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STABLE BLOWUP FOR THE SUPERCRITICAL
YANG-MILLS HEAT FLOW

Roland Donninger & Birgit Schörkhuber

Abstract

In this paper, we consider the heat flow for Yang-Mills con-
nections on R5 × SO(5). In the SO(5)-equivariant setting, the
Yang-Mills heat equation reduces to a single semilinear reaction-
diffusion equation for which an explicit self-similar blowup solution
was found by Weinkove [31]. We prove the nonlinear asymptotic
stability of this solution under small perturbations. In particular,
we show that there exists an open set of initial conditions in a
suitable topology such that the corresponding solutions blow up
in finite time and converge to a non-trivial self-similar blowup pro-
file on an unbounded domain. Convergence is obtained in suitable
Sobolev norms and in L∞.

1. Introduction

1.1. Equivariant Yang-Mills connections on Rd×SO(d). For µ =
1, . . . , d, we consider mappingsAµ : Rd → so(d), where so(d) denotes the
Lie algebra of the Lie group SO(d), i.e., so(d) can be considered as the
set of skew-symmetric (d × d)-matrices endowed with the commutator
bracket. In the following, Einstein’s summation convention is in force.
For

Fµν := ∂µAν − ∂νAµ + [Aµ, Aν ],

the Yang-Mills functional is defined as

(1.1) FA =

∫
Rd

tr(FµνF
µν).

The Euler-Lagrange equations associated to this functional are given by

∂µF
µν(x) + [Aµ(x), Fµν(x)] = 0(1.2)

and solutions are referred to as Yang-Mills connections. We note that
there is still a gauge freedom in this equation which, however, is of no
relevance here since we will only consider the equivariant case. A stan-
dard approach to find solutions to Eq. (1.2) is to add an artificial time
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dependence to the model which implies that Yang-Mills connections are
static solutions to the corresponding heat flow equation

(1.3) ∂tAµ(t, x) + ∂νFµν(t, x) + [Aν(t, x), Fµν(t, x)] = 0, t > 0,

for some initial condition Aµ(0, x) = A0µ(x). This model is usually
referred to as the Yang-Mills heat flow for connections on the trivial
bundle Rd × SO(d). The equation enjoys scale invariance in the sense
that if Aµ is a solution, then, for any λ > 0,

Aλµ(t, x) := λAµ(λ2t, λx),

solves Eq. (1.3) with initial condition Aλµ(0, x) = λA0µ(λx). Since the
Yang-Mills functional in four space dimensions is invariant under this
scaling transformation, the model is referred to as critical for d = 4.
Consequently, the Yang-Mills equation is supercritical for d ≥ 5. To
simplify matters, we consider SO(d)-equivariant connections of the form

Aijµ (t, x) = u(t, |x|) σijµ (x),

where σijµ (x) = δiµx
j − δjµxi, for i, j = 1, . . . , d, cf. for example [16], [14]

and the references therein. This ansatz reduces Eq. (1.3) to a single
equation for a radial function u : [0,∞)× [0,∞)→ R, given by

∂tu(t, r)− ∂2ru(t, r)− d+ 1

r
∂ru(t, r)

+ 3(d− 2)u2(t, r) + (d− 2)r2u3(t, r) = 0,
(1.4)

see e.g. [14] for a detailed derivation. It was shown by Grotowski [16]
that this symmetry is preserved by the flow. Hence, for equivariant

initial data A0µ(x) = u0(|x|) σijµ (x) it suffices to consider Eq. (1.4) with
u(0, r) = u0(r). The scale invariance of Eq. (1.3) implies that Eq. (1.4)
is invariant under the transformation u 7→ uλ, where

uλ(t, r) = λ2u(λ2t, λr)

and λ > 0. It was shown by Gastel [14] that self-similar blowup solu-
tions to Eq. (1.4) exist in dimensions 5 ≤ d ≤ 9. Explicit examples were
found by Weinkove [31] and they are of the form

wT (t, r) = 1
T−tW

(
r√
T−t

)
, W(ρ) = − 1

a1(d)ρ2 + a2(d)
,(1.5)

for some T > 0, with constants

a1(d) =
√
d−2
2
√
2
, a2(d) = 1

2(6d− 12− (d+ 2)
√

2d− 4),

for 5 ≤ d ≤ 9. By setting Aµ,T (t, x) = wT (t, |x|) σµ(x), a one-parameter
family of blowup solutions for Eq. (1.3) is obtained. These solutions are
invariant under the natural scaling of the equation (up to a change of
the blowup time) and obviously, they blow up in L∞ as t→ T−. In this
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paper, we address the stability of these solutions under equivariant per-
turbations in five space dimensions. The main results are summarized
below.

1.2. Stable self-similar blowup for d = 5. We consider the equation

∂tu(t, r) = ∂2ru(t, r) +
6

r
∂ru(t, r)− 9u2(t, r)− 3r2u3(t, r),(1.6)

for r ∈ [0,∞) and t > 0, subject to the initial condition u(0, ·) = u0.
We set E = C∞e,0(R), where

C∞e,0(R) := {u ∈ C∞0 (R) : u(x) = u(−x)}.(1.7)

On E a norm is defined by

‖u‖2E := ‖u‖21 + ‖u‖22,
where

‖u‖21 :=

∫ ∞
0
|r3u′′(r) + 6r2u′(r)|2dr,

‖u‖22 :=

∫ ∞
0
|r3u(4)(r) + 12r2u(3)(r) + 24ru′′(r)− 24u′(r)|2dr.

The following result shows that the blowup described by Aµ,T is stable
under equivariant perturbations.

Theorem 1.1. Fix T0 > 0. There are constants δ,K > 0 such that
for all real-valued functions u0 ∈ E satisfying ‖u0 − wT0(0, ·)‖E ≤ δ

K ,
the following holds: There is a T = T (u0) ∈ [T0 − δ, T0 + δ] such that a
unique classical solution u(t, ·) to Eq. (1.6) exists for all t ∈ (0, T ) with
u(0, ·) = u0. At t = T , the solution blows up at the origin and converges
to wT according to

‖u(t, ·)−wT (t, ·)‖1
‖wT (t, ·)‖1

. (T − t)
1

150 ,
‖u(t, ·)−wT (t, ·)‖2
‖wT (t, ·)‖2

. (T − t)
1

150 .

(1.8)

Furthermore, we have convergence in L∞(R+), i.e.,

‖u(t, ·)−wT (t, ·)‖L∞(R+)

‖wT (t, ·)‖L∞(R+)
. (T − t)

1
150 .

Remark 1.2. (i) Although the problem is posed on Rd, d = 5, the
effective dimension of the Laplacian in Eq. (1.4) is d+ 2. From a
mathematical point of view it is therefore reasonable to consider
u as a radial function on R7. Obviously,

‖u‖1 ' ‖∆u(| · |)‖L2(R7), ‖u‖2 ' ‖∆2u(| · |)‖L2(R7).

(ii) In all of the above bounds the left hand side is normalized to the
behavior of wT in the respective norm. However, the given rate of
convergence is not sharp.
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(iii) The smoothness assumptions on the initial data seem to be quite
restrictive. In fact, the result holds for a much larger class of
initial conditions, see Section 5.6. A more general version for so-
lutions that satisfy the equation in a suitable weak sense is given
in Theorem 1.3 below.

(iv) The restriction to d = 5 is by no means crucial and our techniques
easily extend to the cases d = 7 and d = 9. For the sake of
simplicity, however, we only consider the case d = 5.

We note that our approach is very robust since we do not make use of
any Lyapunov functionals or monotonicity formulas. Instead, we rewrite
Eq. (1.4) in similarity coordinates and study perturbations around wT

by means of strongly continuous semigroups, operator theory and spec-
tral analysis.

1.3. Known results. The study of Yang-Mills (YM) functionals in
mathematics was initiated in the 1980’s and triggered profound devel-
opments in differential geometry, see [6]. The corresponding heat flow
equation has been studied extensively in various geometric settings, see
for example the recent monograph by Feehan [13]. For an SU(2)-bundle
over the unit ball in R4, global existence of smooth solutions was estab-
lished by Schlatter, Struwe and Tahvildar-Zadeh [30] in the equivariant
setting. In supercritical dimensions, blow up in finite time is due to
Naito [24], see also Grotowski [16] and Gastel [14] for the case of a
trivial SO(d)–bundle over Rd. Weinkove [31] investigated the nature
of singularities under certain assumptions on the blowup rate and it
was found that locally around the blowup point solutions converge in a
suitable sense to homothetically shrinking solitons, also referred to as
YM-solitons. These objects correspond to solutions of the YM heat flow
on the trivial bundle over Rd, which is our main motivation to study the
problem in this geometrical setting. Moreover, Weinkove gave explicit
examples of such solitons on Rd×SO(d), 5 ≤ d ≤ 9, see Eq. (1.5). Very
recently, a description of general blowup solutions for the YM heat flow
over closed Riemannian manifolds was obtained by Kelleher and Streets
[22] for d ≥ 4 and it was shown that singularities can be described either
by suitably rescaled Yang-Mills connections, i.e., by static solutions, or
by YM-solitons. The results of Weinkove have raised interest in the sta-
bility of YM-solitons in recent years, see e.g. Kelleher and Streets [21],
Chen and Zhang [4]. However, to the best of our knowledge no rigorous
proof on the stability of the Weinkove solution given in Eq. (1.5) has
been obtained so far and Theorem 1.1 is the first result in this direction.
We note that in higher dimensions, d ≥ 10, the existence of self-similar
solutions to Eq. (1.4) was excluded by Bizoń and Wasserman [2].

1.4. Related problems. The above model bears many similarities
with the heat flow for co-rotational harmonic maps from Rd → Sd,
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which is supercritical for d ≥ 3. For 3 ≤ d ≤ 6, Fan [12] has con-
structed a family of self-similar blowup solutions. In analogy to the
YM heat flow, self-similar blowup is excluded for d ≥ 7, see [2]. In this
regime, Biernat and Seki [1] have recently constructed explicit examples
for type II blowup solutions. It is most likely that a similar result for the
YM heat flow can be obtained in dimensions d ≥ 10. The problem of
non-uniqueness of weak solutions in the supercritical case has recently
been addressed by Germain, Ghoul and Miura [15]. In the critical case
d = 2, finite-time blowup of solutions has been proved by Chang and
Ding [3] which contrasts the result of [30] for the YM heat flow, see also
[17]. Stable type II blowup for d = 2 is due to Raphaël and Schweyer
[27], [28].

1.5. Formulation of the problem in similarity coordinates. We
fix T0 > 0 and write the initial condition as

u(0, r) = wT0(0, r) + v0(r),(1.9)

for r ∈ [0,∞), where wT0 denotes the self-similar blowup solution in
Eq. (1.5) with fixed blowup time t = T0. We introduce similarity coor-
dinates (τ, ρ) ∈ [0,∞)× [0,∞) defined by

τ = − log(T − t) + log T, ρ =
r√
T − t

,

for T > 0, which enters the analysis as a free parameter that will be
fixed only at the very end of the argument. By setting

ψ(− log(T − t) + log T, r√
T−t) := (T − t)u(t, r),

the initial value problem given by Eq. (1.6) and Eq. (1.9) transforms
into

∂τψ(τ, ρ) = ∂2ρψ(τ, ρ) +
6

ρ
∂ρψ(τ, ρ)− 1

2
ρ∂ρψ(τ, ρ)

− ψ(τ, ρ)− 9ψ2(τ, ρ)− 3ρ2ψ3(τ, ρ)

(1.10)

for τ > 0 with initial condition

ψ(0, ρ) = Tu(0,
√
Tρ) = T

T0
W
( √

T√
T0
ρ
)

+ Tv0(
√
Tρ).

The Weinkove solution

W(ρ) = − 1

a1ρ2 + a2
, a1 =

1

2

√
3

2
, a2 =

1

2
(18− 7

√
6),(1.11)

is a static solution to Eq. (1.10). The differential operator on the right
hand side of Eq. (1.10) has a natural extension to R7. In fact, Eq. (1.10)
can be written as

∂τΨ(τ, ξ) =∆Ψ(τ, ξ)− 1
2ξ · ∇Ψ(τ, ξ)

−Ψ(τ, ξ)− 9Ψ2(τ, ξ)− 3|ξ|2Ψ3(τ, ξ)
(1.12)
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for τ > 0, ξ ∈ R7 and a radial function Ψ(τ, ξ) = ψ(τ, |ξ|). Hence, we
study Eq. (1.12) with initial data of the form

Ψ(0, ξ) = T
T0

W
( √

T√
T0
|ξ|
)

+ Tv0(
√
T |ξ|).

