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PROPERLY IMMERSED SURFACES IN HYPERBOLIC
3-MANIFOLDS

William H. Meeks III & Álvaro K. Ramos

Abstract

We study complete finite topology immersed surfaces Σ in com-
plete Riemannian 3-manifolds N with sectional curvature KN ≤
−a2 ≤ 0, such that the absolute mean curvature function of Σ is
bounded from above by a and its injectivity radius function is not
bounded away from zero on each of its annular end representa-
tives. We prove that such a surface Σ must be proper in N and
its total curvature must be equal to 2πχ(Σ). If N is a hyperbolic
3-manifold of finite volume and Σ is a properly immersed surface
of finite topology with nonnegative constant mean curvature less
than 1, then we prove that each end of Σ is asymptotic (with finite
positive integer multiplicity) to a totally umbilic annulus, properly
embedded in N .

1. Introduction

In the celebrated paper [4], Colding and Minicozzi proved that com-
plete minimal surfaces of finite topology embedded in R

3 are proper.
Based on the proof of this result, Meeks and Rosenberg [15] showed
that complete, connected minimal surfaces with positive injectivity ra-
dius embedded in R

3 are proper. Meeks and Tinaglia [16] then extended
both results by proving that complete surfaces with constant mean cur-
vature embedded in R

3 are proper if they have finite topology or positive
injectivity radius. It is natural to ask to what extent similar properness
results hold for complete surfaces of finite topology in other ambient
spaces, where the surfaces are not necessarily embedded or have con-
stant mean curvature.
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In this paper we investigate relationships between properness of a
complete immersed surface of finite topology in a 3-manifold of non-
positive sectional curvature under certain restrictions on its injectivity
radius function and on its mean curvature function. We first derive area
estimates for certain compact surfaces with bounded absolute mean cur-
vature in Hadamard 3-manifolds. We next apply these area estimates
to obtain sufficient conditions for a complete finite topology surface im-
mersed in a complete 3-manifold with nonpositive sectional curvature
to be proper, as described in Theorem 1.2 below. In order to state this
result we need the following definition.

Definition 1.1. Let e be an end of a complete Riemannian surface Σ
whose injectivity radius function we denote by IΣ : Σ→ (0,∞). Let E(e)
be the collection of proper subdomains E ⊂ Σ, with compact boundary,
that represents e. We define the (lower) asymptotic injectivity radius of
e by

I∞Σ (e) = sup{inf
E

IΣ|E | E ∈ E(e)} ∈ [0,∞].

Note that if Σ has an end e which admits a one-ended representative
E, then I∞Σ (e) = lim infE IΣ|E . If Σ has finite topology, then every
end of Σ has a one-ended representative which is an annulus (i.e., a
surface with the topology of S1 × [0,∞)), hence, this simpler definition
can be used. Moreover, Lemma 5.1 in the Appendix shows that if Σ
has nonpositive Gaussian curvature and an end e has a representative E
which is an annulus, then for every divergent sequence of points {pn}n∈N
on E,

lim
n→∞ IΣ(pn) = I∞Σ (e).

We define the mean curvature function of an immersed two-sided
surface Σ with a given unit normal field in a Riemannian 3-manifold to
be the pointwise average of its principal curvatures; note that if Σ does
not have a unit normal field, then the absolute value |HΣ| of the mean
curvature function of Σ still makes sense because a unit normal field
locally exists on Σ and under a change of this local choice, the principal
curvatures change sign.

Theorem 1.2. Let N be a complete 3-manifold with sectional cur-
vature KN ≤ −a2 ≤ 0, for some a ≥ 0. Let ϕ : Σ→ N be an isometric
immersion of a complete surface Σ with finite topology, whose mean cur-
vature function satisfies |Hϕ| ≤ a. Then Σ has nonpositive Gaussian
curvature and the following hold:

A. If N is simply connected, then I∞Σ (e) =∞ for every end e of Σ.
B. If N has positive injectivity radius Inj(N) = δ > 0, then every end

e of Σ satisfies I∞Σ (e) ≥ δ. In particular, Σ has positive injectivity
radius.
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C. If IΣ is bounded, then Σ has finite total curvature∫
Σ
KΣ = 2πχ(Σ),

where χ(Σ) is the Euler characteristic of Σ. Furthermore, for each
annular end representative E of Σ, the induced map ϕ∗ : π1(E) →
π1(N) on fundamental groups is injective.

D. If I∞Σ (e) = 0 for each end e of Σ, then ϕ is proper.

The other main theorem of the paper, Theorem 1.3 below, describes,
among other things, results on the asymptotic behavior of complete,
properly immersed finite topology surfaces of constant absolute mean
curvatureH ∈ [0, 1) in hyperbolic 3-manifolds of finite volume; througout
the paper, the term hyperbolic 3-manifold of finite volume will refer to
noncompact examples. Our asymptotic description of these surfaces was
inspired by Theorem 1.1 of Collin, Hauswirth and Rosenberg [5] who
obtained it in the special case that H = 0.

For any connected, noncompact, orientable surface of finite topology
S different from an annulus or a plane, there exists a hyperbolic 3-
manifold NS of finite volume that admits a properly embedded surface
Σ, that is totally geodesic in NS , homeomorphic to S and such that
each end of NS contains at most one end of Σ; then a “t-parallel”
surface to Σ is a properly immersed surface of constant mean curvature
H(t) = tanh(t). As t ranges from 0 to ∞, this gives examples with
all the possible mean curvatures H ∈ [0, 1). Moreover, for t sufficiently
small, such parallel surfaces can be shown to be embedded, see [1].

Theorem 1.3. Let N be a complete, noncompact hyperbolic 3-mani-
fold of finite volume and H ∈ [0, 1). Let Σ be a complete, properly
immersed surface in N with |HΣ| ≤ H. Then:

1) Σ has finite area and a finite number of connected components.
2) For any divergent sequence of points {pn}n∈N ⊂ Σ,

limn→∞ IΣ(pn) = 0.
3) Σ has total curvature

(1)

∫
Σ
KΣ = 2πχ(Σ).

4) If Σ has infinite topology, then the norm of its second fundamental
form is unbounded.

5) If HΣ = H, then every annular end representative of an end of Σ
is asymptotic (with finite multiplicity) in the C2-norm, to a totally
umbilic annulus properly embedded in N . In particular, if Σ has
finite topology, then the norm of the second fundamental form of
Σ is bounded.

The totally umbilic annuli described in the item 5 of last theorem are
properly embedded annular ends in N whose lifts to hyperbolic 3-space
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are contained in equidistant surfaces to totally geodesic planes; see the
discussion in Section 4.3 for a complete description.

An immediate consequence of item 2 of Theorem 1.3 and of item D
of Theorem 1.2 is the following corollary.

Corollary 1.4. Let N be a hyperbolic manifold of finite volume and
let H ∈ [0, 1). Then a complete immersed surface Σ in N with finite
topology and mean curvature function |HΣ| ≤ H is proper if and only
I∞Σ (e) = 0 for each end e of Σ.

We remark that the hypothesis H < 1 in the statement of Theo-
rem 1.3 is a necessary one. Proposition 4.8 shows that for any H ≥ 1,
every complete hyperbolic 3-manifold N of finite volume admits a prop-
erly immersed, complete annulus Σ of constant mean curvature H with
positive injectivity radius and infinite area.

The paper is organized as follows. In Section 2, we prove isoperimetric
inequalities for certain compact surfaces with boundary in Hadamard
3-manifolds. These isoperimetric inequalities yield area estimates which
are applied in Section 3 to prove Theorem 1.2. In Section 4, we prove
Theorem 1.3.

2. An isoperimetric inequality in Hadamard manifolds

In this section, we obtain an isoperimetric inequality for certain hy-
persurfaces in Hadamard manifolds, see Theorem 2.1 below. By
Hadamard manifold we mean a simply connected manifold with non-
positive sectional curvature.

Theorem 2.1. Let N be a Hadamard manifold of dimension 3 with
sectional curvature KN ≤ −a2 ≤ 0 and let Γ be a complete geodesic
of N . Given r > 0, there exists a C = C(a, r) > 0 such that every
smooth, immersed, compact orientable surface Σ ⊂ N with mean cur-
vature |HΣ| ≤ a and that stays at a finite distance less than r from Γ,
satisfies

(2) Area(Σ) ≤ C Length(∂Σ).

Proof. Let Γ ⊂ N be a complete geodesic, R = dN (·,Γ) be the am-
bient distance function to Γ and r > 0 be given. We will prove the
theorem using the following claim:

Claim 2.2. Fixed r > 0, there exist a smooth function f : [0, r]→ R

and constants C1, C2 > 0, whose construction depends uniquely on the
constants r and a, such that for all x ∈ [0, r],

(3) 0 ≤ f ′(x) ≤ C1

holds and that, for every smooth compact surface Σ immersed in
R−1([0, r)) with mean curvature function satisfying |HΣ| ≤ a, then

(4) ΔΣ(f ◦R) ≥ C2, in N.
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Before we prove the claim, we apply it to obtain the constant C
of Theorem 2.1. First, note that R is differentiable in N \ Γ, with
‖grad(R)‖ = 1 in N \ Γ. Let f be the function provided by the claim
and let Σ be a surface satisfying the hypothesis of the theorem. Denoting
by ν the conormal vector field along ∂Σ, we can apply the divergence
theorem to obtain that

(5)

∫
Σ
ΔΣ(f ◦R) =

∫
∂Σ

(f ′ ◦R)〈grad(R), ν〉 ≤ C1 Length(∂Σ),

where last inequality comes from (3). On the other hand, (4) implies

(6)

∫
Σ
ΔΣ(f ◦R) ≥ C2Area(Σ).

By defining C = C1/C2, (5) and (6) show that (2) holds for Σ, thereby
providing the constant C of Theorem 2.1.

Next, we prove the claim.

Proof of Claim 2.2. Let Σ be as in the claim and let f : [0, r] → R

be some smooth function, to be chosen a posteriori, such that f ′ ≥ 0.
Since R is not smooth in points of Γ, we will first show that (4) holds in
N \ Γ; however, our choice of f will be of an even function, then f ◦ R
will be smooth in N and (4) will hold everywhere by continuity.

Consider {E1, E2} an orthogonal frame to Σ and let η be a normal
unitary vector field orienting Σ. A straightforward calculation shows
that

ΔΣ(f ◦R) = (f ′ ◦R)
2∑

i=1

Hess(R)(Ei, Ei)+(f ′′ ◦R)
2∑

i=1

〈grad(R), Ei〉2

+ 2HΣ(f
′ ◦R)〈grad(R), η〉,(7)

where we denote grad = gradN and Hess(R)(X, Y ) = 〈∇Xgrad(R), Y 〉,
respectively, the gradient and the Hessian with respect to the ambient
space.

As R is the distance function to the geodesic Γ, the Hessian of R
satisfies a matrix valued Riccati type differential equation, where the
independent term is the curvature tensor of N . Then, since N has
sectional curvature satisfying KN ≤ −a2 ≤ 0, it follows from the com-
parison principle to the Riccati equation, a Hessian comparison principle
for the distance function R, given below in (8) (see, for instance, Propo-
sition 5.4 of [7] or the main result of [8]), which we now describe. For
ρ > 0, let Cρ = R−1({ρ}) be the geodesic cylinder of radius ρ around Γ
and Sρ be a geodesic sphere of radius ρ centered at a point Γ(s) of Γ.
Let ∂θ be a unitary vector field tangent to Cρ∩Sρ and let ∂s be unitary
such that {grad(R), ∂s, ∂θ} is an orthonormal frame in N , away from
Γ; see Figure 1. Then
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Figure 1. The frame {∂θ, ∂s, grad(R)}.

(8) Hess(R)(∂θ, ∂θ) ≥ μθ(R), Hess(R)(∂s, ∂s) ≥ μs(R),

where μθ, μs are the functions that realize equalities in (8) in the spaces
of constant sectional curvature −a2, and are defined by
(9)

μθ(x) =

{
a coth(ax), if a > 0
1/x, if a = 0

, μs(x) =

{
a tanh(ax), if a > 0
0, if a = 0

.

We use (8) to estimate Hess(R)(Ei, Ei). Since

〈∇∂sgrad(R), ∂θ〉 = 0 = 〈∇∂θgrad(R), ∂s〉,
and also

Ei = 〈Ei, grad(R)〉grad(R) + 〈Ei, ∂s〉∂s + 〈Ei, ∂θ〉∂θ,
then (8) gives

Hess(R)(Ei, Ei) = 〈Ei, ∂s〉2Hess(R)(∂s, ∂s) + 〈Ei, ∂θ〉2Hess(R)(∂θ, ∂θ)

≥ 〈Ei, ∂s〉2μs(R) + 〈Ei, ∂θ〉2μθ(R).(10)

We sum (10) for i = 1, 2 and use that μs < μθ to obtain a lower estimate
for the first term of (7). We suppress the variable R in the functions μs

and μθ to simplify the notation.

2∑
i=1

Hess(R)(Ei, Ei) ≥ μs

2∑
i=1

〈Ei, ∂s〉2 + μθ

2∑
i=1

〈Ei, ∂θ〉2

= μs − μs〈η, ∂s〉2 + μθ − μθ〈η, ∂θ〉2

≥ μs + μθ − μθ

(
〈η, ∂s〉2 + 〈η, ∂θ〉2

)
= μs + μθ〈η, grad(R)〉2.(11)

Let β be the angle between grad(R) and η. Since f ′ ≥ 0, then (11)
and (7) imply that

ΔΣ(f ◦R) ≥ f ′ (μs + μθ cos
2(β)

)
+ f ′′(1− cos2(β)) + 2HΣf

′ cos(β)

= (f ′μθ − f ′′) cos2(β) + 2HΣf
′ cos(β) + f ′μs + f ′′.(12)

At this point, we are able to finish the proof in the case a = 0, where
μs(R) = 0, μθ(R) = 1/R and HΣ = 0. By choosing f(x) = x2, (12)
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gives
ΔΣ(R

2) ≥ 2,

and we can set C1 = f ′(r) = 2r and C2 = 2, which proves the claim
and gives the constant C(0, r) = r in the theorem.

Next, assume that a > 0. If we suppose that f ′μθ − f ′′ > 0 (this will
be shown to hold for our choice of f), algebraic manipulation in (12)
gives

ΔΣ(f ◦R) ≥ (f ′μθ − f ′′)
(
cos(β) +HΣ

f ′

f ′μθ − f ′′

)2

−H2
Σ

(f ′)2

f ′μθ − f ′′ + f ′μs + f ′′

≥ f ′μs + f ′′ −H2
Σ

(f ′)2

f ′μθ − f ′′ .(13)

Using that μsμθ = a2 and H2
Σ ≤ a2, we obtain the following estimate

ΔΣ(f ◦R) ≥ (f ′)2(a2 −H2
Σ) + f ′′(f ′μθ − f ′′ − f ′μs)

f ′μθ − f ′′

≥ f ′′
(
1− f ′μs

f ′μθ − f ′′

)
.(14)

We now make our choice of f . Fix k ∈ N and let fk : R → R be a
solution to

(15) f ′(x)μs(x) =
k

k + 1
(f ′(x)μθ(x)− f ′′(x)),

which can be explicitly expressed by

(16) fk(x) = −
k

a(cosh(ax))
1
k

.

The derivatives of fk are

f ′
k(x) =

tanh(ax)

(cosh(ax))
1
k

,(17)

f ′′
k (x) =

a

k(cosh(ax))
2k+1

k

[k + 1− cosh2(ax)],(18)

and, by (15) and (17) we conclude that f ′
kμθ− f ′′

k > 0; hence, (14) gives
the inequality

(19) ΔΣ(f ◦R) ≥ a
k + 1− cosh2(aR)

k(k + 1)(cosh(aR))
2k+1

k

.

Let gk : [0, r]→ R be defined by the expression in the right hand side
of (19), i.e.,

gk(x) = a
k + 1− cosh2(ax)

k(k + 1)(cosh(ax))
2k+1

k

.
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To prove the claim it suffices to find a lower positive bound for gk, as
f ′
k is nonnegative and bounded by C1 = 1. Note that gk(x) > 0 if and
only if

cosh2(ax) < k + 1.

Choose n ∈ N such that cosh2(ar) < n+ 1. Then fn is a function that
satisfies (3) in [0, r], for C1 = 1. A direct calculation of the derivative
of gn shows that it is a decreasing function in [0, r]; thus, if we set
C2 = gn(r) > 0, it follows that gn(x) ≥ C2 > 0 for x ∈ [0, r]. Since n
was chosen independently of Σ and C1, C2 depend uniquely on fn, this
completes the proof of the claim in the case when a > 0. q.e.d.

As explained immediately after the statement of Claim 2.2, the theorem
is now proved. q.e.d.

Remark 2.3. The hypothesis |HΣ| ≤ a in Theorem 2.1 cannot be
improved. Indeed, if N is simply connected, of constant sectional cur-
vature KN = −a2 ≤ 0, then, for each H > a, there exists a geodesic
cylinder of constant mean curvature H, containing compact subdomains
with constant boundary length and with arbitrarily large area.

The next corollary is an immediate consequence of Theorem 2.1. One
only needs to check that if the boundary of the compact surface Σ given
below has length L, then Σ is contained in a solid geodesic cylinder of
radius L/2, which follows from the mean curvature comparison princi-
ple.

Corollary 2.4 (Area estimate for surfaces with two boundary com-
ponents). Let N be a Hadamard 3-manifold with sectional curvature
KN ≤ −a2 ≤ 0. Then, for each L > 0, there is a constant C = C(a, L)
such that the following holds.

Let Σ ⊂ N be a compact surface immersed in N with |HΣ| ≤ a. If the
boundary of Σ consists on one or two components and has total length
at most L, then

(20) Area(Σ) ≤ C L.

3. The proof of Theorem 1.2

Throughout this section N will be a complete Riemannian 3-manifold
with sectional curvature KN ≤ −a2 ≤ 0, and ϕ : Σ→ N will be an iso-
metric immersion of a finite topology surface Σ such that the mean
curvature function Hϕ of the immersion satisfies |Hϕ| ≤ a. A simple
consequence of the Gauss equation is that the Gaussian curvature func-
tion KΣ of Σ is nonpositive; hence, if p ∈ Σ and IΣ(p) is finite, then
there is a closed geodesic loop based at p in Σ of length 2IΣ(p) (see, for
instance, Proposition 2.12, Chapter 13 of [6]). Moreover, it follows from
the Gauss-Bonnet formula that such loop is homotopically nontrivial in



PROPERLY IMMERSED SURFACES IN HYPERBOLIC 3-MANIFOLDS 241

Σ. The existence of such loops will be used in the proofs of the next
two propositions.

Proposition 3.1. Suppose N is simply connected and E ≡ S
1 ×

[0,+∞) is a complete, noncompact Riemannian annulus. If ϕ : E → N
is an isometric immersion with |Hϕ| ≤ a, then the asymptotic injectivity
radius of E, which we denote by I∞E , is infinite. In particular, item A
of Theorem 1.2 holds.

Proof. An elementary calculation shows that there is an ε > 0 in-
dependent of E such that intrinsic balls BE(p, ε) ⊂ E − ∂E have area
greater than some fixed positive constant; see Theorem 3 and Remark 4
in the appendix of [9]. In particular, since E is noncompact, complete
and has compact boundary, then E has infinite area.

Arguing by contradiction, suppose that the asymptotic injectivity
radius of E is I∞E = L ∈ [0, ∞). By the definition of I∞E , there is an
intrinsically divergent sequence of points {qn}n in E such that

lim
n→∞ IE(qn) = L.

After replacing by a subsequence, IE(qn) < L + 1, {dE(qn, ∂E)}n is
increasing, dE(q1, ∂E) ≥ L+1 and dE(qn, qn+1) ≥ 2L+2. Hence, there
exist homotopically nontrivial geodesic loops γn with base points qn and
lengths equal to 2IE(qn) < 2L + 2, which are pairwise disjoint by the
triangle inequality.

For n > 1, let En be the compact annular region of E bounded by
γ1 and γn. Since the total length of ∂En is less than 4L + 4, it follows
from Corollary 2.4 that there is a constant C such that En satisfies the
uniform area estimate (20):

Area(En) ≤ C(4L+ 4).

In particular, E has finite area, which contradicts our previous obser-
vation that the area of E was infinite, and completes the proof that
I∞E =∞. q.e.d.

Proposition 3.2. Suppose ϕ : E → N is an isometric immersion of
a complete annulus E ≡ S

1 × [0, +∞) in N satisfying |Hϕ| ≤ a. Then:

I. If I∞E ∈ [0,∞), then the induced homomorphism ϕ∗ : π1(E) →
π1(N) is injective.

II. I∞E ≥ Inj(N), where Inj(N) denotes the injectivity radius of N .
III. If I∞E = 0, then ϕ is proper.

Proof. We first prove item I of the proposition. Arguing by contra-
diction, suppose I∞E is finite and

ϕ∗ : π1(E)→ π1(N)

is not injective. Since π1(E) is isomorphic to Z, the kernel K of ϕ∗ is

a cyclic subgroup of index n, for some n ∈ N. Let Π: Ẽ → E be the
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n-sheeted covering space of E corresponding to the subgroup K. Note

that Ẽ is an annulus of nonpositive Gaussian curvature, I∞
˜E

is less than

or equal to nI∞E (since y ∈ Π−1(x)⇒ I
˜E
(y) ≤ nIE(x)) and the induced

map from the fundamental group of Ẽ to N is trivial. By covering

space theory, (ϕ ◦ Π): Ẽ → N lifts isometrically to the universal cover

Ñ of N , which is a Hadamard manifold with respect to the pulled-back
metric. Since I∞

˜E
is finite, Proposition 3.1 gives a contradiction, thereby

completing the proof of item I.
We next prove statement II. Suppose that I∞E < Inj(N). Then there

exists a geodesic loop γ in E with length less than 2Inj(N). Since γ is
homotopically nontrivial in E and lies in a simply connected ball in N ,
then for any p ∈ γ, the induced map ϕ∗ : π1(E, p)→ π1(N, p) is trivial,
contradicting item I.

Finally, we prove III. If ϕ were not proper, there would exist an intrin-
sically divergent sequence of points qn ∈ E, such that ϕ(qn) converges to
a point q ∈ N . Lemma 5.1 in the Appendix implies limn→∞ IE(qn) = 0;
hence, after replacing by a subsequence, qn ∈ BN (q, IN (q)/2) and there
exist homotopically nontrivial geodesic loops γn based at qn with lengths
2IE(qn) < IN (q). By the triangle inequality, the loops ϕ(γn) are con-
tained in the simply connected geodesic ball BN (q, IN (q)), contradicting
item I. Thus, ϕ is proper. q.e.d.

All of the assertions in Theorem 1.2, except for the first statement
of item C of Theorem 1.2, follow immediately from Propositions 3.1
and 3.2. The Cohn-Vossen [3] inequality implies that for any complete
surface M of nonpositive curvature,

(21)

∫
M

KM ≤ 2πχ(M).

In our setting where M = Σ and each end e of Σ satisfies I∞Σ (e) is
bounded, Theorem 11 of Huber [12] implies∫

Σ
KΣ = 2πχ(Σ),

which completes the proof of Theorem 1.2.

4. Proof of Theorem 1.3

In this section, we prove Theorem 1.3, which describes, among other
things, the asymptotic behavior of certain immersed surfaces in hyper-
bolic manifolds of finite volume. Before we prove this result, we set
up the notation that we use and give a brief review of the structure of
the ends of orientable hyperbolic manifolds of finite volume, called cusp
ends.
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We will use the half-space model for the hyperbolic space:

H
3 = {(x, y, z) ∈ R

3 | z > 0},

endowed with the metric ds2 =
dx2 + dy2 + dz2

z2
. In this model, the

horizontal planes

H(t) = {(x, y, z) ∈ H
3 | z = t}

are horospheres, with constant mean curvature 1 with respect to its
upward pointing unit normal field. Vertical planes are totally geodesic
and isometric to the hyperbolic plane H

2.
Fix two linearly independent horizontal vectors u = (ux, uy, 0), v =

(vx, vy, 0) ∈ R
3 and let G(u, v) be the group of parabolic translations of

H
3 generated by u, v, i.e., G(u, v) = {τ(m,n) | (m,n) ∈ Z× Z}, where

each τ(m,n) is the parabolic isometry of H3 defined by τ(m,n)(p) =
p+mu+ nv. In coordinates,

(22)
τ(m,n) : H

3 → H
3,

(x, y, z) �→ (x+mux + nvx, y +muy + nvy, z).

If N is a complete, orientable, noncompact hyperbolic 3-manifold of
finite volume, it has a finite number of ends Ci, i = 1, 2, . . . , n, called the
cusp ends of N . For each Ci there exists ti > 0 and linearly independent
horizontal vectors ui, vi, such that Ci is represented by, and, henceforth,
isometrically identified with, the quotient of

(23) M(ti) =
⋃
t≥ti

H(t) = {(x, y, z) ∈ H
3 | z ≥ ti}

by the action of the group G(ui, vi). Since G(ui, vi) leaves every horo-
sphere H(t) invariant and M(ti) is foliated by {H(t)}t≥ti , each Ci ad-
mits a product foliation by the family of constant mean curvature 1 tori
{T (t) = H(t)/G(ui, vi)}t≥ti . Also, the fundamental group of each Ci is
naturally isomorphic to G(ui, vi), viewed as the subgroup of isometries
of M(ti) that commute with the covering map ψi : M(ti)→ Ci.

4.1. Proof of items 1–4 of Theorem 1.3. With the notation con-
cerning the structure of the cusp ends of N discussed above, we next
prove the first four items of Theorem 1.3.

Let ϕ : Σ→ N be the immersed surface given in the statement of the
theorem. Let C1, C2, . . . , Cn be cusp end representatives of the ends of
N and let NT = N \ (C1 ∪ C2 ∪ . . . ∪ Cn). Since ϕ is a proper map and
NT is compact, it holds that ϕ(Σ) ∩ NT is compact. Without loss of
generality, we may assume that ∂NT is transverse to ϕ(Σ) and consists
of a finite collection of immersed closed curves.

To prove that Σ has finite area, it suffices to show that each inter-
section ϕ(Σ) ∩ Ci has finite area. Let C be one of the cusp ends Ci. Up
to a reparameterization, we may assume that C = ∪t≥1T (t). We define
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Figure 2. The immersed compact region ϕ(E(t)).

E(C) = ϕ−1(C) ⊂ Σ and E(t) = ϕ−1
(
∪s∈[1,t]T (s)

)
. We also use the

notation ϕ = ϕ|E(C).
Let R : C → [0, ∞) be the distance function to T (1). By following

the arguments in the proof of Theorem 2.1, one can obtain under the
assumptions of the theorem that the intrinsic Laplacian of R◦ϕ satisfies

(24) ΔE(C)(R ◦ ϕ) ≤ H2 − 1 < 0.

Let t > 1 be a regular value for R ◦ ϕ and let Γt = ϕ−1(T (t)). Also,
we denote Γ1 = ∂E(C), then ∂E(t) = Γ1 ∪ Γt. Integrating (24) over
E(t), we obtain

(25)

∫
E(t)

ΔE(C)(R ◦ ϕ) ≤ (H2 − 1)Area(E(t)).

Applying the divergence theorem to the left hand side of (25), gives
(26)∫

E(t)
ΔE(C)(R ◦ ϕ) =

∫
Γ1

〈gradE(C)(R ◦ ϕ), ν1〉+
∫
Γt

〈gradE(C)(R ◦ ϕ), νt〉,

where ν1 and νt denote respectively the outward pointing conormal vec-
tors to E(t) along Γ1 and Γt (see Figure 2). It follows from (25) and
(26) that
(27)

(1−H2)Area(E(t)) ≤ −
∫
Γ1

〈gradE(C)(R◦ϕ), ν1〉−
∫
Γt

〈gradE(C)(R◦ϕ), νt〉.

Since ϕ is an isometric immersion and νt is tangent to E(C),
〈gradE(C)(R ◦ ϕ), νt〉 = 〈grad(R), dϕ(νt)〉. Moreover, by the definition

of E(t), along ϕ(Γt) we have

〈grad(R), dϕ(νt)〉 > 0.

Hence, 〈gradE(C)(R ◦ ϕ), νt〉 > 0 and (27) implies that

(28)

Area(E(t)) < − 1

1−H2

∫
Γ1

〈gradE(C)(R ◦ ϕ), ν1〉 ≤
1

1−H2
Length(Γ1).

It follows that Area(E(C)) is bounded by 1
1−H2Length(Γ1), which proves

that Σ has finite area.
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To finish the proof of item 1, just note that each connected component
E of Σ must be such that ϕ(E) ∩ NT �= ∅, otherwise ϕ(E) would be
contained in a cusp end C of N ; since ϕ is proper, this implies that
R ◦ ϕ|E would attain a minimal value t∗ on an interior point p∗ ∈ E.
Then, the mean curvature comparison principle applied to T (t∗) and to
ϕ(E) at ϕ(p∗) gives a contradiction, since the mean curvature of T (t∗) is
1, ϕ(E) lies in the mean convex side of T (t∗) and the mean curvature of
ϕ(E) at ϕ(p∗) is strictly less than 1. Finally, since ϕ is proper, ϕ−1(NT )
must contain a finite number of connected components.

The second item of the theorem follows from item 1, as we next
explain. Suppose there exist an ε > 0 and a divergent sequence of points
{pn}n∈N in Σ such that IΣ(pn) ≥ ε. After replacing by a subsequence,
we may assume that {BΣ(pn, ε)}n∈N is a collection of pairwise disjoint
disks. Since Σ has nonpositive curvature, comparison theorems imply
that Area(BΣ(pn, ε)) ≥ πε2. Hence, Σ has infinite area, contradicting
item 1, which proves item 2.

Next, we prove item 3. Since Σ has a finite number of connected
components by item 1, if Σ has infinite topology, then its Euler char-
acteristic is χ(Σ) = −∞. Hence, Cohn-Vossen inequality (21) implies
that Σ has infinite total curvature, which proves item 3 in this case. In
the case where Σ has finite topology, item 2 implies that IΣ is bounded;
therefore, equation (1) holds by item C of Theorem 1.2.

To prove that ϕ(Σ) has unbounded norm of the second fundamental
form when it has infinite topology, just note that a uniform bound
on ‖Aϕ‖, with the assumption that |Hϕ| ≤ H, would imply that KΣ

is uniformly bounded, by Gauss’ equation. In particular, since Σ has
finite area it would have finite total curvature, contradicting item 3,
which proves item 4.

4.2. Bounds on the second fundamental form. A key step in ob-
taining the asymptotic description of the annular ends of Σ in the con-
stant mean curvature setting, is the boundedness of the second funda-
mental form of each such end.

Proposition 4.1. Let N be a complete, noncompact hyperbolic 3-
manifold of finite volume and H ∈ [0, 1). If E is a complete, properly
immersed annulus in N with constant mean curvature H, then ϕ(E)
has bounded norm of its second fundamental form.

Proof. Since ϕ is a proper map, then there exist a cusp end C of
N and a subannular end E′ ⊂ E such that ϕ(E′) is contained in C;
since it suffices to prove that E′ has bounded second fundamental form,
we may assume that ϕ(E) ⊂ C. Up to a reparameterization, we write
C = ∪t≥1T (t); in particular, ϕ(∂E) ⊂ ∪t∈[1, t0]T (t), for some t0 ≥ 1.
Using this notation, we prove next claim.
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Claim 4.2. For almost every t ≥ t0, ϕ(E) meets the torus T (t) trans-
versely and for each such t there is a unique homotopically nontrivial
closed curve αt ⊂ E such that ϕ(αt) is contained in T (t). Moreover,
the annular subend E′ of E determined by αt is immersed in ∪s≥tT (s)
and the induced map ϕ′∗ : π1(E′)→ π1(∪s≥tT (s)) is injective.

Proof of Claim 4.2. Sard’s Theorem implies that for almost all t ≥
t0, ϕ is transverse to T (t) and for such t, Γt = ϕ−1(T (t)) is a finite
collection of pairwise disjoint simple closed curves in E. Fix a regular
value t1 > t0. We next prove that exactly one of the curves in Γt1 is
homotopically nontrivial in E. Since ϕ−1(∪t∈[1,t1]T (t)) is a compact
surface (possibly disconnected) containing ∂E, then the 1-cycle ∂E is
Z2-homologous to the collection of unoriented curves in Γt1 . Since ∂E
represents the nontrivial element in H1(E,Z2), then at least one of the
curves in Γt1 is homotopically nontrivial.

Concerning the uniqueness part of the claim, assume that there are
two homotopically nontrivial curves, α1, α2, in E such that ϕ(α1) and
ϕ(α2) are both contained in T (t1). Consider the subends E1, E2 ⊂ E

determined respectively by α1, α2 and assume that E2 ⊂ E1. Let Ê ⊂ E

be the compact annulus bounded by α1 and α2. Then, either ϕ(Ê)
intersects ∪t<t1T (t) or it is contained in ∪t≥t1T (t). If the first case

occurs, there is a t∗ < t1 such that ϕ(Ê) intersects T (t∗) but does not
intersect T (t) for any t < t∗. Because the mean curvature vector of
every torus T (t) has length 1 and points into the cusp subend of C
determined by T (t), the mean curvature comparison principle for the

surfaces ϕ(Ê) and T (t∗) at a point in ϕ(Ê)∩T (t∗) gives a contradiction,

therefore, ϕ(Ê) ⊂ ∪t≥t1T (t). