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NONLINEAR STABILITY RESULTS FOR THE
MODIFIED MULLINS–SEKERKA AND THE SURFACE

DIFFUSION FLOW

E. Acerbi, N. Fusco, V. Julin & M. Morini

Abstract

It is shown that any three-dimensional periodic configuration
that is strictly stable for the area functional is exponentially sta-
ble for the surface diffusion flow and for the Mullins–Sekerka or
Hele–Shaw flow. The same result holds for three-dimensional pe-
riodic configurations that are strictly stable with respect to the
sharp-interface Ohta–Kawaski energy. In this case, they are expo-
nentially stable for the so-called modified Mullins–Sekerka flow.
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1. Introduction

In this paper we establish new global-in-time existence and long-time
behavior results in three-space dimensions for two physically relevant
geometric motions; namely, the modified Mullins–Sekerka and the sur-
face diffusion flows. Let Ω be a bounded open set of RN . We start by
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recalling that a smooth flow of sets (Et)t ⊂⊂ Ω, defined on some (max-
imal) time interval (0, T ∗), is a solution of the modified (or nonlocal)
Mullins–Sekerka flow if the evolution is governed by the following law

(1.1)


Vt = [∂νtwt] on ∂Et,

∆wt = 0 in Ω \ ∂Et,
wt = Ht + 4γvt on ∂Et,

−∆vt = uEt −−
∫

Ω uEt in Ω,

where both wt and vt are subject to homogeneous Neumann boundary
conditions on ∂Ω or to periodic boundary conditions in the case Ω =
TN , with TN denoting the N -dimensional flat torus. Here and in the
following Vt stands for the outer normal velocity of the moving boundary
∂Et, Ht denotes the mean curvature of ∂Et, γ ≥ 0 is a fixed parameter,
uEt := 2χEt − 1 and [∂νtwt] is a short notation for the jump of the
normal derivative of wt at ∂Et; more precisely, [∂νtwt] := ∂νtw

+
t −

∂νtw
−
t , with w+

t and w−t denoting the restrictions of wt to Ω\Et and Et,
respectively. In the case γ = 0 the potential vt becomes irrelevant and
we recover the classical Mullins–Sekerka flow (see [35]), which is also
sometimes referred to as the two-phase Hele–Shaw flow with surface
tension (see [16]). Such models arise as singular limits of the Cahn–
Hilliard equation in the case γ = 0, as formally derived in [38] and then
rigorously proved in [2], and of a modified (nonlocal) version of the
Cahn–Hilliard equation in the case γ > 0. This modified equation has
been proposed in [37] to describe phase separation in diblock copolymer
melts and its convergence to (1.1) has been established in [29]. Under
Neumann boundary conditions if γ = 0 and (Et)t ⊂⊂ Ω Alexandrov’s
Theorem implies that the only possible equilibria for (1.1) are unions of
balls. On the contrast, in the periodic case or when γ > 0 the sets of
equilibria has a much richer structure as we will see below.

The second geometric flow we are dealing with is the motion of sets
by surface diffusion; in this case the evolution of Et is governed by the
law

(1.2) Vt = ∆τHt on ∂Et,

where ∆τ denotes the surface Laplacian or Laplace–Beltrami operator
on ∂Et. This law has been proposed in the physical literature to de-
scribe the evolution of interfaces between solid phases driven by surface
diffusion of atoms under the action of a chemical potential (see, for
instance, [21] and the references therein).

The two flows share several features: they are both volume preserving
and may be regarded as suitable gradient flows of the (nonlocal) area
functional (also known as sharp-interface Ohta–Kawasaki energy):

(1.3) J(E) := PΩ(E) + γ

∫
Ω

∫
Ω
G(x, y)uE(x)uE(y) dxdy ,
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where PΩ is the standard perimeter (or area) functional in Ω, while
G stands for the Green’s function in Ω and uE := 2χE − 1. More
precisely, (1.1) can be seen as the gradient flow of (1.3) with respect to

a suitable H−
1
2 -Riemannian structure (see, for instance, [29]) formally

defined on the space of shapes, while (1.2) is the gradient flow of the
area functional, that is of (1.3) with γ = 0, with respect to a H−1-type
Riemannian structure (see [7]). In contrast with the more standard
mean curvature flow, one cannot expect a comparison principle to hold
for (1.1) and (1.2). This makes it very difficult to apply weak methods
such as those based on the notion of viscosity solution.

Since, in fact, singularities (such as pinching) may form in finite time
(see, for instance, [5, 33]), as far as smooth flows are concerned one can
only expect in general local-in-time existence and uniqueness: see [8]
and [16, 39] for the Hele–Shaw model in the two-dimensional and the
n-dimensional case, respectively, [15] for the modified Mullins–Sekerka
flow, and [12] and [14] for the motion by surface diffusion in two and
higher dimensions, respectively. For a very weak (distributional) notion
of global-in-time solution to the Mullins–Sekerka flow in three dimen-
sions, obtained via a minimizing movements approach, we refer to [45].
Finally, we remark that, again in contrast to the motion by mean cur-
vature, both (1.1) and (1.2) do not preserve convexity (see [25, 13]).

The nonlocal area functional (1.3) is the sharp-interface limit of the
so-called ε-diffuse Ohta–Kawasaki energy, which was proposed in [37]
to model the behavior of a class of two-phase materials called diblock
copolymers. From the mathematical point of view, the main new fea-
ture is the presence of a nonlocal Green’s function term, which acts as a
long-range repulsive interaction of Coulombic type. While the perime-
ter term favors the formation of large connected regions of pure phases
with minimal interface area, the double integral term prefers scattered
configurations with several tiny connected components that try to sepa-
rate from each other as much as possible, due to the repulsive nature of
their interaction. The two competing trends often lead to the formation
of stable nontrivial patterns, with a rather complex structure. We refer
to [34] and the references therein for a review on the Ohta–Kawasaki
energy and some related mathematical results.

We now describe the results of our paper. As already mentioned,
we are interested in finding a class of initial data for which we can
prove the existence of a global-in-time solution and study its long-time
behavior. We focus on the periodic setting in three dimensions; that
is, we take Ω = T3 in (1.1) and (1.2) and we assume spatial one-
periodicity both on the evolving sets and the functions involved. In
other words, finding a solution in T3 is equivalent to finding a solution
in the whole space R3, which is one-periodic in space. All the results
and arguments that we present clearly hold also for N = 2. However,
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for the sake of presentation we decided to stick to the physically relevant
case N = 3.

Because of the gradient flow structure of the two flows, it is very
natural to expect that if the initial set is sufficiently close to a stable
critical point (or a local minimizer) F of the energy functional J , then
the flow exists for all times and asymptotically converges to F .

The proper notion of criticality and stability can be defined in terms
of the first and second variation of the energy by a standard procedure
that we recall in the following: We say that a smooth subset F ⊂ T3

is critical for (1.3) if for any (admissible) smooth one-parameter family
of volume preserving diffeomorphisms (Φt)t with Φ0 = Id we have that
d
dtJ(Φt(F ))

∣∣
t=0

= 0. It turns out (see, for instance, [9]) that a smooth
set F is critical if and only if

(1.4) H∂F + 4γvF = constant on ∂F ,

whereH∂F is the mean curvature of ∂F and vF (·) :=
∫
T3 G(·, y)(2χF (y)−

1) dy is the potential associated with F (see also (1.1) where vt stands
for vEt). When γ = 0 one recovers the classical constant mean curva-
ture condition. Next, given a critical set F we may compute its second
variation: By the results of [9] (see also [1, 27, 36]), we associate with

it a quadratic form ∂2J(F ) defined over all functions ϕ ∈ H̃(∂F ) :=
{ϕ ∈ H1(∂F ) :

∫
∂F ϕdH

2 = 0}. This quadratic form is related to the
second variation of J by the following equality:

(1.5)
d2

dt2
J(Φt(F ))

∣∣∣∣
t=0

= ∂2J(F )[X · ν] ,

where X · ν is the (outer) normal component of the velocity field X of
(Φt)t on ∂F . The expression of ∂2J(F ) can be computed explicitly, see
(2.9). Note that the condition

∫
∂F ϕdH

2 = 0 is related to the fact that
we allow only volume preserving variations.

The notion of stability amounts to requiring that ∂2J is positive
definite in a suitable sense. However, we have to take into account
that J is translation invariant, so that, in particular, J(F ) = J(F + tη)
for all η ∈ R3 and t ∈ R. By differentiating twice this identity with
respect to t, one obtains ∂2J(F )[η · ν] = 0, thus, showing that there is
always a finite dimensional subspace of infinitesimal translations

(1.6) T (∂F ) := {ϕ ∈ H̃(∂F ) : ϕ = η · ν, η ∈ R3},

where the second variation vanishes. In view of these observations, we
say that the critical set F is strictly stable if

(1.7) ∂2J(F )[ϕ] > 0 for all ϕ ∈ T⊥(∂F ) \ {0}.

In [1, Theorem 1.1] (see also [27] for the case of Neumann bound-
ary conditions) it is shown that strictly stable critical sets are, in fact,
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isolated local minimizers of the functional J with respect to small L1-
perturbations. The main purpose of this paper is to show that the
latter (static) stability property extends to the evolutionary case. In
Theorems 3.4 and 4.3 we show that any strictly stable critical set is
asymptotically stable for both (1.1) and (1.2). More precisely, we have:

Main Result. Let F ⊂ T3 be a smooth set satisfying (1.4) and (1.7)
(with γ = 0 in the case of the surface diffusion flow). If E0 is sufficiently
close to F , then both the periodic modified Mullins–Sekerka flow and the
periodic surface diffusion flow starting from E0 are defined for all times
and converge exponentially fast to a translate of F .

For the proper notion of closeness to F and of exponential convergence
we refer to the precise statements of the aforementioned theorems.

Let us now comment on the class of initial data to which our main
result can be applied. In the three-dimensional case and for the area
functional (γ = 0) the stable periodic sets are classified (see, for in-
stance, [46]): they are lamellae or balls or cylinders or triply periodic
structures such as gyroids. It is rather easy to see that the first three
configurations are, in fact, strictly stable (with respect to volume pre-
serving variations), while the strict stability of triply periodic sets has
been established in some cases (see, for instance, in [22, 23, 47]). Due
to our results, in all these cases these structures are exponentially stable
for the periodic versions of (1.1) and (1.2).

As for the case γ > 0 a complete classification of the stable periodic
structures is still missing. However, it has been shown that lamellar
configurations are strictly stable if the number of interfaces is larger
than a minimum value k(γ), where k(γ)→ +∞ as γ →∞ (see [1, 9]).
Moreover, again by the results of [1] one can show that if F is any
periodic set that is strictly stable for the area functional, then for all
γ > 0 sufficiently small it is possible to find sets Fγ that are strictly
stable for (1.3) (with the corresponding γ) in such a way that Fγ → F
smoothly as γ → 0+. If instead we fix the value of γ, and F is as before,
then we may find sets E that are critical for the functional J and closely
resemble a rescaled version of F . More precisely, the following has been
shown in [11]: Let F ⊂ T3 be strictly stable for the area functional,
and for any k ∈ N denote by Fk the 1/k-periodic set F

k . Then, for every

ε > 0 there exists k̄ = k̄(γ, ε) ∈ N such that for all k ≥ k̄ we may
find a set E, which is ε-close to Fk in a C1-sense and strictly stable for
J with respect to 1/k-periodic variations. Moreover, the set E can be
constructed in such a way that its mean curvature is uniformly close
to a constant. Our main result clearly applies to all such sets, yielding
that they are exponentially stable for the 1/k-periodic version of the
modified Mullins–Sekerka flow.

A few comments about previous related results are in order: most of
them treat the exponential stability of N -dimensional spheres both for
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the Hele–Shaw ([8, 17, 39]) and the surface diffusion flow ([14, 48]),
with few exceptions in the case of the surface diffusion flow, like the
infinite cylinders considered in [30, 31] and the two-dimensional triple
junction configurations studied in [19] (under Neumann conditions). It
seems also that no asymptotic stability results for the modified Mullins–
Sekerka flow were known before. Moreover, all previous works deal with
specific examples, but to the best of our knowledge no general linear
versus nonlinear stability principle was established for (1.1) and (1.2)
prior to our main result.

Most of the aforementioned papers use semigroup techniques com-
bined with an ad hoc center manifold analysis in order to deal with the
translation invariance, see also [40]. Our approach instead is completely
different, more variational in nature, and based on the derivation of suit-
able energy identities. In this respect, our method is closer in spirit to
that of [8] and [48], where energy identities are the key tool to establish
the desired exponential stability.

Although many technical details in the proofs of our main Theo-
rems 3.4 and 4.3 are different, the underlying general argument and
strategy are the same. We overview it for the convenience of the reader.
The starting crucial observation is that the following energy identity
holds along the flow (Et)t∈(0,T ∗) (see Lemmas 3.5 and 4.4): Setting

E(Et) := − d
dtJ(Et), we have

(1.8) − d2

dt2
J(Et) =

d

dt
E(Et) = −2∂2J(Et)[Vt] +R(Et) ,

where ∂2J is the second variation quadratic form introduced in (1.5), Vt
is the normal velocity of the moving boundary and R(Et) is a remainder
whose explicit expression depends on whether (Et)t solves (1.1) or (1.2).
Next we implement a stopping time argument; namely, we consider the
maximal time t̄ such that

(1.9) distC1(Et, F ) < ε0 and E(Et) < 2δ0 for all t ∈ (0, t̄),

where distC1(Et, F ) stands for a suitable C1-distance of Et from the
stable critical set F and ε0, δ0 are (small) positive constants to be chosen.
Clearly, by choosing the initial set E0 so close to F that

(1.10) distC1(E0, F ) < ε0 and E(E0) ≤ δ0,

we can ensure that t̄ > 0. The purpose is to show that t̄ coincides
with the maximal time of existence T ∗. The argument now proceeds
by contradiction, assuming that t̄ < T ∗ and that E(Et̄) = 2δ0 or
distC1(Et̄, F ) = ε0. Assume first that

(1.11) E(Et̄) = 2δ0 .

At this point, the idea is to exploit the strict stability assumption on
F , and the closeness of Et to F (ensured by (1.9), with δ0 smaller



MULLINS–SEKERKA AND SURFACE DIFFUSION FLOWS 7

if needed) to show that the quadratic form ∂2J(Et) remains positive
definite outside the space of infinitesimal translations T (∂Et) (see (1.6)).
This observation, together with a delicate estimate showing that Vt
remains bounded away from T (∂Et), allows one to conclude that

(1.12) ∂2J(Et)[Vt] ≥ σ‖Vt‖2H1(∂Et)

in (0, t̄) for a suitable constant σ > 0. Next, one has to control the
remainder R(Et) in (1.8); more precisely, one shows that

(1.13) |R(Et)| ≤ ε‖Vt‖2H1(∂Et)
,

where the constant ε can be made arbitrarily small, provided that ε0

and δ0 are chosen properly (small) in (1.10). The above inequality relies
on delicate boundary estimates for harmonic extensions in the case of
the Mullins–Sekerka flow (see Proposition 3.6) and on the geometric
interpolation inequality established in Lemma 4.7 in the case of the
surface diffusion flow. From the technical point of view, this is where
the dimension restriction N ≤ 3 plays a role in our argument. Finally,
one has to show that

(1.14) E(Et) ≤ C‖Vt‖2H1(∂Et)
,

with the constant C > 0 depending only on the C1-bounds on ∂Et
provided by (1.9). Collecting (1.8) and (1.12)–(1.14) yields the existence
of c0 > 0 such that

d

dt
E(Et) ≤ −c0 E(Et) ,

so that, by integration,

(1.15) E(Et) ≤ E(E0)e−c0t ≤ δ0e−c0t

for t ∈ [0, t̄]. The above inequality contradicts (1.11). Now it is not too
difficult to see (using the explicit expression of E(Et)) that under the
C1-bound of (1.9) the decay of E(Et) obtained in (1.15) forces Et to
remain close to F in a C1-sense, so that assuming distC1(Et̄, F ) = ε0

also leads to a contradiction. Thus, the stopping time t̄ coincides with
the maximal time and both (1.9) and (1.15) hold for the whole lifespan
of the solution. A little refinement of the estimates above allows one also
to control the Hölder-norm of the curvatures of ∂Et, so that we may use
the local-in-time existence theorems available for the two flows, together
with a standard continuation argument, to infer that the solution exists
for all times.

Once global-in-time existence has been established, one proceeds in
the following way: A compactness argument, based on (1.9) and (1.15),
yields the existence of a sequence tn → ∞ and of a set F ′, critical for
J , such that Etn → F ′ (in a suitable sense). Since necessarily F ′ is
close to F and of course |F | = |F ′|, we may use the results from [1]
(see also Proposition 2.7) to conclude that F ′ is a translate of F . The
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exponential convergence of the flow to F ′ then follows from (1.15) via
suitable elliptic estimates.

We conclude the introduction by remarking that although the pre-
sentation is restricted to the periodic case, our methods would equally
work in the Neumann case, under the additional assumption that the
evolving interfaces do not touch ∂Ω or equivalently that F ⊂⊂ Ω, see
Theorem 3.8. It would certainly be interesting to extend our result
to the general Neumann setting and to arbitrary space dimensions.
This will probably require the use of some of the techniques devel-
oped in [32], see also [4], and will be the subject of future investi-
gations. We, finally, mention that our methods would apply also to the
volume-preserving mean curvature flow (see [24]). However, for the sake
of presentation we decided to treat only the more difficult flows (1.1)
and (1.2).

The plan of the paper is the following: In Section 2, we introduce
the precise definition of the energy functional (1.3) and we recall the
formulas of the first and the second variation and other related results
that are useful for our analysis. In Section 3, we prove our main non-
linear stability result for the modified Mullins–Sekerka flow, while the
corresponding result in the case of the surface diffusion flow is treated in
Section 4. Finally, in Section 5, we gather the proofs of several auxiliary
and technical results used along the way.
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2. The nonlocal perimeter and its first and second variations

As already explained in the introduction the geometric evolutions
considered in this paper may be regarded as suitable gradient flows of
(a non-local variant of) the perimeter functional. In this section, we
introduce this non-local energy and recall the first and second variation
formulas, that were derived in [9] (see also [1, 27, 36]).

To this end, we start by recalling that the (unit) flat torus T3 is the
quotient of R3 with respect to the equivalence relation x ∼ y ⇐⇒ x−
y ∈ Z3. The functional spaces W k,p(T3), k ∈ N, p ≥ 1, can be identified

with the subspace of W k,p
loc (R3) of functions that are one-periodic with

respect to all coordinate directions. Similarly, Ck,α(T3), α ∈ (0, 1) may
be identified with the space of one-periodic functions in Ck,α(R3).
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A set E ⊂ T3 will be called of class W k,p, Ck,α, or smooth if its
one-periodic extension to R3 is of class W k,p, Ck,α, or smooth. In the
following we will (often) identify E with this periodic extension. Finally,
by saying that En → E in W k,p (or Ck,α) we mean that there exists
a sequence (Ψn) of smooth diffeomorphisms from T3 to T3 such that
Ψn → Id in W k,p (or Ck.α) and En = Ψn(E) for all n sufficiently large.
When E is sufficiently smooth this is equivalent to saying that for every
ε > 0, there exists n̄ such that

|E∆En| ≤ ε and ∂En = {x+ ψn(x)νE(x) : x ∈ ∂E} ,
with ‖ψn‖Wk,p(∂E) ≤ ε (or ‖ψn‖Ck,α(∂E) ≤ ε) ,

for all n ≥ n̄. Here and in the following we denote by νE the outer unit
normal to E.

Given a smooth set E ⊂ T3, we say that a tubular neighborhood of
∂E is regular, if both the signed distance function dE from the set E and
the orthogonal projection onto ∂E are smooth functions in U . Recall
that

(2.1) dE(x) :=

{
dist(x, ∂E) if x 6∈ E,
−dist(x, ∂E) if x ∈ E.

In this periodic setting, the (relative) perimeter of a set E ⊂ T3 is
defined as

PT3(E) := sup

{∫
E

divϕdz : ϕ ∈ C1(T3;R3) , ‖ϕ‖∞ ≤ 1

}
.

Let γ ≥ 0 be fixed and for every E ⊂ T3 set

(2.2) J(E) := PT3(E) + γ

∫
T3

|DvE |2 dx ,

where vE is the periodic solution of

(2.3)


−∆vE = uE −m,∫
T3

vE dx = 0.

Here uE = χE − χT3\E and m = 2|E| − 1. It is useful to recall that vE
can be represented as

(2.4) vE(x) :=

∫
T3

GT3(x, y)uE(y) dy ,

where GT3 is the Laplacian’s Green function in the torus; that is, for
x ∈ T3, GT3(x, ·) is the unique solution of{

−∆yGT3(x, ·) = δx − 1 in T3,∫
T3 GT3(x, y) dy = 0 .



10 E. ACERBI, N. FUSCO, V. JULIN & M. MORINI

We stress that the relevant particular case γ = 0 (corresponding to the
standard perimeter) is always included in all the discussion below.

Throughout the paper we will make repeated use of the following
notation: For any one-parameter family of functions (gt)t ∈ (0, T ) the
symbol ġt will denote the partial derivative with respect to s of the map
s 7→ gt+s evaluated at s = 0; that is,

ġt :=
∂

∂s
gt+s

∣∣∣
s=0

.

Definition 2.1. Let E ⊂ TN be a smooth set.

(i) We say that a one-parameter family (Φt)t∈I of diffeomorphisms
from T3 to T3, with I an open interval containing 0 and Φ0 = Id,
is admissible if the map (x, t) 7→ Φt(x) belongs to C∞(T3 × I;T3)
and

|Φt(E)| = |E| for all t ∈ I.

(ii) Denote by Xt the velocity field at time t, that is,

Xt := Φ̇t ◦ Φ−1
t ,

and set for simplicity X := X0. If the family (Φt)t∈I is admissible
and Xt is independent of t, i.e., Xt = X, then we say that (Φt)t∈I
is an admissible flow.

We recall that given a vector X, its tangential part on some smooth
(N−1)-manifoldM is defined as Xτ := X−(X ·ν)ν, with ν being a unit
normal vector toM. In particular, we will denote by Dτ the tangential
gradient operator given by Dτϕ := (Dϕ)τ . Finally, divτ X will stand for
the tangential divergence ofX onM defined as divτ X := divX−∂νX ·ν.

Theorem 2.2 ([1, 9]). Let E, (Φt)t∈I , Xt be as in Definition 2.1-(ii),
and set

v̇E :=
∂

∂t
vΦt(E)

∣∣∣
t=0

,

where vΦt(E) is the potential defined in (2.4), with E replaced by Φt(E).
Then,

(2.5) v̇E = 2

∫
∂E
GT3(·, y)X(y) · νE(y) dH2,

and

(2.6)
d

dt
J(Φt(E))∣∣

t=0

=

∫
∂E

(H∂E + 4γvE)X · νE dH2 ,

where νE denotes the outer unit normal to ∂E, H∂E stands for the
sum of its principal curvatures, and we wrote X instead of X0. If, in
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addition, (Φt)t∈I is an admissible flow according to Definition 2.1-(ii),
then

d2

dt2
J(Φt(E))∣∣t=0

=

∫
∂E

(
|Dτ (X · νE)|2 − |B∂E |2(X · νE)2

)
dH2

+ 8γ

∫
∂E

∫
∂E
GT3(x, y)(X · νE)(x)(X · νE)(y) dH2(x) dH2(y)(2.7)

+ 4γ

∫
∂E
∂νEvE(X · νE)2 dH2 +R ,

where the remainder R is defined as

(2.8) R := −
∫
∂E

(4γvE +H∂E) divτ
(
Xτ (X · νE)

)
dH2

+

∫
∂E

(4γvE +H∂E)(divX)(X · νE) dH2 .

In the above formulas B∂E denotes the second fundamental form of ∂E
so that the square |B∂E |2 of its Euclidean norm coincides with the sum
of the squares of the principal curvatures.

Recall now that if Φt is admissible, then |Φt(E)| = |E| for all t ∈ [0, 1]
and, thus,

0 =
d

dt
|Φt(E)|∣∣

t=0

=

∫
E

d

dt
JΦ∣∣

t=0

dx =

∫
E

divX dx =

∫
∂E
X · νE dH2 ,

that is, the normal component X · νE has zero average on ∂E. Then
(2.6) together with a simple extension argument (see [1, Corollary 3.4])
implies that

d

dt
J(Φt(E))∣∣

t=0

= 0 for all admissible Φt,

if and only if∫
∂E

(H∂E + 4γvE)ϕdH2 = 0 for all ϕ ∈ C∞(∂E) s.t.

∫
∂E
ϕdH2 = 0.

This motivates the following definition.

Definition 2.3 (Critical sets). A smooth subset F ⊂ T3 is said to be
critical for the functional J if there exists a constant λ ∈ R such that

H∂F + 4γvF = λ on ∂F .

It is now easy to see that for critical sets the remainder (2.8) vanishes
so that the second variation depends (quadratically) only on X · νF .
Denoting

H̃(∂F ) :=

{
ϕ ∈ H1(∂F ) :

∫
∂F
ϕdH2 = 0

}
,
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we are led to consider the quadratic form ∂2J(F ) : H̃(∂F )→ R defined
as

∂2J(F )[ϕ] : =

∫
∂F
|Dτϕ|2 dH2 −

∫
∂F
|B∂F |2ϕ2 dH2

+ 8γ

∫
∂F

∫
∂F
GT3(x, y)ϕ(x)ϕ(y) dH2(x)dH2(y)

+ 4γ

∫
∂F
∂νF vF ϕ

2 dH2 ,

(2.9)

so that if F is critical, then

d2

dt2
J(Φt(F ))∣∣t=0

= ∂2J(F )[X · νF ],

thanks to (2.7). In order to give the proper notion of stability we have
to take into account that the functional J is invariant under translations
of sets. Thus, if one considers the (admissible) flow Φ(t, x) = x + t η,
η ∈ R3, then Φt(F ) = F + tη and J(Φt(F )) = J(F ) for all t. Therefore,

0 =
d2

dt2
J(Φt(F ))∣∣

t=0

= ∂2J(F )[η · νF ] for all η ∈ R3.

We conclude that the quadratic form ∂2J(F ) always vanishes on the

finite-dimensional subspace T (∂F ) ⊂ H̃(∂F ) defined as

T (∂F ) :=
{
η · νF : η ∈ R3

}
.

The above observation motivates the following definition.

Definition 2.4. Let F ⊂ T3 be a smooth critical set, according to
Definition 2.3. We say that F is strictly stable if

∂2J(F )[ϕ] > 0 for all ϕ ∈ T⊥(∂F ) \ {0},

where T⊥(∂F ) stands for the space orthogonal to T (∂F ) with respect
to the L2(∂F ) scalar product.

Let F be a smooth critical set. Observe that we may choose an
orthogonal base {ẽ1, ẽ2, ẽ3} of R3 such that the functions ẽi · νF , i =
1, 2, 3, are orthogonal in L2(∂F ) (see [1, Section 3]). Then we set

(2.10) ΠF := span{ẽi : i ∈ IF },

where

(2.11) IF := {i : ẽi · νF is not identically zero}.

Remark 2.5. Setting for ϕ ∈ H̃(∂E)

vϕ(x) :=

∫
∂E
GT3(x, y)ϕ(y) dH2(y),
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and µϕ := ϕH2 ∂E, it follows from the properties of the Green’s
function (see [28]) that vϕ satisfies −∆vϕ = µϕ in T3 or, equiva-
lently,

(2.12)

∫
T3

Dvϕ ·Dψdx =

∫
∂E
ϕψ dH2 for all ψ ∈ H1(T3).

Therefore, ∫
∂E

∫
∂E
GT3(x, y)ϕ(x)ϕ(y) dH2(x) dH2(y)

=

∫
∂E
ϕvϕ dH2 =

∫
T3

|Dvϕ|2 dx ,

where the last equality follows from (2.12).

We conclude this section by stating two facts that will be used later.
The first lemma states that when a set is sufficiently close to a strictly

stable critical point then the quadratic form associated with the second
variation remains positive. More precisely, we have:

Lemma 2.6. Fix p > 2 and let F be a smooth strictly stable critical
set in the sense of Definition 2.4. Then, for every ε ∈ (0, 1] there exist
σε > 0 and δ1 > 0 such that

(2.13) ∂2J(E)[ϕ] ≥ σε‖ϕ‖2H1(∂E),

for all ϕ ∈ H̃(∂E) satisfying

min
η∈ΠF

‖ϕ− η · νE‖L2(∂E) ≥ ε‖ϕ‖L2(∂E),

provided that E ⊂ T3 is δ1-close to F in a W 2,p-sense, that is

∂E = {x+ ψ(x)νF (x) : x ∈ ∂F for some smooth ψ

with ‖ψ‖W 2,p(∂F ) ≤ δ1}.

The proof of the above lemma is given in Section 5.
The final result of this section states the crucial observation that

in the vicinity of a given strictly stable critical set there are no other
critical sets.

Proposition 2.7. Let p and F be as in Lemma 2.6. Then there
exists δ2 > 0 such that if F ′ ⊂ T3 is a smooth critical set in the sense
of Definition 2.3, |F ′| = |F |, |F∆F ′| ≤ δ2 and

∂F ′ = {x+ ψ(x)νF (x) : x ∈ ∂F for some smooth ψ

with ‖ψ‖W 2,p(∂F ) ≤ δ2},

then F ′ = F + σ for some σ ∈ R3.
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Proof. This fact is essentially proven in [1, Proof of Theorem 3.9].
There, it is shown that for every p > 2 there exists δ2 > 0 with the
following property: if F ′ ⊂ T3 is a smooth set with |F ′| = |F |, |F∆F ′| ≤
δ2 and

∂F ′ = {x+ ψ(x)νF (x) : x ∈ ∂F for some smooth ψ

with ‖ψ‖W 2,p(∂F ) ≤ δ2},

then we may find a small vector σ ∈ T3 and an admissible flow Φt such
that Φ0(F ) = F , Φ1(F ) = F ′ + σ and

d2

dt2
J(Φt(F ))∣∣t=s ≥ c|F∆(F ′ + σ)|2,

for all s ∈ [0, 1], where c is a positive constant independent of F ′. As-
sume that F ′ is a smooth critical set which is not a translate of F .
Then d

dtJ(Φt(F ))∣∣t=0
= 0 and from the above formula we have that

d
dtJ(Φt(F ))∣∣t=1

> 0. Therefore, F ′ + σ and, in turn, F ′ is not critical.

q.e.d.

3. Nonlinear stability for the modified Mullins–Sekerka flow

In this section, we consider the modified Mullins–Sekerka flow. In
order to speak about classical solutions, we need to define first the
notion of smooth flow.

Definition 3.1 (Smooth flows of sets). We say that a one-parameter
family of sets (Et)t∈(0,T ) is a smooth flow on the interval (0, T ) if there

exist a smooth reference set F ⊂ T3 and a map Ψ ∈ C∞(T3×(0, T );T3)
such that Ψt := Ψ(·, t) is a smooth diffeomorphism from T3 into T3 and
Et = Ψt(F ) for all t ∈ [0, T ).