In a more abstract way, the problem can be formulated as

d

dτ
Ψ(τ) = L0Ψ(τ) + F (Ψ(τ)), τ > 0,(1.13)

with Ψ(0) = ΨT
0 , where L0 represents the linear differential operator on

the right hand side of Eq. (1.12) and F denotes the nonlinearity. In the
following, we study Eq. (1.13) on a Hilbert space (H, ‖ · ‖) defined as
the completion of the set of radial, compactly supported functions on
R7 with respect to the norm

‖u‖2 = ‖∆u‖2L2(R7) + ‖∆2u‖2L2(R7),

see Section 2 for details. In this setting, L0 has a realization as an
unbounded, closed operator on a suitable domain D(L0) ⊂ H. In order
to study small perturbations of W, we insert the ansatz Ψ(τ) = W +
Φ(τ), which yields

d

dτ
Φ(τ) = (L0 + L′)Φ(τ) +N(Φ(τ)), τ > 0,

Φ(0) = U(v0, T ).
(1.14)

Here, L′u = V (| · |)u is a linear perturbation with

V (ρ) = −18W(ρ)− 9ρ2W(ρ)2 =
72(36− 14

√
6 + (

√
6− 2)ρ2)

(36− 14
√

6 +
√

6ρ2)2
(1.15)

for ρ ∈ [0,∞) and N denotes the remaining nonlinearity. A short cal-
culation shows that

N(Φ(τ)) = −9
[
1 + | · |2W(| · |)

]
Φ(τ)2 − 3| · |2Φ(τ)3.

Furthermore,

U(v0, T ) := Tv0(
√
T | · |) + T

T0
W
( √

T√
T0
| · |
)
−W(| · |)

denotes the transformed initial condition. In Section 3 we show that
the operator L := L0 + L′, equipped with a suitable domain, gener-
ates a strongly continuous one-parameter semigroup {S(τ) : τ ≥ 0} of
bounded linear operators on H. For general initial conditions in H we
do not expect to obtain classical solutions to Eq. (1.14). Thus, we look
for mild solutions Φ ∈ C([0,∞),H) that satisfy the integral equation

Φ(τ) = S(τ)U(v0, T ) +

∫ τ

0
S(τ − τ ′)N(Φ(τ ′))dτ ′(1.16)

for τ ≥ 0. With these preliminaries we can state the following theorem.
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Theorem 1.3. Fix T0 > 0. Let M > 0 be sufficiently large and
δ > 0 sufficiently small. For every v0 ∈ H with ‖v0‖ ≤ δ

M2 , there exists

a T = Tv0 ∈ [T0 − δ
M , T0 + δ

M ] and a function Φ ∈ C([0,∞),H) that
satisfies Eq. (1.16) for all τ ≥ 0. Furthermore,

‖Φ(τ)‖ . e−
1

150
τ , ∀τ ≥ 0.

Sections 2–5 are mainly devoted to the proof of Theorem 1.3. In
Section 5.6 we show that Theorem 1.3 implies Theorem 1.1.

1.6. Notation and conventions. We write N for the natural numbers
{1, 2, 3, . . . }, N0 := {0} ∪ N. Furthermore, R+ := {x ∈ R : x > 0}. The
notation a . b means a ≤ Cb for an absolute constant C > 0 and we
write a ' b if a . b and b . a. If a ≤ Cεb for a constant Cε > 0
depending on some parameter ε, we write a .ε b. We use the common

notation 〈x〉 :=
√

1 + |x|2 also known as the Japanese bracket. For a

function x 7→ g(x), we denote by g(n)(x) = dng(x)
dxn the derivatives of

order n ∈ N. For n = 1, 2, we also write g′(x) and g′′(x), respectively.
For a function (x, y) 7→ f(x, y), partial derivatives of order n will be
denoted by ∂nxf(x, y) = ∂n

∂xn f(x, y). Throughout the paper, W (f, g)
denotes the Wronskian of two functions x 7→ f(x) and x 7→ g(x), where
we use the convention W (f, g) = fg′ − f ′g. By C∞0 (Rd) we denote the
set of compactly supported functions on Rd, d ≥ 1. The spaces L2(Rd)
and Hk(Rd), k ∈ N0, denote the standard Lebesgue and Sobolev spaces
with the usual norm

‖u‖2Hk(Rd) :=
∑

α:|α|≤k

‖∂αu‖2L2(Rd).

The set of bounded linear operators on a Hilbert space H is denoted
by B(H). For a closed linear operator (L,D(L)), we write σ(L) for the
spectrum. The resolvent set is defined as ρ(L) := C\σ(L) and we write
RL(λ) := (λ− L)−1 for λ ∈ ρ(L).
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2. Function spaces

On R7, we introduce the set of radial test functions,

C∞rad,0(R7) := {ũ ∈ C∞0 (R7) : ũ is radial},

and define C∞e,0(R), the set of even test functions on R, as in Eq. (1.7).

Note that if u ∈ C∞e,0(R), then u(2k+1)(0) = 0 for all k ∈ N0. Fur-

thermore, every u ∈ C∞e,0(R) defines a function ũ ∈ C∞rad,0(R7) by

ũ(ξ) := u(|ξ|). Conversely, if ũ ∈ C∞rad,0(R7), then ũ(ξ) = u(|ξ|) for

some u ∈ C∞e,0(R). In the following, we set

L2
rad(R7) := {ũ ∈ L2(R7) : ũ is radial}.

For ũ ∈ L2
rad(R7), we have ũ(ξ) = u(|ξ|) a.e. on R7, for some u ∈ L2(R),

satisfying u(x) = u(−x) a.e. on R. By using polar coordinates (ρ, ω),

ρ = |ξ|, ω = ξ
|ξ| , the inner product on L2

rad(R7) can be written as

(ũ|ṽ)L2(R7) =

∫
R7

u(|ξ|)v(|ξ|)dξ = C

∫ ∞
0

u(ρ)v(ρ)ρ6dρ,

where the constant comes from the integration over S6. Furthermore,
we consider Sobolev spaces

Hk
rad(R7) := {ũ ∈ Hk(R7) : ũ is radial},

for k ∈ N, where the norm on Hk is defined in the usual manner. For

ũ ∈ H2j
rad(R7), j = 1, 2, the operators ∆j exist in the weak sense, i.e.,

there are functions f̃j ∈ L2
rad(R7) such that∫

R7

ũ(ξ)∆jφ̃(ξ)dξ =

∫
R7

f̃j(ξ)φ̃(ξ)dξ(2.1)

for all φ̃ ∈ C∞rad,0(R7) (this is not a restriction since for non-radial test

functions, Eq. (2.1) can be recast by introducing polar coordinates and

writing φ̃ as a spherical mean). For the radial Laplace operator, we use
the notation

∆radu(ρ) = u′′(ρ) + 6
ρu
′(ρ).

2.1. Definition of the Hilbert space H. On C∞rad,0(R7) we introduce
the inner product

(ũ|ṽ) := (∆ũ|∆ṽ)L2(R7) + (∆2ũ|∆2ṽ)L2(R7),

and a norm ‖ũ‖ :=
√

(ũ|ũ).

Lemma 2.1. Let ũ = u(| · |) ∈ C4
rad(R7), such that ‖ũ‖ <∞ and

lim
ρ→∞

ρ3|∆radu(ρ)| = 0, lim
ρ→∞

ρ3|(∆radu)′(ρ)| = 0.
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Then we have the bound

‖∇∆ũ‖L2(R7) . ‖ũ‖.

If in addition limρ→∞ ρ
3
2 |u(ρ)| = 0 and limρ→∞ ρ

5
2 |u′(ρ)| = 0, then

‖(·)αu‖L2(R+) . ‖ũ‖ for α ∈ [0, 1],

‖(·)αu′‖L2(R+) . ‖ũ‖ for α ∈ [0, 2],

‖(·)αu′′‖L2(R+) . ‖ũ‖ for α ∈ [1, 3],

‖(·)αu(3)‖L2(R+) . ‖ũ‖ for α ∈ [2, 3],

as well as ‖(·)3u(4)‖L2(R+) . ‖ũ‖. Furthermore,

‖(·)αu‖L∞(R+) . ‖ũ‖ for α ∈ [0, 32 ],

‖(·)αu′‖L∞(R+) . ‖ũ‖ for α ∈ [1, 52 ],

‖(·)α∆radu‖L∞(R+) . ‖ũ‖ for α ∈ [2, 3],

‖(·)3(∆radu)′‖L∞(R+) . ‖ũ‖.

Proof. By scaling, it is natural to expect the bounds

4∑
j=1

‖(·)j−1u(j)‖L2(R+) . ‖ũ‖Ḣ4(R7),

2∑
j=0

‖(·)j+1u(j)‖L2(R+) . ‖ũ‖Ḣ2(R7)

and Hardy’s inequality shows that these estimates are indeed correct.
Based on this, the stated assertions follow easily by interpolation and
Sobolev embedding. A self-contained and elementary proof including
all details can be found in the arXiv preprint version [10] of this article.
The same applies to the next Lemma, which is a result of the standard
construction of the completion. q.e.d.

Lemma 2.2. Let H denote the completion of (C∞rad,0(R7), ‖·‖). Then
H is a Hilbert space and its elements can be identified with functions
ũ = u(| · |) ∈ Crad(R7) ∩ C3

rad(R7 \ {0}), that satisfy

lim
ρ→∞

ρ
3
2 |u(ρ)| = 0, lim

ρ→∞
ρ

5
2 |u′(ρ)| = 0.

The norm induced by the inner product on H is given by

‖ũ‖2 = ‖∆ũ‖2L2(R7) + ‖∆2ũ‖2L2(R7),

where ∆ũ can be interpreted as a classical differential operator and ∆2ũ
has to be understood in a weak sense, cf. Eq. (2.1). Finally, for all
ũ ∈ H,

‖∇∆ũ‖L2(R7) . ‖ũ‖, ‖u‖L∞(R+) . ‖ũ‖.
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3. Semigroup theory and spectral analysis

3.1. The Ornstein-Uhlenbeck operator on H. We set

Λũ(ξ) :=
1

2
ξ · ∇ũ(ξ),

for ξ ∈ R7 and define the formal differential expression

L0ũ(ξ) := ∆ũ(ξ)− Λũ(ξ)− ũ(ξ).

In polar coordinates, L0 decouples into a radial and an angular part. In
particular, for ũ = u(| · |) ∈ C∞rad(R7), L0ũ(·) = ˜̀

0u(| · |), where

˜̀
0u(ρ) = ∆radu(ρ)− 1

2ρu
′(ρ)− u(ρ).

We define L̃0ũ := L0ũ on the domain

D(L̃0) :=
{
ũ = u(| · |) ∈ H ∩ C6

rad(R7) : ∆3ũ ∈ L2(R7),L0ũ ∈ H,

lim
ρ→∞

ρ3|∆j
radu(ρ)| = 0, lim

ρ→∞
ρ3|(∆j

radu)′(ρ)| = 0, for j = 1, 2
}
.

The operator L̃0 is densely defined since C∞rad,0(R7) ⊂ D(L̃0). Note that

functions in D(L̃0) satisfy the assumptions of Lemma 2.1 by Lemma
2.2. We need the following result, which is based on [23].

Lemma 3.1. Consider the operator (Λ,D(Λ)), with

D(Λ) = {ũ ∈ L2(R7) : Λũ ∈ L2(R7)},
where Λũ is understood in the sense of distributions. Then, for all
ũ ∈ D(Λ),

Re(−Λũ|ũ)L2(R7) ≤
7

4
‖ũ‖2L2(R7).(3.1)

Proof. As defined above, the operator is closed by Lemma 2.1 in [23].
Furthermore, C∞0 (R7) is a core by [23], Proposition 2.2. Integration by
parts shows that Eq. (3.1) holds for all ũ ∈ C∞0 (R7). This implies the
claim. q.e.d.

Lemma 3.2. For all ũ ∈ D(L̃0), we have

Re(L̃0ũ|ũ) ≤ −1

4
‖ũ‖2.(3.2)

Proof. First, one can easily check that for all ũ ∈ C6(R7),

∆Λũ = Λ∆ũ+ ∆ũ, ∆2Λũ = Λ∆2ũ+ 2∆2ũ.

Hence,

∆L̃0ũ = ∆2ũ− Λ∆ũ− 2∆ũ, ∆2L̃0ũ = ∆3ũ− Λ∆2ũ− 3∆2ũ.(3.3)

Let ũ ∈ D(L̃0), then ∆j ũ ∈ L2
rad(R7), j = 1, 2, 3. In view of Eq. (3.3)

and the fact that L̃0u ∈ H, we get that Λ∆ũ,Λ∆2ũ ∈ L2
rad(R7). In
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particular, ∆ũ,∆2ũ ∈ D(Λ) and Re(−Λ∆ũ|∆ũ)L2(R7) ≤ 7
4‖∆ũ‖

2
L2(R7),

Re(−Λ∆2ũ|∆2ũ)L2(R7) ≤ 7
4‖∆

2ũ‖2L2(R7), by Lemma 3.1. Integration by

parts implies that

Re(∆2ũ|∆ũ)L2(R7) ≤ 0, Re(∆3ũ|∆2ũ)L2(R7) ≤ 0.

In view of Eq. (3.3) we infer that Eq. (3.2) holds. q.e.d.

