . . . , pk)∈(Xφ)k of real points and pseudocycle
representatives

h1 : Y1 −→ X, . . . , hl : Yl −→ X,

for the Poincare duals of µ1, . . . , µl; see the paragraph above [37, The-
orem 1.1]. Define

h=(h1, . . . , hl) : Y≡
l∏

i=1

Yi −→ X l,

∆l
p =

{
(q1, . . . , ql, p1, . . . , pk, q1, . . . , ql) : q1, . . . , ql∈X

}
⊂ X l×(Xφ)k×X l .

With ν as above, let
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Mg,h;p(B; ν) =
{(

[u],y
)
∈Mg,l;k(B; ν)×Y :

(
ev(u),h(y)

)
∈∆l

p

}
,

Mg,h;p(B; ν) = Mg,h;p(B; ν) ∩
(
Mg,l;k(B; ν)×Y

)
,

Mg,h;p(B) = Mg,h;p(B; 0), Mg,h;p(B) = Mg,h;p(B; 0).

For generic choices of the tuple p, the pseudocycle representatives h,
and a perturbation ν, the map

ev×h : Mg,l;k(B; ν)×Y −→ X l×(Xφ)k×X l

is transverse to ∆l
p on every stratum of the domain. In such a case,

Mg,h;p(B; ν) = Mg,h;p(B; ν)

is a zero-dimensional orbifold oriented by a real orientation on (X,ω, φ).
For g = 1, the corresponding real GW-invariant is the weighted cardi-
nality of this orbifold, i.e.,

(3.1) GWφ
1,B

(
µ1, . . . , µl; ptk

)
≡ ±∣∣M1,h;p(B; ν)

∣∣ ;
see [12, Theorem 1.4] and the proof of [12, Theorem 1.5]. This number
is independent of the generic choices of ν, p, and h, as well as of J .

By the genus 1 regularity assumption on J and the proofs of [39,
Propositions 1.7, 1.8], the map

ev×h : Mg,l;k(B)×Y −→ X l×(Xφ)k×X l

is also transverse to ∆l
p on every stratum of the domain for g=0, 1 and

generic choices of the tuple p and the pseudocycle representatives h and

(3.2) Mg,h;p(B) ⊂Mg,h;p(B)

is a finite zero-dimensional manifold consisting of non-intersecting em-
beddings. A real orientation on (X,ω, φ) and the proofs of [12, Theo-
rems 1.4,1.5] endow this manifold with an orientation. For g = 1, the
corresponding real enumerative invariant is the signed cardinality of this
manifold, i.e.,

(3.3) Eφ1,B
(
µ1, . . . , µl; ptk

)
≡ ±∣∣M1,h;p(B)

∣∣ .
We will show that

(3.4) GWφ
1,B

(
µ1, . . . , µl; ptk

)
= Eφ1,B

(
µ1, . . . , µl; ptk

)
;

the two sets in (3.2) may still be different. By (3.4), the number in (3.3)
is independent of the generic choices of p and h.

3.2. Proof of (3.4). The proof of (3.4) is similar to the proof of [40,
Theorem 1.1]. We denote by X1,l;k(B) the space of all stable real genus 1
degree d maps in the Lp1-topology of [22, Section 3] and by

X
{0}
1,l;k(B) ⊂ X1,l;k(B)
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the subspace of tuples [u] so that the degree of the restriction of the
associated map u to the principal component of the domain is nonzero.
Let

X1,h;p(B) =
{(

[u],y
)
∈X1,l;k(B)×Y :

(
ev(u),h(y)

)
∈∆l

p

}
,

X
{0}
1,h;p(B) = X1,h;p(B) ∩

(
X
{0}
1,l;k(B)×Y

)
.

By the genus 1 regularity assumption on J ,

(3.5) M1,h;p(B) ∩ X
{0}
1,h;p(B) = M1,h;p(B) .

For ν sufficiently small, M1,h;p(B; ν) is contained in an arbitrarily
small neighborhood of

M1,h;p(B) ⊂ X1,l;k(B)×Y .

By the regularity of the subspace (3.2), there is a unique element of
M1,h;p(B; ν) near each element of M1,h;p(B). Thus, the difference be-
tween the numbers in (3.4) is the number of elements of M1,h;p(B; ν)
that lie close to

(3.6) M1,h;p(B)−M1,h;p(B) ⊂ X1,h;p(B)− X
{0}
1,h;p(B);

the inclusion above holds by (3.5).
By the regularity assumption on J , every map u in the subset in (3.6)

is not constant on a single bubble component Σ∗u≈P1 of its domain Σu.
The image of u is an embedded rational curve intersecting the pseu-
docycles h1, . . . , hl in distinct non-real points. Since u is a real map
and Σ∗u shares only one node Pu with the remainder of Σu, u|Σ∗u is a
real map and Pu is a non-isolated real node. The complement of Σ∗u
in Σu contains at most one real marked point (in addition to the node
shared with Σ∗u) and no conjugate pairs of marked points. If Σu−Σ∗u
contains one marked point, then the restriction of u to Σ∗u determines
an element of

M0,h;p(B) = M0,h;p(B),

with one of the real marked points distinguished and the remaining
components of Σu determine an element of M1,0;2. If Σu−Σ∗u contains
no marked point, then the restriction of u to Σ∗u determines an element
of the preimage

M′0,h;p(B) ⊂M0,l;k+1(B)×Y

of M0,h;p(B) under the forgetful morphism

f×idY : M0,l;k+1(B)×Y −→M0,l;k(B)×Y

dropping the additional marked point. The remaining components of Σu

determine an element of M1,0;1 in this case.
Since the images Cu of the elements of the g = 0 spaces in (3.2) are

disjoint real embedded curves in (X,φ), the topological components of
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M
′
0,h;p(B) correspond to the elements [u] of the g = 0 spaces in (3.2).

The evaluation

ev0 : M
′
0,h;p(B) −→ Xφ

at the distinguished real marked point associated with the node restricts
to a diffeomorphism from each topological component of the domain to
the real locus of the curve Cu corresponding to the given component.

The left-hand side of (3.6) is stratified by the subspaces UT ;h;p(B) of
maps of a fixed combinatorial type T . By the above, every non-empty
stratum UT ;h;p(B) is of the form

(3.7) UT ;h;p(B) ≈ UT ×M′0,h;p(B),

where UT is a stratum of M1,0;1, or of the form

(3.8) UT ;h;p(B) ≈ UT ×M0,h;p(B),

where UT is a stratum of M1,0;2. In particular, the main boundary
strata are of the form

(3.9) M1,0;1×M′0,h;p(B) and M1,0;2×M0,h;p(B).

Proposition 3.1 below describes the signed number of elements of the
space M1,h;p(B; ν) near each stratum UT ;h;p(B).

We denote by

ER, LR
1 −→M1,0;1 and ER, LR

1 −→M1,0;2

the real parts of the Hodge line bundle of holomorphic differentials and
of the universal tangent line bundle at the marked point and their pull-
backs by the forgetful morphism. The real part of the tautological line
bundle over M1,0;2 for the first marked point and LR

1 are canonically
identified over M1,0;2. Let

LR
0 −→M0,0;{0}(B) and LR

0 −→M0,h;p(B),M
′
0,h;p(B)

denote the real part of the universal tangent line bundle at the marked
point and its pullbacks by the projection map to the moduli space com-
ponent and the forgetful morphisms (keeping only the marked point
associated with the node).

The homomorphism

s1 : LR
1 −→

(
ER)∗, {

s1(v)
}

(ψ) = ψ(v),

of real line bundles overM1,0;1 andM1,0;2 is an isomorphism. We define

a bundle homomorphism over M0,0;{0}(B), M0,h;p(B), and M
′
0,h;p(B) by

(3.10) DR
0 : LR

0 −→ ev∗0TX
φ , DR

0

(
[u, v]

)
= dx0(u)u(v),

where x0(u) is the distinguished marked point and u is the map com-
ponent of the tuple u. The restriction of (3.10) over the component of
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M
′
0,h;p(B) corresponding to an embedded real curve C in (X,φ) identi-

fies LR
0 with ev∗0TCφ. For each combinatorial type T as above, let DT

be the bundle homomorphism over UT ;h;p(B) given by

DT =π∗1s1⊗Rπ
∗
2DR

0 : π∗1L
R
1 ⊗Rπ

∗
2L

R
0 −→ π∗1(ER)∗⊗Rπ

∗
2ev∗0TX

φ,

with respect to the decomposition (3.7) or (3.8).
For a generic choice of a bundle section νT of

(3.11) π∗1(ER)∗⊗Rπ
∗
2ev∗0TX

φ −→ UT ;h;p(B),

the affine bundle map

αT ,νT : π∗1L
R
1 ⊗Rπ

∗
2L

R
0 −→ π∗1(ER)∗⊗Rπ

∗
2ev∗0TX

φ,

αT ,νT (υ) = DT (υ) + νT (u) ∀ υ∈π∗1LR
1 ⊗Rπ

∗
2L

R
0

∣∣
u
, u∈UT ;h;p(B),

over UT ;h;p(B) is transverse to the zero set. This section, thus, has no
zeros unless T corresponds to one of the main strata (3.9). Since DT is
injective, αT ,νT has a finite number of transverse zeros over each main
stratum.

The affine bundle map αT ,νT can be viewed as a section α′T ,νT of the
bundle

π∗T
(
π∗1(ER)∗⊗Rπ

∗
2ev∗0TX

φ
)
−→ π∗1L

R
1 ⊗Rπ

∗
2L

R
0 ,

where

πT : π∗1L
R
1 ⊗Rπ

∗
2L

R
0 −→ UT ;h;p(B)

is the bundle projection map. By our assumptions, the choice of a
real orientation on (X,ω, φ) used to define the number (3.1) orients
the uncompactified moduli space M1,h;p(B). Since the domain and
target of αT ,νT form a deformation-obstruction complex for the oriented

moduli space M1,h;p(B) over the main strata UT ;h;p(B) and all zeros of
α′T ,νT are contained in

π∗T
(
π∗1(ER)∗⊗Rπ

∗
2ev∗0TX

φ
)∣∣
π∗1L

R
1⊗Rπ∗2L

R
0 |UT ;h;p(B)

− π∗1LR
1 ⊗Rπ

∗
2L

R
0 ,

the orientation on M1,h;p(B) determines a sign for each zero of α′T ,νT
and αT ,νT (these are the same). We denote the resulting weighted

cardinality of α−1
T ,νT (0) by N(DT , νT ).

As described above [40, (3.14)], a perturbation ν as above determines
a section νT of the complex analogue of the bundle (3.11). If ν is φ-
invariant, then νT is a section of (3.11). If ν is generic, then αT ,νT is
transverse to the zero set for every T .

Proposition 3.1. There exists a non-empty subspace of φ-invariant
perturbations ν satisfying the following property. For each boundary
stratum UT ;h;p(B) of M1,h;p(B), there exist CT (∂̄J)∈Q and a compact
subset Kν of UT ;h;p(B) with the following property. For every compact
subset K of UT ;h;p(B) and open subset U of X1,h;p(B), there exist an
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open neighborhood Uν(K) of K in X1,h;p(B) and εν(U) ∈ R+, respec-
tively, such that

±∣∣M1,h;p(B; tν)∩U
∣∣ = CT (∂̄J) if t∈(0, εν(U)), Kν⊂K⊂U⊂Uν(K).

Furthermore, CT (∂̄J) =N(DT , νT ) if UT ;h;p(B) is a main stratum and
CT (∂̄J)=0 otherwise.

This is the real case of [40, Proposition 3.1]. It is obtained by re-
stricting the proof in [40] to the space of real parameters.

It remains to compute the number N(DT , νT ) for each of the main
strata (3.9). Since the section DT is injective, the zeros of αT ,νT corre-
spond to the zeros of the transverse bundle section ν ′T of

(3.12) π∗1(ER)∗⊗Rπ
∗
2ev∗0TX

φ
/

ImDT ≈ π∗1LR
1 ⊗Rπ

∗
2

(
ev∗0TX

φ/ImD0

)
obtained by composting ν ′T with the projection map; see [35, Sec-
tion 3.3].

Each topological component of the closure UT ;h;p(B) of the first space
in (3.9) is S1×S1, with the circles coming from each factor. By the
proof of [12, Theorem 1.5], the orientation on M1,h;p(B) extends to

an orientation over UT ;h;p(B). This orientation and an orientation on

UT ;h;p(B) induce an orientation on the target vector bundle in (3.12).
The number N(DT , νT ) is the signed number of zeros of the section ν ′T
with respect to the chosen orientation on UT ;h;p(B) and the induced
orientation on this vector bundle, i.e.,

(3.13) N(DT , νT ) =
〈
e
(
π∗1L

R
1 ⊗Rπ

∗
2(ev∗0TX

φ/ImD0)
)
,
[
UT ;h;p(B)

]〉
.

Since the restriction of ev∗0TX
φ/ImD0 to the component of M

′
0,h;p(B)

corresponding to a curve Cu⊂X is the normal bundle of Cφu in Xφ and
is, thus, orientable, the number (3.13) is zero in this case.

Each topological component of the closure of the second space in (3.9)
is M1,0;2 and

(3.14) π∗1L
R
1 ⊗Rπ

∗
2

(
ev∗0TX

φ/ImD0

)
≈ LR

1 ⊕LR
1 −→M1,0;2

in this case. Since LR
1 is the pullback of a bundle over M1,0;1 in our

setup, there is an open subset of sections ν ′T of (3.14) that have no zeros.
Thus, ν can be chosen so that the section αT ,νT has no zeros and so
N(DT , νT )=0 in this case as well.

In summary, the difference between the two numbers in (3.4) is the
sum of the numbers N(DT , νT ) corresponding to the main boundary
strata of M1,h;p(B). By the last two paragraphs, each of these numbers
N(DT , νT ) is zero. This establishes (3.4) and Theorem 1.5.
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4. Equivariant localization

Throughout this section, n∈Z+, m is the integer part of n/2, and

[n] = {1, . . . , n}.

We denote by φ either the involution τ ′n on Pn−1 given by (2.2) or
the involution ηn on Pn−1 with n = 2m given by (1.2). The restric-
tion of the standard Tn-action on Pn−1 to a subtorus Tm ⊂ Tn com-
mutes with the involution φ; see Section 4.1. This restriction, thus,
induces a Tm-action on the moduli space Mg,l(Pn−1, d)φ of genus g de-
gree d real J0-holomorphic maps into (Pn−1, φ) with l pairs of conju-
gate marked points. We describe the fixed loci of this action and their
normal bundles, as real vector bundles, in Sections 5.1 and 5.2. By
Proposition 1.4, (Pn−1, φ) admits a real orientation if (n, φ) = (2m, τ ′n)
or (n, φ)=(4m, ηn). By [12, Theorem 1.3], Mg,l(Pn−1, d)φ is orientable
in these cases and is oriented by a real orientation on (Pn−1, φ). We
determine the orientations on the normal bundles to the fixed loci with
respect to the real orientations of Section 2.2 in Section 5.3. The equi-
variant localization data provided by Theorem 4.6 determines the real
GW-invariants of (P2m−1, ω2n, τ2m) and (P4m−1, ω4m, η4m) and exhibits
the two types of vanishing phenomena described in [34, Sections 3.2,3.3].
We illustrate their use in Section 4.3.

We also describe equivariant localization data related to the real GW-
invariants of the complete intersections Xn;a ⊂ Pn−1 preserved by φ.
Such a complete intersection is the zero set of a transverse holomorphic

section sn;a of the vector bundle (2.28) satisfying sn;a◦φ= φ̃n;a◦sn;a for

a conjugation φ̃n;a lifting φ. The latter is necessarily a direct sum of the

conjugations φ̃
(a)
n;1 and φ̃

(a)
n;1,1 described in Section 2.1. Let φn;a =φ|Xn;a .

If (n,a) and φ satisfy the assumptions of Proposition 1.4 (with τn re-
placed by τ ′n in the first case), then (Xn;a, φn;a) admits a real orientation.

By [12, Theorem 1.3], Mg,l(Xn;a, d)φn;a is then orientable if n−k ∈ 2Z
(so that the complex dimension of Xn;a is odd) and is oriented by a real
orientation on (Xn;a, φn;a).

Whenever defined, the real GW-invariants of (Xn;a, ω2n;a, φn;a) are
expected to be related to the “fibration”

(4.1) π
φ̃n;a
n;a : V φ̃n;a

n;a ≡Mg,l

(
Ln;a, d

)φ̃n;a −→Mg,l(Pn−1, d)φ .

The Tm-action on the base of this “fibration” lifts canonically to the
total space. The restriction of (4.1) to a certain open subspace

(4.2) M?
g,l(Pn−1, d)φ ⊂Mg,l(Pn−1, d)φ

is a vector orbi-bundle of the expected rank, but the dimensions of the
fibers of (4.1) are higher over the complement of (4.2). Under the as-
sumptions of Proposition 1.4, the orientation systems of the restrictions
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of V φ̃n;a
n;a and TMg,l(Pn−1, d)φ to M?

g,l(Pn−1, d)φ are the same. The sec-

tion sn;a and the real orientation on (Xn;a, φn;a) described in Section 2.2
determine a homotopy class of isomorphisms between these two systems
and a class

(4.3) e
(
V φ̃n;a
n;a

)
∈ H∗Tm

(
M?

g,l(Pn−1, d)φ;O
)

in the Tm-equivariant cohomology with coefficients in the orientation
system of Mg,l(Pn−1, d)φ.

For each i=1, . . . , l, let

ψi ∈ H2
(
Mg,l(Pn−1, d)φ;Q

)
denote the first Chern class of the universal cotangent line bundle as-
sociated with the first marked point in the i-th conjugate pair. In Sec-
tion 4.2, we describe the equivariant localization contributions to

(4.4)

∫
[Mg,l(Pn−1,d)φ]vrt

l∏
i=1

(
ψbii ev∗ix

pi
)
e
(
V φ̃n;a
n;a

)
∈ H∗Tm ,

for any extension of (4.3) to a class

e
(
V φ̃n;a
n;a

)
∈ H∗Tm

(
Mg,l(Pn−1, d)φ;O

)
from the Tm-fixed loci contained in M?

g,l(Pn−1, d)φ; all such loci consist

of real maps with no contracted positive-genus components (unless k=0,
i.e., Xn;a = Pn−1). For (n,a) = (5, (5)) and φ= τ ′n, our conclusion spe-
cializes to [34, (3.22)]. The equivariant contributions to (4.4) described
by Theorem 4.6 vanish whenever the orientation on Mg,l(Xn;a, d)φn;a in-
duced by the canonical real orientation depends on the implicit choices
made in Section 2.2; see Section 2.3.

If k = 0 or g = 0, the subspace in (4.2) is the entire moduli space.
In the first case, e(Vn;a) = 1. In the second case, the class (4.3) relates
the g = 0 real GW-invariants of (Xn;a, ωn;a, φn;a) to (Pn−1, ωn, φ), as
shown in the proof of [30, Theorem 3] for (n,a) = (5, (5)) and φ= τ ′n.
If g≥1 and k≥1, the subspace in (4.2) is not even dense in the entire
moduli space. By [36, Theorem 1.1] and [23, Theorem 1.1], the natural
extension of the complex analogue of the g=1 case of (4.3) is a class on
the closure

M
0
1,l(Pn−1, d) ⊂M1,l(Pn−1, d)

of the subspace corresponding to (4.2) and relates the reduced genus 1
(complex) GW-invariants of Xn;a defined in [40] to (Pn−1, ωn). By [38,
Theorem 1A], the difference between the standard and reduced GW-
invariants of Xn;a is a combination of the genus 0 GW-invariants. The
same should be the case in the real setting and in higher genera. The
proof of [40, Theorem 1.1], in fact, suggests that the real analogues
of the reduced genus 1 GW-invariants are equal to the genus 1 real
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GW-invariants of (X,ω, φ) defined in [12] if dimRX = 6. This is con-
sistent with the prediction of [34, Section 3.4] that the genus 1 real
GW-invariants of (Xn;a, ωn;a, τ

′
n;a) are obtained from the equivariant

contributions of the Tm-fixed loci in M?
g,l(Pn−1, d)φ described in Sec-

tion 4.2.

4.1. Equivariant setting. Let Tn denote the n-torus (S1)n or its com-
plex analogue (C∗)n. The Tn-quotient of its classifying space ETn is
BTn=(P∞)n. Thus, the group cohomology of Tn is

H∗Tn ≡ H∗(BTn;Q) = Q
[
α1, . . . , αn

]
,

where αi≡π∗i c1(γ∗∞), γ∞−→P∞ is the tautological line bundle, and

πi : (P∞)n −→ P∞

is the projection to the i-th component. We will call α1, . . . , αn the
weights of the standard representation of Tn on Cn. Let

H∗Tn ≈ Q
(
α1, . . . , αn

)
denote the field of fractions of H∗Tn .

We denote the Tn-equivariant Q-cohomology of a topological space M
with a Tn-action, i.e., the cohomology of

BTnM ≡ ETn×TnM ,

by H∗Tn(M). The projection BTnM −→BTn induces an action of H∗Tn
on H∗Tn(M). Define

H∗Tn(M) = H∗Tn⊗H∗TnH
∗
Tn(M) .

If Tn acts trivially on M , then

BTnM = BTn×M, H∗Tn(M) = H∗Tn⊗H∗(M ;Q);

the last identification is on the level of H∗Tn-algebras. For an oriented
vector bundle V −→M with a Tn-action lifting the action on M , let

e(V ) ≡ e
(
BTnV

)
∈ H∗Tn(M)

denote the equivariant Euler class of V . For a complex bundle V −→M
with a Tn-action lifting the action on M , let

c(V ) ≡ c
(
BTnV

)
∈ H∗Tn(M)

denote the equivariant Chern class of V . A continuous Tn-equivariant
map f : M ′−→M between two topological spaces induces a homomor-
phism

f∗ : H∗T(M) −→ H∗T(M ′).

The equivariant Euler and Chern classes are natural with respect to
such maps.

The standard action of Tn on Cn,(
u1, . . . , un

)
·
(
z1, . . . , zn

)
=
(
u1z1, . . . , unzn

)
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descends to a Tn-action on Pn−1. The latter has n fixed points,

(4.5) P1 ≡ [1, 0, . . . , 0], . . . , Pn ≡ [0, . . . , 0, 1].

The curves preserved by this action are the lines through the fixed
points,

(4.6) P1
ij ≡

{
[Z1, . . . , Zn]∈Pn−1 : Zk=0 ∀ k 6= i, j

}
, i, j∈ [n], i 6=j.

The product of the standard Tn-actions on Pn−1 and Cn restricts to a
Tn-action on the tautological line bundle

γn−1 ⊂ Pn−1×Cn

as in (2.5) and induces Tn-actions on the holomorphic line bundles

OPn−1(a) ≡
(
γ∗n−1

)⊗a
, ∀ a∈Z.

Let

x ≡ e(γ∗n−1) ∈ H∗Tn(Pn−1)

denote the equivariant hyperplane class. The equivariant restrictions of
x and c(TPn−1) to the fixed points (4.5) are described by

x|Pi = αi ∈ H∗Tn = H∗Tn(Pi),

c(TPn−1)
∣∣
Pi

=
∏
k 6=i

(
1 + αi−αk

)
∀ i∈ [n].(4.7)

The first identity above follows from the definition of αi. The second
identity follows from the homomorphisms f and g in the short exact
sequence (2.8) being Tn-equivariant with respect to the Tn-action on
the middle term obtained by tensoring the standard action on γ∗n−1

with the standard action on Cn.
With notation as in (2.6),

(4.8) φ(Pi) = Pφ(i) .

Denote by λ1, . . . , λm the weights of the standard representation of Tm
on Cm. The embedding

ι : Tm −→ Tn,

ι
(
u1, u2, . . . , um

)
=

{
(u1, ū1, . . . , um, ūm), if n=2m;

(u1, ū1, . . . , um, ūm, 1), if n=2m+1;

(4.9)

induces a Tm-action on Pn−1 that commutes with the involution φ.
Under this embedding,

(4.10) (α1, . . . , αn)
∣∣
Tm =

{
(λ1,−λ1, . . . , λm,−λm), if n=2m;

(λ1,−λ1, . . . , λm,−λm, 0), if n=2m+1.

A subspace Y ⊂Pn−1 is called φ-invariant (Tm-invariant) if φ(Y ) =Y
(u(Y ) =Y for all u∈Tm); Y is called φ-fixed (Tm-fixed) if φ(y) = y for
all y∈Y (u(y)=y for all y∈Y and u∈Tm). The next lemma describes
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the Tm- and φ-fixed and invariant zero- and one-dimensional subspaces
of Pn−1. If n=2m+1, 1≤ i≤m, and a, b∈C∗, then

Ci(a, b) ≡
{

[z1, . . . , zn] ∈ Pn : zk=0 ∀ k 6=2i−1, 2i, n,

az2i−1z2i−bz2
n=0

}(4.11)

is a smooth conic contained in the plane P2
2i−1,2i,n spanned by P2i−1, P2i,

Pn and passing through P2i−1 and P2i.

Lemma 4.1 ([31, Lemma 3.1]). Suppose n∈Z+ and m= bn/2c. If
n=2m, let φ be either the involution τ ′n or η2m on Pn−1; if n=2m+1,
let φ=τ ′n.

(1) The Tm-fixed points in Pn−1 are the points Pi in (4.5) with i∈ [n].
(2) If n=2m, the Tm-invariant irreducible curves in Pn−1 are the lines

P1
ij as in (4.6). If n= 2m+1, the Tm-invariant irreducible curves

in Pn−1 are the lines P1
ij with 1≤ i 6=j≤n and the conics Ci(a, b) as

in (4.11) with a, b∈C∗.
(3) If n= 2m, the φ-invariant Tm-invariant irreducible curves in Pn−1

are the lines P1
2i−1,2i with 1≤ i≤m. If n= 2m+1, the φ-invariant

Tm-invariant irreducible curves in Pn−1 are the lines P1
2i−1,2i with

1≤ i≤m and the conics Ci(a, b) with 1≤ i≤m and a, b∈C∗ such
that ab̄∈R.

Remark 4.2. If n=2m+1 and a, b∈C∗ are such that ab̄∈R, then

Ci(a, b)φ =

{
{[z1, . . . , zn]∈P2

2i−1,2i,n : |z2i−1|= |z2i|
}
, if ab̄∈R+;

∅, if ab̄∈R−.

4.2. Equivariant localization data. Since the Tm-action on Pn−1

commutes with the involution φ, it induces an action on Mg,l(Pn−1, d)φ.
This action lifts to an action on the total space of the “fibration” (4.1).
Theorem 4.6 describes the class (4.3) as a sum of contributions from the
fixed loci of the Tm-action on Mg,l(Pn−1, d)φ. Each such contribution is
a rational fraction in the weights α1, . . . , αn of the standard represen-
tation of Tn on Cn restricted to the subtorus Tm ⊂ Tn defined by the
embedding (4.9); thus, it is a rational fraction in the weights λ1, . . . , λm
of the standard representation of Tm on Cm. As in the complex case de-
scribed in detail in [20, Chapter 27], all such contributions (that do not
cancel with other contributions) come from fixed loci corresponding to
decorated graphs. In contrast to the complex case, there are also more
complicated fixed loci involving covers of the conics (4.11) if n=2m+1.
These are dealt with in Section 5, where Theorem 4.6 is justified.

A graph (Ver,Edg) is a pair consisting of a finite set Ver of vertices
and an element

Edg ∈ Symk
(
{Ver′⊂Ver: |Ver′|=2}

)
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for some k ∈ Z≥0. We will view Edg as a collection of two-element
subsets of Ver, called edges, but it may contain several copies of the
same two-element subset. However, we do not allow an edge from a
vertex back to itself. For e ∈ Edg and v ∈ e, let e/v ∈ Ver denote the
vertex in e other than v. A graph (Ver,Edg) is connected if for all
v, v′∈Ver with v 6=v′ there exist

k∈Z+, v0, v1, . . . , vk−1, vk ∈ Ver, e1, . . . , ek ∈ Edg

s.t. v0 =v, vk=v′, vi−1, vi∈ei ∀ i=1, . . . , k.

For any graph (Ver,Edg), let

g
(
Ver,Edg

)
≡ |Edg| − |Ver|+ 1

be its genus. An automorphism of a graph (Ver,Edg) is a bijection

h : Ver t Edg −→ Ver t Edg,

such that h(Ver) = Ver and h(v) ∈ h(e) whenever v ∈ Ver, e ∈ Edg,
and v ∈ e. A subgraph of (Ver,Edg) is a graph (Ver′,Edg′) such that
Ver′⊂Ver and Edg′⊂Edg.

For a finite set S, an S-marked [n]-labeled decorated graph (or simply
decorated graph) is a tuple

(4.12) Γ ≡
(
Ver,Edg, g, ϑ, d,m

)
consisting of a graph (Ver,Edg) and maps

g : Ver −→ Z≥0, ϑ : Ver −→ [n], d : Edg −→ Z+, m : S −→ Ver,

such that ϑ(v) 6= ϑ(e/v) for every v ∈ e and e ∈ Edg. We define the
genus g(Γ) and the degree d(Γ) of such a graph by

g(Γ) = g
(
Ver,Edg

)
+
∑
v∈Ver

g(v) and d(Γ) =
∑
e∈Edg

d(e) ,

respectively. For each v∈Ver, let

Ev(Γ) =
{
e∈Edg: v∈e

}
and valv(Γ) = 2g(v) +

∣∣Ev(Γ)
∣∣+
∣∣m−1(v)

∣∣
denote the set of edges leaving the vertex v and its valence.

An automorphism of a decorated graph Γ as in (4.12) is an automor-
phism h of the graph (Ver,Edg) such that

g = g ◦ h|Ver, ϑ = ϑ ◦ h|Ver, d = d ◦ h|Edg, m = h ◦m.

A decorated subgraph of a decorated graph Γ as in (4.12) is a tuple

(4.13) Γ′ ≡
(
Ver′,Edg′, g′, ϑ′, d′,m′

)
,

such that (Ver′,Edg′) is a subgraph of (Ver,Edg),

(g′, ϑ′) = (g, ϑ)
∣∣
Ver′

, d′ = d|Edg′ , m′ = m|m−1(Ver′) .
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Figure 1. Examples of decorated graphs with involutions.

An involution σ on a decorated graph Γ as in (4.12) is an automor-
phism of the graph (Ver,Edg) and the set S such that

σ◦σ = id, g = g◦σ|Ver, φ◦ϑ = ϑ◦σ|Ver, d = d◦σ|Edg, σ◦m = m◦σ|S ,

with φ as in (2.6). In such a case, let

Vσ
R(Γ) ⊂ Ver and EσR(Γ) ⊂ Edg

be the subsets consisting of the fixed points of σ and define

Vσ
C(Γ) ≡ Ver−Vσ

R(Γ), EσC(Γ) ≡ Edg−EσR(Γ).

If Vσ
R(Γ) 6=∅, then n=2m+1 and ϑ(v)=n for all v∈Vσ

R(Γ). If e∈EσR(Γ),
v1, v2∈e, and v1 6=v2, then ϑ(v1)=φ(ϑ(v2)). If n=2m+1, then ϑ(v) 6=n
for all v∈e with e∈EσR(Γ). An automorphism of a pair (Γ, σ) consisting
of a decorated graph with an involution is an automorphism h of Γ such
that h◦σ= σ◦h. We denote the group of all automorphisms of (Γ, σ)
by Aut(Γ, σ).

The elements of the set EσC(Γ) above are called Klein edges in [34,
Section 3]; the elements of EσR(Γ) are doubled half-edges or disk edges in
the terminology of [34]. A graph with an involution can be depicted as
in Figure 1. The label next to each edge e indicates the value of d on e.
Each vertex v should, similarly, be labeled by the pair (g(v), ϑ(v)); we
drop the first label if it is zero. The involution σ is indicated by the two-
sided arrows in Figure 1. For example, it exchanges the two vertices in
the first two diagrams. It flips each of the edges back to itself in the first
diagram, but exchanges two of them in the second. The first diagram
contains no Klein edges, while the second contains a pair of such edges.
In the first two diagrams, S = ∅. In the last two diagrams, the disks
indicate any possibility for the graph Γ+.

We will call a pair (Γ, σ) consisting of a connected decorated graph
with an involution admissible if Γ is a connected graph,

(4.14) d(e) 6∈ 2Z ∀ v∈EσR(Γ) and ϑ(v) 6= 2m+1 ∀ v∈Edg.
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The second condition in (4.14), which is relevant only if n 6∈2Z, implies
that Vσ

R(Γ)=∅. For d, g, l∈Z≥0, let Ag,l(n, d) denote the set of admissi-
ble pairs (Γ, σ) such that Γ is an Sl-marked [n]-labeled decorated graph
with g(Γ)=g, d(Γ)=d,

(4.15) Sl ≡ {1+, 1−, . . . , l+, l−
}
, σ

(
i±
)

= i∓ ∀ i=1, . . . , l.

We show in Section 5 that all equivariant contributions to (4.3) arise
from the fixed loci corresponding to the elements of Ag,l(n, d).

In the remainder of this section, we describe the equivariant contri-
butions arising from the elements of Ag,l(n, d). Fix tuples

b ≡ (b1, . . . , bl) ∈
(
Z≥0

)l
and p ≡ (p1, . . . , pl) ∈

(
Z≥0

)l
.

We will describe the equivariant localization contributions to (4.4) under
the assumptions that n−k∈2Z and either

• φ=τ ′n and (n,a) satisfies the conditions of Proposition 1.4(1), or
• φ= η2m and (n,a) satisfies the conditions of Proposition 1.4(2) with
n=2m.

If k = 0, i.e., Xn;a = Pn−1, the equivariant Euler class in (4.4) is 1. If
g=0, this class is well-defined over the entire moduli space as an element
in the cohomology of M0,l(Pn−1, d)φ twisted by the orientation system
of this moduli space. The integral in (4.4) then computes the genus 0
real GW-invariants of (Xn;a, ωn;a, φn;a). In other cases, this Euler class
is well-defined over the subspace (4.2). For the admissible pairs (Γ, σ)
with g(v)=0 for all v∈Ver, Theorem 4.6 below then describes the con-
tribution of the Tm-fixed locus in Mg,l(Pn−1, d)φ corresponding to (Γ, σ)

to the integral in (4.4) of any extension of e(V φ̃n;a
n;a ) to an equivariant co-

homology class over the entire space. In the case g=1 and dimCXn;a=3,
it is expected that this class integral is independent of the extension and
computes the genus 1 real GW-invariants of (Xn;a, ωn;a, φn;a).

For a∈(Z+)k as before, let

〈a〉 = a1 · . . . · ak.

For g ∈ Z≥0 and a finite set S with 2g+ |S| ≥ 3, denote by Mg,S the
usual Deligne–Mumford moduli space of stable genus g S-marked curves
and by

E −→Mg,S

the Hodge vector bundle of holomorphic differentials. For each i∈S, let

ψi ∈ H2
(
Mg,S ;Q

)
be the first Chern class of the universal cotangent line bundle associated
with the i-th marked point.
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Suppose (Γ, σ) is an element of Ag,l(n, d) with Γ as in (4.12). For
each v∈Ver, let

Sv = Ev(Γ) tm−1(v), S−v =
{
i=1, . . ., l : i−∈Sv

}
,(4.16)

|b|v =
∑

1≤i≤l
i±∈Sv

bi, |p|v =
∑

1≤i≤l
i±∈Sv

pi,

sv = g(v)−1+|Ev(Γ)|+
∑
i∈S−v

(
1+bi+pi

)
.

If, in addition, e∈Ev(Γ), define

ψe;v =
αϑ(e/v)−αϑ(v)

d(e)
.

If valv(Γ)≥3, let

Cntr(Γ,σ);v(b,p) =

(
e(TPϑ(v)

Pn−1)

〈a〉αkϑ(v)

)|Ev(Γ)|−1

α
|p|v
ϑ(v)

×
∫

Mg(v),Sv

e(E∗⊗TPϑ(v)
Pn−1)∏

e∈Ev(Γ)

ψe;v(ψe;v+ψe)

∏
1≤i≤l
i±∈Sv

ψbii .
(4.17)

If valv(Γ)=1, 2, let

Cntr(Γ,σ);v(b,p) = −(−1)valv(Γ)

(
e(TPϑ(v)

Pn−1)

〈a〉αkϑ(v)

)|Ev(Γ)|−1

α
|p|v
ϑ(v)

×
( ∏
e∈Ev(Γ)

ψe;v

)−1( ∑
e∈Ev(Γ)

ψe;v

)3−valv(Γ)−|Ev(Γ)|+|b|v
.

(4.18)

In light of (4.7), the equivariant Euler classes of the vector bundles
TPϑ(v)

Pn−1 and E∗⊗TPϑ(v)
Pn−1 are readily expressible in terms of the

torus weights α1, . . . , αn and the Hodge classes ci(E) on Mg(v),Sv .

Remark 4.3. Our vertex contributions, i.e., (4.17) and (4.18), include
the movements of the nodes associated with the edges e ∈ Ev(Γ), in
contrast to [20, (27.8)] and [34, (3.22)]. The right-hand sides of these
equations are the standard vertex contributions in the complex setting.
The inclusion of the node movements has the effect of dividing the
product of all factors on the first two lines in [20, (27.8)] and the last
two lines in [34, (3.22)] associated with v by the product of −ψe;v with
e∈Ev(Γ). In the real setting, each vertex contribution comes with the
sign (−1)sv ; see (4.25). The contribution from S−v comes from orienting
the moduli space by the positive marked points. The contributions of
g(v)−1 and |Ev(Γ)| appear for more delicate reasons. The first arises
from the comparison between the orientation on the moduli space (5.7)
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of real maps from the nodal doublets (5.6) induced by a real orientation
and the standard complex orientation on the moduli space of maps
from one of the components; see the first equation in (5.29) and [13,
Theorem 1.4]. The second sign contribution arises because the complex
line bundle of smoothings of the node associated with each flag (e, v)
should be taken with the anti-complex orientation; see (5.23) and [13,
Theorem 1.2]. The product of these extra signs over all relevant vertices
constitutes the leading sign in [34, (3.15)].

With (Γ, σ) as in the previous paragraph, let e∈Edg and v1, v2∈e be
the two vertices of e. Suppose first that e∈EσC(Γ). If

(4.19) n = 2m+1, d(e) ∈ 2Z, and ϑ(v1) = φ
(
ϑ(v2)

)
,

then k≥1. In this case, we set Cntr(Γ,σ);e=0 if k≥2 and

Cntr(Γ,σ);e =
(−1)(a1+1)d(e)/2

d(e)

a1((a1d(e)/2)!)2

((d(e)/2)!)2(d(e)!)2

×

(
2αϑ(v)

d(e)

)(a1−3)d(e)+2

∏
1≤j<n

j 6=ϑ(v1),ϑ(v2)

(
αj
d(e)/2∏
r=1

(
r2
(

2αϑ(v)

d(e)

)2
−α2

j

))(4.20)

if k= 1 and v ∈ e is either vertex. If one of the conditions in (4.19) is
not satisfied, then let

Cntr(Γ,σ);e =
(−1)d(e)

d(e) (d(e)!)2

×

k∏
i=1

aid(e)∏
r=0

(aid(e)−r)αϑ(v1)+rαϑ(v2)

d(e)(
αϑ(v1)−αϑ(v2)

d(e)

)2d(e)−2 ∏
j 6=ϑ(v1),ϑ(v2)

d(e)∏
r=0

(
(d(e)−r)αϑ(v1)+rαϑ(v2)

d(e) −αj
) .(4.21)

If e ∈ EσR(Γ), then d(e) 6∈ 2Z by the first assumption in (4.14). If, in
addition, ai 6∈2Z for all i=1, . . . , k, let

Cntr(Γ,σ);e =
(−1)|φ|+

d(e)−1
2

d(e)

k∏
i=1

(aid(e))!!

2d(e)−1d(e)!

×

(
αϑ(v1)

d(e)

)(|a|−2)d(e)+k
2

+1

∏
j 6=ϑ(v1),ϑ(v2)

(d(e)−1)/2∏
r=0

(
(d(e)−2r)αϑ(v1)

d(e) −αj
) .

(4.22)

If ai∈2Z for some i=1, . . . , k, set Cntr(Γ,σ);e=0.
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Remark 4.4. Our edge contributions, i.e., (4.20), (4.21), and (4.22),
do not include the movements of the nodes associated with the vertices
v1, v2∈e, in contrast to [20, (27.8)] and [34, (3.22)]. They are included
into the vertex contributions. The right-hand side in (4.21) is the neg-
ative of the standard edge contribution in the complex setting with the
automorphism group taken into account. This has the effect of multi-
plying the product of all factors on the last line in [20, (27.8)] and the
first line in [34, (3.22)] associated with e by −ψe;v1ψe;v2/d(e). The extra
negative sign for each Klein edge arises due to [13, Theorem 1.4]; see
Remark 4.3 and the second equation in (5.29). The product of these
extra signs over all relevant Klein edges constitutes the leading sign
in [34, (3.22)]. For (n,a) = (5, (5)) and (n, k) = (2m, 0) with m ∈ 2Z,
(4.22) becomes the disk factor on the first line in [34, (3.22)] multiplied

by −ψe;v1/d(e) and [4, (6.21)] multiplied by −(−1)|φ|ψe;v1/d(e), respec-
tively. For (n, k) = (2m, 0) with m 6∈ 2Z and φ= τ ′n, (4.22) becomes [4,
(6.21)] multiplied by

−(−1)(d(e)−1)/2ψe;v1/d(e).

Along with the node sign correction of [4, Remark 6.9], the extra fac-

tor of (−1)(d(e)−1)/2 accounts for the difference between our canonical
orientation on the moduli space and that induced by the relative spin
structure of [4, Remark 6.5]; see [13, Corollary 3.6] and the second case
in Section 5.4. The map automorphisms arising from the edge degrees
are absorbed into the automorphism factor [34, (3.15)]; these automor-

phisms and the factor of (−1)|φ| arising from the η involution on the
domain is taken into account in [4, (6.7)].

Remark 4.5. The right-hand side in (4.20) is obtained from the right-
hand side in (4.21) by first setting αn=0 as required by (4.10), simpli-
fying the resulting expression, and then setting αϑ(v1) =−αϑ(v2). This

corresponds to resolving the 0
0 ambiguity described below [34, (3.23)]

“from” the left diagram in [34, Figure 5]. The restrictions of the denom-
inators in (4.21) may vanish because some fixed loci of the Tm-action on
Mg,l(Pn−1, d)φ consist of covers of the conics Ci(a, b) of Lemma 4.1(3);
see Section 5.1. The equivariant contributions from these fixed loci are
computed in Lemma 5.4 using an auxiliary S1-action. The right dia-
gram in [34, Figure 5] involves graphs Γ with vertices v∈Ver mapped
by ϑ to 2m+1; the second condition in (4.14) excludes such graphs in
our perspective.

Since Vσ
R(Γ)=∅, we can choose a subset Vσ

+(Γ) of Ver such that

(4.23) Ver = Vσ
+(Γ) tVσ

−(Γ) with Vσ
−(Γ) ≡ σ

(
Vσ

+(Γ)
)
.

We can also choose a subset Eσ+(Γ) of EσC(Γ) such that

(4.24) Edg = EσR(Γ) t Eσ+(Γ) t Eσ−(Γ) with Eσ−(Γ) ≡ σ
(
Eσ+(Γ)

)
.
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Theorem 4.6. Suppose (Γ, σ) ∈ Ag,l(n, d) with Γ as in (4.12). If
g(v) = 0 for all v ∈Ver or k= 0, then the contribution of the Tm-fixed
locus in Mg,l(Pn−1, d)φ corresponding to (Γ, σ) to (4.4) is the restric-
tion of

Cntr(Γ,σ)(b,p) =
1

|Aut(Γ, σ)|
∏

v∈Vσ+(Γ)

(−1)svCntr(Γ,σ);v(b,p)

×
∏

e∈EσR(Γ)tEσ+(Γ)

Cntr(Γ,σ);e

(4.25)

to the subtorus Tm⊂Tn as in (4.10). The integral in (4.4) is the sum
of these contributions over Ag,l(n, d) if g=0, 1 or k=0.

Remark 4.7. As indicated in Section 5.3, the transfer of the move-
ment of the node corresponding to a flag (e, v) from the contribution
for e to the contribution for v in effect marks all nodes with v∈Vσ

+(Γ) as
positive. This is used to compare the orientation associated with (Γ, σ)
to the orientations associated with its edges and vertices. This transfer
allows us to choose the subsets Vσ

+(Γ) and Eσ+(Γ) at random, as long
as the conditions (4.23) and (4.24) are satisfied. We show directly in
Section 4.3 that (4.25) is independent of all choices made, provided the
conditions of Proposition 1.4 and Theorem 4.6 are satisfied and n−k∈2Z
(otherwise, the moduli space of real maps into (Xn;a, φn;a) may not be
orientable).

4.3. Examples and applications. We now make a number of obser-
vations regarding the contributions of Theorem 4.6, apply it in some
specific cases, give an alternative proof of Theorem 1.6(2) in the case of
projective spaces, and establish Proposition 1.7.

If the restrictions of Proposition 1.4 and Theorem 4.6 are satisfied
and n−k∈2Z, the contribution (4.25) from an admissible graph (Γ, σ)
is independent of all choices made:

v1 ∈ e ∀ e∈Edg, Vσ
+(Γ) ⊂ Vσ

C(Γ), and Eσ+(Γ) ⊂ EσC(Γ).

The right-hand sides of (4.20) and (4.21) are symmetric in v1 and v2,
even before restricting to the subtorus Tm ⊂ Tn. Suppose e ∈ EσR(Γ)
and v1, v2 ∈ e. Since d(e) 6∈ 2Z and αϑ(v1) =−αϑ(v2) on Tm in this case,
replacing v1 by v2 in (4.22) changes the restriction of its right-hand side
to Tm by the factor of −1 to the power of

(|a|−2)d(e)+k

2
+ 1 +

d(e)+1

2
(n−2)

≡ 1

2

(
(n+|a|)d(e) + (n+k)

)
mod 2.

If ai 6∈2Z for all i=1, . . . , k, then Lemma 2.2 implies that

(4.26)
1

2

(
(n+|a|)d(e) + (n+k)

)
≡ 1

2
(n+k)

(
d(e)+1

)
mod 2.
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If n−k∈2Z and ai 6∈2Z for all i=1, . . . , k, interchanging v1 and v2, thus,
has no effect on the restriction of the right-hand side of (4.22) to Tm. If
ai∈2Z for some i=1, . . . , k, then Cntr(Γ,σ);e is 0. In summary, the edge
contributions in (4.25) are independent of the ordering of the vertices
of each edge e in EσR(Γ)tEσ+(Γ).

Replacing e ∈ EσC(Γ) by σ(e) in (4.21) changes the restriction of its
right-hand side to Tm by the factor of −1 to the power of

k∑
i=1

(
aid(e)+1

)
+
(
2d(e)−2

)
+
(
d(e)+1

)
(n−2)

≡
(
n+|a|

)
d(e) +

(
n+k

)
mod 2.

If n−k∈2Z and the assumptions of Proposition 1.4 are satisfied, both
numbers on the right-hand side above are even. Thus, replacing an
element e∈Eσ+(Γ) with σ(e) has no effect on the restrictions of (4.21)
and (4.25) to Tm. By the first sentence in Remark 4.5, the same is the
case of (4.20). In fact, the last conclusion follows from the independence
of (4.20) of the choice of v∈e, since replacing an element e∈Eσ+(Γ) with
σ(e) does not change the subset {ϑ(v1), ϑ(v2)} of [n] in this case.

Replacing v∈Ver by σ(v) changes (−1)sv by the factor of −1 to the
power of

(4.27)
∣∣S−v ∣∣+

∣∣S−σ(v)

∣∣+
∑

1≤i≤l
i±∈Sv

bi +
∑

1≤i≤l
i±∈Sv

pi =
∣∣m−1(v)

∣∣+|b|v+|p|v .

This replacement changes the restriction of the right-hand side of (4.18)
to Tm by the factor of −1 to the power of

(n−1−k)
(
|Ev(Γ)|−1

)
+ |b|v+|p|v +

(
3−valv(Γ)−2|Ev(Γ)|

)
≡
∣∣m−1(v)

∣∣+|b|v+|p|v + (n−k)
(
|Ev(Γ)|−1

)
mod 2.

(4.28)

It changes the restriction of the right-hand side of (4.17) to Tm by the
factor of −1 to the power of

(n−1−k)
(
|Ev(Γ)|−1

)
+ |b|v+|p|v + (n−1)g(v)

−2|Ev(Γ)| −
(
3g(v)−3+|Sv|

)
(4.29)

≡
∣∣m−1(v)

∣∣+|b|v+|p|v + (n−k)
(
|Ev(Γ)|−1

)
+ ng(v) mod 2.

If n−k∈2Z and the conditions of Theorem 4.6 are satisfied, the right-
hand sides of (4.28) and (4.29) reduce to the right-hand side of (4.27).
Thus, replacing an element v ∈ Vσ

+(Γ) with σ(v) has no effect on the
restriction of (4.25) to Tm.

We next observe that the contributions (4.25) for certain admissible
pairs (Γ, σ1) and (Γ, σ2) are opposites of each other if all automorphisms
are ignored. Two examples of such pairs appear in Figure 1. The
cardinalities of Aut(Γ, σ1) and Aut(Γ, σ2) are different for the first pair
(6 and 2, respectively) and the same for the second pair (2|Aut(Γ+)|).
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Corollary 4.8. Suppose n ∈ Z+, g, d, k, l ∈ Z≥0 with n−k ∈ 2Z,
a∈ (Z+−2Z)k, and φ= τ ′n or n∈2Z and φ=ηn. If φ= τ ′n, assume that
(n,a) satisfies the assumptions of Proposition 1.4(1); if φ=ηn, assume
that (m ≡ n/2,a) satisfies the assumptions of Proposition 1.4(2). If
(Γ, σ1) and (Γ, σ2) are elements of Ag,l(n, d) such that kg(v)=0 for all
vertices v of Γ,

Eσ1
R (Γ) ⊃ Eσ2

R (Γ), and
∣∣Eσ1

R (Γ)−Eσ2
R (Γ)

∣∣ = 2,

then

d(e∗)
∣∣Aut(Γ, σ1)

∣∣Cntr(Γ,σ1)(b,p) = −
∣∣Aut(Γ, σ2)

∣∣Cntr(Γ,σ2)(b,p),

where e∗ is one of the elements of Eσ1
R (Γ)−Eσ2

R (Γ).

Lemma 4.9. Let S be a finite set with involutions σ1 and σ2 and

SσiR ≡
{
s∈S : σi(s)=s

}
.

If Sσ2
R =∅, then there exists a subset S+⊂S such that∣∣S+∩Sσ1

R
∣∣ =

1

2

∣∣Sσ1
R
∣∣,

S = Sσ1
R t

(
S+−Sσ1

R
)
t σ1

(
S+−Sσ1

R
)

= S+ t σ2(S+).
(4.30)

Proof. Since σ2 acts without fixed points, the cardinalities of S and
Sσ1
R are even. Let σ′1 be any involution on S such that

S
σ′1
R = ∅ and σ′1

∣∣
S−Sσ1

R
= σ1

∣∣
S−Sσ1

R
.

In particular, σ′1 restricts to an involution on Sσ1
R without fixed points.

Therefore, a subset S+⊂S that satisfies (4.30) with σ1 replaced by σ′1
also satisfies (4.30) itself. Thus, it is sufficient to establish the claim
under the assumption that Sσ1

R =∅.
Suppose we have constructed a subset S′+⊂S such that

S′+∩σ1(S′+), S′+∩σ2(S′+) = ∅,
∣∣σ2(S′+)− S′+∪σ1(S′+)

∣∣ ≤ 1.

If S=S′+∪σ1(S′+), then we can take S+ =S′+. If

S ) S′+∪σ1(S′+) and σ2(S′+) ⊂ S′+∪σ1(S′+),

enlarge S′+ by adding any element from the complement ofS′+∪σ1(S′+)
in S. If σ2(S′+) is not contained in S′+∪σ1(S′+) and s is the unique element
in the complement, enlarge S′+ by adding σ1(s) to it; this element is not
in σ2(S′+) by the uniqueness of s. After repeating this procedure finitely
many times, we obtain a subset S+⊂S satisfying (4.30). q.e.d.

Proof of Corollary 4.8. Let Γ be as in (4.12) and e∗1 and e∗2 be the two
edges in the complement of Eσ2

R (Γ) in Eσ1
R (Γ). We denote the vertices

of e∗1 by v∗11 and v∗12 and the vertices of e∗2 by v∗21 and v∗22. Since (Γ, σ1)
is an admissible graph, d(e∗1), d(e∗2) 6∈2Z. The involution σ1 pairs up the
decorated one-edge subgraphs of Γ determined by the edges in Eσ1

C (Γ)
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and σ2 pairs up the decorated one-edge subgraphs determined by the
edges in

(4.31) Eσ2
C (Γ) = Eσ1

C (Γ) t
{
e∗1, e

∗
2

}
.

Thus,

d(e∗1) = d(e∗2),{
ϑ(v∗11), ϑ(v∗12)

}
=
{
φ(ϑ(v∗21)), φ(ϑ(v∗22))

}
=
{
ϑ(v∗21), ϑ(v∗22)

}
;

(4.32)

the last equality holds because v∗21 and v∗22 are interchanged by σ1.
By (4.22), (4.21), (4.32), and (4.26),

(4.33) Cntr(Γ,σ1);e∗1
Cntr(Γ,σ1);e∗2

= −
Cntr(Γ,σ2);e∗1

d(e∗1)
= −

Cntr(Γ,σ2);e∗2

d(e∗2)

when restricted to the subtorus Tm⊂Tn.
Since (Γ, σ1) and (Γ, σ2) are admissible pairs, σ1 and σ2 act on Ver

without fixed points. By Lemma 4.9, there, thus, exists a subset
Vσ1σ2

+ (Γ) of Ver that satisfies (4.23) for σ=σ1 and σ=σ2 at the same
time. The involutions σ1 and σ2 restrict to involutions on (4.31) such
that σ2 acts without fixed points and the fixed points of σ1 are {e∗1, e∗2}.
By Lemma 4.9, there, thus, exists a subset Eσ2

+ (Γ) of Eσ2
C (Γ) satisfy-

ing (4.24) for σ=σ2 such that

Eσ1
+ (Γ) ≡ Eσ2

+ (Γ)−
{
e∗1, e

∗
2

}
satisfies (4.24) for σ = σ1. Let e∗i be the unique element of the set
Eσ2

+ (Γ)∩{e∗1, e∗2}. The vertex and edge contributions on the right-hand
side of (4.25) are then the same for σ=σ1 and σ=σ2, except the con-
tribution of e∗i ∈Eσ2

+ (Γ) is replaced by the product of the contributions
of e∗1, e

∗
2∈Eσ1

R (Γ). The claim now follows from (4.33). q.e.d.

Proof of Theorem 1.6(2) for k=0. Let (Γ, σ) be an element of the set
Ag,l(n, d). Since Vσ

R(Γ)=∅,

g = g(Γ) = 1 +
∣∣EσR(Γ)

∣∣+ 2
∣∣Eσ+(Γ)

∣∣+ 2
∑

v∈Vσ+(Γ)

(
g(v)−1

)
≡ 1 +

∣∣EσR(Γ)
∣∣ mod 2.

(4.34)

Since d(e) 6∈2Z for all v∈EσR(Γ),

(4.35) d = d(Γ) =
∑

e∈EσR(Γ)

d(e) + 2
∑

e∈Eσ+(Γ)

d(e) ≡
∣∣EσR(Γ)

∣∣ mod 2.

By (4.34) and (4.35), Ag,l(n, d) = ∅ if d− g ∈ 2Z. Since all equi-
variant contributions to the genus g degree d real GW-invariants of
(P2m−1, ω2m, τ2m) and (P4m−1, ω4m, η4m) with only conjugate pairs of
insertions arise from the elements of Ag,l(n, d), with n=2m and n=4m,
respectively, this establishes the claim. q.e.d.
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Proof of Proposition 1.7. By Theorem 4.6, the genus g real GW-in-
variants of (P4n−1, ω4n, τ4n) and (P4n−1, ω4n, η4n) with only conjugate
pairs of insertions are obtained by summing the contributions from the
same set of admissible pairs (Γ, σ). The contributions (4.25) of (Γ, σ)
to the two invariants are products of the factors (4.17)–(4.22). The
factors (4.22) corresponding to the σ-fixed edges of Γ have opposite signs
in the two cases; all other factors are the same. By (4.34), the parity
of |EσR(Γ)| is the same as the parity of g−1. Thus, the contributions (4.25)
to the two invariants from every admissible pair (Γ, σ) differ by the factor
of (−1)g−1; this establishes the claim. q.e.d.

Example 4.10 (d=2). We now apply Theorem 4.6 to compute the
genus g degree 2 real GW-invariants of (P3, τ4) with 2 conjugate pairs
of point constraints. They are given by

(4.36) GWP3,τ4
g,2

(
H3, H3

)
=

∫
[Mg,2(P3,2)τ4 ]vrt

ev ∗1
∏
j 6=1

(x−αj) ev ∗2
∏
j 6=3

(x−αj),

where H ∈H2(P3;Q) is the usual hyperplane class and x∈H2
T2(P3;Q)

is the equivariant hyperplane class. If (Γ, σ) ∈ Ag,2(4, 2) and Γ is as
in (4.12), then

(4.37) ev ∗i
∏

j 6=2i−1

(x−αj)
∣∣
ZΓ,σ

=
∏

j 6=2i−1

(
αϑ(m(i+))−αj

)
∀ i=1, 2,

where ZΓ,σ is the T2-fixed locus corresponding to (Γ, σ); this restriction
is formally encoded into the vertex contribution, (4.17) or (4.18), of
v = m(i+). Thus, the restriction of the integrand in (4.36) to ZΓ,σ

vanishes unless

ϑ(m(1+)) = 1, ϑ(m(2+)) = 3, ϑ(m(1−)) = 2, ϑ(m(2−)) = 4.

Since there are no degree 2 connected graphs with at least 4 vertices,
the restriction of the integrand in (4.36) to all T2-fixed loci vanishes
and so

GWP3,τ4
g,2 (H3, H3) = 0 ∀ g∈Z.

Example 4.11 (g = 1, d = 4). We next compute the genus 1 de-
gree 4 real GW-invariant of (P3, τ4) with 4 conjugate pairs of point
constraints as

GWP3,τ4
1,4

(
H3, H3, H3, H3

)
=

∫
[M1,4(P3,4)τ4 ]vrt

4∏
i=1

(
ev ∗i
∏
j 6=i

(x−αj)
)
.

(4.38)

Similarly to Example 4.10, the restriction of the integrand in (4.38) to
a fixed locus ZΓ,σ vanishes unless ϑ(m(i+)) = i for all i ∈ [4]. There
are 11 pairs in A1,4(4, 4) satisfying this condition: the first diagram in
Figure 2, with the four possible ways of labeling its vertices and the two
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possible involutions on the loop, and the three other diagrams. For each
of these diagrams,

ev ∗i
∏
j 6=i

(x−αj)
∣∣
ZΓ,σ

=
∏
j 6=i

(
αϑ(m(i+))−αj

)
= e
(
TPiP

3
)
;

see (4.7). All eight versions of the first diagram in Figure 2 have the same
automorphism group, i.e., Z2. Since the degrees of the vertical edges
are 1, Corollary 4.8, thus, implies that these graphs cancel in pairs.
For the remaining three graphs, we can choose the same distinguished
subset Vσ

+(Γ) of Ver consisting of the top vertices. Their contributions

in the three cases are given by (4.17) with α
|p|v
ϑ(v) replaced by e(TPϑ(v)

P3)2

and Mg(v),Sv =M0,4:

e
(
TP1P3

)3 3λ1−λ2

8λ3
1(λ1−λ2)3

, e
(
TP3P3

)3 3λ2−λ1

8λ3
2(λ2−λ1)3

,

e
(
TP1P3

)3 3λ1+λ2

8λ3
1(λ1+λ2)3

, − e
(
TP4P3

)3 3λ2+λ1

8λ3
2(λ2+λ1)3

,

e
(
TP1P3

)3 2λ1

(λ2
1−λ2

2)3
, e

(
TP3P3

)3 2λ2

(λ2
2−λ2

1)3
;

see also (4.10). In the case of the two middle diagrams, the set EσR(Γ)
consists of the two vertical edges. The product of their contributions,
as given by (4.22), is −(λ2

1−λ2
2)−2 in both cases. For the set Eσ+(Γ),

we can choose the top edge in these cases. Its contributions, as given
by (4.21), are

(4.39) − 1

4λ1λ2(λ1+λ2)2
and

1

4λ1λ2(λ1−λ2)2
,

respectively. In the case of the last diagram, we can take Eσ+(Γ) to
consist of the top and left edges; their contributions are given by (4.39).
In all three cases, the vertex signs (−1)sv are the same for the two
vertices. Putting the three contributions together, we obtain

GWP3,τ4
1,4

(
H3, H3, H3, H3

)
=

(λ1+λ2)2(3λ1−λ2)(3λ2−λ1)

4λ1λ2(λ1−λ2)2

+
(λ1−λ2)2(3λ1+λ2)(3λ2+λ1)

4λ1λ2(λ1+λ2)2
− 16λ2

1λ
2
2

(λ2
1−λ2

2)2
= −1.

5. Proof of Theorem 4.6

It remains to establish Theorem 4.6. For the remainder of this paper,
we assume

n∈Z+, g, d, k, l∈Z≥0, n−k∈2Z, a∈(Z+)k,

and φ=τ ′n or n∈2Z and φ=ηn. We also assume that (n,a) satisfies the
assumptions of Proposition 1.4(1) if φ = τ ′n and of Proposition 1.4(2)
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Figure 2. The elements of A1,4(4, 4) potentially con-
tributing to (4.38).

with (m = n/2,a) if φ = ηn. Let m = bn/2c as before and Sl be as
in (4.15).

5.1. The torus-fixed loci. We first identify the topological compo-
nents of the fixed locus of the Tm-action on Mg,l(Pn−1, d)φ.

Similarly to the situation in [20, Section 27.3], an element

(5.1) [u] ≡
[
Σ, (z+

1 , z
−
1 ), . . . , (z+

l , z
−
l ), σ, u

]
∈Mg,l(Pn−1, d)φ

is fixed by the Tm-action if and only if

(F1) the image of every irreducible component of Σ is either a Tm-fixed
point or a Tm-invariant irreducible curve in Pn−1,

(F2) the image of every nodal and marked point of Σ is a Tm-fixed point
in Pn−1,

(F3) the image of every branch point of the restriction u to an irre-
ducible component of Σ is a Tm-fixed point in Pn−1.

The Tm-fixed points and Tm-invariant irreducible curves in Pn−1 are
described by Lemma 4.1. For a Tm-invariant stable map as in (5.1),
every non-constant restriction of the map u to an irreducible component
of Σ is, thus, a cover of a line P1

ij with i 6= j branched only over the

points Pi and Pj or of a conic Ci(a, b) with a, b∈C∗ branched only over
the points P2i−1 and P2i; the latter is a possibility only if n= 2m+1.
Since P1

ij and Ci(a, b) are smooth rational curves, the Riemann–Hurwitz

formula [18, p219] implies that the domain of any irreducible cover of
either P1

ij or Ci(a, b) branched only over two points is also a P1.

The combinatorial structure of a Tm-invariant stable map as in (5.1)
can, thus, be described by a connected decorated graph Γ as in (4.12).
The irreducible components Σe of Σ on which the map u is not constant
are rational and correspond to the edges e∈Edg. For e={v1, v2}, u|Σe
is either a degree d(e) cover of the line P1

ϑ(v1),ϑ(v2) or a degree d(e)/2

cover of a conic Cb(ϑ(v1)+1)/2c(a, b); the latter is a possibility only if (4.19)
holds. In both cases, the map u|Σe is ramified only over Pϑ(v1) and Pϑ(v2).
We denote the moduli space of all possible u|Σe and its closure by

(5.2)
Mφ;T;◦

Γ,σ;e ⊂M
φ;T;◦
Γ,σ;e ⊂M0,0

(
Pn−1, d(e)

)φ
if e∈EσR(Γ),

MT;◦
Γ;e ⊂M

T;◦
Γ;e ⊂M0,0

(
Pn−1, d(e)

)
if e∈EσC(Γ).
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We denote by

N φ;◦
Γ,σ;e −→M

φ;T;◦
Γ,σ;e and N ◦Γ;e −→M

T;◦
Γ;e

the corresponding normal bundles.
The vertices v∈Ver with valv(Γ)≥3 correspond to the maximal con-

nected unions Σv of irreducible components of Σ on which u is constant.
The arithmetic genus of such Σv is g(v); it is sent by u to Pϑ(v) and car-

ries the marked points m−1(v)⊂Sl. If v∈Vσ
C(Γ), we denote the moduli

space of all possible Σv by

(5.3) M
T
Γ;v ⊂Mg(v),Sv

(
Pn−1, 0

)
,

with Sv as in (4.16); it is isomorphic toMg(v),Sv . The remaining marked
points of Σ are the branch points of u|Σe corresponding to the vertices
v∈e with valv(Γ)=2 and |Ev(Γ)|=1. The remaining vertices of v with
valv(Γ)=2 correspond to the nodes of Σ shared by two irreducible com-
ponents Σe1 and Σe2 with e1, e2 ∈Edg. The involution σ on Σ induces
an involution σ on the graph Γ. We will call the pair (Γ, σ) obtained in
this way the combinatorial type of the Tm-fixed stable map (5.1).

Remark 5.1. If e does not satisfy (4.19), then the spaces in (5.2)
consist of a single element with the automorphism group Zd(e). Let
i=b(ϑ(v1)+1)/2c. If e∈EσC(Γ) satisfies (4.19), then

M
T;◦
Γ;e ≈

{
[a, b]∈P1

}
as topological spaces; see Lemma 4.1(2) This identification can be cho-
sen so that the image of the map corresponding to [a, b] is the conic
Ci(a, b). The points [1, 0] and [0, 1] then correspond to the covers of
P1

01∪P1
02 and P1

12, respectively. The automorphism groups of these points
are (Zd(e)/2)2 and Zd(e), respectively; the automorphism groups of the
remaining elements are Zd(e)/2. By Lemma 4.1(3), the space of real

T1-invariant conics (not necessarily smooth) in (P2, τ3) is{
[a, b]∈P1 : ab̄∈R

}
≈ S1 ⊂ P1 .

Suppose e∈EσR(Γ) satisfies (4.19). The T1-invariant degree d(e) cover
of P1

12 is then compatible with both involutions on the domain; the
automorphism groups of both resulting real covers are Zd(e). The T1-

invariant degree d(e)/2 cover of P1
01∪P1

02 is compatible with one involu-
tion on the domain; the automorphism group of the resulting real cover
is Zd(e)/2. If d(e) 6∈4Z, the same is the case for the T1-invariant degree
d(e)/2 cover of each of the smooth real conics Ci(a, b). If d(e)∈4Z, the
degree d(e)/2 covers of the conics Ci(a, b) with ab̄∈R− are not compat-
ible with any involution on the domain as these conics have no fixed
locus; see Remark 4.2 and [4, Lemma 1.9]. The T1-invariant degree
d(e)/2 cover of each conic Ci(a, b) with ab̄∈R+ is compatible with both
involutions on the domain; the automorphism groups of both resulting
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real covers are Zd(e)/2. In both cases, M
φ;T;◦
Γ,σ;e can be viewed as the inter-

val [−1, 1] with the trivial Zd(e)/2-action on the interior points and the
trivial Zd(e)-action on the endpoints; as an orbifold, it has no bound-

ary. It can alternatively be viewed as the quotient of S1 ⊂ C∗ by the
Zd(e)-action generated by the conjugation.

Let Γ be an Sl-marked [n]-decorated connected graph with an invo-
lution σ such that g(Γ)=g and d(Γ)=d. We denote by

ZΓ,σ ⊂Mg,l(Pn−1, d)φ

the subspace consisting of all Tm-fixed elements of the combinatorial
type of (Γ, σ). This subspace is closed unless some edge e ∈ Edg sat-
isfies (4.19). In such a case, the closure ZΓ,σ of ZΓ,σ also includes the
subspaces ZΓ′,σ′ corresponding to the pairs (Γ′, σ′) obtained from (Γ, σ)
by the “local replacement” of [34, Figure 5]:

• adding a new vertex ve to an edge e satisfying (4.19),
• extending the functions g and ϑ to ve by 0 and n, respectively, and
• replacing the value of d on e by the values of d(e)/2 on each of the

two new edges;

see Figure 3. If e ∈ EσR(Γ), the involution σ′ is obtained from σ by
sending ve to itself and interchanging the two new edges. If e∈EσC(Γ),
the above breaking procedure should simultaneously be performed on
the edge σ(e). The involution σ′ on Γ′ is then obtained from σ by
interchanging ve with vσ(e) and the two pairs of new edges according
to the action on their vertices. This graph degeneration corresponds to
the degeneration of the conics Ci(a, b) to the union of the lines P1

2i−1,n

and P1
2i,n. Denote by

N φ
Γ,σ −→ ZΓ,σ

the normal bundle of ZΓ,σ in Mg,l(Pn−1, d)φ.
By the above,

Mg,l(Pn−1, d)φ;Tm =
⊔

(Γ,σ)

ZΓ,σ ,

with the union taken over all pairs (Γ, σ) consisting of an Sl-marked [n]-
decorated connected graph Γ with an involution σ such that g(Γ) = g,
d(Γ)=d, and Γ contains no vertex v such that

ϑ(v) = 2m+1, valv(Γ)=Ev(Γ)=2, d(e1) = d(e2),

ϑ(e1/v) = φ
(
ϑ(e2/v)

)
,

where e1, e2 ∈Ev(Γ) are the two elements of Ev(Γ). We denote the set
of all such pairs (Γ, σ) by Ag,l(n, d).

The spaces ZΓ,σ need not be connected or non-empty. If n ∈ 2Z,
φ=τ ′n, and d(e)∈2Z for some e∈EσR(Γ), then (Γ, σ) is compatible with
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Figure 3. The second and fourth graphs are degenera-
tions of the first and third, respectively, induced by the
degenerations of Tm-fixed conics in Pn−1 with n odd; Γ0

indicates any graph compatible with the indicated invo-
lution.

two distinct topological types of the real degree d(e) covers

Σe −→ P1
ϑ(v1)ϑ(v2)

branched only over two points. By the proof of Lemma 5.3, the Tm-
fixed loci associated with the two types of covers contribute to (4.4) with

opposite signs. If k∈Z+ and d(e)∈2Z, then the restriction of V φ̃n;a
n;a to

ZΓ,σ contains a subbundle of odd rank. This is, in particular, the case
if n 6∈ 2Z and, thus, φ= τ ′n. Since the Euler class of such a subbundle
vanishes, the contribution of ZΓ,σ to (4.4) is zero in this case as well.
If n∈2Z, φ=ηn, and d(e)∈2Z, then (Γ, σ) is not compatible with any
real degree d(e) cover Σe−→P1

ϑ(v1)ϑ(v2); see [4, Lemma 1.9]. Thus, ZΓ,σ

is empty and does not contribute to (4.4) in this case either if d(e)∈2Z
for some e∈EσR(Γ). This motivates the first restriction in (4.14).

Suppose Γ is a decorated graph as in (4.12), σ is an involution on Γ,
and [u] is an element of ZΓ,σ as in (5.1). For each e∈Ev(Γ), let xe,v∈Σe

be the branch point of u|Σe sent to Pϑ(v). Given v∈Ver, let

Fv(Γ) =
{

(e, v) : e∈Ev(Γ)
}
∪
{

(σ(e), σ(v)) : e∈Ev(Γ)
}
⊂ Edg×Ver,

V′v(Γ) =
{
e/v : e∈Ev(Γ)

}
∪
{
σ(e/v) : e∈Ev(Γ)

}
−
{
v, σ(v)

}
−
{
e/v : e∈Ev(Γ)

}
∩
{
σ(e/v) : e∈Ev(Γ)

}
,

F′v(Γ) =
{

(e′, v′) : e′∈Ev(Γ)∪Eσ(v)(Γ), v′∈e′∩V′v(Γ)
}
.

We define Σ′v⊂Σ by

Σ′v =
⋃

e∈Ev(Γ)

(
Σe∪Σσ(e)

)
∪

{
Σv∪Σσ(v), if valv(Γ)≥3;

∅, if valv(Γ)≤2.

Thus, Σ′v is a union of irreducible components of Σv; the nodes shared
by Σ′v with other irreducible components of Σ are contained in the set
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{xe′,v′}(e′,v′)∈F′v(Γ). Let Σ̃′v be the nodal surface obtained from Σ′v by

removing the components in Σv∪Σσ(v) if valv(Γ)≥3 and separating Σ′v
at the node or nodes corresponding to v and σ(v) if valv(Γ), |Ev(Γ)|=2.

Thus, every topological component of Σ̃′v is either P1 or a wedge of two
copies of P1. The involution σ on Σ restricts to an involution on Σ′v and

induces an involution on Σ̃′v.

Let (Ln;a, φ̃n;a) be as in (2.28). Thus,

V φ̃n;a
n;a

∣∣
[u]

= H0
(
Σ;u∗Ln;a

)φ̃n;a
/

Aut(u) .

For each v∈Ver, define

H0
(
Σ′v;u

∗Ln;a

)φ̃n;a

v
≡
{
ξ∈H0

(
Σ′v;u

∗Ln;a

)φ̃n;a :

ξ(xe′,v′)=0 ∀ (e′, v′)∈F′v(Γ)
}
,

Lv =
⊕

(e′,v′)∈Fv(Γ)

Ln;a|Pϑ(v′) , L′v =
⊕

(e′,v′)∈F′v(Γ)

Ln;a|Pϑ(v′) .

The involutions

φ̃v : Lv −→ Lv, φ̃′v : L′v −→ L′v,(
φ̃v
(
(w(e′,v′))(e′,v′)∈Fv(Γ)

))
(e′′,v′′)

= φ̃n;a

(
w(σ(e′′),σ(v′′))

)
,(

φ̃′v
(
(w(e′,v′))(e′,v′)∈F′v(Γ)

))
(e′′,v′′)

= φ̃n;a

(
w(σ(e′′),σ(v′′))

)
interchange the components indexed by (e′, v′) and (σ(e′), σ(v′)). Fur-
thermore,

H0
(
Σ′v;u

∗Ln;a

)φ̃n;a

v
=
{
ξ∈H0

(
Σ̃′v;u

∗Ln;a

)φ̃n;a :

ξ(xe′,v′)=0 ∀ (e′, v′)∈F′v(Γ), ξ(xe1,v)=ξ(xe2,v) ∀ e1, e2∈Ev(Γ)
}
.

Since the nodes shared by Σ′v with the remainder of Σ are contained in
the set {xe′,v′}(e′,v′)∈F ′v(Γ), the image of the restriction homomorphism

H0
(
Σ;u∗Ln;a

)φ̃n;a −→ H0
(
Σ′v;u

∗Ln;a

)φ̃n;a , ξ −→ ξ|Σ′v ,

contains the subspace H0(Σ′v;u
∗Ln;a

)φ̃n;a

v
. Since each topological com-

ponent of Σ̃′v is rational and contains at most two of the points xe′,v′
with (e′, v′) in Fv(Γ)∪F′v(Γ), the homomorphism

H0
(
Σ̃′v;u

∗Ln;a

)φ̃n;a −→ Lφ̃vv ⊕L′φ̃
′
v

v ,

ξ −→
((
ξ(xe′,v′)

)
(e′,v′)∈Fv(Γ)

,
(
ξ(xe′,v′)

)
(e′,v′)∈F′v(Γ)

)
is surjective.

If v ∈Ver and valv(Γ)≥ 3, ξ|Σv is constant for all ξ ∈H0(Σ;u∗Ln;a).
Thus, the evaluation homomorphism

ẽvv : H0
(
Σ;u∗Ln;a

)
−→ Ln;a

∣∣
Pϑ(v)

, ẽvv(ξ) = ξ(Σv)
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is well defined. If valv(Γ), |Ev(Γ)|=2, we define it to be the evaluation
at the node of Σ corresponding to v. If valv(Γ)≤2 and Ev(Γ)={e}, we
take this homomorphism to be the evaluation at the preimage xe,v∈Σe

of Pϑ(v). If v ∈Vσ
R(Γ), the previous paragraph implies that the homo-

morphism

(5.4) H0
(
Σ;u∗Ln;a

)φ̃n;a −→
(
Ln;a|Pϑ(v)

)φ̃n;a , ξ −→ ẽvv(ξ)

is surjective. If v∈Vσ
C(Γ), it implies that the homomorphism

H0
(
Σ;u∗Ln;a

)φ̃n;a −→
(
Ln;a

∣∣
Pϑ(v)
⊕Ln;a|Pφ(ϑ(v))

)φ̃n;a ,

ξ −→
(
ẽvv(ξ), ẽvσ(v)(ξ)

)(5.5)

is surjective. From this, we obtain the following observation.

Lemma 5.2. Suppose n= 2m+1 and Γ∈Ag,l(n, d). If ϑ(v) =n for
some v∈Ver, then

e(V φ̃n;a
n;a )|ZΓ,σ

= 0.

Proof. Since n 6∈2Z, k>0 and so the targets in (5.4) and (5.5) are non-

trivial. If v∈Vσ
R(Γ), the surjectivity of (5.4) implies that V φ̃n;a

n;a |ZΓ,σ
con-

tains a trivial real line bundle with the trivial Tm-action. If v∈Vσ
C(Γ),

the surjectivity of (5.5) implies that V φ̃n;a
n;a |ZΓ,σ

contains a trivial com-

plex line bundle with the trivial Tm-action. In either case, e(V φ̃n;a
n;a )|ZΓ,σ

vanishes. q.e.d.

By Lemma 5.2, ZΓ,σ does not contribute to (4.25) unless ϑ(v) 6=2m+1
for all vertices v∈Ver. Thus, it is sufficient to restrict attention to the
subset

A′g,l(n, d) ⊂ Ag,l(n, d)

of pairs (Γ, σ) satisfying the second condition in (4.14).

5.2. The fixed-locus contribution. For each pair (Γ, σ) in A′g,l(n, d),
we will next describe the moduli spaces associated with the vertices and
edges of Γ and then determine the normal bundle to the Tm-fixed locus

ZΓ,σ, after capping with e(V φ̃n;a
n;a ) if k ∈ Z+. We fix an element of

A′g,l(n, d) with Γ as in (4.12) throughout this section.

Let g0∈Z≥0. We will call a two-component symmetric surface (Σ, σ)
of the form

(5.6) Σ ≡ Σ1tΣ2 ≡ {1}×Σ0 t {2}×Σ0, σ(i, z) =
(
3−i, z

)
∀ (i, z)∈Σ,

where Σ0 is a connected oriented, possibly nodal, genus g0 surface and
Σ0 denotes Σ0 with the opposite orientation, a nodal g0-doublet. The
arithmetic genus of a g0-doublet is 2g0−1. If d0 ∈ Z and S1 and S2

are finite sets with a fixed bijection σS between them, we denote by
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M
•
2g0−1,S1tS2

(Pn−1, 2d0)φ the moduli space of stable real degree 2d0 J0-

holomorphic maps into Pn−1 from nodal g0-doublets with the first com-
ponent carrying the S1-marked points and with the marked points inter-
changed by the involution σS . We denote by Mg0,S1(Pn−1, d0) the usual
moduli space of stable genus g0 S1-marked degree d0 maps into Pn−1.

For each vertex v of Γ, let Sv be as in (4.16). Since v 6=σ(v), σ induces
an involution on the set SvtSσ(v). If valv(Γ)≥3, let

MΓ;v = Mg(v),Sv(P
n−1, 0) and

M
φ
Γ;v = M

•
2g(v)−1,SvtSσ(v)

(Pn−1, 0)φ .
(5.7)

We denote by

(5.8) evv : MΓ;v −→ Pn−1 and evφv : M
φ
Γ;v −→ Pn−1

the morphism sending each constant stable map to its value and the
morphism sending each degree 0 holomorphic map from a doublet to its
value on the first component, respectively. For each e∈Sv, let

(5.9) Lv;e −→MΓ;v and Lφv;e −→M
φ
Γ;v

be the universal tangent line bundles for this point.
The restriction of the map to the Sv-marked component induces a

diffeomorphism

(5.10) ΨΓ;v : M
φ
Γ;v −→MΓ;v

between the two moduli spaces which commutes with the evaluation
morphisms (5.8) and naturally lifts to an isomorphism between the line
bundles (5.9). Let

M
φ;T
Γ;v = Ψ−1

Γ;v

(
M

T
Γ;v

)
⊂M

φ
Γ;v ;

see (5.3). We denote by

NΓ;v −→M
T
Γ;v and N φ

Γ;v −→M
φ;T
Γ;v

the normal bundle of M
T
Γ;v in MΓ;v and of M

φ;T
Γ;v in M

φ
Γ;v, respectively.

The diffeomorphism (5.10) descends to an isomorphism from the second
bundle to the first.

For each e∈Edg and v∈e, let

Se,v =


{v}, if valv(Γ)+|Ev(Γ)|≥4;

m−1(v), if valv(Γ)+|Ev(Γ)|=3;

∅, if valv(Γ)+|Ev(Γ)|=2.

If e= {v1, v2}, let Se =Se,v1tSe,v2 . If e∈EσR(Γ), Se is either empty or
consists of two elements interchanged by σ. In such a case, let

M
φ
Γ,σ;e ≡M0,Se

(
Pn−1, d(e)

)φ
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denote the moduli space of stable real genus 0 Se-marked degree d(e)
maps into Pn−1. Let

M
φ;T
Γ,σ;e ⊂M

φ
Γ,σ;e

be the preimage of M
φ;T;◦
Γ,σ;e under the forgetful morphism

fφΓ,σ;e : M
φ
Γ,σ;e −→M

φ;◦
Γ,σ;e ≡M0,0

(
Pn−1, d(e)

)φ
;

see (5.2). We denote by

N φ
Γ,σ;e −→M

φ;T
Γ,σ;e

the normal bundle of M
φ;T
Γ,σ;e in M

φ
Γ,σ;e.

If e∈EσC(Γ), Se and Sσ(e) consist of either one or two elements each;
the involution σ interchanges the two sets. Let

MΓ;e = M0,Se

(
Pn−1, d(e)

)
, M

φ
Γ,σ;e = M

•
−1,SetSσ(e)

(Pn−1, 2d(e))φ .

Thus, M
φ
Γ,σ;e=M

φ
Γ,σ;σ(e) and the restriction of the map to the Se-marked

component induces a diffeomorphism

(5.11) ΨΓ,σ;e : M
φ
Γ,σ;e −→MΓ;e

between the two moduli spaces. Let

M
T
Γ;e ⊂MΓ;e

be the preimage of M
T;◦
Γ;e under the forgetful morphism

(5.12) fΓ;e : MΓ;e −→M
◦
Γ;e≡M0,0

(
Pn−1, d(e)

)φ
and define

M
φ;T
Γ,σ;e = Ψ−1

Γ;v

(
M

T
Γ;e

)
⊂M

φ
Γ,σ;e .

We denote by

NΓ;e −→M
T
Γ;e and N φ

Γ,σ;e −→M
φ;T
Γ,σ;e

the normal bundle of M
T
Γ;e in MΓ;e and of M

φ;T
Γ,σ;e in M

φ
Γ,σ;e, respectively.

The diffeomorphism (5.11) descends to an isomorphism from the second
bundle to the first.

In either of the two cases above, for v∈Se∪Sσ(e) let

evφe,v : M
φ
Γ,σ;e −→ Pn−1 and Lφe;v −→M

φ
Γ,σ;e

be the evaluation morphism and the universal tangent line bundle for
the marked point indexed by v. If e∈EσC(Γ) and v∈Se, let

eve,v : MΓ;e −→ Pn−1 and Le;v −→MΓ;e

be the analogous objects for the target space of the diffeomor-
phism (5.11). We extend these definitions to v∈Sσ(e) by setting

eve,v = φ ◦ eve,σ(v) and Le;v = Le;σ(v) .
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The diffeomorphism (5.11) commutes with the evaluation morphisms
and naturally lifts to an isomorphism between the universal tangent
line bundles.

Choose Vσ
+(Γ)⊂ Ver and Eσ+(Γ)⊂ Edg satisfying (4.23) and (4.24).

Let

Vσ
+;3(Γ) =

{
v∈Vσ

+(Γ) : valv(Γ)≥3
}
,

Vσ
+;2(Γ) =

{
v∈Vσ

+(Γ) : valv(Γ), |Ev(Γ)|=2
}
.

We define

Z̃Γ,σ ≡
∏

v∈Vσ+;3(Γ)

M
φ;T
Γ;v ×

∏
e∈EσR(Γ)tEσ+(Γ)

M
φ;T
Γ,σ;e

≈
∏

v∈Vσ+;3(Γ)

Mg(v);Sv ×
∏

e∈EσR(Γ)

M
φ;T
Γ,σ;e ×

∏
e∈Eσ+(Γ)

M
T
Γ;e .

(5.13)

The fixed locus ZΓ,σ corresponding to (Γ, σ) is then given by

ZΓ,σ = Z̃Γ,σ

/
Aut(Γ, σ),

with the group Aut(Γ, σ) acting trivially. For example, in the case of
the pair (Γ, σ) represented by the first diagram in Figure 1

ZΓ,σ = ZΓ,σ ≈
(
M0,3×M0,3

)/
S3 ≈ {pt}/S3 ⊂M2,0(Pn−1, 3)φ ,

with the symmetric group S3 acting trivially.
For each e∈Edg, define

e• ∈ EσR(Γ)∪Eσ+(Γ) by e• ∈
{
e, σ(e)

}
.

Let

M
φ
Γ =

∏
v∈Vσ+;3(Γ)

M
φ
Γ;v ×

∏
e∈EσR(Γ)∪Eσ+(Γ)

M
φ
Γ,σ;e ,

M
′φ
Γ =

{(
(uv)v∈Vσ+;3(Γ), (ue)e∈EσR(Γ)tEσ+(Γ)

)
∈Mφ

Γ :

evv(uv)=eve•,v(ue•) ∀ v∈Vσ
+;3(Γ), e∈Ev(Γ),

eve1•,v(ue1•)=eve2•,v(ue2•) ∀ v∈Vσ
+;2(Γ), e1, e2∈Ev(Γ)

}
.

For each v∈Vσ
+;3(Γ)∪Vσ

+;2(Γ), there is, thus, a well-defined evaluation
morphism

evv : M
′φ
Γ −→ Pn−1,

evv
(
(uv′)v′∈Vσ+;3(Γ), (ue)e∈EσR(Γ)tEσ+(Γ)

)
= eve•,v(ue•) if e∈Ev(Γ).

For v∈Vσ
+;3(Γ) and e∈EσR(Γ)tEσ+(Γ), let

πv : M
′φ
Γ −→M

φ
Γ;v and πe : M

′φ
Γ −→M

φ
Γ,σ;e

be the projection maps.
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Define

LΓ =
⊕

v∈Vσ+;3(Γ)

⊕
e∈Ev(Γ)

π∗vL
φ
v;e⊗π∗e•L

φ
e•;v ⊕

⊕
v∈Vσ+;2(Γ)

⊗
e∈Ev(Γ)

π∗e•L
φ
e•;v ,(5.14)

NΓP =
⊕

v∈Vσ+;3(Γ)

(
ev∗vTPn−1

){v}tEv(Γ) ⊕
⊕

v∈Vσ+;2(Γ)

(
ev∗vTPn−1

)Ev(Γ)
,

(5.15)

LΓ =
⊕

v∈Vσ+;3(Γ)

(
ev∗vLn;a

){v}tEv(Γ) ⊕
⊕

v∈Vσ+;2(Γ)

(
ev∗vLn;a

)Ev(Γ)
.(5.16)

For v∈Vσ
+;3(Γ)∪Vσ

+;2(Γ), denote by

N∆
Γ;vP ⊂

{
(ev∗vTPn−1){v}tEv(Γ), if v∈Vσ

+;3(Γ);

(ev∗vTPn−1)Ev(Γ), if v∈Vσ
+;2(Γ);

and

L∆
Γ;v ⊂

{
(Ln;a){v}tEv(Γ), if v∈Vσ

+;3(Γ);

(Ln;a)Ev(Γ), if v∈Vσ
+;2(Γ);

the small diagonals (all components are the same). Let N ′ΓP and L′Γ be
the quotients of NΓP and LΓ by the subbundles

N∆
Γ P =

⊕
v∈Vσ+;3(Γ)∪Vσ+;2(Γ)

N∆
Γ;vP and L∆

Γ =
⊕

v∈Vσ+;3(Γ)∪Vσ+;2(Γ)

L∆
Γ;v,

respectively. Since the vector bundles LΓ, N ′ΓP, and L′Γ are complex,
they are canonically oriented.

The differentials of the evaluation morphisms evv and eve•,v induce a
homomorphism

ẽvP
Γ :
(
TM

φ
Γ

)vrt|
M
′φ
Γ
−→ N ′ΓP .

The latter descends to an isomorphism

(5.17) ẽvP
Γ : N φ

ΓM≡
(TM

φ
Γ)vrt|

M
′φ
Γ

(TM
′φ
Γ )vrt

≈−→ N ′ΓP,

from the normal bundle of M
′φ
Γ in M

φ
Γ. The natural bundle homomor-

phisms

V φ̃n;a
n;a −→ ev∗vLn;a and V φ̃n;a

n;a −→ ev∗e•,vLn;a

over M
φ
Γ;v and M

φ
Γ,σ;e, respectively, given by the evaluations at the

marked points similarly induce a bundle homomorphism

ẽvLΓ : VΓ,σ ≡
⊕

v∈Vσ+;3(Γ)

(
π∗vV

φ̃n;a
n;a ⊕

⊕
e∈Ev(Γ)

π∗e•V
φ̃n;a
n;a

)

⊕
⊕

v∈Vσ+;2(Γ)

⊕
e∈Ev(Γ)

π∗e•V
φ̃n;a
n;a −→ L′Γ



474 P. GEORGIEVA & A. ZINGER

over M
′φ
Γ .

Denote by

ιΓ : M
′φ
Γ −→Mg,l

(
Pn−1, d

)φ
the natural node-identifying immersion which sends Z̃Γ,σ to ZΓ,σ. For
each v ∈ Vσ

+;3(Γ) and e∈Ev(Γ), it identifies the marked point of uv
indexed by e with the marked point of ue• indexed by v. For each
v∈Vσ

+;2(Γ) and Ev(Γ)={e1, e2}, ιΓ identifies the marked points of ue1•
and ue2• indexed by v. There is a natural isomorphism

(5.18) N ιΓ ≡
ι∗Γ(TMg,l

(
Pn−1, d)φ)vrt

(TM
′φ
Γ )vrt

≈ LΓ

of vector bundles over M
′φ
Γ . Since the exact sequence

0 −→ ι∗ΓV
φ̃n;a
n;a −→ VΓ,σ

ẽvLΓ−→ L′Γ −→ 0

of vector bundles over M
′φ
Γ is Tm-equivariant,

(5.19) ι∗Γe
(
V φ̃n;a
n;a

)
=

1

e(L′Γ)
e
(
VΓ,σ

)
.

For each v∈Ver, the elements of the subset m−1(v)⊂Sv carry signs as
elements of Sl. We decorate the elements in the complement Ev(Γ)⊂Sv
of m−1(v) with the plus sign if v ∈ Vσ

+(Γ) and with the minus sign if
σ(v)∈Vσ

+(Γ). The involution σ on SvtSσ(v) then interchanges the two
subsets and changes the sign of each element. If e∈Edg and v∈Se∩Ver,
we decorate v ∈Se with the plus sign if v ∈Vσ

+(Γ) and with the minus
sign if σ(v)∈Vσ

+(Γ). If e∈EσR(Γ), σ induces an involution on Se that
changes the sign of each element. If e ∈ EσC(Γ), the involution σ on
SetSσ(e) then interchanges the two subsets and changes the sign of each

element. Let S−e ⊂Se be the subset of negatively marked elements. In
particular,∣∣S−e ∣∣ = 1 ∀ e∈EσR(Γ),

∣∣S−e ∣∣ ∈ {0, 1, 2} ∀ e∈EσC(Γ);

all three possibilities in the last case are in general attainable.
Denote by

Ñ φ
Γ,σ ≡

⊕
v∈Vσ+;3(Γ)

(
π∗vN

φ
Γ;v ⊕

⊕
e∈Ev(Γ)

π∗e•N
φ
Γ,σ;e•

)
⊕
⊕

v∈Vσ+;2(Γ)

⊕
e∈Ev(Γ)

π∗e•N
φ
Γ,σ;e•

−→ Z̃Γ,σ

the normal bundle of Z̃Γ,σ in M
φ
Γ. Under the assumptions on (Γ, σ) in

Theorem 4.6,

Z̃Γ,σ ⊂M?
g,l(Pn−1, d)φ ;
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see (4.2) for the notation. The real orientation on (Xn;a, φn;a) de-
scribed in Section 2.3 determines an orientation on the moduli space
Mg,l(Xn;a, d)φn;a . Analogously to [30, Section 5.3], it also determines
orientations on the homology classes

(5.20)
e(V φ̃n;a

n;a )

e(N φ
Γ,σ)

∩
[
ZΓ,σ

]vrt
and

e(VΓ,σ)

e(Ñ φ
Γ,σ)
∩
[
Z̃Γ,σ

]vrt
,

that correspond to the orientations of the two moduli spaces of real maps
into (Xn;a, ωn;a, φn;a) via the section sn;a. By (5.17), (5.18), and (5.19),

(5.21) ι∗Γ

(
e(V φ̃n;a

n;a )

e(N φ
Γ,σ)

)
=

(
e(N ′ΓP)

e(L′Γ)

)
1

e(LΓ)

(
e(VΓ,σ)

e(Ñ φ
Γ,σ)

)
.

Since the orientations on the two classes in (5.20) arise from the
same real orientation on (Xn;a, φn;a), [13, Theorem 1.2] provides for a
comparison between the two classes in (5.20). Since the section sn;a

is holomorphic, the leading fraction on the right-hand side of (5.21)
corresponds to the Euler class of TXn;a at the chosen node in each pair
of the conjugate nodes considered for the purposes of [13, Theorem 1.2].
Since the number of such pairs is

(5.22) nd(Γ) ≡
∑

v∈Vσ+;3(Γ)

∣∣Ev(Γ)
∣∣+
∣∣Vσ

+;2(Γ)
∣∣ ,

we find that

e(V φ̃n;a
n;a )

e(N φ
Γ,σ)

∩
[
ZΓ,σ

]vrt
=

(−1)nd(Γ)

|Aut(Γ, σ)|

(
e(N ′ΓP)

e(L′Γ)

)
× ιΓ∗

(
1

e(LΓ)

(
e(VΓ,σ)

e(Ñ φ
Γ,σ)

)
∩
[
Z̃Γ,σ

]vrt
)
.

(5.23)

The automorphism factor above is the degree of the covering

ιΓ : Z̃Γ,σ −→ ZΓ,σ ;

it corresponds to the first factor in (4.25). By definition of Ñ φ
Γ,σ, VΓ,σ,

and Z̃Γ,σ,(
e(VΓ,σ)

e(Ñ φ
Γ,σ)

)
∩
[
Z̃Γ,σ

]vrt
=

∏
v∈Vσ+;3(Γ)

((
e(V φ̃n;a

n;a )

e(N φ
Γ;v)

)
∩
[
M

φ;T
Γ;v

]vrt
)

×
∏

e∈EσR(Γ)tEσ+(Γ)

((
e(V φ̃n;a

n;a )

e(N φ
Γ,σ;e)

)
∩
[
M

φ;T
Γ,σ;e

]vrt
)(5.24)

under the decomposition (5.13). The identities (5.23) and (5.24) nearly
split the equivariant contribution of (Γ, σ) to (4.4), i.e., the left-hand side
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of (5.23), into contributions from the components in (5.13). The excep-
tional term e(LΓ) splits into products of Euler classes of Tm-equivariant
line bundles, each of which involves only two components in (5.13). We
will associate each factor of e(LΓ) with the corresponding vertex v in
Vσ

+;3(Γ) or in Vσ
+;2(Γ).

5.3. The edge and vertex contributions. It remains to compute
the cap products in (5.24) and to determine the factors of e(LΓ). The
first case of Lemma 5.3 below justifies the alternative case of the fixed-
edge contribution (4.22), i.e., when it vanishes. The second case of this
lemma justifies the first restriction in (4.14) and, in particular, rules

out contributions from the families M
φ;T;◦
Γ,σ;e of real conics of Remark 5.1.

Lemma 5.4 expresses the contributions from the families M
T;◦
Γ;e of com-

plex conics in terms of (4.20). The crucial fixed-edge contribution (4.22)
arises from Proposition 5.5. Lemmas 5.3 and 5.4 are proved at the end
of this section; Proposition 5.5 is established in Section 5.4. Analogously
to (4.1), let

πn;a : Vn;a = Mg,l

(
Ln;a, d

)
−→Mg,l(Pn−1, d) .

Lemma 5.3. Suppose Γ∈A′g,l(n, d) and EσR(Γ) 6=∅. If either ai∈2Z
for some i∈ [k] or d(e)∈2Z for some e∈EσR(Γ), then

ι∗

(
e(V φ̃n;a

n;a )

e(N φ
Γ,σ)

∩
[
ZΓ,σ

]vrt
)

= 0 ∈ HTm
∗
(
Mg,l(Pn−1, d)φ

)
,

where ι : ZΓ,σ−→Mg,l(Pn−1, d)φ is the inclusion of the fixed locus.

Lemma 5.4. Suppose Γ ∈ A′g,l(n, d), e ∈ EσC(Γ), (4.19) is satisfied,

and b∈(Z≥0)e. Then,(∏
v∈e
c1(Le;v)

b(v) e(Vn;a)

e(NΓ;e)

)
∩
[
M

T
Γ;e

]
= −

(∏
v∈e

(
−ψe;v

)b(v)−|Se,v |
)
·

{
[RHS of (4.20)], if k=1;

0, if k≥2.

(5.25)

Proposition 5.5. Suppose Γ ∈A′g,l(n, d) and e ∈ EσR(Γ). If ai 6∈ 2Z
for all i∈ [k] and d(e) 6∈2Z, then

(5.26)
e(V φ̃n;a

n;a )

e(N φ;◦
Γ,σ;e)

∣∣∣∣
M
φ;T;◦
Γ,σ;e

= d(e) ·
[
RHS of (4.22)

]
∈ H∗Tm ,

with M
φ;T;◦
Γ,σ;e as on the first line in (5.2).

Proof of Theorem 4.6. By Lemmas 5.2 and 5.3, all nonzero contribu-
tions to (4.4) come from the Tm-fixed loci ZΓ,σ corresponding to the
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admissible pairs (Γ, σ), i.e., the elements of the collection Ag,l(n, d) de-

fined by (4.14). Furthermore, if a fixed locus ZΓ,σ contributes to (4.4),
then EσR(Γ) = ∅ if ai ∈ 2Z for some i ∈ [k] and k = 1 if some e ∈ Eσ+(Γ)
satisfies (4.19). From now on, we assume that (Γ, σ) is an admissible
pair satisfying these two conditions.

By (5.15), (5.16), and the definitions of N ′ΓP and L′Γ just below,

e(N ′ΓP)

e(L′Γ)

∣∣∣∣
Z̃Γ,σ

=
∏

v∈Vσ+;3(Γ)

(
e(TPϑ(v)

Pn−1)

〈a〉αkϑ(v)

)|Ev(Γ)|

×
∏

v∈Vσ+;2(Γ)

(
e(TPϑ(v)

Pn−1)

〈a〉αkϑ(v)

)
.

(5.27)

By (5.14),

e(LΓ)
∣∣
Z̃Γ,σ

=
∏

v∈Vσ+;3(Γ)

∏
e∈Ev(Γ)

(
c1(Lφe•;v)+c1(Lφv;e)

)
×

∏
v∈Vσ+;2(Γ)

(
−
∑

e∈Ev(Γ)

ψe•;v

)
,

=
∏

v∈Vσ+;3(Γ)

Ψ∗Γ;v

∏
e∈Ev(Γ)

(
−ψe;v−π∗vψe

) ∏
v∈Vσ+;2(Γ)

(
−
∑

e∈Ev(Γ)

ψe;v

)
.

(5.28)

The right-hand sides of (5.27) and (5.28) are elements of H∗Tm and

H∗Tm⊗H∗(Z̃Γ,σ), respectively.
By [13, Theorem 1.4],

ΨΓ;v∗

((
e(V φ̃n;a

n;a )

e(N φ
Γ;v)

)
∩
[
M

φ;T
Γ;v

]vrt
)

= (−1)g(v)−1+|S−v |
(

e(Vn;a)

e(NΓ;v)

)
∩
[
M

T
Γ;v

]vrt
,

ΨΓ,σ;e∗

((
e(V φ̃n;a

n;a )

e(N φ
Γ,σ;e)

)
∩
[
M

φ;T
Γ,σ;e

]vrt
)

= (−1)−1+|S−e |
(

e(Vn;a)

e(NΓ;e)

)
∩
[
M

T
Γ;e

]
,

(5.29)

for all v ∈ Vσ
+;3(Γ) and e ∈ Eσ+(Γ); the right-hand sides above carry

standard complex orientations. Since

ι∗Γ
(
ψbii , ev∗ix

pi
)∣∣
Z̃Γ,σ

=

{
(π∗vΨ

∗
Γ;vψ

pi
i , α

pi
ϑ(v)), if i+∈Sv;

((−π∗vΨ∗Γ;vψi)
bi , (−αϑ(v))

pi), if i−∈Sv;
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the first statement in (5.29) and [20, Section 27.6] give

( ∏
1≤i≤l
i±∈Sv

(ψbii ev∗ix
pi)

Ψ∗Γ;v

∏
e∈Ev(Γ)

(−ψe;v−π∗vψe)
e(V φ̃n;a

n;a )

e(N φ
Γ;v)

)
∩
[
M

φ;T
Γ;v

]vrt

= (−1)sv−|Ev(Γ)|
(

e(TPϑ(v)
Pn−1)

〈a〉αkϑ(v)

)−1

α
|p|v
ϑ(v)

×
∫

Mg(v),Sv

e(E∗⊗TPϑ(v)
Pn−1)∏

e∈Ev(Γ)

(−ψe;v−ψe)
∏

1≤i≤l
i±∈Sv

ψbii ,

(5.30)

for all v∈Vσ
+;3(Γ).

For any e∈Edg and v∈e, let

|b|e,v =
∑

1≤i≤l
i±∈Se,v

bi , |b|−e,v =
∑

1≤i≤l
i−∈Se,v

bi , |p|e,v =
∑

1≤i≤l
i±∈Se,v

pi , |p|−e,v =
∑

1≤i≤l
i−∈Se,v

pi .

Since Se,v∩[l] consists of at most one element,

(5.31) ι∗Γev∗ix
pi
∣∣
Z̃Γ,σ

= (−1)|p|
−
e,vα

|p|e,v
ϑ(v) ∀ i∈Se,v∩[l].

If e∈Eσ+(Γ) does not satisfy (4.19), then

e(Vn;a)

e(NΓ;e)
=

(∏
v∈e

(−ψe;v)|Se,v |
)−1

f∗Γ;e

(
e(Vn;a)

e(N ◦Γ;e)

)
,

ι∗Γψ
bi
i

∣∣
Z̃Γ,σ

= (−1)|b|
−
e,vψ

|b|e,v
e;v .

The second statement in (5.29) and [20, Sections 27.2, 27.6], thus, give

( ∏
1≤i≤l
i±∈Se

(ψbii ev∗ix
pi)

e(V φ̃n;a
n;a )

e(N φ
Γ,σ;e)

)
∩
[
M

φ;T
Γ,σ;e

]vrt

= (−1)|S
−
e |
∏
v∈e

∏
1≤i≤l
i±∈Se,v

(−1)|b|
−
e,v+|p|−e,vψ

|b|e,v
e;v α

|p|e,v
ϑ(v)

(−ψe;v)|Se,v |
[
RHS of (4.21)

]
,

(5.32)

for all e∈Eσ+(Γ) not satisfying (4.19).
If e∈Eσ+(Γ) satisfies (4.19), then

ι∗Γψ
bi
i

∣∣
Z̃Γ,σ

= (−1)|b|
−
e,v
(
− c1(Le;v)

)|b|e,v .
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The second statement in (5.29), Lemma 5.4, and (5.31), thus, give

( ∏
1≤i≤l
i±∈Se

(ψbii ev∗ix
pi)

e(V φ̃n;a
n;a )

e(N φ
Γ,σ;e)

)
∩
[
M

φ;T
Γ,σ;e

]vrt

= (−1)|S
−
e |
∏
v∈e

∏
1≤i≤l
i±∈Se,v

(−1)|b|
−
e,v+|p|−e,vψ

|b|e,v
e;v α

|p|e,v
ϑ(v)

(−ψe;v)|Se,v |
[
RHS of (4.20)

]
,

(5.33)

for all e∈Eσ+(Γ) satisfying (4.19).
If e∈EσR(Γ), then precisely one of the vertices ve∈e belongs to Vσ

+(Γ)
and

ι∗Γev∗ix
pi
∣∣
Z̃Γ,σ

= (−1)|p|
−
e,veα

|p|e,ve
ϑ(ve)

, ι∗Γψ
bi
i

∣∣
Z̃Γ,σ

= (−1)|b|
−
e,veψ

|b|e,ve
e;ve .

Since M
φ;T
Γ,σ;e consists of a single point with the automorphism

group Zd(e), Proposition 5.5 thus gives( ∏
1≤i≤l
i±∈Se

(ψbii ev∗ix
pi)

e(V φ̃n;a
n;a )

e(N φ
Γ,σ;e)

)
∩
[
M

φ;T
Γ,σ;e

]vrt

=

∏
1≤i≤l
i±∈Se,v

(−1)|b|
−
e,ve+|p|−e,veψ

|b|e,ve
e;ve α

|p|e,ve
ϑ(ve)

(−ψe;ve)|Se,ve |
[
RHS of (4.22)

]
,

(5.34)

for all e∈EσR(Γ).
By (5.23), (5.24), and (5.28), the left-hand side of (4.25) is the prod-

uct of the leading fraction in (5.23) with the right-hand sides of (5.27),
(5.30), (5.32), (5.33), and (5.34). The factor on the right-hand side
of (4.25) corresponding to a vertex v∈Vσ

+;3(Γ) is the product of

• the corresponding factor on RHS of (5.27),
• RHS of (5.30),
• the non-edge factors on RHSs of (5.32) and (5.33) corresponding to

either v∈e or σ(v)∈e,
• the non-edge factors on RHS of (5.34) with ve=e, and
• (−1) to the power of the summand |Ev(Γ)| in (5.22).

The factor on the right-hand side of (4.25) corresponding to a vertex
v∈Vσ

+;2(Γ) is obtained similarly, except the product of the contributions
from the second and last bullets above is replaced by(

−
∑

e∈Ev(Γ)

ψe;v

)−1

· (−1)1 .
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The role of (4.17) now is played by (4.18) with

valv(Γ),
∣∣Ev(Γ)

∣∣ = 2, |b|v, |p|v = 0 .

There is no contribution associated with v∈Vσ
+(Γ) such that valv(Γ)=1;

this is consistent with

(−1)sv
[
RHS of (4.18)

]
= 1

in this case. For v∈Vσ
+(Γ) such that valv(Γ)=2 and |Ev(Γ)|=1, there

is a unique edge e in EσR(Γ)∪Eσ+(Γ) containing either v or σ(v). The
factor on the right-hand side of (4.25) corresponding to such v is the
non-edge factor on the right-hand side of either (5.32), (5.33), or (5.34)
corresponding to the associated flag (e, v). This is the only case for
which the numbers |b|−e,v and |p|−e,v may be nonzero. q.e.d.

Proof of Lemma 5.3. Suppose e∈EσR(Γ). If k∈Z+ and either ai∈2Z
for some i∈ [k] or d(e)∈2Z, then

V φ̃n;a
n;a −→M

φ
Γ,σ;e

contains a subbundle of odd rank and, thus, e(V φ̃n;a
n;a ) = 0. In the first

case, this is the subbundle associated with the i-th factor in the vector
bundle Ln;a. In the second case, the subbundle associated with every
factor in Ln;a has odd rank.

It remains to consider the case d(e)∈2Z and k=0. The latter implies
that Xn;a=P2m−1. If φ=η2m, then

M
φ;T
Γ,σ;e ⊂M

φ
Γ,σ;e≡M0,Se

(
P2m−1, d(e)

)φ
= ∅;

see [4, Lemma 1.9]. Suppose φ= τ ′2m. The set M
φ;T
Γ,σ;e then consists of

two equivalence classes of real maps: one with the standard involution
τ=τ2 on the domain and the other with the fixed-point-free involution
η=η2. We denote the associated uncompactified moduli spaces of real
maps by

Mφ,τ ;T
Γ,σ;e ⊂Mφ,τ

Γ,σ;e and Mφ,η;T
Γ,σ;e ⊂Mφ,η

Γ,σ;e ,

respectively.
A real orientation on (P2m−1, τ2m) directly determines orientations

on Mφ,τ
Γ,σ;e and Mφ,η

Γ,σ;e; see [12, Corollary 5.10]. In order to extend some
set of orientations across the common boundary of these two moduli
spaces, we reverse the orientation of the second moduli space; see the
end of [12, Section 3.2]. Thus, it is sufficient to show that

(5.35) e
(
N φ

Γ,σ;e

)∣∣
Mφ,τ ;T

Γ,σ;e
= e
(
N φ

Γ,σ;e

)∣∣
Mφ,η;T

Γ,σ;e
∈ H∗Tm

before the orientation reversal. Since adding a pair of conjugate points
has the same effect on the two sides of (5.35), we can assume that Se
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consists of a pair of conjugate points and the value of ϑ on the positive
vertex is some i∈Z+−2Z.

By [4, Proposition 5.5], the algebraic orientations on Mφ,τ
Γ,σ;e and

Mφ,η
Γ,σ;e defined in [4, Section 5.2] also do not extend across the common

boundary. By [4, Lemma 5.1], the moduli space M
φ
Γ,σ;e is connected.

Thus, the algebraic orientations on Mφ,τ
Γ,σ;e and Mφ,η

Γ,σ;e are either both
the same or both opposite of the orientations induced by a real orienta-
tion on (P2m−1, τ2m). In either case, it is sufficient to establish (5.35) for
the algebraic orientations on the two moduli spaces. By [4, Remark 6.9],
both classes in (5.35) are then the negative of the right-hand side of [4,
(6.6)] with d0 =d(e) and λi=αi. In particular, they are equal. q.e.d.

Remark 5.6. Suppose d(e)∈2Z as above. If m∈2Z, the orientation

on Mφ,τ
Γ,σ;e induced by the canonical real orientation of Section 2.3 is

the same as the orientation induced by the canonical spin structure of
[4, Section 5.5]; see [13, Theorem 1.5]. The two classes in (5.35) with
respect to the canonical real orientation (and before the orientation
reversal) are, thus, given by [4, (6.6)]. If m 6∈ 2Z, the orientation on

Mφ,τ
Γ,σ;e induced by the canonical real orientation of Section 2.3 is the

same as the orientation induced by the associated relative spin structure;
see [13, Theorem 1.5]. The latter is the same as the orientation induced
by the relative spin structure of [4, Remark 6.5]. By the beginning of
[4, Remark 6.9] and the middle of the preceding paragraph in [4], the
two classes in (5.35) with respect to the canonical real orientation (and
before the orientation reversal) are, thus, again given by [4, (6.6)].

Proof of Lemma 5.4. We use the T2-action on P2
ϑ(v1),ϑ(v2),n induced

by the T2-action on C3 with weights αϑ(v1), αϑ(v2), and 0 and set

αϑ(v1) = −αϑ(v2)

after computing the equivariant contribution to the left-hand side

of (5.25) from the fixed loci of this action on M
T
Γ;e.

The fixed locus of the T2-action on M
T
Γ;e consists of two points: the

T2-invariant degree d(e) cover of the line P1
ϑ(v1),ϑ(v2) and the T2-invariant

degree d(e)/2 cover of P1
ϑ(v1),n∪P

1
ϑ(v2),n. Let

Z ′TΓ;e,ZT
Γ′;e ⊂M

T
Γ;e ⊂MΓ;e ≡M0,Se

(
Pn−1, d(e)

)
be the corresponding one-element subspaces. Denote by

Z ′T;◦
Γ;e ⊂M

T;◦
Γ;e ⊂M

◦
Γ;e ≡M0,0

(
Pn−1, d(e)

)
the image of Z ′TΓ;e under the forgetful morphism and by

NZ ′TΓ;e,N ′Γ;e −→ Z ′TΓ;e and NZ ′T;◦
Γ;e ,N

′◦
Γ;e −→ Z

′T;◦
Γ;e
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the normal bundles in the intermediate subspaces and in the ambient
moduli spaces, respectively.

By the proof of Lemma 5.2, e(Vn;a)
∣∣
ZT

Γ′;e
= 0. From the classical

Atiyah–Bott Localization Theorem [2], we, thus, find that(∏
v∈e
c1(Le;v)

b(v) e(Vn;a)

e(NΓ;e)

)
∩
[
M

T
Γ;e

]
=

(∏
v∈e
c1(Le;v)

b(v) e(Vn;a)

e(NΓ;e)

)∣∣∣∣
Z′TΓ;e

· 1

e(NZ ′TΓ;e)
,

(5.36)

with respect to the specified T2-action.
By Exercise 27.2.4 and (27.8) in [20],(

1

e(NZ ′T;◦
Γ;e )

e(Vn;a)

e(N ◦Γ;e)

)
∩
[
Z ′T;◦

Γ;e

]
=

(
e(Vn;a)

e(N ′◦Γ;e)

)
∩
[
Z ′T;◦

Γ;e

]

= − 〈a〉
d(e) (d(e)!)2

·

(
αϑ(v1)+αϑ(v2)

2

)k−1

∏
1≤j<n

j 6=ϑ(v1),ϑ(v2)

(
αϑ(v1)+αϑ(v2)

2 −αj
)

×
(
αϑ(v1) − αϑ(v2)

d(d)

)2−2d(e)

×

k∏
i=1

aid(e)/2∏
r=1

(
a2
i

(
αϑ(v1)+αϑ(v2)

2

)2
−r2

(
αϑ(v1)−αϑ(v2)

d(e)

)2
)

∏
j 6=ϑ(v1),ϑ(v2)

d(e)/2∏
r=1

((
αϑ(v1)+αϑ(v2)

2 −αj
)2
−r2

(
αϑ(v1)−αϑ(v2)

d(e)

)2
) ,

(5.37)

with αn≡0. For αϑ(v1) =−αϑ(v2), the right-hand side of this expression
reduces to the negative of the right-hand side of (4.20) if k=1 and to 0
if k≥2. Since

e
(
NZ ′TΓ;e

)
= f∗Γ;ee

(
NZ ′T;◦

Γ;e

)
,

e(Vn;a)

e(NΓ;e)
=

(∏
v∈e
c1(Le;v)

|Se,v |
)−1

f∗Γ;e

(
e(Vn;a)

e(N ◦Γ;e)

)
,

and c1(Le;v)|Z′TΓ;e
= −ψe;v, the claim follows from (5.36) and (5.37).

q.e.d.

5.4. Proof of Proposition 5.5. Let n′=n−k,

c =

{
τ, if φ=τ ′n;

η, if φ=ηn;
and Gc = Aut(P1, c).

The 3-dimensional Lie group Gc is oriented by the positive rotation
around 0∈P1 and the complex orientation of T0P1; see [13, Section 1.4].
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This choice of orientation is not directly relevant to the present proof, as
it is contained in the formulas from [4] we cite. Denote by Pn′−1⊂Pn−1

the span of the first n′ homogenous coordinates and by(
Vc, ϕc

)
−→

(
Pn
′−1, φ′

)
,

where φ′=φ|Pn′−1 , the normal bundle of Pn′−1 in Pn−1. This holomor-
phic real bundle pair is the restriction of the last k components of the
middle term in (2.8) to Pn′−1. If (V, ϕ) is a real bundle pair over (P1, c),
let

Γ(P1;V )ϕ ≡
{
ξ∈Γ(P1;V ) : ξ◦c=ϕ◦ξ

}
denote the space of real sections.

Let e={v1, v2} so that ϑ(v1) 6∈2Z and

Mφ,c;◦
Γ,σ;e = M0,0

(
Pn−1, d(e)

)φ,c
,

M(Pn
′−1) = M0,0

(
Pn
′−1, d(e)

)φ′,c
, M(Xn;a) = M0,0

(
Xn;a, d(e)

)φn;a,c.

By [4, Lemma 5.1], the space

M
φ;T;◦
Γ,σ;e = Mφ,c;T;◦

Γ,σ;e

consists of one element: the equivalence class of the unmarked real
degree d(e) covering

f0 :
(
P1, c, 0,∞

)
−→

(
P1
ϑ(v1)ϑ(v2), φ, Pϑ(v1), Pϑ(v2)

)
branched only over Pϑ(v1) and Pϑ(v2) =Pφ(ϑ(v1)). We denote by

Gc(f0) ⊂ H0
(
P1; f∗0TP1

ϑ(v1)ϑ(v2)

)f∗0 dφ

the tangent space to the orbit of the Gc-action on the space of
parametrized branched covers (by the composition with the inverse of
each automorphism as usual). The orientation on Gc induces an orien-
tation on Gc(f0).

Let ∂̄Ln;a denote the standard ∂̄-operator on the real bundle pair

f∗0
(
Ln;a, φ̃n;a

)
−→ (P1, c).

The evaluations of real holomorphic sections and their derivatives at
z=0 induce a Tm-equivariant isomorphism

H0
(
P1; f∗0Ln;a

)f∗0 φ̃n;a

−→
k⊕
i=1

(aid(e)−1)/2⊕
r=0

OPn−1(ai)
∣∣
Pϑ(v1)

⊗
(
T ∗0 P1

)⊗r
.

(5.38)

The orientation on

det
(
∂̄Ln;a

)
= Λtop

R
(
H0
(
P1; f∗0Ln;a

)f∗0 φ̃n;a
)
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induced by the isomorphism (5.38) is called the complex orientation in
[13, Section 3.3]. Using

e
(
OPn−1(ai)|Pϑ(v1)

)
= aiαϑ(v1),

e
(
T ∗0 P1

)
=
αϑ(v2)−αϑ(v1)

d(e)
= −

2αϑ(v1)

d(e)
,

(5.39)

we find that

e
(
H0
(
P1; f∗0Ln;a

)f∗0 φ̃n;a
)

=

k∏
i=1

(aid(e)−1)/2∏
r=0

(
aiαϑ(v1) − r

2αϑ(v1)

d(e)

)

=
k∏
i=1

(aid(e))!!

(
αϑ(v1)

d(e)

)|a|d(e)+k
2

,

(5.40)

with respect to the complex orientation; see [20, Section 27.2].
By Section 2.3, the canonical real orientation on (Xn;a, φn;a) does not

depend on the ordering of pairs (2i−1, 2i) of homogeneous coordinates
on Pn−1. Thus, we can assume that ϑ(v1)≤ n′. Denote by ∂̄Pn′−1 and
∂̄Vc the standard ∂̄-operators on the real bundle pairs

f∗0
(
TPn

′−1, dφ
)
, f∗0
(
Vc, ϕc

)
−→ (P1, c),

respectively. Combining

e
(
TPϑ(v1)

P1
ϑ(v1)j

)
= αϑ(v1) − αj ∀ j∈ [n]−ϑ(v1),

with the second statement in (5.39), we obtain

e
(
H0
(
P1; f∗0Vc

)f∗0ϕc) =
n∏

j=n′+1

(d(e)−1)/2∏
r=0

(
αϑ(v1)−αj − r

2αϑ(v1)

d(e)

)

=
n∏

j=n′+1

(d(e)−1)/2∏
r=0

(
(d(e)−2r)αϑ(v1)

d(e)
−αj

)(5.41)

with respect to the complex orientation on the determinant of the stan-
dard ∂̄-operator on (Vc, ϕc).

Let

0 −→ (V, ϕ) −→
(
TPn

′−1,dφ|TPn′−1

)∣∣
P1
ϑ(v1)ϑ(v2)

⊕ (Vc, ϕc)
∣∣
P1
ϑ(v1)ϑ(v2)

−→
(
Ln;a, φ̃n;a

)∣∣
P1
ϑ(v1)ϑ(v2)

−→ 0(5.42)

be an exact sequence of holomorphic real bundle pairs over (P1
ϑ(v1)ϑ(v2), φ)

such that

TP1
ϑ(v1)ϑ(v2) ⊂ V.

Let ∂̄V denote the standard ∂̄-operator on the real bundle pair

f∗0 (V, ϕ) −→ (P1, c).
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The real Cauchy–Riemann operators ∂̄V and ∂̄Pn′−1 descend to opera-
tors ∂̄′V and ∂̄′Pn′−1 on the quotients of their domains by

Gc(f0) ⊂ H0
(
P1; f∗0TP1

ϑ(v1)ϑ(v2)

)f∗0 dφ

⊂ Γ
(
P1; f∗0V

)f∗0ϕ,Γ(P1; f∗0TPn
′−1
)f∗0 dφ

.

The exact sequence (5.42) gives rise to an exact sequence

(5.43) 0 −→ ∂̄′V −→ ∂̄′Pn′−1⊕∂̄Vc −→ ∂̄Ln;a −→ 0

of Fredholm operators over (P1, c). The operators ∂̄′Pn′−1 , ∂̄Vc , and ∂̄Ln;a

are surjective and the kernel of ∂̄′Pn′−1 is canonically isomorphic to the

tangent space of M(Pn′−1) at [f0].
The case φ = τ ′n and n−|a| ∈ 4Z. By Lemma 2.2, n′ ∈ 4Z. The

canonical spin structure on the real locus of

(5.44)
n′

2

(
2OPn−1(1), τ̃

′(1)
n;1,1

)
−→

(
Pn−1, τ ′n

)
as in Section 2.2 and the exact sequence (2.8) determine a spin structure
on

(5.45) RPn
′−1 = Fix

(
τn′
)
⊂ Pn

′−1.

This is the same spin structure as in [4, Section 5.5]. The equivariant

Euler class of the tangent space of [f0, (0,∞)] in M0,1(Pn′−1, d(e))φ
′
with

respect to the orientation induced by this spin structure is provided by
[4, Proposition 6.2] with d0 = d(e), i= ϑ(v1), and λj = αj . The Euler

class of [f0] in M(Pn′−1) is obtained by dividing the expression in [4]
by e(T0P1). Thus,

e
(
T[f0]M(Pn

′−1)
)

= (−1)d(e)d(e)!

(
2αϑ(v1)

d(e)

)d(e)−1

×
∏

1≤j≤n′
j 6=ϑ(v1), 2|(j−ϑ(v1))

d(e)∏
r=0

(
d(e)−2r

d(e)
αϑ(v1) − αj

)

= (−1)
d(e)−1

2 2d(e)−1d(e)!

(
αϑ(v1)

d(e)

)d(e)−1

×
∏

1≤j≤n′
j 6=ϑ(v1),ϑ(v2)

(d(e)−1)/2∏
r=0

(
(d(e)−2r)αϑ(v1)

d(e)
−αj

)
.

(5.46)

Similarly to Section 2.2, the canonical spin structure on (5.45) in-
duces a trivialization of V ϕ via the exact sequence (5.42) and, thus, an
orientation on det ∂̄′V as in [13, Section 3.3]. By [13, Corollary 3.13],
the isomorphism
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det ∂̄′V

)
⊗
(
det
(
V φ̃n;a
n;a |[f0]

))
=
(
det ∂̄′V

)
⊗
(
det ∂̄Ln;a

)
≈ Λtop

R
(
T[f0]M(Pn

′−1)
)
⊗
(
det ∂̄Vc

)
= det

(
N φ;◦

Γ,σ;e|[f0]

)(5.47)

induced by (5.43) is orientation-preserving with respect to the orienta-
tions on the first terms on the two sides induced by the canonical spin
structure on (5.45) and the complex orientations on the other terms.
By (5.40), (5.41), and (5.46), (5.26), thus, holds with respect to the
orientation on the left-hand side induced by the orientation on det ∂̄′V
corresponding to the canonical spin structure on the real locus of (5.44)
via the exact sequences (2.8) and (5.42).

The orientation on M(Xn;a) in this case is determined by the distin-
guished homotopy class of isomorphisms (2.25) with `0(a)=0 and, thus,

`1(a) = k. Since the real line bundle (L∗)φ̃
∗

is orientable in this case,
the distinguished homotopy class of isomorphisms (2.25) determines a
homotopy class of isomorphisms(

X
φn;a
n;a ×R

)
⊕ TXφn;a

n;a ⊕ Lφ̃n;a
n;a

∣∣
X
φn;a
n;a

≈
(
X
φn;a
n;a ×R

)
⊕ TXφn;a

n;a ⊕ kORPn−1(1)
∣∣
X
φn;a
n;a

≈ n′ORPn−1(1)
∣∣
X
φn;a
n;a
⊕ kORPn−1(1)

∣∣
X
φn;a
n;a

.

The canonical spin structure on the real locus of (5.44), thus, deter-

mines a spin structure on TX
φn;a
n;a , an orientation on M(Xn;a), and

an orientation on the left-hand side of (5.26) via the short exact se-

quence (2.15) pulled back to M(Xn;a). Since Mφ,c;◦
Γ,σ;e is connected, the

last orientation agrees with the orientation described below (5.47). By
[13, Theorem 1.5], the orientation on M(Xn;a) induced by the real ori-
entation of Section 2.2 is the same as the orientation induced by the
canonical spin structure on (Xn;a, φn;a). Thus, the orientation on the
left-hand side of (5.26) with the respect to the canonical orientation on
M0(Xn;a, d(e))φn;a arising from Section 2.2 is described by the right-
hand side of (5.26) in this case.

The case φ= τ ′n and n−|a| 6∈ 4Z. By Lemma 2.2, n′+2∈ 4Z. The
canonical spin structure on the real locus of

(5.48)
n′+2

2

(
2OPn−1(1), τ̃

′(1)
n;1,1

)
−→

(
Pn−1, τ ′n

)
as in Section 2.2 and the exact sequence (2.8) determine a relative spin
structure on (5.45). This is the same relative spin structure as in [4, Re-
mark 6.5]. The equivariant Euler class of the tangent space of [f0, (0,∞)]

in M0,1(Pn′−1, d(e))τ
′
n′ with respect to the orientation induced by this

relative spin structure is provided by [4, (6.21)]; see [4, Remark 6.6].
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Thus,

e
(
T[f0]M0(Pn

′−1)
)

= 2d(e)−1d(e)!

(
αϑ(v1)

d(e)

)d(e)−1

×
∏

1≤j≤n′
j 6=ϑ(v1),ϑ(v2)

(d(e)−1)/2∏
r=0

(
(d(e)−2r)αϑ(v1)

d(e)
−αj

)
.

(5.49)

The canonical relative spin structure on (5.45) induces a relative spin
structure on V ϕ via the exact sequence (5.42) and, thus, an orientation
on det ∂̄′V as in [13, Section 3.3]. By [13, Corollary 3.13], the isomor-
phism (5.47) induced by (5.43) is orientation-preserving with respect
to the orientations on the first terms on the two sides induced by the
canonical relative spin structure on (5.45) and the complex orientations
on the other terms. By (5.40), (5.41), and (5.49), (5.26) without the
leading sign in (4.22), thus, holds with respect to the orientation on the
left-hand side induced by the orientation on det ∂̄′V corresponding to the
canonical relative spin structure on the real locus of (5.48) via the exact
sequences (2.8) and (5.42).

The orientation on M(Xn;a) in this case is determined by the distin-
guished homotopy class of isomorphisms (2.26) with `0(a)=0 and, thus,

`1(a)=k. Since the real line bundle (L∗)φ̃
∗

is not orientable in this case,
the distinguished homotopy class of isomorphisms (2.26) determines a
homotopy class of isomorphisms(
X
φn;a
n;a ×R

)
⊕
(
TX

φn;a
n;a ⊕2(L∗)φ̃

∗∣∣
X
φn;a
n;a

)
⊕ Lφ̃n;a

n;a

∣∣
X
φn;a
n;a

≈
(
X
φn;a
n;a ×R

)
⊕
(
TX

φn;a
n;a ⊕2ORPn−1(1)

∣∣
X
φn;a
n;a

)
⊕ kORPn−1(1)

∣∣
X
φn;a
n;a

≈ (n′+2)ORPn−1(1)
∣∣
X
φn;a
n;a
⊕ kORPn−1(1)

∣∣
X
φn;a
n;a

.

The canonical spin structure on the real locus of (5.48), thus, deter-

mines a relative spin structure on TX
φn;a
n;a , an orientation on M(Xn;a),

and an orientation on the left-hand side of (5.26) via the short exact

sequence (2.15) pulled back to M(Xn;a). Since Mφ,c;◦
Γ,σ;e is connected (un-

less n=2), the last orientation agrees with the orientation described at
the end of the previous paragraph.

By [13, Theorem 1.5], the orientation on M(Xn;a) induced by the
real orientation of Section 2.2 differs from the orientation induced by
the associated relative spin structure on (Xn;a, φn;a) by (−1) to the
power of ⌊

〈c1(Xn;a), d(e)`〉+ 2

4

⌋
=

(n−|a|)d(e)+2

4
,

where `∈H2(Pn−1;Z) is the homology class of a line. Replacing the real

bundle pair (L∗, φ̃∗) with (OPn−1(1), τ̃ ′n;1) above, we obtain the relative
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spin structure on (Xn;a, φn;a) induced by the canonical relative spin

structure on (5.45). The orientations on M0(Xn;a, d(e))φn;a,c induced
by the two relative spin structures differ by (−1) to the power of

1

2

〈
1−c1(L∗), d(e)`

〉
=

(n−|a|)d(e)+2d(e)

4
.

Adding up the right-hand sides of the last two equations, we conclude
the orientation on M(Xn;a) induced by the real orientation of Sec-
tion 2.2 differs from the orientation induced by the canonical relative
spin structure by the leading sign in (4.22). Thus, the orientation on
the left-hand side of (5.26) with respect to the canonical orientation on
M0(Xn;a, d(e))φn;a arising from Section 2.2 is described by the right-
hand side of (5.26) in this case as well.

The case φ=ηn. The top exterior power of the real bundle pair

(5.50)
n′

2

(
2OPn−1(1), η

(1)
n;1,1

)
−→

(
Pn−1, ηn

)
is canonically the square of a rank 1 real bundle pair as in Section 2.2.
Thus, the restriction of (5.50) to the equator

S1
ϑ(v1)ϑ(v2) ⊂ P1

ϑ(v1)ϑ(v2)

has a canonical homotopy class of trivializations. It determines an ori-
entation on every moduli space M0,l(Pn

′−1, d(e))φ
′

as in the proof of
[4, Lemma 2.5]. The equivariant Euler class of the tangent space of

[f0, (0,∞)] in M0,1(Pn′−1, d(e))φ
′
with respect to this orientation is again

provided by [4, Proposition 6.2] and given by the same expression as in
the first case above. Thus,

e
(
T[f0]M(Pn

′−1)
)

= (−1)
d(e)−1

2 2d(e)−1d(e)!

(
αϑ(v1)

d(e)

)d(e)−1

×
∏

1≤j≤n′
j 6=ϑ(v1),ϑ(v2)

(d(e)−1)/2∏
r=0

(
(d(e)−2r)αϑ(v1)

d(e)
−αj

)
.

(5.51)

The canonical square root structure on (5.50) induces a homotopy
class of trivializations of (V, ϕ) over S1

ϑ(v1)ϑ(v2) via the exact sequence

(5.42) and, thus, an orientation on det ∂̄′V as in [13, Section 3.3]. By [13,
Corollary 3.16], the isomorphism (5.47) induced by (5.43) is orientation-
preserving with respect to the orientations on the first terms on the two
sides induced by the canonical square root structure on (5.50) and the
complex orientations on the other terms. By (5.40), (5.41), and (5.51),
(5.26) without |φ| = 1 in the leading exponent, thus, holds with re-
spect to the orientation on the left-hand side induced by the orientation
on det ∂̄′V corresponding to the canonical square root structure on (5.50)
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via the exact sequences (2.8) and (5.42) and the orienting procedure of
[4, Lemma 2.5].

The orientation on M(Xn;a) in this case is determined by a real orien-
tation on (Xn;a, φn;a) associated with the second isomorphism in (2.19).
This isomorphism also determines an orientation on the tangent space
of M(Xn;a) at an element [u] by trivializing u∗(TXn;a, φn;a) along the
equator S1 ⊂ P1 as in the proof of [4, Lemma 2.5]. By [13, Corol-
lary 3.8(2)], the two orientations are the same. They determine an orien-
tation on the left-hand side of (5.26) via the short exact sequence (2.16)

pulled back to M(Xn;a). Since Mφ,c;◦
Γ,σ;e is connected, the last orienta-

tion agrees with the orientation described at the end of the previous
paragraph. Thus, the orientation on the left-hand side of (5.26) with
the respect to the orientation on M(Xn;a) arising from the canonical
real orientation on (Xn;a, φn;a) is given by the right-hand side of (5.26)

multiplied by (−1)|φ|=(−1)|c|. As stated at the end of [12, Section 3.2],
the canonical orientation of

M(Xn;a) ≡M0,0(Xn;a, d(e))φn;a,c,

with c=η is reversed when it is viewed as a subspace of the moduli space
M0(Xn;a, d(e))φn;a . This accounts for the extra factor of (−1)|φ| =−1
in (4.22) in this case.
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