We will make use of the following notation: Given a (smooth) set
E ⊂ T3, we denote by wE the unique solution in H1(T3) to the following
problem:

(3.1)

{
∆wE = 0 in T3 \ ∂E,
wE = H∂E + 4γvE on ∂E,

where vE is the potential introduced in (2.3). Moreover, we denote by
w+
E and w−E the restrictions wE |T3\E and wE |E , respectively. Finally,

denoting as usual by νE the outer unit normal to E, we set

[∂νEwE ] := ∂νEw
+
E − ∂νEw

−
E = −(∂νEcw

+
E + ∂νEw

−
E) .

In the following, given α ∈ (0, 1) and k,m ∈ N we denote

hk,α(Rm) := {f ∈ Ck,α(Rm) :∃{fn} ⊂ C∞(Rm)

s.t. fn → f locally in Ck,α(Rm)} .
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The space hk,α(M), when M ⊂ Rm is a smooth manifold, may then
be defined by means of local charts. In turn, we will say that a set
F ⊂ T3 is of class hk,α, α ∈ (0, 1), if for each point x ∈ ∂F there exist a
neighborhood V of x, a function f ∈ hk,α(R2), and a suitable coordinate
system such that F ∩ V = {(x′, xN ) ∈ V : xN ≤ f(x′)}.

Definition 3.2 (Modified Mullins–Sekerka flows). Let E0 ⊂ T3 be
of class h2,α for some α ∈ (0, 1). We say that the one-parameter family
(Et)t∈(0,T ) is a classical solution to the modified Mullins–Sekerka flow
on the interval (0, T ) with initial datum E0 if it is a smooth flow in the
sense of Definition 3.1, Et → E0 in C2,α as t → 0+, and the following
evolution law holds:

(3.2) Vt = [∂νtwt] on ∂Et for all t ∈ (0, T ) ,

where Vt stands for the outer normal velocity of the moving boundary
∂Et. Here we used the simplified notation ∂νtwt in place of ∂νEtwEt .

As explained in the introduction, the modified Mullins–Sekerka flow
is volume preserving. This can be easily checked by the following com-
putation (using also the notation introduced in Definition 3.2):

d

dt
|Et| =

∫
∂Et

Vt dH2 =

∫
∂Et

[∂νtwt] dH2 = 0 ,

where the last equality follows from the Divergence Theorem and the
fact that wt is harmonic in T3 \ ∂Et.

We use the following notation: Given a smooth set F ⊂ T3 and a
regular tubular neighborhood U of ∂F , we denote by C1

M (F,U), M > 0,
the class of all smooth sets E ⊂ F ∪ U such that

(3.3) ∂E = {x+ ψE(x)νF (x) : x ∈ ∂F} ,
for some ψE ∈ C∞(∂F ), with ‖ψE‖C1(∂F ) ≤ M . For α ∈ (0, 1) and

k ∈ N we also let hk,αM (F,U) be the collection of sets E ∈ C1
M (F,U)

such that ‖ψE‖hk,α(∂F ) ≤M . We are now ready to state a local-in-time

existence and uniqueness result proved in [15]1 .

Theorem 3.3 (Local-in-time existence and uniqueness, [15]). Let
F0 ⊂ T3 be a smooth set and U a regular tubular neighborhood of ∂F0.
Then, for every M > 0 and α ∈ (0, 1) there exists T > 0 with the

following property: For every E0 ∈ h2,α
M (F0, U) there exists a unique

classical solution to the modified Mullins–Sekerka flow in (0, T ) with
initial datum E0.

Our purpose is to show that for special initial data the flow exists for
all time and then to study its long-time behavior.

The main result is the following.

1In fact, [15] deals with the evolution in the whole space RN , but it is clear that
the same arguments go through in the periodic case.
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Theorem 3.4 (Main result). Let F ⊂ T3 be a strictly stable critical
set according to Definition 2.4 and let U be a regular tubular neighbor-
hood of ∂F . Then, for every M > 0 and α ∈ (0, 1) there exists δ0 > 0

with the following property: Let E0 ∈ h2,α
M (F,U) be such that

|E0| = |F | , |E0∆F | ≤ δ0 , and

∫
T3

|DwE0 |2 dx ≤ δ0 .

Then, the unique classical solution (Et)t to the Mullins–Sekerka flow
with initial datum E0 is defined for all t > 0. Moreover, Et → F + σ in
W 5/2,2 exponentially fast as t→ +∞, for some σ ∈ R3. More precisely,
there exist η, cF > 0 such that for all t > 0, writing

∂Et = {x+ ψσ,t(x)νF+σ(x) : x ∈ ∂F + σ} ,

we have

‖ψσ,t‖W 5/2,2(∂F+σ) ≤ ηe−cF t .

Both |σ| and η vanish as δ0 → 0+.

Note that the H1(T3) norm of wE is equivalent to the H1/2(∂E) norm

of H∂E +4γvE which in turn controls the W 5/2,2(∂F ) norm of ψE . This

explains the W 5/2,2 convergence in the above theorem.
The proof of the result is postponed until the end of this section. It

will be achieved through several auxiliary results, that we state in the
following and whose proofs can be found in the final section.

Lemma 3.5 (Energy identities). Let (Et)t∈(0,T ) be a smooth flow
satisfying (3.2). The following energy identities hold:

(3.4)
d

dt
J(Et) = −

∫
T3

|Dwt|2 dx ,

and

d

dt

(
1

2

∫
T3

|Dwt|2 dx
)

=− ∂2J(Et)
[
[∂νtwt]

]
+

1

2

∫
∂Et

(∂νtw
+
t + ∂νtw

−
t )[∂νtwt]

2 dH2 ,

(3.5)

where ∂2J(Et) is the quadratic form defined in (2.9) (with Et in place
of E) and, as usual, the subscript t stands for Et.

The proof of the lemma is given in the final section. Note that if

Et is not critical then d2

dt2
J(Et) is not equal to the second variation of

J(Et) evaluated at [∂νtwt]. However, quite surprisingly the formulas

above show that the leading order term of d2

dt2
J(Et) is, indeed, twice

the quadratic form ∂2J(Et) at [∂νtwt]. The same holds for the surface
diffusion flow, see (4.3). The next proposition provides crucial boundary
estimates for harmonic functions. Some of them are perhaps well-known
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to the experts. However, for the convenience of the reader we provide a
self-contained proof in the final section.

Proposition 3.6 (Boundary estimates for harmonic functions). Let
E ⊂ T3 be of class C1,α, f ∈ Cα(∂E) (with zero average on ∂E) and
let u ∈ H1(T3) be the solution of

−∆u = fH2 ∂E,

with zero average in T3. Denote u− = u
∣∣
E

and u+ = u
∣∣
T3\E and assume

that u− and u+ are of class C1 up to the boundary ∂E. Then, for every
1 < p < ∞ there exists a constant C, which depends only on the C1,α

bounds on ∂E and on p, such that:

(i)

‖u‖Lp(∂E) ≤ C‖f‖Lp(∂E) ;

(ii)

‖∂νEu
+‖L2(∂E) + ‖∂νEu

−‖L2(∂E) ≤ C‖u‖H1(∂E) ;

(iii)

‖∂νEu
+‖Lp(∂E) + ‖∂νEu

−‖Lp(∂E) ≤ C‖f‖Lp(∂E) ;

(iv)

‖u‖C0,β(∂E) ≤ C‖f‖Lp(∂E),

for all p > 2, β ∈ (0, p−2
p ), with C depending also on β.

(v) Moreover, if f ∈ H1(∂E), then for every 2 ≤ p < +∞ there exists
a constant C, which depends only on the C1,α bounds on ∂E and
on p, such that

‖f‖Lp(∂E) ≤ C‖f‖
p−1
p

H1(∂E)
‖u‖

1
p

L2(∂E)
.

We will need also the following:

Lemma 3.7 (Compactness of sets). Let F ⊂ T3 be a smooth set and
denote by U a fixed regular tubular neighborhood of ∂F . Let {En}n ⊂
C1
M (F,U) be a sequence of sets such that

sup
n

∫
T3

|DwEn |2 dx < +∞ .

Then there exists F ′ of class W
5
2
,2 such that, up to a (non-relabeled)

subsequence, En → F ′ in W 2,p for all 1 ≤ p < 4. Moreover, if∫
T3

|DwEn |2 dx→ 0 ,

then F ′ is critical in the sense of Definition 2.3 and the convergence

holds in W
5
2
,2.

We now give the proof of Theorem 3.4.
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Proof of Theorem 3.4. Throughout the proof C will denote a con-
stant depending only on the C1,α-bounds on the boundary of the set.
The value of C may change from line to line. We start by the trivial
observation that if {En}n ⊂ h2,α

M (F,U) and |En∆F | → 0, then En → F

in C2,β for all β ∈ (0, α). For any set E ∈ C1
M (F,U) consider

(3.6) D(E) :=

∫
E∆F

dist (x, ∂F ) dx =

∫
E
dF dx−

∫
F
dF dx,

where dF is the signed distance function defined in (2.1). Using coarea
formula the reader may check that

(3.7) |E∆F | ≤ C‖ψE‖L1(∂F ) ≤ C‖ψE‖L2(∂F ) ≤ C
√
D(E),

for a constant C depending only on F . Thus, for every ε0 > 0 sufficiently
small, there exists δ0 ∈ (0, 1) so small that for any set E ∈ C1

M (F,U)
the following implications hold true:

(3.8) E ∈ h2,α
M (F,U) and D(E) ≤ δ0 =⇒ ‖ψE‖C1(∂F ) ≤

ε0

2
,

and

‖ψE‖C1(∂F ) ≤ε0 and

∫
T3

|DwE |2 dx ≤ 1

=⇒ ‖ψE‖W 2,3(∂F ) ≤ ω(ε0) ≤ 1 ,

(3.9)

where ω is a positive non-decreasing function such that ω(ε0) → 0 as
ε0 → 0+. The last implication is true thanks to Lemma 3.7. In the
following ε0, δ0 will denote two constants in (0, 1) satisfying (3.8) and
(3.9). The final choice of ε0, δ0 will be made in several steps throughout

the proof. Choose an initial set E0 ∈ h2,α
M (F,U) such that

(3.10) D(E0) ≤ δ0 and

∫
T3

|DwE0 |2 dx ≤ δ0 .

Let (Et)t∈(0,T (E0)) be the unique classical solution to the modified
Mullins–Sekerka flow provided by Theorem 3.3. Here T (E) ∈ (0,+∞]
stands for the maximal time of existence of the classical solution starting
from E. By the same theorem, there exists T0 > 0 such that

(3.11) T (E) ≥ T0 for all E ∈ h2,α(F,U).

We now split the rest of the proof into several steps.

Step 1. (Stopping-time) Let t̄ ≤ T (E0) be the maximal time such that

(3.12) ‖ψt‖C1(∂F ) < ε0 and

∫
T3

|Dwt|2 dx < 2δ0 for all t ∈ (0, t̄).

Here and in the following the subscript t stands for the subscript Et.
Note that such a maximal time is well defined in view of (3.8) and
(3.10). We claim that by taking ε0 and δ0 smaller if needed, we have
t̄ = T (E0). This claim will be proved in Step 3 below.
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Step 2. (Estimate of the translational component of the flow) We claim
that there exists a small ε > 0 such that for all t ∈ (0, t̄)

(3.13) min
η∈ΠF

∥∥ [∂νtwt]− η · νt
∥∥
L2(∂Et)

≥ ε‖[∂νtwt]‖L2(∂Et) ,

where ΠF is defined in (2.10). To this aim, let ηt ∈ ΠF be such that

(3.14) [∂νtwt] = ηt · νt + g,

where g is orthogonal to the subspace of L2(∂Et) spanned by ẽi ·νt with
i ∈ IF (see (2.11)). We argue by contradiction assuming ‖g‖L2(∂Et) <
ε‖[∂νtwt]‖L2(∂Et), for some ε > 0 that will be chosen below. First of all,
by (2.6) and the translation invariance of the energy we have

0 =
d

ds
J(Et+sηt)∣∣

s=0

=

∫
∂Et

(Ht+4γvt)ηt ·νt dH2 =

∫
∂Et

wt(ηt ·νt) dH2 .

Thus, multiplying (3.14) by wt− ŵt, with ŵt := −
∫
T3 wt dx, and integrat-

ing over ∂Et, we get∫
T3

|Dwt|2 dx = −
∫
∂Et

wt[∂νtwt] dH2

= −
∫
∂Et

(wt − ŵt)[∂νtwt] dH2 = −
∫
∂Et

(wt − ŵt)g dH2

≤ ε‖wt − ŵt‖L2(∂Et)‖[∂νtwt]‖L2(∂Et).

(3.15)

Note that in the second and the third equality above we have used the
fact that [∂νtwt] and νt, respectively, have zero average on ∂Et. Let us
denote the (periodic) harmonic extension of ηt · νt to T3 by f . Since∫

∂F
|ẽi · νF |2 dH2 > 0 for i ∈ IF ,

from (3.12) it follows that if ε0 is small enough then ||ẽi · νt||L2(∂Et) ≥
c0 > 0 for all i ∈ IF . Hence, |ηt| ≤ C‖[∂νtwt]‖L2(∂Et). By (3.9) we have

‖Df‖L2(T3) ≤ C‖ηt · νt‖H1/2(∂Et)
≤ C|ηt|‖νt‖W 1,3(∂Et)(3.16)

≤ C‖[∂νtwt]‖L2(∂Et) .

Note now that

(3.17) ∆wt = [∂νwt]H2 ∂E in T3.

We may then apply Proposition 3.6-(i) to obtain

(3.18) ‖wt − ŵt‖L2(∂Et) ≤ C‖[∂νtwt]‖L2(∂Et).

Thus, combining (3.14) with (3.15)–(3.18), we infer

‖ηt · νt‖2L2(∂Et)
=

∫
∂Et

[∂νtwt](ηt · νt) dH2 = −
∫
T3

Df ·Dwt dx

≤
(∫

T3

|Df |2 dx
)1/2(∫

T3

|Dwt|2 dx
)1/2

≤ Cε1/2‖[∂νtwt]‖2L2(∂Et)
.
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If ε is chosen so small that Cε
1
2 + ε2 < 1 in the last inequality, then

we reach a contradiction to (3.14) and to the fact that ‖g‖L2(∂Et) <
ε‖[∂νtwt]‖L2(∂Et). This shows that for this choice of ε condition (3.13)
holds. Recall now that by Lemma 2.6 and Proposition 2.7, there exist
σε and δ1 > 0 with the following properties: for any set E ∈ C1

M (F,U)

‖ψE‖W 2,3(∂F ) ≤ δ1 =⇒ ∂2J(E)[ϕ] ≥ σε‖ϕ‖2H1(∂E)

for all ϕ ∈ H̃(∂E) s.t. min
η∈ΠF

‖ϕ− η · νE‖L2(∂E) ≥ ε‖ϕ‖L2(∂E),
(3.19)

and

(3.20) F ′ critical, |F | = |F ′|, and ‖ψF ′‖W 2,3(∂F ) ≤ δ1 =⇒ F ′ = F + σ,

for a suitable σ ∈ R3. By taking ε0 (and δ0) smaller, if needed, we may
ensure that

(3.21) ω(ε0) ≤ δ1 ,

where ω is the modulus of continuity introduced in (3.9).

Step 3. (The stopping time t̄ equals the maximal time T (E0)) Here we
show that, by taking δ0 smaller if needed, we have t̄ = T (E0). To this
aim, assume by contradiction that t̄ < T (E0). Then,

‖ψt̄‖C1(∂F ) = ε0 or

∫
T3

|Dwt̄|2 dx = 2δ0.

We further split into two sub-steps, according to the two alternatives
above.

Step 3-(a). Assume that

(3.22)

∫
T3

|Dwt̄|2 dx = 2δ0.

Recall that (3.13) holds. Thus, by (3.9), (3.12), (3.19), and (3.21) we
have

∂2J(Et)
[
[∂νtwt]

]
≥ σε‖[∂νtwt]‖2H1(∂E) for all t ∈ (0, t̄).

In turn, by Lemma 3.5 we may estimate

d

dt

(
1

2

∫
T3

|Dwt|2 dx
)
≤ −σε‖[∂νtwt]‖2H1(∂E)

+
1

2

∫
∂Et

(∂νtw
+
t + ∂νtw

−
t )[∂νtwt]

2 dH2,

for every t ≤ t̄. By Proposition 3.6-(iii) and (3.17), we may estimate
the last term by∫

∂Et

(∂νtw
+
t + ∂νtw

−
t )[∂νtwt]

2 dH2 ≤ C
∫
∂Et

(|∂νtw+
t |3 + |∂νtw−t |3) dH2

≤ C
∫
∂Et

|[∂νtwt]|3 dH2.
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Now, Proposition 3.6-(v) implies

‖[∂νtwt]‖L3(∂Et) ≤ C‖[∂νtwt]‖
2/3
H1(∂Et)

‖wt − ŵt‖1/3L2(∂Et)
.

Therefore, combining the last three estimates, we get

d

dt

(
1

2

∫
T3

|Dwt|2 dx
)
≤ −σε‖[∂νtwt]‖2H1(∂Et)

+ C‖wt − ŵt‖L2(∂Et)‖[∂νtwt]‖
2
H1(∂Et)

≤ −σε
2
‖[∂νtwt]‖2H1(∂Et)

,

(3.23)

for every t ≤ t̄, where the last inequality holds provided that δ0 is small
enough since by (3.12) and by trace theorem

‖wt − ŵt‖2L2(∂Et)
≤ C

∫
T3

|Dwt|2 dx ≤ Cδ0 .

We use (3.18) to conclude∫
T3

|Dwt|2 dx = −
∫
∂Et

wt[∂νtwt] dH2 = −
∫
∂Et

(wt − ŵt)[∂νtwt] dH2

≤ ‖wt − ŵt‖L2(∂Et)‖[∂νtwt]‖L2(∂Et)

≤ C‖[∂νtwt]‖2L2(∂Et)
.

Combining the above inequality with (3.23), we, finally, obtain

d

dt

∫
T3

|Dwt|2 dx ≤ −c0

∫
T3

|Dwt|2 dx,

for every t ≤ t̄ and for a suitable c0 > 0. Integrating the differential
inequality and recalling (3.10), we get

(3.24)

∫
T3

|Dwt|2 dx ≤ e−c0t
∫
T3

|DwE0 |2 dx ≤ δ0e−c0t ,

which for t = t̄ gives a contradiction to (3.22).

Step 3-(b). Assume that

(3.25) ‖ψt̄‖C1(∂F ) = ε0 .

Recalling (3.6) and denoting by Xt the velocity field of the flow (see
Definition 2.1), we may compute

d

dt
D(Et) =

d

dt

∫
Et

dF dx =

∫
Et

div(dFXt) dx

=

∫
∂Et

dF (Xt · νt) dH2 =

∫
∂Et

dF [∂νtwt] dH2

= −
∫
T3

Dh ·Dwt dx ,
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where h denotes the harmonic extension of dF to T3 \ ∂Et. Note that

‖Dh‖L2(T3) ≤ C‖dF ‖C1(∂Et) ≤ C .

Thus, also by (3.24), we have

d

dt
D(Et) ≤ C‖Dwt‖L2(T3) ≤ C

√
δ0e−

c0
2
t,

for all t ≤ t̄. By integrating over (0, t̄) and recalling (3.7) we get

(3.26) ‖ψt̄‖L2(∂F ) ≤ C
√
D(Et̄) ≤ C

√
D(E0) + C

√
δ0 ≤ C 4

√
δ0 ,

provided that δ0 is small enough. Since by (3.12) and (3.9) we also have
uniform W 2,3-bounds on ψt̄, by standard interpolation we infer from
(3.26) that ‖ψt̄‖C1(∂F ) ≤ Cδθ0 for a suitable θ ∈ (0, 1). Thus, if δ0 is
small enough we reach a contradiction to (3.25).

The combination of Step 3-(a) (see also (3.24)) and Step 3-(b) yields
t̄ = T (E0) and

(3.27) ‖ψt‖C1(∂F ) < ε0 and

∫
T3

|Dwt|2 dx ≤ e−c0t
∫
T3

|DwE0 |2 dx,

for all t ∈ (0, T (E0)).

Step 4. (Global-in-time existence) Here we show that, by taking δ0

smaller if needed, we have T (E0) = +∞, that is the classical solution
exists for all times. To this aim, recall that by (3.23) and by the fact
that t̄ = T (E0) we have

d

dt

(
1

2

∫
T3

|Dwt|2 dx
)

+
σε
2
‖[∂νtwt]‖2H1(∂Et)

≤ 0,

for all t ∈ (0, T (E0)). Assume now by contradiction T (E0) < +∞.

Integrating over
(
T (E0)− T0

2 , T (E0)− T0
4

)
, where T0 is as in (3.11), we

obtain

σε

∫ T (E0)−T0
4

T (E0)−T0
2

‖[∂νtwt]‖2H1(∂Et)
dt

≤
∫
T3

|Dw
T (E0)−T0

2

|2 dx−
∫
T3

|Dw
T (E0)−T0

4

|2 dx ≤ δ0 ,

where the last inequality follows from (3.27) and (3.10). Thus, by the

mean value theorem there exists t̂ ∈
(
T (E0)− T0

2 , T (E0)− T0
4

)
such

that ‖[∂νt̂wt̂]‖
2
H1(∂Et)

≤ 8δ0
T0σε

. Note that for any measurable set E ⊂ T3

we have ‖vE‖C1(T3) ≤ L for some absolute constant L and that wF is

constant. Thus, since H1(∂Et̂) embeds into Lp(∂Et̂) for all p > 1, by
Proposition 3.6 we in turn infer that

[Ht̂(·+ ψt̂(·)νF (·))−HF ]2C0,α(∂F )

≤ C[wt̂(·+ ψt̂(·)νF (·))− wF ]2C0,α(∂F )
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+ C[vt̂(·+ ψt̂(·)νF (·))− vt̂]
2
C0,α(∂F ) + C[vt̂ − vF ]2C0,α(∂F )

≤ C[wt̂]
2
C0,α(∂Et̂)

+ CL2‖ψt̂‖
2
C1(∂F ) + C‖ut̂ − uF ‖

2
L2(T3)

≤ C δ0

T0σε
+ CL2‖ψt̂‖

2
C1(∂F ) + C|Et̂∆F |

2,

where [·]C0,α(∂Et̂)
stands for the α-Hölder seminorm on ∂Et̂. Thus, if we

choose δ0 sufficiently small, the above inequality together with (3.12),

(3.7) and (3.27) ensures that Et̂ ∈ h2,α
M (F,U). In turn, by (3.11) the

time span of existence of the classical solution starting from Et̂ is at
least T0, which means that (Et)t can be continued beyond T (E0). This
is clearly a contradiction.

Step 5. (Convergence, up to subsequences, to a translate of F ) Let tn →
+∞. Then by (3.27) the sets Etn satisfy the hypotheses of Lemma 3.7.
Thus, up to a (not relabeled) subsequence we have that there exists a

critical set F ′ such that Etn → F ′ in W
5
2
,2. Due to (3.9) and (3.21) we

also have ‖ψF ′‖W 2,3(∂F ) ≤ δ1. But then (3.20) implies that F ′ = F + σ

for a suitable (small) σ ∈ R3.

Step 6. (Exponential convergence of the full sequence) Consider now

Dσ(E) :=

∫
E∆(F+σ)

dist (x, ∂F + σ) dx .

The very same calculations performed in Step 3-(b) show that

(3.28)
d

dt
Dσ(Et) ≤ C‖Dwt‖L2(T3) ≤ C

√
δ0e−

c0
2
t for all t > 0.

From this inequality it is easy to deduce that limt→+∞Dσ(Et) exists.
Thus, by the previous step Dσ(Et)→ 0 as t→ +∞. In turn, integrating
(3.28) and writing ∂Et = {x+ ψσ,t(x)νF+σ(x) : x ∈ ∂F + σ} we get

‖ψσ,t‖2L2(∂F+σ) ≤ CDσ(Et)(3.29)

≤
∫ +∞

t
C
√
δ0e−

c0
2
s ds ≤ C

√
δ0e−

c0
2
t .

Since by the previous steps ‖ψσ,t‖W 2,3(∂F+σ) is bounded, we infer from
(3.29) and standard interpolation estimates that also ‖ψσ,t‖C1,β(∂F+σ)

decays exponentially for β ∈ (0, 1
3). For all β ∈ (0, 1), setting p = 2

1−β ,

we have by (3.29) and by (3.7)

‖vt − vF+σ‖C1,β(T3) ≤ C‖vt − vF+σ‖W 2,p(T3)

≤ C‖ut − uF+σ‖Lp(T3) ≤ C|Et∆(F + σ)|
1
p

≤ C‖ψσ,t‖
1
p

L2(∂F+σ)
≤ Cδ

1
4p

0 e
− c0

4p
t
,

(3.30)
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where we recall that ut stands for uEt , see (2.3). Denote the average of
wt on ∂Et by w̄t. Since by (3.27) we have that

‖wt
(
·+ψσ,t(·)νF+σ(·)

)
− w̄t‖

H
1
2 (∂F+σ)

≤ C‖wt − w̄t‖
H

1
2 (∂Et)

≤ C‖Dwt‖L2(T3) ≤ C
√
δ0e−

c0
2
t ,

it follows (taking into account also (3.30)) that

(3.31)
∥∥[Ht

(
·+ψσ,t(·)νF+σ(·)

)
−Ht

]
− [H∂F+σ −H∂F+σ]

∥∥
H

1
2 (∂F+σ)

→ 0 exponentially fast,

where Ht and H∂F+σ stand for the average of Ht on ∂Et and of H∂F+σ

on ∂F + σ, respectively. Let dσ be the signed distance function from
F + σ and let Ψt denote a diffeomorphism such that Ψt(F + σ) = Et.
Clearly we can find such a diffeomorphism with the additional property
that Ψt(x) = x + ψσ,t(x)νF+σ(x) on ∂F + σ and ‖Ψt − Id‖C1(T3) ≤
C‖ψσ,t‖C1(∂F+σ). Then, denoting the tangential divergence on ∂Et by
divτt and the tangential Jacobian of Ψt by JτΨt, we have∣∣∣∣∫

∂Et

Ht∇dσ · νt dH2 −
∫
∂F+σ

H∂F+σ dH2

∣∣∣∣
=

∣∣∣∣∫
∂Et

divτt ∇dσ dH2 −
∫
∂F+σ

divτ ∇dσ dH2

∣∣∣∣
≤
∣∣∣∣∫
∂F+σ

(
divτt ∇dσ ◦ΨtJτΨt − divτ ∇dσ

)
dH2

∣∣∣∣
≤ C‖ψσ,t‖C1(∂F+σ) ,

(3.32)

where the constant C also depends on the C2-bounds on ∂F . Moreover,∣∣∣∣∫
∂Et

(Ht∇dσ · νt −Ht) dH2

∣∣∣∣ =

∣∣∣∣∫
∂Et

Ht(∇dσ − νt) · νt dH2

∣∣∣∣
≤ ‖Ht‖L1(∂Et)‖∇dσ − νt‖L∞(∂Et) ≤ C‖ψσ,t‖C1(∂F+σ) ,

(3.33)

where we have also used the uniform bounds on Ht established in the
previous steps. Combining (3.32) and (3.33), we get that Ht −H∂F+σ

decays exponentially and in turn, thanks to (3.31)∥∥Ht

(
·+ψσ,t(·)νF+σ(·)

)
−H∂F+σ

∥∥
H

1
2 (∂F+σ)

→ 0 exponentially fast.

The conclusion follows arguing as in the end of the proof of Lemma 3.7.
q.e.d.

Theorem 3.4 can be readily extended to the Neumann case, at least
when the stable critical set F is well contained in Ω. Recall that in this
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case the energy (2.2) must be replaced with

JN (E) := PΩ(E) + γ

∫
Ω
|∇vE |2 dx,

where PΩ(E) denotes the perimeter of E inside Ω and the function vE
is the solution of−∆vE = uE −m in Ω,∫

Ω
vE dx = 0 ,

∂vE
∂ν

= 0 , on ∂Ω .

Here uE = 2χE − 1 and m = −
∫

Ω uE dx. As in (2.4) we have

vE(x) =

∫
Ω
G(x, y)uE(y) dy ,

where G is the solution of−∆yG(x, y) = δx − 1
|Ω| in Ω,∫

Ω
G(x, y) dy = 0 , ∇yG(x, y) · ν(y) = 0 , if y ∈ ∂Ω .

As in the periodic case, we say that a smooth subset F ⊂⊂ Ω is a
critical set for the functional JN if there exists a constant λ ∈ R such
that

H∂F (x) + 4γvF (x) = λ for all x ∈ ∂F .

The quadratic form associated with the second variation ∂2JN (E) is
also defined as in (2.9). If F ⊂⊂ Ω is a smooth local minimizer of JN
under volume constraint, then it is also critical and ∂2JN (E)[ϕ] ≥ 0 for

all ϕ ∈ H̃(∂F ).
Note that, unlike in the periodic case, the functional JN is not trans-

lation invariant. Therefore, we say that a smooth critical set F is strictly
stable if

∂2JN (E)[ϕ] > 0 for all ϕ ∈ H̃(∂E) \ {0}.
With these definitions in hand we can state the following counterpart
of Theorem 3.4.

Theorem 3.8. Let Ω be an open set in R3 and let F ⊂⊂ Ω be a
smooth strictly stable critical set and U a regular tubular neighborhood
of ∂F . Then, for every M > 0 and α ∈ (0, 1) there exists δ0 > 0 with

the following property: Let E0 ∈ h2,α
M (F,U) be such that

|E0| = |F | , |E0∆F | ≤ δ0 , and

∫
Ω
|DwE0 |2 dx ≤ δ0 .

Then, the unique classical solution (Et)t to the Mullins–Sekerka flow
(1.1) with initial datum E0 is defined for all t > 0. Moreover, Et → F

in W 5/2,2 exponentially fast as t→ +∞.
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The proof of this result is similar to the one of Theorem 3.4. Actually
it is simpler since we do not need the argument used in Step 2, where
we controlled the translational component of the flow. Note that in the

statement of Lemma 2.6 now (2.13) holds for all ϕ ∈ H̃(∂E). Finally,
observe that under the assumptions of Proposition 2.7 we may conclude
that F ′ = F , i.e., that there are no other critical sets close to F .

The assumption that F does not touch the boundary may seem re-
strictive. However, we remark that in two and three dimensions there
are examples of strictly stable critical sets which consist of either a sin-
gle or multiple almost spherical sets well contained in Ω. The precise
conditions on the parameters m, γ and |Ω| under which these strictly
stable sets exist are given in [42, 43, 44]. Other examples of local min-
imizers well contained in Ω are given in [10]. An example of a local
minimizer touching the boundary is provided in [41].

4. Nonlinear stability for the surface diffusion flow

Throughout the section we assume γ = 0 in (2.2), so that we will
be dealing only with the standard local perimeter. We will show how
to adapt the strategy devised in the previous section to the case of the
surface diffusion equation. For the definition of sets of class h2,α we
refer to the previous section.

Definition 4.1 (Surface diffusion flows). Let E0 ⊂ T3 be of class h2,α

for some α ∈ (0, 1). We say that the one-parameter family (Et)t∈(0,T ) is
a classical solution to the surface diffusion equation on the interval (0, T )
with initial datum E0 if it is a smooth flow in the sense of Definition 3.1,
Et → E0 in C2,α as t→ 0+, and the following evolution law holds:

(4.1) Vt = ∆τHt on ∂Et for all t ∈ (0, T ) ,

where, as usual, Vt stands for the outer normal velocity of the moving
boundary ∂Et, Ht stands for H∂Et and ∆τ is the Laplace–Beltrami
operator on ∂Et.

It is well-known that the surface diffusion flow is volume preserving.
This can be straightforwardly checked by the following computation:

d

dt
|Et| =

∫
∂Et

Vt dH2 =

∫
∂Et

∆τHt dH2 = 0 .

The following local-in-time existence and uniqueness result has been
established in [14]2 . We make use of the notation introduced in the
previous section.

Theorem 4.2 (Local-in-time existence and uniqueness, [14]). Let
F0 ⊂ T3 be a smooth set and U a regular tubular neighborhood of ∂F0.

2In fact, [14] deals with the evolution in the whole space RN , but it is clear that
the same arguments go through in the periodic case.
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Then, for every M > 0 and α ∈ (0, 1) there exists T > 0 with the

following property: For every E0 ∈ h2,α
M (F0, U) there exists a unique

classical solution to the surface diffusion flow in (0, T ) with initial datum
E0.

As before we are interested in the asymptotic stability of strictly
stable configurations. The main result of the section is the following.

Theorem 4.3 (Main result). Let F ⊂ T3 be a strictly stable critical
set according to Definition 2.4 and let U be a regular tubular neighbor-
hood of ∂F . Then, for every M > 0 and α ∈ (0, 1) there exists δ0 > 0

with the following property: Let E0 ∈ h2,α
M (F,U) be of class W 3,2 such

that

|E0| = |F | , |E0∆F | ≤ δ0 , and

∫
∂E0

|DτH∂E0 |2 dH2 ≤ δ0 .

Then, the unique classical solution (Et)t to the surface diffusion flow
with initial datum E0 is defined for all t > 0. Moreover, Et → F + σ in
W 3,2 as t → +∞, for some σ ∈ R3. The convergence is exponentially
fast; more precisely, there exist η, cF > 0 such that for all t > 0, writing

∂Et = {x+ ψσ,t(x)νF+σ(x) : x ∈ ∂F + σ} ,
we have

‖ψσ,t‖W 3,2(∂F+σ) ≤ ηe−cF t .

Both |σ| and η vanish as δ0 → 0+.

Note that the H1(∂E) norm of H∂E is equivalent to the W 3,2(∂F )
norm of ψE . This explains the W 3,2 convergence in the above theorem.

As before, the proof of the theorem, which is close in spirit to the
proof of Theorem 3.4, is postponed until the end of the section. We
first collect some auxiliary results, whose proofs are given in Section 5.

Lemma 4.4 (Energy identities). Let (Et)t∈(0,T ) be a smooth flow
satisfying (4.1). The following energy identities hold:

(4.2)
d

dt
J(Et) = −

∫
∂Et

|DτHt|2 dx ,

and

d

dt

(
1

2

∫
∂Et

|DτHt|2 dx
)

= −∂2J(Et) [∆τHt]

−
∫
∂Et

Bt [DτHt] ∆τHt dH2 +
1

2

∫
∂Et

Ht|DτHt|2∆τHt dH2 ,

(4.3)

where ∂2J(Et) is the quadratic form defined in (2.9) (with Et in place
of E and with γ = 0) and, as done before, the subscript t stands for
Et. Note also that we have used the notation Bt[·] to denote the sec-
ond fundamental quadratic form on ∂Et, which we recall is defined as
Bt[τ ] := (Dτνtτ) · τ for all τ ∈ R3.
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Lemma 4.5 (Interpolation on boundaries). Let F ⊂ T3 be a smooth
set, U a regular tubular neighborhood of ∂F , and M > 0, p ∈ (2,+∞)
fixed constants. Then, there exists C > 0 with the following property:
for every E ∈ C1

M (F,U) and f ∈ H1(∂E) it holds

‖f‖Lp(∂E) ≤ C
(
‖Dτf‖θL2(∂E)‖f‖

1−θ
L2(∂E)

+ ‖f‖L2(∂E)

)
,

with θ := 1− 2
p . Moreover, the following Poincaré inequality holds:

‖f − f̄‖Lp(∂E) ≤ C‖Dτf‖L2(∂E),

where f̄ denotes the piecewise constant function defined as −
∫

Γi f dH
2 on

each connected component Γi of ∂E.

The proof of the above lemma can be found in [3, Theorem 3.70].
For the next lemma we introduce the following notation: for every

sufficiently regular f defined on ∂E we set

(4.4) δif := Dτf · ei and D2
τf := (δiδjf)i,j ,

where ei is the i-th element of the canonical basis of R3.

Lemma 4.6 (H2-estimates on boundaries). Let F , U , and M be
as in Lemma 4.5. Then there exists a constant C > 0 such that if
E ∈ C1

M (F,U) and f ∈ H1(∂E), with ∆τf ∈ L2(∂E), then f ∈ H2(∂E)
and

‖D2
τf‖L2(∂E) ≤ C‖∆τf‖L2(∂E)(1 + ‖H∂E‖2L4(∂E)).

The following lemma provides the crucial “geometric interpolation”
that will be needed in the proof of the main theorem.

Lemma 4.7 (Geometric interpolation). Let F , U , and M be as in
Lemma 4.5. There exists a constant C > 0 such that if E ∈ C1

M (F,U)
the following estimates holds:∫

∂E
|B∂E ||DτH∂E |2|∆τH∂E | dH2

≤ C‖Dτ (∆τH∂E)‖2L2(∂E) ‖DτH∂E‖L2(∂E)

(
1 + ‖H∂E‖3L6(∂E)

)
.

The next lemma highlights an interesting property of the mean curva-
ture. Note that since ∂E can be disconnected (as in the case of lamellae)
one cannot expect Poincaré inequality to hold on ∂E. However, if E
is sufficiently close to a stable critical set then the Poincaré inequality
holds for H∂E .

Lemma 4.8 (Geometric Poincaré Inequality). Fix p > 2, let F ⊂ T3

be a strictly stable critical set according to Definition 2.4 and let δ1 be
the constant provided by Lemma 2.6, with ε = 1 (and γ = 0). Then,
there exists C > 0 such that

(4.5)

∫
∂E
|H∂E −H∂E |2 dH2 ≤ C

∫
∂E
|DτH∂E |2 dH2 ,
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provided that

∂E = {x+ ψ(x)νF (x) : x ∈ ∂F for some smooth ψ

with ‖ψ‖W 2,p(∂F ) ≤ δ1}.

Here H∂E stands for the average −
∫
∂E H∂E dH2.

Finally, we have:

Lemma 4.9 (Compactness of sets). Let F , U , and M be as in
Lemma 4.5. Let {En}n ⊂ C1

M (F,U) be a sequence of sets such that

sup
n

∫
∂En

|DτH∂En |2 dx < +∞ .

Then there exists F ′ of class W 3,2 such that, up to a (non-relabeled)
subsequence, En → F ′ in W 2,p for all p ∈ [1,+∞). Moreover, if (4.5)
holds for every set En (with C independent of n) and∫

∂En

|DτH∂En |2 dx→ 0 ,

then F ′ is critical in the sense of Definition 2.3 and the convergence
holds in W 3,2.

The proof of this lemma is similar to the proof of Lemma 3.7 given
in Subsection 5.1 and, thus, we omit it.

Proof of Theorem 4.3. The proof of the theorem is very close in spirit
to the proof of Theorem 3.4. In the following, C will denote a constant
depending only on the C1-bounds on the boundary of the set. The
value of C may change from line to line. For every ε0 > 0 sufficiently
small, there exists δ0 ∈ (0, 1) so small that for any set E ∈ C1

M (F,U)
the following implications hold true:

(4.6) E ∈ h2,α
M (F,U) and D(E) ≤ δ0 =⇒ ‖ψE‖C1(∂F ) ≤

ε0

2
,

where D(E) is defined in (3.6), and

‖ψE‖C1(∂F ) ≤ ε0 and

∫
∂E
|DτH∂E |2 dH2 ≤ 1(4.7)

=⇒ ‖ψE‖W 2,6(∂F ) ≤ ω(ε0) ≤ 1 ,

where ω is a positive non-decreasing function such that ω(ε0) → 0 as
ε0 → 0+. Note that the last implication is true thanks to Lemma 4.9.

Note also that by Lemma 4.8, there exists C > 0 such that if ε0 is
small enough, then

‖ψE‖W 2,6(∂F ) ≤ ω(ε0)

=⇒
∫
∂E
|H∂E −H∂E |2 dH2 ≤ C

∫
∂E
|DτH∂E |2 dH2 ,

(4.8)
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where H∂E is the average of H∂E over ∂E. Fix ε0, δ0 ∈ (0, 1) satisfying

(4.6), (4.7) and (4.8), and choose an initial set E0 ∈ h2,α
M (F,U) such

that

(4.9) D(E0) ≤ δ0 and

∫
∂E0

|DτH∂E0 |2 dH2 ≤ δ0 .

Let (Et)t∈(0,T (E0)) be the unique classical solution to the surface diffusion
flow provided by Theorem 4.2, with T (E0) denoting the maximal time
of existence. By the same theorem, there exists T0 > 0 such that (3.11)
holds. We now split the rest of the proof into several steps as in the
proof of Theorem 3.4.

Step 1. (Stopping-time) Let t̄ ≤ T (E0) be the maximal time such that

(4.10) ‖ψt‖C1(∂F ) < ε0 and

∫
∂Et

|DτHt|2 dH2 < 2δ0,

for all t ∈ (0, t̄). As before, we claim that by taking ε0 and δ0 smaller if
needed, we have t̄ = T (E0). This claim will be proved in Step 3 below.

Step 2. (Estimate of the translational component of the flow) We claim
that there exists ε > 0 such that for all t ∈ (0, t̄)

(4.11) min
η∈ΠF

∥∥∆τHt − η · νt
∥∥
L2(∂Et)

≥ ε‖∆τHt‖L2(∂Et) ,

where ΠF is defined in (2.10). To this aim, let ηt ∈ ΠF be such that

(4.12) ∆τHt = ηt · νt + g,

where g is orthogonal to the subspace of L2(∂Et) spanned by ẽi ·νt with
i ∈ IF (see (2.11)). As in Step 2 of the proof of Theorem 3.4 we will show
that if ε is small enough, then assuming ‖g‖L2(∂Et) < ε‖∆τHt‖L2(∂Et)

leads to a contradiction. Recall that ∆τHt has zero average. Therefore,
setting Ht := −

∫
∂Et

Ht dH2, and recalling also (4.7) and (4.8), we get

‖Ht−Ht‖2L2(∂Et)
≤ C

∫
∂Et

|DτHt|2 dH2

= −C
∫
∂Et

∆τHtHt dH2 = −C
∫
∂Et

∆τHt(Ht −Ht) dH2

≤ C‖Ht −Ht‖L2(∂Et)‖∆τHt‖L2(∂Et) .

(4.13)

Recall now that
∫
∂Et

Htνt dH2 =
∫
∂Et

νt dH2 = 0. Thus, multiplying

(4.12) by Ht −Ht, integrating over ∂Et, and using (4.13), we get∣∣∣∣∫
∂Et

(Ht −Ht)∆τHt dH2

∣∣∣∣ =

∣∣∣∣∫
∂Et

(Ht −Ht)g dH2

∣∣∣∣
≤ ε‖Ht −Ht‖L2(∂Et)‖∆τHt‖L2(∂Et)

≤ Cε‖∆τHt‖2L2(∂Et)
.
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Arguing as in Step 2 of the proof of Theorem 3.4 we have that if ε0 is
small enough there exists a constant C such that |ηt| ≤ C‖∆τHt‖L2(∂Et).
Hence,

‖ηt·νt‖2L2(∂Et)
=

∫
∂Et

∆τHt(ηt · νt) dH2 = −
∫
∂Et

DτHt ·Dτ (ηt · νt) dH2

≤ |ηt|‖Dτνt‖L2(∂Et)‖DτHt‖L2(∂Et)

≤ C‖Dτνt‖L2(∂Et)‖∆τHt‖L2(∂Et)

(
−
∫
∂Et

(Ht −Ht)∆τHt dH2

)1/2

≤ C‖Dτνt‖L2(∂Et)ε
1/2‖∆τHt‖2L2(∂Et)

≤ Cε1/2‖∆τHt‖2L2(∂Et)
,

where in the last inequality the constant C depends also on the curvature

bounds provided by (4.7). If ε is chosen so small that Cε
1
2 + ε2 < 1 in

the last inequality, then we reach a contradiction to (4.12) and the fact
that ‖g‖L2(∂Et) < ε‖∆τHt‖L2(∂Et).

As in Step 2 of the proof of Theorem 3.4, by taking ε0 (and δ0)
smaller if needed, we may ensure that (3.21) holds, with ω the modulus
of continuity introduced in (4.7) and δ1 satisfying (3.19) and (3.20),
with W 2,3(∂F ) replaced by W 2,6(∂F ).

Step 3. (The stopping time t̄ equals the maximal time T (E0)) Here we
assume by contradiction that t̄ < T (E0) and, thus,

‖ψt̄‖C1(∂F ) = ε0 or

∫
∂Et̄

|DτHt̄|2 dH2 = 2δ0 .

We further split into two sub-steps, according to the two alternatives
above.

Step 3-(a). Assume that

(4.14)

∫
∂Et̄

|DτHt̄|2 dH2 = 2δ0 .

Recall that (4.11) holds. Thus, by (4.7), (4.10), (3.19) (with W 2,3(∂F )
replaced by W 2,6(∂F )), and (3.21) we have

∂2J(Et) [∆τHt] ≥ σε‖∆τHt‖2H1(∂E) for all t ∈ (0, t̄).

Note also that (4.13), together with the Poincaré inequality (4.5), yields

(4.15) ‖DτHt‖L2(∂Et) ≤ C‖∆τHt‖L2(∂Et) .

Now, we may use Lemma 4.4 to estimate

d

dt

(
1

2

∫
∂Et

|DτHt|2 dH2

)
≤− σε‖∆τHt‖2H1(∂Et)

+ 2

∫
∂Et

|Bt||DτHt|2|∆τHt| dH2

Lemma 4.7
≤ −σε‖∆τHt‖2H1(∂Et)
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+ C‖Dτ (∆τHt)‖2L2(∂Et)
‖DτHt‖L2(∂Et)

(
1 + ‖Ht‖3L6(∂Et)

)
(4.10)

≤ −σε‖∆τHt‖2H1(∂Et)

+ C
√
δ0‖Dτ (∆τHt)‖2L2(∂Et)

(
1 + ‖Ht‖3L6(∂Et)

)
(4.7)

≤ −σε‖∆τHt‖2H1(∂Et)
+ C

√
δ0‖Dτ (∆τHt)‖2L2(∂Et)

,

for every t ≤ t̄. Thus, if we choose δ0 small enough we have

d

dt

(
1

2

∫
∂Et

|DτHt|2 dH2

)
≤ −σε

2
‖∆τHt‖2H1(∂Et)

≤ −c0‖DτHt‖2L2(∂Et)
,

where the last inequality follows from (4.15).
Integrating the differential inequality and recalling (4.9), we obtain

(4.16)

∫
∂Et

|DτHt|2 dH2 ≤ e−c0t
∫
∂E0

|DτHE0 |2 dH2 ≤ δ0e−c0t,

which gives a contradiction to (4.14) for t = t̄.

Step 3-(b). Assume now that

(4.17) ‖ψt̄‖C1(∂F ) = ε0 .

Then, arguing as in Step 3-(b) of the proof of Theorem 3.4, we can
compute

d

dt
D(Et) =

∫
Et

div(dFXt) dx =

∫
∂Et

dF ∆τHt dH2

= −
∫
∂Et

DτdF ·DτHt dH2 ≤ C‖DτHt‖L2(∂Et) ≤ C
√
δ0e−

c0
2
t ,

where the last inequality clearly follows from (4.16). We may now argue
exactly as in the end of Step 3-(b) of the proof of Theorem 3.4 and reach
a contradiction to (4.17) if δ0 is small enough.

Thus, t̄ = T (E0), and as a byproduct of (4.16) and of Step 3-(b) we
also have

(4.18)

‖ψt‖C1(∂F ) < ε0,

∫
∂Et

|DτHt|2 dH2 ≤ e−c0t
∫
∂E0

|DτHE0 |2 dH2,

for all t ∈ (0, T (E0)).

Step 4. (Global-in-time existence) Here we assume by contradiction
T (E0) < +∞. Then, we may argue exactly as in Step 4 of the proof

of Theorem 3.4 to find t̂ ∈
(
T (E0)− T0

2 , T (E0)− T0
4

)
such that one has

‖∆τHt̂‖2H1(∂Et̂)
≤ 8δ0

T0σε
. Thus, also by Lemma 4.6

‖D2
τHt̂‖

2
L2(∂Et̂)

≤ C‖∆τHt̂‖
2
L2(∂Et̂)

(
1 + ‖Ht̂‖

4
L4(∂Et̂)

)
≤ Cδ0 ,
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where in the last inequality we also used the curvature bounds provided
by (4.7). In turn, for p large enough

[Ht̂]
2
C0,α(∂Et̂)

≤ C‖DτHt̂‖
2
Lp(∂Et̂)

≤ C‖DτHt̂‖
2
H1(∂Et̂)

≤ Cδ0 ,

where in the last equality we used also (4.18).

Thus, if we choose δ0 sufficiently small, then Et̂ ∈ h2,α
M (F,U) and,

by (3.11) the time span of existence of the classical solution starting
from Et̂ is at least T0. This implies that (Et)t can be continued beyond
T (E0), leading to a contradiction.

We can now proceed exactly as in Steps 5 and 6 of the proof of
Theorem 3.4, using Lemma 4.9 instead of Lemma 3.7, to get the desired
conclusion. We leave the details to the reader. q.e.d.

5. Proofs of technical lemmas

In this final section we collect the proofs of the several technical lem-
mas stated in the previous sections.

5.1. The modified Mullins–Sekerka flow: proof of technical
lemmas.

Proof of Lemma 2.6. Step 1. First we claim that the strict stability
of F (Definition 2.4) implies

(5.1) ∂2J(F )[ϕ] > 0 for all ϕ ∈ H̃(∂F ) \ T (∂F ).

To this aim we observe that from (2.4) we get

DvF (x) = 2

∫
F
DxGT3(x, y) dy = −2

∫
F
DyGT3(x, y) dy

= −2

∫
∂F
GT3(x, y)νF (y) dH2(y).

Setting νi = ei · νF we have by [20, Lemma 10.7]

−∆τνi − |B∂F |2νi = −δiH∂F

where δi is defined as in (4.4). Since F is critical it satisfiesH∂F+4γvF =
const. and by the above identities we have

−∆τνi − |B∂F |2νi = −4γ∂νvF νi − 8γ

∫
∂F
GT3(x, y)νi(y) dH2(y).

This can be written as L(νi) = 0, where L : H1(∂F )→ H−1(∂F ) is the
self-adjoint, linear operator defined as

L(ϕ) := −∆τϕ− |B∂F |2ϕ+ 4γ∂νvFϕ+ 8γ

∫
∂F
GT3(x, y)ϕ(y) dH2(y).

Let now ϕ ∈ H̃(∂F ) \ T (∂F ). We may write ϕ = ψ + η · νF for some
η ∈ R3, where ψ ∈ T⊥(∂F ) \ {0}. Since L is self-adjoint, we then
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conclude

∂2J(F )[ϕ] = 〈L(ϕ), ϕ〉H−1×H1

=〈L(ψ), ψ〉H−1×H1 +2〈L(η · νF ), ψ〉H−1×H1 +〈L(η · νF ), η · νF 〉H−1×H1

= ∂2J(F )[ψ] > 0,

where the last inequality follows from the strict stability assumption
on F .

Having proved (5.1) we show next that for every ε ∈ (0, 1] it holds

(5.2) mε := inf
{
∂2J(F )[ϕ] : ϕ ∈ H̃(∂F ) , ‖ϕ‖H1(∂F ) = 1

and min
η∈ΠF

‖ϕ− η · νF ‖L2(∂F ) ≥ ε‖ϕ‖L2(∂F )

}
> 0 .

Indeed, let ϕh be a minimizing sequence for the infimum in (5.2) and

assume that ϕh ⇀ ϕ0 ∈ H̃(∂F ) weakly in H1(∂F ). Let us first assume
that ϕ0 6= 0. Since

min
η∈ΠF

‖ϕ0 − η · νF ‖L2(∂F ) ≥ ε‖ϕ0‖L2(∂F ),

we conclude ϕ0 ∈ H̃(∂F ) \ T (∂F ). Thus,

mε = lim
h
∂2J(F )[ϕh] ≥ ∂2J(F )[ϕ0] > 0 ,

where the last inequality follows from (5.1). If ϕ0 = 0, then

mε = lim
h
∂2J(F )[ϕh] = lim

h

∫
∂F
|Dτϕh|2 dH2 = 1 .

Step 2. In order to conclude the proof of the lemma it is enough to
show the existence of δ > 0 such that if ∂E = {x+ψ(x)νF (x) : x ∈ ∂F}
with ‖ψ‖W 2,p(∂F ) ≤ δ, then

(5.3) inf
{
∂2J(E)[ϕ] : ϕ ∈ H̃(∂E) , ‖ϕ‖H1(∂E) = 1 and

min
η∈ΠF

‖ϕ− η · νE‖L2(∂E) ≥ ε‖ϕ‖L2(∂E)

}
≥ σε :=

1

2
min{mε/2, 1} ,

where mε/2 is defined in (5.2), with ε/2 in place of ε. Assume by con-
tradiction that there exist a sequence Eh, with ∂Eh = {x+ψh(x)νF (x) :

x ∈ ∂F} and ‖ψh‖W 2,p(∂F ) → 0, and a sequence ϕh ∈ H̃(∂Eh), with
‖ϕh‖H1(∂Eh) = 1 and minη∈ΠF ‖ϕh − η · νEh‖L2(∂Eh) ≥ ε‖ϕh‖L2(∂Eh),
such that

(5.4) ∂2J(Eh)[ϕh] < σε .

Assume first that limh ‖ϕh‖L2(∂Eh) = 0 and observe that by Sobolev
embedding ‖ϕh‖Lq(∂Eh) → 0 for every q > 1. Thus, since the ψh are

uniformly bounded in W 2,p for p > 2 we obtain

lim
h
∂2J(Eh)[ϕh] = 1,

which is a contradiction to (5.4).
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Thus, we may assume that

(5.5) lim
h
‖ϕh‖L2(∂Eh) > 0 .

The idea now is to read ϕh as a function on ∂F . For x ∈ ∂F set

ϕ̃h(x) := ϕh
(
x+ ψh(x)νF (x)

)
−−
∫
∂F
ϕh(y + ψh(y)νF (y)) dH2(y) .

As ψh → 0 in W 2,p(∂F ), we have, in particular, that

(5.6) ϕ̃h ∈ H̃(∂F ) , ‖ϕ̃h‖H1(∂F ) → 1 ,
‖ϕ̃h‖L2(∂F )

‖ϕh‖L2(∂Eh)
→ 1 .

Note also that νEh(· + ψh(·)νF (·)) → νF in W 1,p(∂F ) and, thus, in
C0,α(∂F ) for a suitable α ∈ (0, 1) depending on p. Using also this, and
taking into account the third limit in (5.6) and (5.5), one can easily
show that

lim inf
h

minη∈ΠF ‖ϕ̃h − η · νF ‖L2(∂F )

‖ϕ̃h‖L2(∂F )

≥ lim inf
h

minη∈ΠF ‖ϕh − η · νEh‖L2(∂Eh)

‖ϕh‖L2(∂Eh)
≥ ε .

Thus, for h large enough we have

‖ϕ̃h‖H1(∂F ) ≥
3

4
and min

η∈ΠF
‖ϕ̃h − η · νF ‖L2(∂F ) ≥

ε

2
‖ϕ̃h‖L2(∂F ) .

In turn, by Step 1 we infer

(5.7) ∂2J(F )[ϕ̃h] ≥ 9

16
mε/2 .

Moreover, the W 2,p convergence of Eh to F and standard elliptic esti-
mates for the problem (2.3) imply

(5.8) B∂Eh
(
·+ ψh(·)νF (·)

)
→ B∂F in Lp(∂F ),

vEh → vF in C1,β(T3) for all β < 1.

We now check that∫
∂Eh

∫
∂Eh

GT3(x, y)ϕh(x)ϕh(y) dH2(x)dH2(y)

−
∫
∂F

∫
∂F
GT3(x, y)ϕ̃h(x)ϕ̃h(y) dH2(x)dH2(y)→ 0,

(5.9)

as h→∞. Indeed, thanks to Remark 2.5 this is equivalent to

(5.10)

∫
Ω

(
|Dzh|2 − |Dz̃h|2

)
dz → 0 ,

where

−∆zh = µh := ϕhH2 ∂Eh , −∆z̃h = µ̃h := ϕ̃hH2 ∂F ,
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under periodicity condition. In turn, (5.10) is clearly implied by

µh − µ̃h → 0 in H−1(T3),

which can be easily checked (see [1, Proof of Theorem 3.9] for the de-
tails).

Finally, we observe that since p > 2, the Sobolev Embedding theorem
and the W 2,p-convergence of ∂Eh to ∂F imply

(5.11)

∫
∂Eh

|B∂Eh |
2ϕ2

h dH2 −
∫
∂F
|B∂F |2ϕ̃2

h dH2 → 0 .

Combining (5.8), (5.9), and (5.11) we conclude that all terms appearing
in ∂2J(Eh)[ϕh] are asymptotically close to the corresponding terms of
∂2J(E)[ϕ̃h] and, thus,

∂2J(Eh)[ϕh]− ∂2J(F )[ϕ̃h]→ 0 .

Recalling (5.4), we have a contradiction to (5.7). This establishes (5.3)
and concludes the proof of the lemma. q.e.d.

Proof of Lemma 3.5. In the following Ψ and Ψt are as in Defini-
tion 3.1 and the subscript t stands for the subscript Et. We denote
by Xt the associated velocity field, that is, Xt := Ψ̇t ◦Ψ−1

t . In particu-
lar, by (3.2) we have that

(5.12) Xt · νt = [∂νtwt] on ∂Et.

Fix t ∈ (0, T ), set Φs := Ψt+s ◦ Ψ−1
t , and note that (Φ)s∈(−t,T−t) is

an admissible one-parameter family of diffeomorphisms according to
Definition 2.1. Then we may apply Theorem 2.2 to get

d

dt
J(Et) =

d

ds
J(Φs(Et))∣∣

s=0

=

∫
∂Et

(Ht + 4γvt)Xt · νt dH2

(3.1)
=

∫
∂Et

wtXt · νt dH2 (5.12)
=

∫
∂Et

wt[∂νtwt] dH2

= −
∫
T3

|Dwt|2 dx ,

where the last equality follows from integration by parts and the fact
that wt is harmonic in T3 \ ∂Et. This establishes (3.4). In order to
get (3.5), we need to introduce some auxiliary functions: For each t ∈
(0, T ), we let dt denote the signed distance function from Et, which, we
recall, is smooth in a suitable tubular neighborhood of ∂Et. We then
set νt := Ddt, Ht := ∆dt = div νt, and Bt := D2dt = Dνt. Note that νt,
Ht, and Bt represent smooth extensions of the outer unit normal field,
the mean curvature and the second fundamental form, respectively, to
a neighborhood of ∂Et. We start by recalling the following identity (see
[6, Lemma 3.8]):

(5.13) ∂νtHt = DHt · νt = −|Bt|2 on ∂Et,
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and

(5.14) ν̇t :=
∂

∂s
νt+s

∣∣∣
s=0

= −Dτ (Xt · νt) = −Dτ

(
[∂νtwt]

)
on ∂Et,

where the last equality follows again by (5.12). Moreover, by dif-
ferentiating with respect to s the identity Dνt+s[νt+s] = 0, we get
Dν̇t[νt] + Dνt[ν̇t] = 0. Multiplying the latter equality by νt and re-
calling that Dνt is symmetric we get Dν̇t[νt] · νt = −Dνt[νt] · ν̇t = 0. In
turn, this implies that

(5.15) divτ ν̇t = div ν̇t on ∂Et.

Also,

∂

∂s
(Ht+s ◦ Φs)

∣∣∣
s=0

= Ḣt +DHt ·Xt =

(5.15)
= divτ ν̇t + ∂νHt(Xt · νt) +DτHt ·Xt

(5.13)
= divτ ν̇t − |Bt|2[∂νtwt] +DτHt ·Xt

(5.14)
= −∆τ [∂νtwt]− |Bt|2[∂νtwt] +DτHt ·Xt.

(5.16)

We can now compute

d

ds

(
1

2

∫
Et+s

|Dwt+s|2 dx
) ∣∣∣

s=0

=
d

ds

(
1

2

∫
Et

|(Dwt+s) ◦ Φs|2 JΦs dx

) ∣∣∣
s=0

=
1

2

∫
Et

|Dwt|2 divXt dx+

∫
Et

Dwt ·
(
D2wt[Xt] +Dẇt

)
dx

=
1

2

∫
Et

div(|Dwt|2Xt) dx+

∫
Et

Dwt ·Dẇtdx

=
1

2

∫
∂Et

|Dw−t |2Xt · νt dH2 +

∫
∂Et

ẇ−t ∂νtw
−
t dH2

=
1

2

∫
∂Et

|Dw−t |2[∂νtwt] dH2 +

∫
∂Et

ẇ−t ∂νtw
−
t dH2 .

(5.17)

In order to write ẇ−t explicitly we use

w−t+s = Ht+s + 4γ vt+s on ∂Et+s ,

which in turn is equivalent to

w−t+s ◦ Φs = Ht+s ◦ Φs + 4γ vt+s ◦ Φs on ∂Et.

By differentiating the above identity with respect to s at s = 0, we get

ẇ−t +Dw−t ·Xt = Ḣt +DHt ·Xt + 4γv̇t + 4γ Dvt ·Xt on ∂Et.
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We now use (5.16) (and of course (5.12)) to get

ẇ−t =− (∂νtw
−
t )[∂νtwt]−∆τ [∂νtwt]− |Bt|2[∂νtwt]

+ 4γ v̇t + 4γ ∂νtvt[∂νtwt] +Dτ (Ht + 4γ vt − wt) ·Xt

=− (∂νtw
−
t )[∂νtwt]−∆τ [∂νtwt]− |Bt|2[∂νtwt]

+ 4γ v̇t + 4γ ∂νtvt[∂νtwt] on ∂Et ,

(5.18)

where in the last equality we have used the fact that wt = Ht+ 4γ vt on
∂Et. Therefore, from (2.5), (5.17) and (5.18) we get

d

dt

(
1

2

∫
Et

|Dwt|2 dx
)

= −
∫
∂Et

∂νtw
−
t ∆τ [∂νtwt] dH2

−
∫
∂Et

|Bt|2 ∂νtw−t [∂νtwt] dH2

+ 8γ

∫
∂Et

∫
∂Et

GT3(x, y) ∂νtw
−
t (x) [∂νtwt(y)] dH2(y)dH2(x)

+ 4γ

∫
∂Et

∂νtvt ∂νtw
−
t [∂νtwt] dH2

+
1

2

∫
∂Et

|Dw−t |2[∂νtwt] dH2 −
∫
∂Et

(∂νtw
−
t )2[∂νtwt] dH2.

(5.19)

The analogous calculations in T3 \ Et yield

d

dt

(
1

2

∫
T3\Et

|Dwt|2 dx

)
=

∫
∂Et

∂νtw
+
t ∆τ [∂νtwt] dH2

+

∫
∂Et

|Bt|2∂νtw+
t [∂νtwt] dH2

− 8γ

∫
∂Et

∫
∂Et

GT3(x, y) ∂νtw
+
t (x) [∂νtwt(y)] dH2(y)dH2(x)

− 4γ

∫
∂Et

∂νtvt ∂νtw
+
t [∂νtwt] dH2

− 1

2

∫
∂Et

|Dw+
t |2[∂νtwt] dH2 +

∫
∂Et

(∂νtw
+
t )2[∂νtwt] dH2.

(5.20)

Combining (5.19) and (5.20), integrating by parts, and recalling (2.9)
we get

d

dt

(
1

2

∫
T3

|Dwt|2 dx
)

=− ∂2J(Et)
[
[∂νtwt]

]
+

∫
∂Et

(
(∂νtw

+
t )2 − (∂νtw

−
t )2
)

[∂νtwt] dH2

− 1

2

∫
∂Et

(|Dw+
t |2 − |Dw

−
t |2)[∂νtwt] dH2.
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The result follows from the identity

|Dw+
t |2 − |Dw

−
t |2 = (∂νtw

+
t )2 − (∂νtw

−
t )2 = (∂νtw

+
t + ∂νtw

−
t )[∂νtwt].

q.e.d.

We now prove Proposition 3.6.

Proof of Proposition 3.6. To simplify the notation, throughout the
proof we write ν instead of νE .

Proof of (i): Observe that we may write u as

u(x) =

∫
∂E
GT3(x, y)f(y) dH2(y).

Note that GT3(x, y) = h(x − y) + r(x − y) where h is one-periodic,
smooth away from 0 and h(t) = 1

4π|t| in a neighborhood of 0, while

r is smooth and one-periodic. The conclusion then follows since for

v(x) :=
∫
∂E

f(y)
|x−y| dH

2(y) it holds

‖v‖Lp(∂E) ≤ C‖f‖Lp(∂E).

Proof of (ii): Here we adapt the proof of [26] to the periodic setting.
First observe that since u is harmonic in E ⊂ T3 we have

(5.21) div
(
2(Du · x)Du− |Du|2x+ uDu

)
= 0.

Moreover, by the C1,α-regularity of ∂E there exist r > 0, C0 and N ,
depending on the C1,α bounds on ∂E, such that we may cover ∂E with
at most N balls Br(xk) such that, up to a translation,

(5.22)
1

C0
≤ x · ν(x) ≤ C0 for x ∈ ∂E ∩B2r(xk).

Therefore, if 0 ≤ ϕk ≤ 1 is a smooth function with compact support in
B2r(xk) such that ϕk ≡ 1 in Br(xk) and |Dϕk| ≤ C/r, by integrating

div
(
ϕk
(
2(Du · x)Du− |Du|2x+ uDu

))
over E and using (5.21) we easily get∫

∂E
ϕk|∂νu−|2(x · ν)− ϕk|Dτu|2(x · ν) dH2

= −
∫
∂E
ϕku∂νu

− dH2 − 2

∫
∂E
ϕk(Dτu · x)∂νu

− dH2

+

∫
E
Dϕk ·

(
2(Du · x)Du− |Du|2x+ uDu

)
dx.

This implies using the Poincaré inequality on the torus (recall that u
has zero average) and (5.22)∫
∂E∩Br(xk)

|∂νu−|2dH2≤C
∫
∂E

(u2 + |Dτu|2)dH2 +C

∫
T3

(u2 + |Du|2)dx

≤ C
∫
∂E

(u2 + |Dτu|2)dH2 + C

∫
T3

|Du|2 dx.
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Adding up all the estimates and repeating the argument for T3 \ E we
get∫
∂E

(|∂νu−|2 + |∂νu+|2) dH2 ≤ C
∫
∂E

(u2 + |Dτu|2) dH2 +C

∫
T3

|Du|2 dx.

The result follows by observing that∫
T3

|Du|2 dx =

∫
∂E
u(∂νu

− − ∂νu+) dH2.

Proof of (iii): The result would follow from the boundary estimates
on C1-domains established in [18]. However, it turns out that in the
case of C1,α-domains the argument can be greatly simplified, as shown
in the following.

Let us define

Kf(x) :=

∫
∂E
DxGT3(x, y) · ν(x)f(y) dH2(y) .

We first show that the above integral is defined for every x ∈ ∂E and
that

(5.23) ‖Kf‖Lp(∂E) ≤ C‖f‖Lp(∂E).

By the decomposition recalled at the beginning of the proof we have
DxGT3(x, y) = Dxh(x−y)+Dxr(x−y), where Dxh(x−y) = − 1

4π
x−y
|x−y|3

in a neighborhood of the origin and Dxr(x− y) is smooth. Thus, by a
standard partition of unity argument we may localize the estimate and
reduce to show that if ϕ ∈ C1,α(R2) and U ⊂ R2 is a bounded domain,
setting Γ := {(x′, ϕ(x′)) : x′ ∈ U} and

Tf(x) :=

∫
Γ

(x− y) · ν(x)

|x− y|3
f(y) dH2(y) x ∈ Γ,

where ν is the upper normal to Γ, then Tf(x) is well defined at every
x ∈ Γ and

‖Tf‖Lp(Γ) ≤ C‖f‖Lp(Γ).

To show this we observe that we may write

Tf(x) :=

∫
U

ϕ(x′)− ϕ(y′)−Dϕ(x′) · (x′ − y′)
(|x′ − y′|2 + (ϕ(x′)− ϕ(y′))2)3/2

f(y′, ϕ(y′)) dy′.

Therefore,

|Tf(x)| ≤ C
∫
U

|x′ − y′|1+α

(|x′ − y′|2 + (ϕ(x′)− ϕ(y′))2)3/2
|f(y′, ϕ(y′))| dy′

≤ C
∫
U

|f(y′, ϕ(y′))|
|x′ − y′|2−α

dy′.

Thus, the estimate (5.23) follows from a standard convolution estimate.



MULLINS–SEKERKA AND SURFACE DIFFUSION FLOWS 41

For x ∈ E we have

Du(x) =

∫
∂E
DxGT3(x, y)f(y) dH2(y).

Therefore, for x ∈ ∂E it holds

Du(x− tν(x)) · ν(x) =

∫
∂E
DxGT3(x− tν(x), y) · ν(x)f(y) dH2(y).

We claim that

(5.24) lim
t→0+

Du(x− tν(x)) · ν(x) = Kf(x) +
1

2
f(x),

for every x ∈ ∂E. Then the result follows from (5.23) and (5.24).
To show (5.24) we first recall that for z ∈ E and for x ∈ ∂E it holds∫

∂E
DxGT3(z, y) · ν(y) dH2(y) = 1− |E|,∫

∂E
DxGT3(x, y) · ν(y) dH2(y) =

1

2
− |E|.

(5.25)

Therefore, we may write

Du(x− tν(x)) · ν(x)

=

∫
∂E
DxGT3(x− tν(x), y) · ν(x)(f(y)− f(x)) dH2(y)

+ f(x)

∫
∂E
DxGT3(x− tν(x), y) · (ν(x)− ν(y)) dH2(y)

+ f(x)(1− |E|).

(5.26)

Let us now prove that

lim
t→0

∫
∂E
DxGT3(x− tν(x), y) · ν(x)(f(y)− f(x)) dH2(y)

=

∫
∂E
DxGT3(x, y) · ν(x)(f(y)− f(x)) dH2(y).

To establish this, first observe that since ∂E is C1 then for |t| sufficiently
small we have

(5.27) |x− y − tν(x)| ≥ 1

2
|x− y| for all y ∈ ∂E .

Then, in view of the decomposition of DxG recalled before, it is enough
to show that

lim
t→0

∫
∂E

(x− y − tν(x)) · ν(x)

|x− y − tν(x)|3
(f(y)− f(x)) dH2(y)

=

∫
∂E

(x− y) · ν(x)

|x− y|3
(f(y)− f(x)) dH2(y) ,

which follows from the Dominated Convergence Theorem, after observ-
ing that due to the α-Hölder continuity of f and to (5.27), the absolute
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value of both integrands can be estimated from above by C/|x− y|2−α
for some constant C > 0.

Hence, (5.24) follows by letting t→ 0 in (5.26) and recalling (5.25).

Proof of (iv): Fix p > 2 and β ∈ (0, p−2
p ). As before, due to

the properties of the Green’s function it is sufficient to establish the
statement for the function

v(x) :=

∫
∂E

f(y)

|x− y|
dH2(y) .

For x1, x2 ∈ ∂E we have

|v(x1)− v(x2)| ≤
∫
∂E
|f(y)|

∣∣|x1 − y| − |x2 − y|
∣∣

|x1 − y| |x2 − y|
dH2(y) .

In turn, by an elementary inequality, we have∣∣|x1 − y| − |x2 − y|
∣∣

|x1 − y| |x2 − y|
≤ C(β)

∣∣|x1 − y|1−β + |x2 − y|1−β
∣∣

|x1 − y| |x2 − y|
|x1 − x2|β .

Thus, by Hölder inequality we have

|v(x1)− v(x2)|

≤ C(β)

∫
∂E
|f(y)|

∣∣|x1 − y|1−β + |x2 − y|1−β
∣∣

|x1 − y| |x2 − y|
dH2(y) |x1 − x2|β

≤ C ′(β)‖f‖Lp |x1 − x2|β ,

where we set

C ′(β) := 2C(β)

(
sup

z1, z2∈∂E

∫
∂E

1

|z1 − y|βp′ |z2 − y|p′
dH2(y)

) 1
p′

.

Proof of (v): We start by observing that

‖f‖L2(∂E) ≤ C‖f‖
1
2

H1(∂E)‖f‖
1
2

H−1(∂E)
,

where C is a constant depending only on the C1,α bounds on ∂E. If
p > 2 we have also, see Lemma 4.5,

‖f‖Lp(∂E) ≤ C‖f‖
p−2
p

H1(∂E)‖f‖
2
p

L2(∂E)
.

Therefore, by combining the two previous inequalities we get that for
p ≥ 2

‖f‖Lp(∂E) ≤ C‖f‖
p−1
p

H1(∂E)‖f‖
1
p

H−1(∂E)
.

Hence, the claim follows once we show

‖f‖H−1(∂E) ≤ C‖u‖L2(∂E).
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Let us fix ϕ ∈ H1(∂E) and with abuse of notation denote its harmonic
extension to T3 by ϕ. Then by integrating by parts twice and by (ii)
we get∫

∂E
ϕf dH2 = −

∫
∂E
u[∂νϕ] dH2 ≤ ‖u‖L2(∂E)‖[∂νϕ]‖L2(∂E)

≤ ‖u‖L2(∂E)

(
‖∂νϕ+‖L2(∂E) + ‖∂νϕ−‖L2(∂E)

)
≤ C‖u‖L2(∂E)‖ϕ‖H1(∂E).

Therefore,

‖f‖H−1(∂E) = sup
‖ϕ‖H1(∂E)≤1

∫
∂E
ϕf dH2 ≤ C‖u‖L2(∂E). q.e.d.

We now prove Lemma 3.7. Before that we recall that for E ⊂ T3 the

H
1
2 (∂E) Gagliardo seminorm of a function f ∈ L2(∂E) is defined by

setting

[f ]21
2
,∂E

:=

∫
∂E

dH2(x)

∫
∂E

|f(x)− f(y)|2

|x− y|3
dH2(y) .

Starting from this definition and using a standard partition of unity
argument in order to straighten the boundary of E locally, the reader
may reconstruct the proof of the following technical lemma.

Lemma 5.1. Let E ⊂ T3 be an open set of class C1,α for some
α ∈ (0, 1). For every γ ∈ [0, 1

2), there exists a constant C depending

only on γ and on the C1,α bounds on ∂E such that if f ∈ H
1
2 (∂E) and

g ∈W 1,4(∂E) then

[fg] 1
2
≤ C

(
[f ] 1

2
‖g‖L∞ + ‖f‖

L
4

1+γ
‖g‖γL∞‖Dτg‖1−γL4

)
.

Next lemma is probably well known to the expert, but we give its
proof for reader’s convenience.

Lemma 5.2. Let F,U be as in Lemma 3.7. Let E be a set in

h1,α
M (F,U), for some α > 0. If H∂E ∈ H

1
2 (∂E), then E is of class

W
5
2
,2 and

‖ψE‖
W

5
2 ,2(∂F )

≤ C(M)
(
1 + ‖H∂E‖2

H
1
2 (∂E)

)
,

where ψE is defined as in (3.3).

Proof. To simplify the notation we will drop the subscript from ψE
and H∂E . Fix ε > 0. By straightening locally the boundary of F , we
may reduce to the case where the function ψ is defined in a disk B′ ⊂ R2

and ‖ψ‖C1(B′) ≤ ε. Fix a cut-off function ϕ with compact support in

B′. Then

(5.28) ∆(ϕψ)− D2(ϕψ)DψDψ

1 + |Dψ|2
= ϕH

√
1 + |Dψ|2 +R(x, ψ,Dψ) ,
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where the remainder term R is a smooth Lipschitz function. Then, using
Lemma 5.1 with γ = 0 and recalling that ‖ψ‖C1 ≤ ε, we estimate

[∆(ϕψ)] 1
2
≤ C(M)

(
ε2[D2(ϕψ)] 1

2
+ [H] 1

2
(1 + ‖Dψ‖L∞)

+ ‖H‖L4(1 + ‖ψ‖W 2,4) + 1 + ‖ψ‖2W 2,4

)
.

Observe that by Calderón–Zygmund estimates ‖ψ‖W 2,4(B′) ≤ C(M)(1+
‖H‖L4(∂E)). Moreover, a simple integration by parts argument shows

that if u is a smooth function with compact support in R2 then

[∆u] 1
2
,R2 = [D2u] 1

2
,R2 .

Thus, choosing ε sufficiently small, we may conclude that

[D2(ϕψ)] 1
2
≤ C(M)

(
1+[H] 1

2
,∂E+‖H‖2L4(∂E)

)
≤ C(M)

(
1+‖H‖2

H
1
2 (∂E)

)
.

From this estimate the conclusion follows. q.e.d.

Proof of Lemma 3.7. Step 1. Throughout the proof we write wn,
Hn, and vn instead of wEn , H∂En , and vEn , respectively. Moreover, we
denote by ŵn the average of wn in T3 and we set w̃n = −

∫
∂En

wn dH2

and H̃n = −
∫
∂En

Hn dH2. First, recall that

(5.29) wn = Hn + 4γvn on ∂En and sup
n
‖vn‖C1,α(T3) < +∞ .

The last bound follows from standard elliptic estimates. Moreover, from
the trace inequality

(5.30) ‖wn − w̃n‖2
H

1
2 (∂En)

≤ ‖wn − ŵn‖2
H

1
2 (∂En)

≤ C
∫
T3

|Dwn|2 dx,

with C depending only on the C1-bounds on ∂En. We claim that

(5.31) sup
n
‖Hn‖

H
1
2 (∂En)

<∞.

To see this note that by the uniform C1-bounds on ∂En, we may find
a fixed cylinder of the form C := B′ × (−L,L), with B′ ⊂ R2 a ball
centered at the origin, and functions fn, with

(5.32) sup
n
‖fn‖C1(B

′
)
< +∞ ,

such that ∂En ∩ C = {(x′, xn) ∈ B′ × (−L,L) : xn = fn(x′)} with
respect to a suitable coordinate frame (depending on n). Thus, we have∫

B′
(Hn − H̃n) dx′ + H̃n|B′| =

∫
B′

div

(
∇x′fn√

1 + |∇x′fn|2

)
dx′

=

∫
∂B′

∇x′fn√
1 + |∇x′fn|2

· x
′

|x′|
dH1 .
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Hence, recalling (5.32) and the fact that ‖Hn− H̃n‖
H

1
2 (∂En)

is bounded

thanks to (5.29) and (5.30), we get that H̃n are bounded. Therefore,
the claim (5.31) follows.

By applying the Sobolev embedding theorem on each connected com-
ponent of ∂F we have that ‖Hn‖L4(∂En) is bounded. This fact, together

with the uniform C1 bounds on ∂En implies that if we write

∂En := {x+ ψn(x)νF (x) : x ∈ ∂F},

then supn ‖ψn‖W 2,4(∂F ) < +∞. This follows by standard elliptic esti-
mates, see [1, Lemma 7.2 and Remark 7.3]. Thus, up to a (not relabeled)
subsequence, there exists a set F ′ such that

ψn → ψF ′ in C1,α(∂F ) and vn → vF ′ in C1,β(T3) ,

for all α ∈ (0, 1
2) and β ∈ (0, 1). From (5.31) and Lemma 5.2 we have

that the functions ψn are bounded in W
5
2
,2(∂F ). Hence, the first part

of the statement follows.

Step 2. For the second part we first observe that if∫
T3

|Dwn|2 dx→ 0,

then the above arguments yield the existence of λ ∈ R and a (not

relabelled) subsequence such that wn
(
· +ψn(·)νF (·)

)
→ λ in H

1
2 (∂F ).

In turn,

Hn

(
·+ψn(·)νF (·)

)
→ λ−4γvF ′

(
·+ψF ′(·)νF (·)

)
= H∂F ′

(
·+ψF ′(·)νF (·)

)
in H

1
2 (∂F ). To conclude the proof we need to show that ψn converge to

ψ := ψF ′ in W
5
2
,2(∂F ). To this aim, fix ε > 0. By straightening locally

the boundary of F , we may always reduce to the case where the functions

ψn are defined on a disk B′ ⊂ R2, are bounded in W
5
2
,2(B′), converge

in W 2,p(B′) for all p ∈ [1, 4) to ψ ∈W
5
2
,2(B′) and ‖Dψ‖L∞(B′) ≤ ε. We

fix a cut-off function ϕ with compact support in B′ and we write

∆(ϕψn)√
1 + |Dψn|2

− ∆(ϕψ)√
1 + |Dψ|2

= (D2(ϕψn)−D2(ϕψ))
DψDψ

(1 + |Dψ|2)
3
2

+D2(ϕψn)

(
DψnDψn

(1 + |Dψn|2)
3
2

− DψDψ

(1 + |Dψ|2)
3
2

)
+ ϕ(Hn −H) +R(x, ψn, Dψn)−R(x, ψ,Dψ) ,

where the remainder term is R is similar to the one in (5.28). Then,
using Lemma 5.1 with γ ∈ (0, 1

2), an argument similar to the one of the



46 E. ACERBI, N. FUSCO, V. JULIN & M. MORINI

proof of Lemma 5.2 shows that[
∆(ϕψn)√
1 + |Dψn|2

− ∆(ϕψ)√
1 + |Dψ|2

]
1
2

≤ C(M)
(
ε2[D2(ϕψn)−D2(ϕψ)] 1

2

+ ‖D2(ϕψn)−D2(ϕψ)‖
L

4
1+γ
‖Dψ‖γL∞‖D

2ψ‖1−γ
L4

+ [D2(ϕψn)] 1
2
‖Dψn −Dψ‖L∞

+ ‖D2(ϕψn)‖
L

4
1+γ
‖Dψn −Dψ‖γL∞(‖D2ψn‖L4 + ‖D2ψ‖L4)1−γ

+ ‖Hn −H‖
H

1
2

+ ‖ψn − ψ‖W 2,2

)
.

Using Lemma 5.1 again to estimate [∆(ϕψn)−∆(ϕψ)] 1
2

with the semi-

norm on the left hand side of the previous inequality and arguing as in
the proof of Lemma 5.2 we, finally, get

[D2(ϕψn)−D2(ϕψ)] 1
2
≤ C(M)

(
‖ψn − ψ‖

W
2, 4

1+γ

+ ‖Dψn −Dψ‖γL∞ + ‖Hn −H‖
H

1
2

)
,

from which the conclusion follows. q.e.d.

5.2. The surface diffusion flow: proof of technical lemmas. We
start by providing the computations leading to the crucial energy iden-
tities of Lemma 4.4.

Proof of Lemma 4.4. Let Ψ, Ψt, Xt be as in the proof of Lemma 3.5,
and note that by (4.1) we have

(5.33) Xt · νt = ∆τHt on ∂Et.

Fix t ∈ (0, T ), and as in Lemma 3.5 set Φs := Ψt+s ◦ Ψ−1
t , so that

(Φ)s∈(−t,T−t) is an admissible one-parameter family of diffeomorphisms
according to Definition 2.1. Then, by Theorem 2.2 we get

d

dt
J(Et) =

d

ds
J(Φs(Et))∣∣

s=0

=

∫
∂Et

HtXt · νt dH2 =

∫
∂Et

Ht∆τHt dH2 = −
∫
∂Et

|DτHt|2 dH2 .

This establishes (4.2). Let us fix a time t > 0. To continue we observe
that, by redefining the velocity field if needed (in a time interval centered
at t), we may assume that Xt has only a normal component on ∂Et;
that is,

(5.34) Xt = (Xt · νt)νt on ∂Et.

Recall that all the geometric quantities can be extended in a neighbor-
hood of ∂Et by means of the gradient of the signed distance function
from Et (see the proof of Lemma 3.5). Now, arguing as in (5.14), we
have

(5.35) ν̇t = −Dτ (Xt · νt) = −Dτ∆τHt on ∂Et,
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where the last equality follows again by (5.33). In turn, using also (5.34)
and (5.14)

∂

∂s
(DHt+s ◦ Φs)

∣∣∣
s=0

= D divτ (ν̇t) +D2Ht[Xt]

= −D(∆τ (∆τHt)) + (∆τHt)D
2Htνt

(5.36)

on ∂Et. Denoting by Dτt+s the tangential differential on ∂Et+s and by
JτΦs the tangential Jacobian of Φs, we have

d

ds

(
1

2

∫
∂Et+s

|Dτt+sHt+s|2 dH2

) ∣∣∣
s=0

=
d

ds

(
1

2

∫
∂Et

|Dτt+sHt+s|2 ◦ ΦsJτΦs dH2

) ∣∣∣
s=0

=
1

2

∫
∂Et

|DτHt|2 divτ (∆τHt νt) dH2

+

∫
∂Et

DτHt ·
∂

∂s

(
Dτt+sHt+s ◦ Φs

) ∣∣∣
s=0

dH2.

(5.37)

We write the last term as

Dτt+sHt+s ◦ Φs = [I − νt+s ◦ Φs ⊗ νt+s ◦ Φs]DHt+s ◦ Φs,

and get by (5.34), (5.13), (5.35) and (5.36)

∂

∂s

(
Dτt+sHt+s ◦ Φs

) ∣∣∣
s=0

= (−ν̇t ⊗ νt − νt ⊗ ν̇t)DHt + [I − νt ⊗ νt]
∂

∂t
(DHt ◦ Φt)

= −|Bt|2Dτ∆τHt −DHt · ν̇t νt
−Dτ∆τ∆τHt + ∆τHt [I − νt ⊗ νt]D2Htνt .

(5.38)

In order to calculate D2Htνt we differentiate equation (5.13) and get

−D|Bt|2 = D(DHt · νt) = D2Htνt +DνtDHt.

Therefore, since Bt = Dνt and Btνt = 0 we get

D2Htνt = −D|Bt|2 −BDτHt.

Plugging the last identity in (5.38) and using again (5.35), we may
continue from (5.37) to obtain

d

ds

(
1

2

∫
∂Et+s

|DτHt+s|2 dH2

) ∣∣∣
s=0

=
1

2

∫
∂Et

Ht|DτHt|2∆τHt dH2

−
∫
∂Et

|Bt|2DτHt ·Dτ∆τHt dH2 −
∫
∂Et

DτHt ·Dτ∆τ∆τHt dH2

−
∫
∂Et

(∆τHt)Dτ |Bt|2 ·DτHt dH2 −
∫
∂Et

B[DτHt]∆τHt dH2.

(5.39)
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Integrating the third term on the right-hand side by parts twice, we get

−
∫
∂Et

DτHt ·Dτ∆τ∆τHt dH2 = −
∫
∂Et

|Dτ∆τHt|2 dH2 .

Integrating the second last term on the right-hand side by parts once,
we have

−
∫
∂Et

(∆τHt)Dτ |Bt|2 ·DτHt dH2

=

∫
∂Et

|Bt|2DτHt ·Dτ∆τHt dH2 +

∫
∂Et

|Bt|2|∆τHt|2 dH2.

Plugging the last two identities into (5.39) and recalling (2.9) (with
γ = 0), the identity (4.3) follows. q.e.d.

Proof of Lemma 4.6. In the following proof, in order to simplify the
notation we drop the dependence on ∂E from all the geometric objects
and the Lp spaces involved. Let us first show

(5.40)

∫
∂E
|D2

τf |2 dH2 ≤ C
∫
∂E
|∆τf |2 dH2 + C

∫
∂E
|B|2|Dτf |2 dH2.

Indeed, recalling the following formula (see [20, Eq. (10.16)])

(5.41) δiδj = δjδi + (νiδjνk − νjδiνk)δk,

and integrating by parts we get∫
∂E
|D2

τf |2 dH2 =

∫
∂E

(δiδjf) (δiδjf) dH2

=

∫
∂E

(δiδjf) (δjδif) dH2 +

∫
∂E

(δiδjf)(νiδjνk − νjδiνk)δkf dH2

= −
∫
∂E
δjf (δiδjδif) dH2 +

∫
∂E
Hνiδjf (δjδif) dH2

+

∫
∂E

(δiδjf)(νiδjνk − νjδiνk)δkf dH2

≤ −
∫
∂E
δjf (δiδjδif) dH2 + C

∫
∂E
|B| |Dτf | |D2

τf | dH2.

Using (5.41) and integrating by parts again, we obtain∫
∂E
|D2

τf |2 dH2 ≤
∫
∂E

(δiδif) (δjδjf) dH2 dH2

+ C

∫
∂E
|B| |Dτf | |D2

τf | dH2.

The inequality (5.40) follows since ∆τf = δiδif .
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We estimate the last term in (5.40) by Lemma 4.5:∫
∂E
|B|2|Dτf |2 dH2 ≤ ‖B‖2L4‖Dτf‖2L4

≤ C‖B‖2L4

(
‖D2

τf‖L2‖Dτf‖L2 + ‖Dτf‖2L2

)
.

Plugging in (5.40) and by an application of Young’s inequality, we get

‖D2
τf‖2L2 ≤ C

(
‖∆τf‖2L2 + ‖Dτf‖2L2(‖B‖2L4 + ‖B‖4L4)

)
≤ C

(
‖∆τf‖2L2 + ‖Dτf‖2L2(1 + ‖B‖4L4)

)
.

(5.42)

Now, note that (with the same notation introduced in Lemma 4.5)

‖Dτf‖2L2 = −
∫
∂E
f∆τf dH2 = −

∫
∂E

(f − f̄)∆τf dH2

≤ ‖f − f̄‖L2‖∆τf‖L2 ≤ C‖Dτf‖L2‖∆τf‖L2 .

(5.43)

Note that in the second equality above we have used the fact that ∆τf
has zero average on each connected component of ∂E. Thus, from (5.42)
we deduce

‖D2
τf‖2L2 ≤ C‖∆τf‖2L2(1 + ‖B‖4L4).

By a standard application of Calderón–Zygmund estimate we have

‖B‖L4 ≤ C(1 + ‖H‖L4),

with C depending on only the C1-bounds on ∂E, and the conclusion
follows. q.e.d.

We now show the geometric interpolation used in the proof of Theo-
rem 4.3.

Proof of Lemma 4.7. Also here to simplify the notation we drop the
dependence on ∂E both from the geometric objects and the Lp spaces.
First by Hölder’s inequality∫

∂E
|B||DτH|2|∆τH| dH2 ≤ ‖∆τH‖L3

(∫
∂E
|B|

3
2 |DτH|3 dH2

)2/3

.

By the Poincaré Inequality stated in Lemma 4.5 we get

‖∆τH‖L3 ≤ C‖Dτ (∆τH)‖L2 .

In turn, Hölder’s inequality implies(∫
∂E
|B|

3
2 |DτH|3 dH2

)2/3

≤
(∫

∂E
|DτH|4 dH2

)1/2(∫
∂E
|B|6 dH2

)1/6

.

Lemma 4.5 yields(∫
∂E
|DτH|4 dH2

)1/2

≤ C
(
‖D2

τH‖L2‖DτH‖L2 + ‖DτH‖2L2

)
.
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Combining all the inequalities above, we get∫
∂E
|B||DτH|2|∆τH| dH2

≤ C‖Dτ (∆τH)‖L2 ‖B‖L6 ‖DτH‖L2(‖D2
τH‖L2 + ‖DτH‖L2).

By Lemma 4.6 and (5.43) (with DτH in place of Dτf), the right-hand
side of the above inequality can be estimated from above by

C‖Dτ (∆τH)‖L2 ‖B‖L6 ‖∆τH‖L2 ‖DτH‖L2 (1 + ‖H‖2L4).

The conclusion follows from the Poincaré Inequality

‖∆τH‖L2 ≤ C‖Dτ (∆τH)‖L2 ,

and the Calderón–Zygmund estimate

‖B‖L6 ≤ C(1 + ‖H‖L6) . q.e.d.

We conclude with the proof of the geometric Poincaré Inequality
stated in Lemma 4.8.

Proof of Lemma 4.8. Since
∫
∂E(H∂E −H∂E)νE dH2 = 0, we may ap-

ply Lemma 2.6, with ε = 1 and ϕ := H∂E −H∂E , and recall (2.9) (with
γ = 0) to obtain

σ

∫
∂E
|H∂E −H∂E |2 dH2

≤
∫
∂E
|DτH∂E |2 dH2 −

∫
∂E
|B∂E |2|H∂E −H∂E |2 dH2

≤
∫
∂E
|DτH∂E |2 dH2 .

The conclusion follows. q.e.d.
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[45] M. Röger, Existence of weak solutions for the Mullins–Sekerka flow, SIAM J.
Math. Anal. 37 (2005), 291–301. MR2176933, Zbl 1088.49031.

[46] A. Ros, Stable periodic constant mean curvature surfaces and mesoscopic
phase separation, Interfaces Free Bound. 9 (2007), 355–365. MR2341847, Zbl
1142.53013.

[47] M. Ross, Schwarz’ P and D surfaces are stable, Differential Geom. Appl. 2
(1992), 179–195. MR1245555, Zbl 0747.53010.

[48] G. Wheeler, Surface diffusion flow near spheres, Calc. Var. Partial Differential
Equations 44 (2012), 131–151. MR2898774, Zbl 1238.53043.

Dipartimento di Scienze Matematiche
Fisiche e Informatiche

Università di Parma
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