Lemma 3.3. The range of (µ− L̃0) is dense in H for µ = 5
2 .

Proof. Let f̃ ∈ C∞rad,0(R7) and let f̂ = F(f̃) denote its Fourier trans-

form. The properties of f̃ imply that f̂ is a radial Schwartz function,
i.e., f̂(ζ) = ĝ(|ζ|) for some even function g ∈ S(R). For η = |ζ|, we set

ĥ(η) =

∫ ∞
η

2e−(s
2−η2)

s
ĝ(s)ds

and define û(·) := ĥ(| · |). It is easy to check that û satisfies the equation

|ζ|2û(ζ)− 1
2ζ · ∇û(ζ) = f̂(ζ),(3.4)

which reduces to
η2ĥ(η)− 1

2ηĥ
′(η) = ĝ(η)

in polar coordinates. We consider the integral

η3ĥ(η) =

∫ ∞
0

K(η, s)ĝ(s)s3ds

with K(η, s) := 2s−4η3e−(s
2−η2)1[0,∞)(s − η). It is easy to check that

|K(η, s)| . min{η−1, s−1}, for all η, s ∈ [0,∞). By [7], Lemma 5.5, the
kernel induces a bounded integral operator on L2(R+). Hence,

‖û‖L2(R7) ' ‖(·)3ĥ‖L2(R+) . ‖(·)3ĝ‖L2(R+) ' ‖f̂‖L2(R7).

In a similar manner one can show that

‖〈·〉kû‖L2(R7) .k ‖〈·〉kf̂‖L2(R7)

for all k ∈ N0. The right hand side is finite since f̂ ∈ S(R7). We define
ũ := F−1(û). Then ũ ∈ Hk(R7) for all k ∈ N0 by Plancherel’s theorem.
In particular, ũ can be approximated with respect to ‖ · ‖ by functions
in C∞0,rad(R7) and thus, ũ ∈ C6

rad(R7) ∩ H. Applying F−1 to Eq. (3.4)
shows that ũ is a solution to the equation

7
2 ũ(ξ)−∆ũ(ξ) + 1

2ξ · ∇ũ(ξ) = f̃(ξ),

and we infer that (52 − L̃0)ũ = f̃ . Elementary calculations show that

‖(·)3(∆j
radv)′‖L∞(1,∞) . ‖ṽ‖H6(R7), ‖(·)3∆

j
radv‖L∞(1,∞) . ‖ṽ‖H6(R7) for

all ṽ = v(| · |) ∈ C∞rad,0(R7) and j = 1, 2. By density of C∞0 (R7) in

H6(R7), we can always find a radial sequence (ũn)n∈N, ũn = un(| · |) ∈
C∞rad,0(R7) that approximates ũ in H6(R7). We have (·)3(∆j

radun)′ →
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(·)3(∆j
radu)′ in L∞(1,∞), hence limρ→∞ ρ

3|(∆j
radu)′(ρ)| = 0 for j = 1, 2.

Similarly, limρ→∞ ρ
3|∆j

radu(ρ)| = 0. Hence, ũ ∈ D(L̃0). The density of
C∞rad,0(R7) in H finally implies the claim. q.e.d.

Lemma 3.4. The operator (L̃0,D(L̃0)) is closable and the closure
(L0,D(L0)) generates a strongly continuous one-parameter semigroup
{S0(τ) : τ ≥ 0} of bounded operators on H. The semigroup satisfies

‖S0(τ)ũ‖ ≤ e−
1
4
τ‖ũ‖

for all ũ ∈ H and τ ≥ 0. Furthermore, L0ũ(ξ) = `0u(|ξ|), where

`0u(ρ) = ∆radu(ρ)− 1
2ρu

′(ρ)− u(ρ), ρ > 0,

in a classical sense and limρ→0 `0u(ρ) exists.

Proof. The first part of the statement follows from Lemma 3.2 and
3.3 and an application of the Lumer-Phillips Theorem [11], p. 83. The

closure is constructed in the usual way: Let (ũn)n∈N ⊂ D(L̃0), ũn(·) =

un(| · |), be such that ũn → ũ and L̃0ũn → f̃ in H. Then we say

ũ ∈ D(L0) and define L0ũ := f̃ . Next, we describe L0ũ in more detail.
Convergence in H implies that

∆ũn → ∆ũ ∈ L2
rad(R7)(3.5)

and ũ ∈ Crad(R7) ∩ C3
rad(R7 \ {0}). Furthermore, ũ(·) = u(| · |) and we

have un → u in L∞(R+) (Lemma 2.1). Analogously, L0ũ ∈ Crad(R7),
L0u(·) = `0u(| · |) and

∆radun − 1
2(·)u′n − un → `0u in L∞(R+).

By Lemma 2.1, (·)u′n → (·)u′ in L∞(R+). This and Eq. (3.5) imply that
∆radun → ∆radu in L∞(R+). By uniqueness of the limit function we
get that

`0u(ρ) = ∆radu(ρ)− 1
2ρu

′(ρ)− u(ρ), ρ > 0.

Finally, limρ→0 `0u(ρ) exists by continuity of L0ũ at the origin. q.e.d.

3.2. The perturbed problem.

Lemma 3.5. Let V be defined as in Eq. (1.15). Then

L′ũ := V (| · |)ũ
defines a bounded operator on H. Moreover, L′ is compact relative to
(L0,D(L0)).

Proof. First, we observe that the potential satisfies |V (2k)(ρ)| .k

〈ρ〉−2−2k, |V (2k+1)(ρ)| .k ρ〈ρ〉−4−2k, for all k ∈ N0 and ρ ∈ [0,∞).

We show below that for all ũ ∈ D(L̃0) and R ≥ 1,

‖∆L′ũ‖H1(B7) . ‖ũ‖, ‖∆L′ũ‖H1(R7\B7
R)

. R−1‖ũ‖,(3.6)
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as well as

‖∆2L′ũ‖L2(B7) . ‖ũ‖, ‖∆2L′ũ‖L2(R7\B7
R)

. R−1‖ũ‖.(3.7)

These bounds imply that ‖L′ũ‖ . ‖ũ‖ for all ũ ∈ D(L̃0). By density

of D(L̃0) in H, L′ extends to a bounded operator on H. Next, we set
G := (D(L0), ‖ · ‖G), where

‖ũ‖G := ‖ũ‖+ ‖L0ũ‖,
denotes the graph norm. We show below that for all ũ ∈ D(L̃0) and
R ≥ 1,

‖∆2L′ũ‖Ḣ1(B7) . ‖ũ‖G , ‖∆2L′ũ‖Ḣ1(R7\B7
R)

. R−1‖ũ‖G .(3.8)

By definition of the closure, these bounds extend to all of D(L0). In
view of Eq. (3.6)–(3.8) we get that for j = 1, 2, and all ũ ∈ D(L0),

‖∆jL′ũ‖H1(R7) . ‖ũ‖G ,(3.9)

‖∆jL′ũ‖H1(R7\B7
R)

. R−1‖ũ‖G .(3.10)

Let BG := {ũ ∈ D(L0) : ‖ũ‖G ≤ 1}. To see that the perturbation is
compact as an operator L′ : G → H, we convince ourselves that the sets

K1 := ∆L′(BG), K2 := ∆2L′(BG)

are totally bounded in L2(R7). By Eq. (3.9), K1,K2 ⊂ H1(R7). By
equation (3.10), there exists a constant C > 0 such that for all ũ ∈ BG
and R ≥ 1,

‖∆jL′ũ‖H1(R7\B7
R)
≤ CR−1.

The right hand side becomes arbitrarily small (uniformly in ũ) by choos-
ing R large enough. Hence, we can apply the result of [18], The-
orem 10, which implies that K1,K2 ⊂ L2(R7) are totally bounded.
Now let (ũn)n∈N ⊂ BG and consider the sequence (L′ũn)n∈N. Then
(∆L′ũn)n∈N ⊂ K1. Since K1 is totally bounded in L2(R7), there is a
subsequence, still denoted by (∆L′ũn)n∈N, that is a Cauchy sequence
in L2(R7). By applying the Laplace operator we obtain a sequence
(∆2L′ũn)n∈N ⊂ K2. Again, we find a subsequence that converges in
L2(R7) and thus, we have identified a subsequence of (L′ũn)n∈N that
converges in H. This implies the claim. Eq. (3.6) and (3.7) follow eas-
ily from Lemma 2.1 and the decay of the potential. It is left to prove
Eq. (3.8). First, we observe that

‖∇∆2[V (| · |)ũ]‖L2(R7) . ‖V (| · |)∇∆2ũ‖L2(R7) + ‖〈·〉−4u‖L2(R+)

+ |(·)〈·〉−4u′‖L2(R+) + ‖(·)2〈·〉−4u′′‖L2(R+) + ‖(·)3〈·〉−4u′′′‖L2(R+)

+ ‖(·)4〈·〉−4u(4)‖L2(R+) . ‖V (| · |)∇∆2ũ‖L2(R7) + ‖ũ‖,
and

‖∇∆2[V (| · |)ũ]‖L2(R7\B7
R)

. ‖V (| · |)∇∆2ũ‖L2(R7\B7
R)

+R−2‖ũ‖.
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For ũ ∈ D(L̃0), we have ‖∇∆L̃0ũ‖L2(R7) . ‖L̃0ũ‖, by Lemma 2.2.
Hence,

‖V (| · |)∇∆2ũ‖L2(R7) .‖V (| · |)∇∆L̃0ũ‖L2(R7)

+ ‖V (| · |)∇∆Λũ‖L2(R7) + ‖V (| · |)∇∆ũ‖L2(R7).

With Lemma 2.1 one easily gets that ‖〈·〉−1∇∆Λũ‖L2(R7) . ‖ũ‖, for

all ũ ∈ D(L̃0). This and the decay of the potential at infinity yield
Eq. (3.8). q.e.d.

The next statement is a consequence of Lemma 3.5 and the Bounded
Perturbation Theorem, [11], p. 158.

Corollary 3.6. The operator L := L0 + L′, D(L) = D(L0) gener-
ates a strongly continuous one-parameter semigroup {S(τ) : τ ≥ 0} of
bounded operators on H satisfying

‖S(τ)ũ‖ ≤ e(‖L′‖−
1
4
)τ‖ũ‖

for all ũ ∈ H and all τ ≥ 0.

In the following, we need some information on the spectrum of the
supersymmetric partner of the perturbed Ornstein-Uhlenbeck operator,
cf. [5], in the self-adjoint setting.

3.3. Spectral analysis for a self-adjoint operator. We introduce
the formal differential expression

Av(ρ) = −v′′(ρ) +

(
ρ2

16
+

12

ρ2
+

3

4
+Q(ρ)

)
v(ρ),(3.11)

with

Q(ρ) =
384
√

6− ρ2
(
ρ2 + 24

√
6− 44

)
− 956(

ρ2 + 6
√

6− 14
)2 .

Lemma 3.7. Let

D(A) = {v ∈ L2(R+) : v, v′ ∈ ACloc(R+),Av ∈ L2(R+)}
and set Av = Av for v ∈ D(A). Then, (A,D(A)) is a self-adjoint
operator on L2(R+) and σ(A) ⊆ [ωA,∞) for ωA = 1

75 .

Proof. Frobenius’ method and standard arguments show that A is
limit-point at both endpoints of the interval (0,∞) and we infer that
the (maximal) operator defined as above is self-adjoint. Furthermore, a

core is given by (Ã,D(Ã)), where Ãv := Au and

D(Ã) = {v ∈ D(A) : v has compact support}.

We show that (Ãv, v)L2(R+) ≥ ωA‖v‖2L2(R+) for ωA = 1
75 and all v ∈

D(Ã) by using the properties of q(ρ) := ρ2

16 + 12
ρ2

+ 3
4 + Q(ρ). Since
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v ∈ D(Ã) vanishes at the origin the Cauchy-Schwarz inequality implies∫ γ

0
|v(ρ)|2dρ ≤ γ2

∫ γ

0
|v′(ρ)|2dρ

for all γ > 0. One can easily check that the function q attains its
global minimum q(ρmin) = qmin at some ρmin ∈ (0, γ), γ := 5

2 , and

that γ−2 + qmin > q(γ) > ωA. On [γ,∞), q is strictly positive and
monotonically increasing. Using integration by parts we estimate

(Ãv|v)L2(R+) ≥
(
γ−2 + qmin

) ∫ γ

0
|v(ρ)|2dρ+ q(γ)

∫ ∞
γ
|v(ρ)|2dρ

≥ q(γ)

∫ ∞
0
|v(ρ)|2dρ.

q.e.d.

3.4. Characterization of the spectrum of L.

Lemma 3.8. Let λ ∈ C be a spectral point of the operator (L,D(L)).
Then either Reλ ≤ − 1

75 or λ = 1 is an eigenvalue.

Proof. First, we note that in polar coordinates the equation (λ −
L)ũ = 0 reduces to

λu(ρ)− u′′(ρ)− 6

ρ
u′(ρ) +

1

2
ρu′(ρ) + (1− V (ρ))u(ρ) = 0.(3.12)

Smoothness of the coefficients on (0,∞) and an application of Frobenius’
method imply that u is smooth on [0,∞). For λ = 1, a direct calculation
shows that

(3.13) g(ρ) = (a1ρ
2 + a2)

−2

solves Eq. (3.12), where the constants a1, a2 are given in Eq. (1.11).
By exploiting the decay of g it follows that g̃ can be approximated by
functions in C∞0,rad(R7), with respect to the norm ‖ · ‖. Consequently,

g̃ := g(| · |) ∈ H and it is easy to check that g̃ ∈ D(L̃0) ⊂ D(L0). Hence,
g̃ is an eigenfunction. To prove the rest of Lemma 3.8, we assume that
λ ∈ σ(L). If Reλ ≤ − 1

75 , then the statement is true. If Reλ > − 1
75 , then

compactness of L′ implies that λ must be an eigenvalue. The case λ = 1
has already been discussed, so assume that λ 6= 1 and let ũλ = uλ(| · |)
denote the corresponding eigenfunction. We set vλ(ρ) = ρ3e−

ρ2

8 uλ(ρ).
Since uλ ∈ C∞[0,∞) is a solution to Eq. (3.12), vλ is smooth and solves
the equation

λvλ(ρ)− v′′λ(ρ) +

(
ρ2

16
+

6

ρ2
− 3

4
− V (ρ)

)
vλ(ρ) = 0.(3.14)

We define the differential expressions

Bv(ρ) := −v′(ρ) + β(ρ)v(ρ), B+v(ρ) := v′(ρ) + β(ρ)v(ρ),
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for β(ρ) := 3
ρ −

ρ
4 −

4ρ

6
√
6−14+ρ2 . Using this, Eq. (3.14) can be written as

(λ+B+B − 1)vλ(ρ) = 0.(3.15)

The kernel of B is spanned by the transformed symmetry mode ρ 7→
ρ3e−

ρ2

8 g(ρ). We set wλ := Bvλ. By applying −B to Eq. (3.15) we infer
that wλ satisfies the equation

(−λ−BB+ + 1)wλ(ρ) = 0.(3.16)

A straightforward calculation shows that Eq. (3.16) can be written as

−λwλ(ρ)−A(ρ)wλ(ρ) = 0,

where A is given by Eq. (3.11). Recall that A is the defining differential
expression for the self-adjoint operator A described in Lemma 3.7. By
inserting the definition we get that

wλ(ρ) = −ρ3e−
ρ2

8 u′λ(ρ) + ρ2e−
ρ2

8 h(ρ)uλ(ρ),

where h ∈ C∞[0,∞), limρ→∞ h(ρ) = c. Obviously, wλ ∈ C∞[0,∞)
and with Lemma 2.2 it is easy to see that wλ ∈ L2(R+) and thus

wλ ∈ D(A). Hence, λ̃ := −λ is an eigenvalue of the operator (A,D(A))

with eigenfunction wλ. Our assumption on λ implies that Reλ̃ < 1
75 .

However, this contradicts Lemma 3.7. q.e.d.

Lemma 3.9. We have that ker(1−L) = span(g̃), where g̃ = g(| · |),
see Eq. (3.13).

Proof. It was already shown above that g̃ is an eigenfunction cor-
responding to the eigenvalue λ = 1. Assume that there is another
eigenfunction ũ = u(| · |) ∈ ker(1− L). Then u solves

u′′(ρ) + 6
ρu
′(ρ)− 1

2ρu
′(ρ) + V (ρ)u(ρ)− 2u(ρ) = 0.

For this equation a fundamental system is given by {g,h}, where

h(ρ) = e
ρ2

4

(
h1(ρ) + h2(ρ)e−

ρ2

4

∫ ρ

0
e
s2

4 ds

)
,(3.17)

h1(ρ) =

∑3
j=0 αjρ

2j

20ρ5(6
√

6− 14 + ρ2)2
, h2(ρ) =

2(61− 24
√

6)

5(6
√

6− 14 + ρ2)2
,

for constants α0 = 24(8652
√

6− 21193), α1 = 4(8347− 3408
√

6), α2 =
2(372

√
6 − 923), α3 = 15. Their Wronskian is given by W (g,h)(ρ) =

ρ−6e
ρ2

4 . The function h can also be written as h(ρ) = ρ−5〈ρ〉2e
ρ2

4 H(ρ),
where H is regular around zero, H(0) 6= 0 and limρ→∞H(ρ) = c for
some c ∈ R \ {0}. Hence, u(ρ) = c1g(ρ) + c2h(ρ), for some constants
c1, c2 ∈ C. Since h diverges at the origin as well as for ρ→∞, we must
have c2 = 0 for u(| · |) ∈ D(L) ⊂ H. Thus, u is a multiple of g. q.e.d.
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4. Bounds on the resolvent and growth estimates for S(τ)

In order to translate the spectral information into growth bounds for
the semigroup, we use the following result on the resolvent.

Proposition 4.1. Fix α > − 1
75 and choose Mα > 0 sufficiently large.

Define

Ωα := {λ ∈ C : λ = α+ iω, where ω ∈ R, |ω| ≥Mα}.

There exists a constant Cα > 0 such that

‖RL(λ)f̃‖ ≤ Cα‖f̃‖(4.1)

for all λ ∈ Ωα and f̃ ∈ H.

To prove Proposition 4.1, we follow the strategy developed by the au-
thors in [9]. To keep formulas within margin, we introduce the following
useful notation.

Definition 4.2. For a function f : I ⊂ R → C and γ ∈ R, we write
f(x) = O(xγ) if

|f (k)(x)| ≤ Ck|x|γ−k

for all x ∈ I and k ∈ N0. Similarly, f(x) = O(〈x〉γ), if

|f (k)(x)| ≤ Ck〈x〉γ−k,

for all x ∈ I and k ∈ N0. Functions with this property are said to be of
symbol type or to have symbol behavior. We note that symbol behavior
is stable under algebraic operations, e.g., O(xβ)O(xγ) = O(xβ+γ) for
β, γ ∈ R. An analogous definition holds for functions depending on
more than one variable.

4.1. Explicit representation of the resolvent for large imagi-
nary parts. If λ ∈ C, λ 6= 1 and Reλ > − 1

75 , then we know from
Lemma 3.8 that λ ∈ ρ(L) and that the resolvent RL(λ) : H → D(L)

exists as a bounded operator. For f̃ = f(| · |) ∈ H we set w̃ := RL(λ)f̃ ,

w̃ = w(| · |). By definition, (λ− L)w̃ = f̃ , which reduces to

λw(ρ)− w′′(ρ)− 6

ρ
w′(ρ) +

1

2
ρw′(ρ) + w(ρ)− V (ρ)w(ρ) = f(ρ),

in polar coordinates. By setting u(r) := w(2ρ) and changing the sign
we obtain

(4.2) u′′(r) +
6

r
u′(r)− 2ru′(r) + Ṽ (r)u(r)− λ̃u(r) = −4f(2r)

for λ̃ = 4(λ + 1), Ṽ (r) = 4V (2ρ). First, we consider the homogeneous
version of Eq. (4.2) which corresponds to Eq. (4.1) in [9] for d = 7 and
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` = 0. Concerning the potential, we only need that Ṽ (r) = O(〈r〉−2).
By setting v(r) = r3e−

r2

2 u(r), Eq. (4.2) with f = 0 transforms into

(4.3) v′′(r)− r2v(r)− 4ν2 − 1

4r2
v(r)− µv(r) + Ṽ (r)v(r) = 0

for ν = 5
2 and µ := λ̃ − 7. For r � 1, Eq. (4.3) resembles a Weber

equation, whereas for r small we have a perturbed Bessel equation. For
the rest of this section, we assume that

µ = b+ iω

with b > −4 fixed, corresponding to Reλ > −1
4 . Finally, we note that

most implicit constants depend on b in the following. However, we do
not indicate this dependence in order to improve readability. All other
dependencies are tracked during the calculations.

4.1.1. A fundamental system away from the center. We write
Eq. (4.3) as

v′′(r)− (r2 + µ)v(r) = O(r−2)v(r)(4.4)

for r ≥ 1. The homogeneous equation can be solved in terms of parabolic
cylinder functions. However, this is not very useful for our purpose
since we need precise information on the asymptotics for large imaginary
parts. Instead, we use a Liouville-Green transform in combination with
perturbation theory. First, we assume that µ ∈ R, µ > 0 and define

ζ(y) :=

∫ y

10µ−
1
2

√
1 + z2dz = F (y)− F (10µ−

1
2 ),

where F (z) = 1
2 log(z +

√
1 + z2) + 1

2z
√

1 + z2. Obviously, ζ ′(y) =√
1 + y2. Furthermore,

q(y) :=
2− 3y2

4(1 + y2)2
.

A fundamental system for the equation

v′′(r)− (r2 + µ)v(r) + µ−1q(µ−
1
2 r)v(r) = 0,

is given by {v+, v−}, where

v±(r) = ζ ′(µ−
1
2 r)−

1
2 e±µζ(µ

− 1
2 r).

This suggests to add µ−1q(µ−
1
2 r)v(r) to both sides of Eq. (4.4) and

to treat the right hand side perturbatively. Since we are interested in
complex values of µ, we have to extend the above quantities to the

complex plane. We define
√
· = (·)

1
2 to be the principal branch of the

square root, which is holomorphic in C \ (−∞, 0]. More explicitly,

(4.5)
√
z =

1√
2

√
|z|+ Re z +

i sgn (Im z)√
2

√
|z| − Re z,
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for z ∈ C \ (−∞, 0]. We note that
√
z
2

= z and |
√
z| =

√
|z| for

all z ∈ C\(−∞, 0]. Furthermore,
√
z
√
w =

√
zw holds at if −π <

arg z + argw < π. The function F is defined and holomorphic on C \
([ i , i∞) ∪ [− i ,− i∞)). Since Re(µ−

1
2 r) > 0 for all µ ∈ C \ (−∞, 0],

the function µ 7→ ζ(µ−
1
2 r) is holomorphic on C \ (−∞, 0].

From now on we assume µ = b+ iω, where b > −4 is fixed and ω > 0.

Lemma 4.3. For r ∈ [3,∞), we define Q(r, µ) := µ−1q(µ−
1
2 r). The

function Q(r, ·) is holomorphic and Q(r, µ) = O(r−2ω0) for ω � 1. Fur-

thermore, we define ξ(r, µ) := ζ(µ−
1
2 r), such that ξ(r, ·) is holomorphic

and

∂rξ(r, µ) = µ−
1
2

√
1 + r2

µ .

For ω � 1, we have the representations

Re[µξ(r, µ)] = Reµ
1
2 (r − 10) + ϕ̃(r, ω),(4.6)

Re[µξ(r, µ)] = 1
2r

2 + b
2 log〈ω−1/2r〉+ ϕ(r, ω),(4.7)

where both ϕ̃(·, ω) and ϕ(·, ω) are monotonically increasing functions.

Moreover, |ϕ(10, ω)| . 1, ϕ̃(10, ω) = 0 and ϕ̃(r, ω) = O(r3ω−
1
2 ) pro-

vided rω−
1
2 . 1.

Proof. For ω � 1, we have |µ| ' ω. Using that

|1 + µ−1r2|2 & 1 + |µ|−2r4 & 1 + ω−2r4 & 〈ω−
1
2 r〉4(4.8)

for ω � 1, we obtain

|Q(r, µ)| . |µ|−1 1 + |µ|−1r2

|1 + µ−1r2|2
. |µ|−1〈ω−

1
2 r〉−2 . r−2

and thus Q(r, µ) = O(r−2ω0). To see that Eq. (4.6) holds, we use that

Re[µ∂rξ(r, µ)] = Re
√
µ+ r2. With Eq. (4.5) we get

Re
√
µ+ r2 =

1√
2

√√
ω2 + (r2 + b)2 + r2 + b.(4.9)

Eq. (4.6) is a consequence of the fact that (r2 + b)2 > b2 for b > −4 and
all r ≥ 3, which implies

∂rϕ̃(r, ω) = Re[µ∂rξ(r, µ)]− Reµ
1
2

= Re[µ∂rξ(r, µ)]− 1√
2

√√
ω2 + b2 + b > 0.

Since ξ(10, µ) = 0, ϕ̃(10, ω) = 0 by definition. If |rµ−
1
2 | . 1, a Tay-

lor expansion of F (z) around zero yields µξ(r, µ) = µ1/2(r − 10) +

ψ(r, µ) − ψ(10, µ), where ψ(r, µ) = O(r3ω−
1
2 ). By definition of ϕ̃, we
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have ϕ̃(r, ω) = Re[ψ(R,µ) − ψ(10, µ)]. We now turn to Eq. (4.7). The
right hand side of Eq. (4.9) implies that

Re[µ∂rξ(r, µ)] ≥
√
r2 + b

and for b ≥ 0, the proof of Eq. (4.7) is along the lines of [9], p. 2497.
For −4 < b < 0 we distinguish two cases. First, we assume that 3 ≤
r ≤
√

2ω. Then, 4|b|r2 ≤ 8|b|ω < ω2 for ω � 1. This implies

ω2 + (r2 − |b|)2 = ω2 + r4 − 2r2|b|+ |b|2 > (r2 + |b|)2.

With this, we infer Re[µ∂rξ(r, µ)] > r. In particular,

∂rϕ(r, ω) = Re[µ∂rξ(r, µ)]− r +
|b|
2

rω−1

1 + ω−1r2
> 0.

For r >
√

2ω we have ω
r2−|b| ≤ 1, and since

√
1 + x2 ≥ 1 + x2

4 for

0 ≤ x ≤ 1 we get

Re[µ∂rξ(r, µ)] ≥
√
r2 − |b|+ ω2

8(r2−|b|) > r − |b|rω−1

2(1 + r2ω−1)
,

for ω � 1, where the last step can be verified by an elementary compu-
tation. This implies Eq. (4.7). q.e.d.

By adding Q(r, µ)v(r) to both sides we rewrite Eq. (4.3) as

v′′(r)− r2v(r)− µv(r) +Q(r, µ)v(r) = O(r−2ω0)v(r),

and apply perturbation theory to obtain a fundamental system for r ≥ 4.
The next result is partially along the lines of [9], Proposition 4.3.

Lemma 4.4. Define

v±0 (r, ω) := 1√
2
µ−

1
4 (1 + r2

µ )−
1
4 e±µξ(r,µ)

with Wronskian W (v−0 (·, ω), v+0 (·, ω)) = 1. For ω � 1, Eq. (4.3) has a
fundamental system {v−, v+} of the form

v±(r, ω) = v±0 (r, ω)[1 +O(r−1ω−
1
2 )], for all r ≥ 4.(4.10)

Proof. By the variation of constants formula we obtain an integral
equation for v− given by

v−(r, ω) = v−0 (r, ω) + v+0 (r, ω)

∫ ∞
r

v−0 (s, ω)O(s−2ω0)v−(s, ω)ds

− v−0 (r, ω)

∫ ∞
r

v+0 (s, ω)O(s−2ω0)v−(s, ω)ds.

First, we assume that r ≥ 3. Setting h− := v−
v−0

yields

(4.11) h−(r, ω) = 1 +

∫ ∞
r

K(r, s, ω)h−(s, ω)ds,
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where

K(r, s, ω) :=

[
v+0 (r, ω)

v−0 (r, ω)
v−0 (s, ω)2 − v−0 v

+
0 (s, ω)

]
O(s−2ω0)

= g(s, ω)
(
e−2(µξ(s,µ)−µξ(r,µ)) − 1

)
,

and g(s, ω) = 1
2µ
− 1

2 (1+ s2

µ )−
1
2O(s−2ω0) = O(s−2ω−

1
2 ). Eq. (4.6) implies

that

|K(r, s, ω)| . s−2ω−
1
2
[
1 + e−2Reµ1/2(s−r)e−2(ϕ̃(s,ω)−ϕ̃(r,ω))

]
. s−2ω−

1
2 ,

since s > r and ϕ̃(·, ω) is monotonically increasing on [3,∞). This yields
the bound ∫ ∞

r
sup
r∈[3,s]

|K(r, s, ω)|ds . 1.

An application of the standard result on Volterra equations, see e.g.
Lemma 2.4 in [29], yields a solution h− to Eq. (4.11) with |h−(r, ω)−1| .
r−1ω−

1
2 , for all r ≥ 3. Furthermore, |∂kr [h−(r, ω)− 1]| .k r

−1−kω−
1
2 for

all k ∈ N0, cf. [9], Remark 4.4. Thus, h−(r, ω) = 1 +O(r−1ω−
1
2 ), which

yields Eq. (4.10). The second solution v+ is obtained by setting

v+(r, ω) := v−(r, ω)

[
v+0 (3, ω)

v−0 (3, ω)
+

∫ r

3
v−(s, ω)−2ds

]
.

Following the lines of [9], p. 2499–2500, we use the identity

v−0 (r, ω)

∫ r

3
v−0 (s, ω)−2ds = v+0 (r, ω)− v+0 (3, ω)

v−0 (3, ω)
v−0 (r, ω)

to obtain an expression for h+ := v+
v+0

given by

h+(r, ω) = 1 +O(r−1ω−
1
2 ) +

v−(r, ω)

v+0 (r, ω)

∫ r

3
v−0 (s, ω)−2O(s−1ω−

1
2 )ds.

We show by induction that for all k ∈ N0,

∂kr [h+(r, ω)− 1] = O(r−1−kω−
1
2 ) +

∫ r

3
Hk(r, s, ω)ds

+ e−2[µξ(r,µ)−µξ(3,µ)]O(r0ω−
1
2
+ k

2 )O(〈ω−
1
2 r〉k),

Hk(r, s, ω) = e−2[µξ(r,µ)−µξ(s,µ)]O(s−2−kω−
1
2 )O(〈ω−

1
2 r〉k)O(〈ω−

1
2 s〉−k).

For k = 0, we use that v−0 (s, ω)−2 = ∂se
2µξ(s,µ) and integrate by parts

to get

h+(r, ω) =1 +O(r−1ω−
1
2 ) + e−2[µξ(r,µ)−µξ(3,µ)]O(r0ω−

1
2 )

+

∫ r

3
e−2[µξ(r,µ)−µξ(s,µ)]O(r0s−2ω−

1
2 )ds.
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With µ∂rξ(r, µ) = µ
1
2 (1 + µ−1r2)

1
2 , we get

∂k+1
r [h+(r, ω)− 1] =

O(r−2−kω−
1
2 ) + e−2[µξ(r,µ)−µξ(3,µ)]O(r0ω

k
2 )O(〈ω−

1
2 r〉k+1)

+

∫ r

3
∂rHk(r, s, ω)ds,

where

∂rHk(r, s, ω) =e−2[µξ(r,µ)−µξ(s,µ)]O(r0s−2−kω0)

O(〈ω−
1
2 r〉k+1)O(〈ω−

1
2 s〉−k).

Note that [µ∂sξ(s, µ)]−1 = µ−
1
2O( 〈ω−

1
2 s〉−1), see Eq. (4.8). Thus, an

integration by parts yields

e−2µξ(r,µ)O(r0ω0)O(〈ω−
1
2 r〉k+1)∫ r

3

(
∂se

2µξ(s,µ)
)
O(s−2−kω−

1
2 )O(〈ω−

1
2 s〉−k−1)ds

= O(r−2−kω−
1
2 ) + e−2[µξ(r,µ)−µξ(3,µ)]O(r0ω−

1
2 )O(〈ω−

1
2 r〉k+1)

+

∫ r

3
Hk+1(r, s, ω)ds,

where

Hk+1(r, s, ω) = e−2[µξ(r,µ)−µξ(s,µ)]O(r0ω−
1
2 )O(s−3−kω0)

O(〈ω−
1
2 r〉k+1)O(〈ω−

1
2 s〉−(k+1)).

For 4 ≤ r ≤ ω
1
2 , ω � 1, we use Lemma 4.3 to estimate

ω−
1
2
+ k

2 e−2Re[µξ(r,µ)−µξ(3,µ)] .k r
−1−kω−

1
2 ,

and for r > ω
1
2 we get,

rkω−
1
2 e−2Re[µξ(r,µ)−µξ(3,µ)] .k ω

− 1
2 r4+ke−r

2
. r−1−kω−

1
2 .

The integral kernels satisfy

|Hk(r, s, ω)| .k ω
− 1

2 s−2−k〈ω−
1
2 r〉k−b〈ω−

1
2 s〉−k+b

e−(r
2−s2)e−2[ϕ(r,ω)−ϕ(s,ω)] .k ω

− 1
2 r−2−kr2+ks−2−krk+4s−k−4e−(r

2−s2)

.k r
−2−kω−

1
2 e−(r

2−2(k+3) log r)es
2−2(k+3) log s .k r

−2−kω−
1
2

for all 3 ≤ s ≤ r, ω � 1 and k ∈ N0. With these estimates, we infer
that

|∂kr [h+(r, ω)− 1]| .k r
−1−kω−

1
2

for all r ≥ 4, ω � 1 and k ∈ N0. This justifies the notation h+(r, ω) =

1 +O(r−1ω−
1
2 ) and implies Eq. (4.10) for v+. q.e.d.



STABLE BLOWUP FOR THE YANG-MILLS HEAT FLOW 77

4.1.2. A fundamental system near the origin. For small radii,
Eq. (4.3) is written as

v′′(r)− 4ν2−1
4r2

v(r)− µv(r) = O(〈r〉2)v(r).

The right hand side is again treated perturbatively.

Lemma 4.5. Choose c > 1. Define

ψ0(r, ω) :=
√
rJ5/2( iµ

1
2 r), ψ̃1(r, ω) :=

√
rY5/2( iµ

1
2 r).

Eq. (4.3) has a fundamental system {v0, v1} of the form

v0(r, ω) = ψ0(r, ω)[1 +O(r2ω0)],

v1(r, ω) = [ψ̃1(r, ω) +O(ω0)ψ0(r, ω)][1 +O(r0ω−
1
2 )],

for all ω � c2 and r ∈ (0, cω−
1
2 ]. Furthermore, v0(r, ω) = O(r3ω

5
4 ),

v1(r, ω) = O(r−2ω−
5
4 ).

We note that we have the explicit expressions,
√
zJ5/2( i z) = α0z

−2[(3 + z2) sinh(z)− 3z cosh(z)],
√
zY5/2( i z) = α1z

−2[(3 + z2) cosh(z)− 3z sinh(z)],

for some α0, α1 ∈ C. The construction of {v0, v1} is along the lines of
[9], Lemma 4.5, for fixed ν = 5

2 , and is omitted for the sake of brevity.
A sketch of the proof can be found in the arXiv preprint version [10] of
this paper. Finally, we construct a fundamental system for intermediate
values of r.

Lemma 4.6. Choose c > 1 sufficiently large and define

ψ±(r, ω) :=
√
rH∓5/2( iµ

1
2 r),

where H∓5/2 = J5/2∓ iY5/2. Provided ω � c2, there exists a fundamental

system {ṽ−, ṽ+} of Eq. (4.3) given by

ṽ±(r, ω) = ψ±(r, ω)[1 +O(r0ω−
1
2 )],(4.12)

for r ∈ [12cω
− 1

2 , 40]. Furthermore, ṽ±(r, ω) = O(r0ω−
1
4 )e±µ

1/2r.

Proof. As in the proof of Lemma 4.6 in [9] we define ψ̃±(r, ω) :=

α±ψ±(r, ω), for α± ∈ C \ {0} such that W (ψ̃−(·, ω), ψ̃+(·, ω)) = 1. Note

that ψ̃± can be given in closed form by

ψ̃±(r, ω) = 1√
2
µ−

1
4 e±µ

1/2r(1∓ 3r−1µ−
1
2 + 3r−2µ−1).

We choose c > 1 large enough such that |ψ̃±(r, ω)| > 0 for r ≥ 1
4cω

− 1
2 .

The variation of constants formula, see [9], Lemma 4.6, which yields an



78 R. DONNINGER & B. SCHÖRKHUBER

equation for h− = ṽ−
ψ̃−

given by

h−(r, ω) = 1 +

∫ R

r
K(r, s, ω)h−(s, ω)ds,(4.13)

for some R > 0 and

K(r, s, ω) =

(
ψ̃−(s, ω)ψ̃+(s, ω)− ψ̃+(r, ω)

ψ̃−(r, ω)
ψ̃−(s, ω)2

)
O(〈s〉2).

We set R = 50. By using the above explicit formulas we get that

|K(r, s, ω)| . ω−
1
2 +ω−

1
2 e−2Reµ1/2(s−r) . ω−

1
2 , for all 1

4cω
− 1

2 ≤ r ≤ s ≤
50. The standard result on Volterra equations yields the existence of a

solution h− satisfying |h−(r, ω)− 1| . ω−
1
2 , for all r ∈ [14cω

− 1
2 , 50] and

ω � 1. In the following, we restrict ourselves to 1
4cω

− 1
2 ≤ r ≤ 40. With

this, we obtain

|∂kr h−(r, ω)| .k r
−kω−

1
2(4.14)

for all k ∈ N. For the first derivative, we differentiate Eq. (4.13) and
integrate by parts to get

∂rh−(r, ω) =

∫ 50

r
e−2µ

1/2(s−r)O(r0ω0s0)h−(s, ω)ds

= g1(r, ω) +

∫ 50

r
H1(r, s, ω)∂sh−(s, ω)ds,

where

g1(r, ω) =O(r0ω−
1
2 ) + e−2µ

1/2(50−r)O(r0ω−
1
2 )

+

∫ 50

r
e−2µ

1/2(s−r)O(r0ω−
1
2 s−1)h−(s, ω)ds,

andH1(r, s, ω) = e−2µ
1/2(s−r)O(r0ω−

1
2 s0). It is easy to see that |g1(r, ω)|

. r−1ω−
1
2 and also |H1(r, s, ω)| . ω−

1
2 such that the standard result on

Volterra equations implies that |∂rh−(r, ω)| . r−1ω−
1
2 . Furthermore,

we have the bound |∂rg1(r, ω)| . r−2ω−
1
2 , since ω

1
2 e−2Reµ1/2(50−r) . 1

for r ≤ 40. For higher derivatives we get terms with a similar structure,
which yields Eq. (4.14) as well as Eq. (4.12) for ṽ− (up to a constant).
The second solution is obtained by setting

ṽ+(r, ω) := ṽ−(r, ω)

[
ψ̃+(a,ω)

ψ̃−(a,ω)
+

∫ r

a
ṽ−(s, ω)−2ds

]
,

where a := 1
4cω

− 1
2 . As in the proof of Lemma 4.4 this yields an equation

for h+ = ṽ+
ψ̃+

given by

h+(r, ω) = 1 +O(r0ω−
1
2 ) +

∫ r

a
e−2µ

1/2(r−s)O(r0s0ω0)ds.
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Integration by parts yields

h+(r, ω) =1 +O(r0ω−
1
2 ) + e−2µ

1/2(r−a)O(r0ω−
1
2 )

+

∫ r

a
e−2µ

1/2(r−s)O(s−1ω−
1
2 )ds.

From this it is obvious that |h+(r, ω)− 1| . ω−
1
2 . Restricting ourselves

to 1
2cω

− 1
2 ≤ r ≤ 40, we get that |∂kr h+(r, ω)| .k r

−kω−
1
2 for all k ∈ N

and ω � 1 provided c > 1 is chosen sufficiently large. Dividing both
ṽ±(r, ω) by α± yields Eq. (4.12). The explicit formula above shows that

ṽ±(r, ω) = O(r0ω−
1
4 )e±µ

1/2r. q.e.d.

4.1.3. A global fundamental system. The proof of the following
result is along the lines of Corollary 4.7 and Lemma 4.8 in [9]. From
now on we fix c > 1 such that Lemma 4.6 holds.

Lemma 4.7. Provided ω � c2 we have the representation

ṽ±(r, ω) = O(ω0)v0(r, ω)∓ [ i +O(ω−
1
2 )]v1(r, ω),

v0(r, ω) = [α− +O(ω−
1
2 )]ṽ−(r, ω) + [α+ +O(ω−

1
2 )]ṽ+(r, ω),

for all r ∈ (0, 40]. Under the same assumptions,

v−(r, ω) = αe10µ
1/2

[1 +O(ω−
1
2 )]ṽ−(r, ω) + e−10µ

1/2O(ω−
1
2 )ṽ+(r, ω),

for all r ∈ [12cω
− 1

2 ,∞), where α±, α ∈ C\{0}.

Lemma 4.8. The functions {v0, v−} provide a fundamental system
for Eq. (4.3) and we have the representations

v0(r, ω) = e10µ
1/2O(ω−

1
2 )v−(r, ω) + α1e

10µ1/2 [1 +O(ω−
1
2 )]v+(r, ω),

v−(r, ω) = e10µ
1/2O(ω0)v0(r, ω) + α2e

10µ1/2 [1 +O(ω−
1
2 )]v1(r, ω),

for all r > 0, all ω � c2 and some constants αj ∈ C\{0}, j = 1, 2. The
Wronskian is given by

W (ω) : = W (v−(·, ω), v0(·, ω)) = α1e
10µ1/2 [1 +O(ω−

1
2 )].

Proof. The fundamental systems {v−, v+} and {ṽ−, ṽ+} are valid in

the intervals r ∈ [4,∞) and r ∈ [12cω
− 1

2 , 40], respectively. The connec-
tion formula yields

ṽ±(r, ω) = W±(·,ω)
W (v−(·,ω),v+(·,ω))v−(r, ω) + W̃±(·,ω)

W (v+(·,ω),v−(·,ω))v+(r, ω),(4.15)

where W±(ω) := W (ṽ±(·, ω), v+(·, ω)), W̃±(ω) := W (ṽ±(·, ω), v−(·, ω)).
By Lemma 4.7, v0 can be expressed in terms of Hankel functions. In
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combination with Eq. (4.15) this yields

v0(r, ω) = [α− +O(ω−
1
2 )]W−(ω)v−(r, ω)

+ [α+ +O(ω−
1
2 )]W+(ω)v−(r, ω)

+ [α− +O(ω−
1
2 )]W̃−(ω)v+(r, ω) + [α+ +O(ω−

1
2 )]W̃+(ω)v+(r, ω),

for some constants α± ∈ C \ {0} and all r > 0. Evaluation at r = 10
shows that

W̃+(ω) = β+e
10µ1/2 [1 +O(ω−

1
2 )], W̃−(ω) = e−10µ

1/2O(ω−
1
2 ),

W+(ω) = O(ω−
1
2 )e10µ

1/2
, W−(ω) = β−e

−10µ1/2 [1 +O(ω−
1
2 )],

for some β± ∈ C\{0}. This implies the representation of v0. The
representation for v− is a consequence of Lemma 4.7. The expression
for the Wronskian can be verified easily. q.e.d.

Having a global fundamental system for Eq. (4.3), we can consider
the inhomogenous equation, which yields an explicit formula for the
resolvent for ω � 1.

Lemma 4.9. Fix α > − 1
75 . Set b = 4α−3 and choose Mα sufficiently

large. Let λ = α + iω, ω > Mα, and for g̃ ∈ H, g̃ = g(| · |), set
f := 4g(2·). Then the resolvent RL(λ) : H → D(L) ⊂ H exists and

[RL(λ)g̃](ξ) = [R(4ω)f ] (|ξ|/2) ,

where

[R(ω)f ](r) :=

∫ ∞
r

g1(r, s, ω)f(s)ds+

∫ r

0
g2(r, s, ω)f(s)ds,(4.16)

g1(r, s, ω) = r−3e
1
2 (r2−s2)s3

W (ω) v0(r, ω)v−(s, ω),

g2(r, s, ω) = r−3e
1
2 (r2−s2)s3

W (ω) v−(r, ω)v0(s, ω).

(4.17)

Proof. First, we use the above results and the variation of constants
formula to infer that solutions to the equation
(4.18)

v′′(r)− r2v(r)− 4ν2 − 1

4r2
v(r) + Ṽ (r)v(r)− (b+ i ω̃)v(r) = −r3e−

r2

2 f(r)

are of the general form

v(r) = c0v0(r, ω̃) + c−v−(r, ω̃)− v0(r, ω̃)

∫ r

r0

v−(s, ω̃)

W (ω̃)
s3e−

s2

2 f(s)ds

+ v−(r, ω̃)

∫ r

r1

v0(s, ω̃)

W (ω̃)
s3e−

s2

2 f(s)ds

for constants c0, c− ∈ C, r0, r1 ∈ R, provided b > −4 and ω̃ ≥ Mb for
some Mb > 0 large enough. For fixed α > − 1

75 , we define b := 4α − 3,

Mα := 1
4Mb. For λ = α + iω ∈ Ωα, we set ω̃ = 4ω. Since λ ∈ ρ(L),
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(λ − L)RL(λ)g̃ = g̃. With w̃λ := RL(λ)g̃, w̃λ = wλ(| · |), we infer that
wλ satisfies the equation

λwλ(ρ)− w′′λ(ρ)− 6

ρ
w′λ(ρ) +

1

2
ρw′λ(ρ) + wλ(ρ)− V (ρ)wλ(ρ) = g(ρ).

Thus, vλ(r) := r3e−
1
2
r2wλ(2r) solves Eq. (4.18) for f := 4g(2·). By

definition, b > −4 and ω̃ ≥Mb such that vλ is of the form stated above.
The fact that RL(λ)g̃ ∈ H implies that wλ is continuous and decays at
infinity according to Lemma 2.2. The resulting conditions on vλ can
only be satisfied if

c0 =

∫ ∞
r0

v−(s, ω̃)

W (ω̃)
s3e−

s2

2 f(s)ds, c− =

∫ r1

0

v0(s, ω̃)

W (ω̃)
s3e−

s2

2 f(s)ds.

This shows that

vλ(r) =
v0(r, ω̃)

W (ω̃)

∫ ∞
r

v−(s, ω̃)s3e−
1
2
s2f(s)ds

+
v−(r, ω̃)

W (ω̃)

∫ r

0
v0(s, ω̃)s3e−

1
2
s2f(s)ds,

which yields Eq. (4.16) and Eq. (4.17). q.e.d.

4.2. Uniform bounds for large imaginary parts. It is sufficient
to prove Eq. (4.1) on a dense subset, hence we restrict ourselves to
f ∈ C∞e,0(R). We assume again that ω � 1. Using Eq. (4.17) we define

an integral operator T (ω) by

[T (ω)f ](r) :=

∫ ∞
r

∂rg1(r, s, ω)f(s)ds+

∫ r

0
∂rg2(r, s, ω)f(s)ds,

for r > 0.

Lemma 4.10. Define δ ∈ [0, 12) by

δ :=

{
−3

2 −
b
2 for − 4 < b ≤ −3,

0 for b > −3.

For m = 0, 1,

rm+2[T (ω)f ](m)(r) = O(rω0)f(r) +O(r2ω0)f ′(r)

+

2∑
k1=0

[
Jm1k1(ω)(·)k1+1f (k1)

]
(r) +

3∑
k2=0

[
Jm2k2(ω)(·)k2f (k2)

]
(r),

where [Jmiki(ω)f ](r) =
∫∞
0 Jmiki(r, s, ω)f(s)ds, for i = 1, 2. The integral

kernels satisfy

|Jmiki(r, s, ω)| . min{r−1+δs−δ, r−δs−1+δ},
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for all r, s > 0 and ω � 1. For n = 0, . . . , 3,

rn[T (ω)f ](n)(r) =
2∑
j=0

O(rj+1ω0)f (j)(r) +
3∑

k=0

O(rkω0)f (k)(r)

+

2∑
j1=0

[
Kn1j1(ω)(·)j1+1f (j1)

]
(r) +

3∑
j2=0

[
Kn2j2(ω)(·)j2f (j2)

]
(r)

+

4∑
j3=1

[
Kn3j3(ω)(·)j3−1f (j3)

]
(r),

where [Kniji(ω)f ](r) =
∫∞
0 Kn

iji
(r, s, ω)f(s)ds for i = 1, 2, 3, and

|Kn
iji(r, s, ω)| . min{r−1+δs−δ, r−δs−1+δ},

for all r, s > 0 and ω � 1.

Proof. The proof is based on the explicit representations of the kernel
functions g1, g2 in different regimes. We only sketch the argument here
and refer the interested reader to the arXiv preprint version [10] of
this article for full details. Consider the operator

∫ r
0 ∂rg2(r, s, ω)f(s)ds,

i.e., the case s ≤ r. From the representation of v0 in terms of Weber
functions, see Lemma 4.8, we see that the most significant contribution
to the kernel g2 comes from the term

1

W (ω)
r−3s3e

1
2
(r2−s2)v−(r, ω)O(ω0)e10µ

1/2
v+(s, ω)

= e
1
2
r2−µξ(r,µ)e−[

1
2
s2−µξ(s,µ)]O(r−3〈ω−

1
2 r〉−

1
2 s3〈ω−

1
2 s〉−

1
2ω−

1
2 ),

see Lemma 4.4, where we restrict ourselves to the regime 10 ≤ s ≤ r.

With µ∂rξ(r, µ) = µ
1
2

√
1 + r2

µ one checks that

(4.19) ∂re
1
2
r2−µξ(r,µ) = O(〈ω−

1
2 r〉−1ω

1
2 )e

1
2
r2−µξ(r,µ)

and also

(4.20) e
1
2
r2−µξ(r,µ) = O(〈ω−

1
2 r〉ω−

1
2 )∂re

1
2
r2−µξ(r,µ).

Consequently, the dominant contribution to ∂rg2(r, s, ω) is of the form

e
1
2
r2−µξ(r,µ)e−[

1
2
s2−µξ(s,µ)]O(r−3〈ω−

1
2 r〉−

3
2 s3〈ω−

1
2 s〉−

1
2ω0)

and it suffices to consider the operator

[TW (ω)f ](r) :=∫ r

0
χ(s)e

1
2
r2−µξ(r,µ) e−[

1
2
s2−µξ(s,µ)]r−3〈ω−

1
2 r〉−

3
2 s3〈ω−

1
2 s〉−

1
2 f(s)ds,
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where χ is a smooth cut-off that localizes to [10,∞). By Eq. (4.20), an
integration by parts yields

[TW (ω)f ](r) =O(r−1ω0)f(r) +

∫ r

0

(
χ(s)e

1
2
r2−µξ(r,µ)e−[

1
2
s2−µξ(s,µ)]

O(r−3〈ω−
1
2 r〉−

3
2 s0〈ω−

1
2 s〉

1
2ω−

1
2 )∂s[s

3f(s)]
)
ds,

where we have used O(〈ω−
1
2 r〉−1ω−

1
2 ) = O(r−1ω0) for the boundary

term. From Eqs. (4.19) and (4.20) it follows that one may trade deriva-
tives in r for derivatives in s at the expense of additional weights. More
precisely, repeated integration by parts yields

∂nr [TW (ω)f ](r) =

n∑
k=0

O(r−1−n+kω0)f (k)(r)

+

∫ r

0

(
χ(s)e

1
2
r2−µξ(r,µ)e−[

1
2
s2−µξ(s,µ)]

O(r−3〈ω−
1
2 r〉−

3
2
−ns0〈ω−

1
2 s〉

1
2
+nω−

1
2 )∂1+ns [s3f(s)]

)
ds

for any n ∈ N0. From Eq. (4.7) we infer the bound∣∣∣e 1
2
r2−µξ(r,µ)e−[

1
2
s2−µξ(s,µ)]

∣∣∣ . 〈ω− 1
2 r〉−

b
2 〈ω−

1
2 s〉

b
2 ,

and it is straightforward to prove the stated estimate for the integral
kernel.

In the case r ≤ s, the most singular contribution to the kernel g1
comes from the regime 0 < r ≤ s . ω−

1
2 and the term

1
W (ω)r

−3s3e
1
2
(r2−s2)v0(r, ω)O(ω0)e10µ

1/2
v1(s, ω)

= O(r−3s3ω0)v0(r, ω)v1(s, ω),

see Lemma 4.8. From Lemma 4.5 we infer ∂r[r
−3v0(r, ω)] = O(rω

9
4 )

and this shows that the most important contribution to ∂rg1(r, s, ω) is
of the form O(rsω). With this it is straightforward to prove the stated
bounds. The other cases are in some sense interpolates which can be
treated similarly. q.e.d.

Lemma 4.11. For m = 0, 1, n = 0, . . . , 3, all f ∈ C∞e,0(R) and all
ω � 1, we have the bounds

‖(·)m+2[T (ω)f ](m)‖L2(R+) . ‖f(| · |)‖,

‖(·)n[T (ω)f ](n)‖L2(R+) . ‖f(| · |)‖.

Proof. Choose C = Cb > 0 sufficiently large such that the results of
Lemma 4.10 hold for all ω ≥ C. The integral operators Jmiki(ω) and
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Kniji(ω) extend to bounded operators on L2(R+) by Lemma 5.5 in [7].
Since all bounds are uniform in ω, we infer

‖Jmiki(ω)f‖L2(R+) . ‖f‖L2(R+), ‖Kniji(ω)f‖L2(R+) . ‖f‖L2(R+),

for all f ∈ C∞e,0(R). This yields

‖(·)m+2[T (ω)f ](m)‖L2(R+) . ‖(·)f‖L2(R+) + ‖(·)2f ′‖L2(R+)

+

2∑
k1=0

‖Jm1k1(ω)(·)k1+1f (k1)‖L2(R+) +

3∑
k2=0

‖Jm2k2(ω)(·)k2f (k2)‖L2(R+)

.
2∑

k1=0

‖(·)k1+1f (k1)‖L2(R+) +
3∑

k2=0

‖(·)k2f (k2)‖L2(R+) . ‖f(| · |)‖,

for m = 0, 1, where the last step follows from Lemma 2.1. The second
estimate can be derived analogously. q.e.d.

4.2.1. Proof of Proposition 4.1. Fix α > − 1
75 . Set b = 4α − 3 and

choose Cα > 0 sufficiently large such that the above results hold for
all ω ≥ Cα. Set Mα := 1

4Cα. Let λ = α + iω, ω ≥ Mα. For g̃ ∈
C∞rad,0(R7), g̃ = g(| · |), we have that g ∈ C∞e,0(R) and we set f := 4g(2·).
Furthermore, we define ω̃ := 4ω. According to Lemma 4.9 we have an
explicit expression for the resolvent. By definition, rescaling and the
fact that [R(ω̃)f ]′ = T (ω̃)f , we can apply Lemma 4.11 to infer that

‖RL(λ)g̃‖ . ‖(·)2[T (ω̃)f ]‖L2(R+) + ‖(·)3[T (ω̃)f ]′‖L2(R+)

+
3∑

k=0

‖(·)k[T (ω̃)f ](k)‖L2(R+) . ‖g̃‖.

The density of C∞rad,0(R7) in H implies that Eq. (4.1) holds for all f̃ ∈ H.
For negative imaginary parts we write λ = α − iω, ω ≥ Mα. Since L
has real coefficients, the equation (λ− L)RL(λ)g̃ = g̃ yields

(λ− L)RL(λ)g̃ = g̃.

Hence, RL(λ)g̃ = R(λ)g̃. By applying the above result we infer that
Proposition 4.1 holds.

4.3. Growth estimates for S(τ).

Lemma 4.12. There exists a projection P ∈ B(H) with rgP =
span(g̃), such that P commutes with S(τ) for all τ ≥ 0 and

‖PS(τ)ũ‖ = eτ‖Pũ‖
for all ũ ∈ H. Moreover,

‖(1− P )S(τ)ũ‖ ≤ Ce−aτ‖(1− P )ũ‖(4.21)

for a = 1
150 , all ũ ∈ H, all τ ≥ 0 and some constant C ≥ 1.
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Proof. By Lemma 3.8, the eigenvalue λ = 1 is isolated in the spectrum
of L. Hence, we can define a spectral projection P ∈ B(H) by

P =
1

2π i

∫
γ
RL(λ)dλ,

where γ is a positively oriented circle around 1 in the complex plane
with radius rγ = 1

2 , cf. [20], p. 178. Note that [P, S(τ)] = 0 for all
τ ≥ 0. Furthermore, H = kerP ⊕ rgP and L is decomposed into the
parts LM and LN in M := rgP and N := kerP , respectively. The
respective spectra are given by

σ(LM) = {1}, σ(LN ) = σ(L) \ {1} ⊆ {z ∈ C : Re z ≤ − 1
75},

see Lemma 3.8. One always has that ker(1−L) ⊆ rgP , see for example
[19]. We show that in our case also the reverse inclusion holds. First, we
observe that P has finite rank. This is a consequence of the invariance
of the essential spectrum under relative compact perturbations, [20],
p. 239, Theorem 5.28, and the fact that 1 6∈ σ(L0). We infer that
the operator 1 − LM : M → M is finite-dimensional with zero as its
only spectral point. Consequently, 1−LM is nilpotent and there exists a
minimal k ≥ 1 such that (1−LM)kũ = 0 for all ũ ∈M = rgP . If k = 1,
the desired inclusion rgP ⊆ ker(1 − L) follows immediately. Assume
that k ≥ 2. Then there exists a nontrivial ṽ ∈ rg(1−LM)∩ker(1−LM)
and thus, a ũ = u(|·|) ∈M ⊂ D(L) satisfying (1−LM)ũ = (1−L)ũ = cg̃
for some c ∈ C \ {0}, see Lemma 3.9. Without loss of generality, we set
c = −1. By introducing polar coordinates we see that u solves

u′′(ρ) + 6
ρu
′(ρ)− 1

2ρu
′(ρ) + V (ρ)u(ρ)− 2u(ρ) = g(ρ).(4.22)

Since ũ ∈ H, we have u ∈ C[0,∞) and limρ→∞ ρ
3
2 |u(ρ)| = 0, see Lemma

2.2. We will see that there is no solution of Eq. (4.22) having these
properties. For the homogeneous version of Eq. (4.22) we have the
fundamental system {g,h}, see the proof of Lemma 3.9, where h is
given by Eq. (3.17). By the variation of constants formula, the general
solution to Eq. (4.22) is of the form

u(ρ) =c0g(ρ) + c1h(ρ)

− g(ρ)

∫ ρ

ρ0

h(s)g(s)s6e−
s2

4 ds+ h(ρ)

∫ ρ

ρ1

g(s)2s6e−
s2

4 ds.

Recall the representation h(ρ) = ρ−5〈ρ〉2e
ρ2

4 H(ρ) from the proof of
Lemma 3.9. To guarantee continuity of u at zero, we are forced to
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choose c1 =
∫ ρ1
0 g(s)2s6e−

s2

4 ds such that

u(ρ) = c0g(ρ)− g(ρ)

∫ ρ

ρ0

s〈s〉2H(s)g(s)ds

+ ρ−5〈ρ〉2e
ρ2

4 H(ρ)

∫ ρ

0
g(s)2s6e−

s2

4 ds.

To obtain decay at infinity we must have

lim
ρ→∞

∫ ρ

0
g(s)2s6e−

s2

4 ds = 0.

This, however, is impossible since the integrand is strictly positive on
R+. By contradiction, we infer that k = 1 and M = rgP = ker(1 −
LM) ⊆ ker(1− L) = span(g̃).

Since g̃ is an eigenfunction of L we have ‖PS(τ)ũ‖ = ‖S(τ)Pũ‖ =
eτ‖Pũ‖ for all ũ ∈ H. Standard arguments show that (LN ,D(L) ∩ N )
generates a C0-semigroup {SN (τ) : τ ≥ 0} with S(τ)|N = SN (τ). It
is well-known that for all τ > 0, r(SN (τ)) = eωN τ , where ωN denotes
the growth bound of the semigroup on N and r(SN (τ)) is the spectral
radius of the bounded operator SN (τ) : N → N , see [11], p. 251. To
obtain Eq. (4.21), it suffices to show that for each τ > 0,

Λτ := {z ∈ C : |z| > e−
1
75
τ} ⊆ ρ(SN (τ)).

Let z ∈ Λτ for some fixed τ > 0 and assume that z = eλτ for some
λ ∈ C. Then Reλ = 1

τ log |z| > − 1
75 and therefore, λ ∈ ρ(LN ). Hence,

{λ ∈ C : z = eλτ} ⊆ ρ(LN ).

By Proposition 4.1 and the fact that RLN (λ)f̃ = RL(λ)|N f̃ for f̃ ∈ N ,
we infer

‖RLN ( 1τ log |z|+ i
τ arg z + 2π i k

τ )f̃‖ ≤ C‖f̃‖
for all f̃ ∈ N , all k ∈ Z, and an absolute constant C > 0. In particular,

sup{‖RLN (λ)‖ : z = eλτ} <∞
and by [26], Theorem 3, z ∈ ρ(SN (τ)). This implies ωN ≤ − 1

75 . Since
the growth bound is defined as an infimum (that may not be attained),
we see that for each ε > 0 there exists a constant Cε ≥ 1 such that

‖(1− P )S(τ)ũ‖ = ‖SN (τ)(1− P )ũ‖ ≤ Cεe−(
1
75
−ε)τ‖(1− P )ũ‖.

Choosing ε = 1
150 implies the claim. q.e.d.

5. Nonlinear Stability

5.1. Estimates for the nonlinearity. In the sequel, we denote by
B ⊂ H the closed unit ball in H. For ũ ∈ C∞rad,0(R7) we define

N(ũ) := f1(| · |)ũ2 + f2(| · |)ũ3,
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where
f1(ρ) := −9(1 + ρ2W(ρ)), f2(ρ) := −3ρ2.

Lemma 5.1. The nonlinearity extends to a continuous mapping N :
H → H that satisfies

‖N(ũ1)−N(ũ2)‖ . (‖ũ1‖+ ‖ũ2‖)‖ũ1 − ũ2‖(5.1)

for all ũ1, ũ2 ∈ B ⊂ H. Furthermore, N is differentiable at every ũ ∈ H
with Fréchet-derivative DN(ũ) ∈ B(H) and the mapping DN : H →
B(H) is continuous.

Proof. Using Lemma 2.1 and the fact that

|f (2k)1 (ρ)| .k 〈ρ〉−2k, |f (2k+1)
1 (ρ)| .k ρ〈ρ〉−2k−2

for all ρ ≥ 0 and k ∈ N0, it is easy to verify that

‖f1(| · |)ũṽ‖ . ‖ũ‖‖ṽ‖, ‖f2(| · |)ũṽw̃‖ . ‖ũ‖‖ṽ‖‖w̃‖(5.2)

for all ũ, ṽ, w̃ ∈ C∞rad,0(R7). However, for the sake of brevity, we omit
the details of the calculation and refer the reader to the arXiv preprint
version [10] of this article. Eq. (5.2) implies Eq. (5.1) for all ũ1, ũ2 ∈
B∩C∞rad,0(R7). By density of C∞rad,0(R7) in H, N extends to a continuous

mapping N : H → H such that Eq. (5.1) holds for all ũ1, ũ2 ∈ H. To
see that the nonlinearity is Fréchet-differentiable, we again assume that
ũ, ṽ ∈ C∞rad,0(R7) and set

DN(ũ)ṽ := 2f1(| · |)ũṽ + 3f2(| · |)ũ2ṽ.
The above estimates show that ‖DN(ũ)ṽ‖ .ũ ‖ṽ‖. By density, DN(ũ)
extends to a bounded, linear operator on H. Moreover, for all ũ1, ũ2 ∈
C∞rad,0(R7),

‖DN(ũ1)−DN(ũ2)‖B(H) ≤ γ2(‖ũ1‖, ‖ũ2‖)‖ũ1 − ũ2‖
with γ2 : [0,∞) × [0,∞) → [0,∞) continuous, and thus DN can be
extended to a continuous mapping DN : H → B(H). Finally, it is easy
to see that DN(ũ) is indeed the Fréchet-derivative of N at ũ. q.e.d.

5.2. Initial data operator. We fix T0 > 0, set

W(T, ρ) := T
T0

W
( √

T√
T0
ρ
)

with W given by Eq. (1.11) and define for ṽ ∈ H, T ∈ [T0 − δ, T0 + δ]

and 0 < δ ≤ T0
2 ,

U(ṽ, T ) := T ṽ(T
1
2 ·) + W(T, | · |)−W(| · |).

Lemma 5.2. For fixed ṽ ∈ H, the mapping T 7→ U(ṽ, T ): [T0 −
δ, T0 + δ]→ H is continuous. Furthermore, if ‖ṽ‖ ≤ δ then

‖U(ṽ, T )‖ . δ

for all T ∈ [T0 − δ, T0 + δ].
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Proof. We prove the statement for T0 = 1 (the general case is anal-

ogous). Fix ṽ ∈ H and let δ ∈ (0, 12 ]. For T, T̃ ∈ [1 − δ, 1 + δ], we
have

‖U(ṽ, T )− U(ṽ, T̃ )‖ . |T − T̃ |‖ṽ‖+ |T − T̃ |

+ ‖W(T
1
2 | · |)−W(T̃

1
2 | · |)‖+ ‖ṽ(T

1
2 ·)− ṽ(T̃

1
2 ·)‖

by rescaling. The first three terms tend to zero in the limit T → T̃ .
Let ε > 0 be arbitrary. By density, there is a ũ ∈ C∞rad,0(R7) such that

‖ṽ − ũ‖ < ε, then

‖ṽ(T
1
2 ·)− ṽ(T̃

1
2 ·)‖ . ‖ṽ − ũ‖+ ‖ũ(T

1
2 ·)− ũ(T̃

1
2 ·)‖,

where the last term vanishes as T → T̃ . This implies the continuity of
U(ṽ, ·) : [1− δ, 1 + δ]→ H. For ṽ ∈ H, ‖ṽ‖ ≤ δ we get

‖U(ṽ, T )‖ ≤ T‖ṽ(T
1
2 ·)‖+ ‖TW(T

1
2 | · |)−W(| · |)‖

. ‖ṽ‖+ ‖TW(T
1
2 | · |)−W(| · |)‖ . δ

for all T ∈ [1− δ, 1 + δ]. q.e.d.

5.3. Operator formulation of Eq. (1.14). With the above defini-
tions, Eq. (1.14) can now be considered as an abstract initial value
problem on H. The corresponding integral equation reads

Φ(τ) = S(τ)U(ṽ, T ) +

∫ τ

0
S(τ − τ ′)N(Φ(τ ′))dτ ′,(5.3)

where {S(τ) : τ ≥ 0} is the semigroup generated by (L,D(L)), see
Corollary 3.6. We set a = 1

150 and introduce the Banach space

X := {Φ ∈ C([0,∞),H) : ‖Φ‖X := sup
τ≥0

eaτ‖Φ(τ)‖ <∞}.

By Xδ we denote the closed subspace

Xδ := {Φ ∈ X : ‖Φ‖X ≤ δ}.

5.4. Correction of the unstable behavior. We define

C(Φ, ũ) := Pũ+

∫ ∞
0

e−τ
′
PN(Φ(τ ′))dτ ′,

and set

K(Φ, ũ)(τ) := S(τ)ũ+

∫ τ

0
S(τ − τ ′)N(Φ(τ ′))dτ ′ − eτC(Φ, ũ).

Lemma 5.3. Choose δ > 0 sufficiently small and c > 0 sufficiently
large. For every ũ ∈ H with ‖ũ‖ ≤ δ

c , there exists a unique Φ(ũ) ∈ Xδ
that satisfies

Φ(ũ) = K(Φ(ũ), ũ).

Furthermore, the mapping ũ 7→ Φ(ũ) is continuous.
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Proof. We first convince ourselves that for fixed ũ ∈ H, we have
K(·, ũ) : Xδ → Xδ. For Φ ∈ Xδ, the continuity of K(Φ, ũ)(τ) in τ
is a consequence of the strong continuity of the semigroup. We write
K(Φ, ũ)(τ) = PK(Φ, ũ)(τ) + (1 − P )K(Φ, ũ)(τ) and use Lemma 5.1
together with N(0) = 0 to estimate

‖PK(Φ, ũ)(τ)‖ .
∫ ∞
τ

e−(τ
′−τ)‖PN(Φ(τ ′))‖dτ ′

. e−2aτ‖Φ‖2X . e−2aτδ2,

‖(1− P )K(Φ, ũ)(τ)‖ . e−aτ‖ũ‖+

∫ τ

0
e−a(τ−τ

′)‖N(Φ(τ ′))‖dτ ′

. e−aτ ( δc + δ2).

Thus, ‖K(Φ, ũ)(τ)‖ ≤ e−aτδ by choosing δ > 0 sufficiently small and
c > 0 sufficiently large. For Φ,Ψ ∈ Xδ we use the fact that

‖N(Φ(τ))−N(Ψ(τ))‖ . δe−2aτ‖Φ−Ψ‖X
for all τ > 0 to infer that

‖P [K(Φ, ũ)(τ)−K(Ψ, ũ)(τ)]‖ . δe−2aτ‖Φ−Ψ‖X
and

‖(1− P )[K(Φ, ũ)(τ)−K(Ψ, ũ)(τ)]‖ . δe−aτ‖Φ−Ψ‖X .

This implies that there is a 0 < k < 1 such that

‖K(Φ, ũ)−K(Ψ, ũ)‖X ≤ k‖Φ−Ψ‖X ,

provided δ > 0 is sufficiently small. Since Xδ ⊂ X is closed, we can
apply the Banach fixed point theorem to infer the existence of a unique
solution Φũ to the equation Φ = K(Φ, ũ). Standard arguments show
that the mapping ũ 7→ Φ(ũ) := Φũ is continuous. q.e.d.

5.5. Proof of Theorem 1.3. Let ṽ ∈ H with ‖ṽ‖ ≤ δ
M2 , for 0 < δ ≤

T0
2 . By Lemma 5.2,

‖U(ṽ, T )‖ ≤ Kδ
M ,

for all T ∈ IM,δ := [T0 − δ
M , T0 + δ

M ] and some K > 0. By choosing M
sufficiently large, we obtain

‖U(ṽ, T )‖ ≤ δ
c ,

for all T ∈ IM,δ, where c > 0 is the constant from Lemma 5.3. Let
δ > 0 be sufficiently small such that Lemma 5.3 applies. Hence, for
every T ∈ IM,δ there exists a unique solution ΦT := Φ(U(ṽ, T )) ∈ Xδ to
the equation

ΦT (τ) = S(τ)U(ṽ, T ) +

∫ τ

0
S(τ − τ ′)N(ΦT (τ ′))dτ ′ − eτC(ΦT , U(ṽ, T )).
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Furthermore, since the mappings T 7→ U(ṽ, T ) and ũ 7→ Φ(ũ) are con-
tinuous, we see that T 7→ ΦT is continuous. Since rgP ⊆ span(g̃), with
g̃(ξ) = g(|ξ|) denoting the symmetry mode, see Lemma 4.12, it suffices
to show that (

C(ΦTṽ , U(ṽ, Tṽ))
∣∣g̃) = 0,(5.4)

for some Tṽ ∈ IM,δ. First, we estimate(∫ ∞
0

e−τPN(ΦT (τ))dτ

∣∣∣∣g̃) . ‖g̃‖
∫ ∞
0

e−τ‖PN(ΦT (τ))‖dτ

.
∫ ∞
0

e−τ‖ΦT (τ)‖2dτ . δ2.

Since ∂TW(T, ·)|T=T0 = αg for some α ∈ R, α 6= 0, we have

W(T, ·) = W + α(T − T0)g + (T − T0)2R(T, ·),
where R depends continuously on T and ‖R(T, |·|)‖ . 1 for all T ∈ IM,δ.
Thus,

U(ṽ, T ) = T ṽ(T
1
2 ·) + α(T − T0)g̃ + (T − T0)2R(T, | · |),

which implies

(PU(ṽ, T )|g̃) = α(T − T0)‖g̃‖2 + f(T ),

with |f(T )| . δ
M2 + δ2. Consequently, we can write Eq. (5.4) as

T = T0 + F (T )

for a continuous function F that satisfies |F (T )| . δ2 + δ
M2 for all

T ∈ IM,δ. Choose M sufficiently large and δ sufficiently small to ensure

that |F (T )| ≤ δ
M . By Brouwer’s fixed point theorem, there exists a

Tṽ ∈ [T0 − δ
M , T0 + δ

M ] such that Tṽ = T0 + F (Tṽ). Hence, ΦTṽ ∈ Xδ
satisfies Eq. (5.3). For the uniqueness of the solution in C([0,∞),H),
we refer the reader for example to the proof of Theorem 4.11 in [8].

5.6. Theorem 1.3 implies Theorem 1.1. For fixed T0 > 0, we choose
δ,M > 0 such that Theorem 1.3 holds. Set δ′ = δ

M . For u0 ∈ E and wT

defined as in Eq. (1.5), we have

‖u0(| · |)−wT0(0, | · |)‖ = C‖u0 −wT0(0, ·)‖E ,

where the constant comes from the integration over S6. Assume that
‖u0 −wT0(0, ·)‖E ≤ δ′

K for K = CM and set ṽ0 := u0(| · |)−wT0(0, | · |).
By definition of the initial data operator, we have

U(ṽ0, T ) = Tu0(T
1
2 | · |)−W(| · |) =: ΦT

0 .

Obviously, ΦT
0 ∈ C∞rad(R7) for all T ∈ [T0 − δ′, T0 + δ′], ‖ΦT

0 ‖ <∞, and

the decay of W implies ΦT
0 ∈ H by an approximation argument. It is

also easy to check that ΦT
0 ∈ D(L̃0) ⊂ D(L). The smallness condition

on the data implies that ṽ0 satisfies the assumptions of Theorem 1.3.
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Hence, there is a T ∈ [T0 − δ′, T0 + δ′] such that there exists a unique
solution Φ ∈ C([0,∞),H) to

Φ(τ) = S(τ)ΦT
0 +

∫ τ

0
S(τ − τ ′)N(Φ(τ ′))dτ ′, τ ≥ 0,

where Φ(τ)(·) = ϕ(τ, | · |), ϕ(τ, ·) ∈ C[0,∞) ∩ C2(0,∞) and

‖Φ(τ)‖ . e−
1

150
τ , ∀τ ≥ 0.

Lemma 5.1 implies that Φ is also a classical solution, see Theorem 6.1.5
in [25]. This means that Φ : (0,∞)→ H is continuously differentiable,
Φ(τ) ∈ D(L) for all τ > 0 and

d

dτ
Φ(τ) = (L0 + L′)Φ(τ) +N(Φ(τ)) τ > 0,

with Φ(0) = ΦT
0 . Recall that L0 acts as a classical differential operator

on functions in D(L). By setting ψ(τ, ρ) := W(ρ) + ϕ(τ, ρ), we obtain
a classical solution to Eq. (1.10) corresponding to the initial condition

ψ(0, ·) = Tu0(T
1
2 ·). As a consequence,

u(t, r) := (T − t)−1ψ(− log(T − t) + log T, r√
T−t)

solves Eq. (1.6) for all 0 < t < T . Furthermore, u(0, r) = u0(r) for all
r ∈ [0,∞). Note that

‖∆wT (t, |·|)‖L2(R7) = c1(T−t)−
1
4 , ‖∆2wT (t, |·|)‖L2(R7) = c2(T−t)−

5
4 ,

for some constants c1, c2 > 0. By definition and rescaling, we get that
for k = 1, 2,

(T − t)−
3
4
+k‖∆ku(t, | · |)−∆kwT (t, | · |)‖L2(R7)

≤ ‖Φ(− log(T − t) + log T )‖ . (T − t)a,

which implies Eq. (1.8). Furthermore,

sup
r>0
|wT (t, ·)| = 1

T − t
sup
r>0

W
(

r√
T−t

)
=

1

T − t
‖W‖L∞(R+) =

c3
T − t

,

for some c3 > 0. By Lemma 2.2,

(T − t)‖u(t, ·)−wT (t, ·)‖L∞(R+) . ‖Φ(− log(T − t) + log T )‖
. (T − t)a.
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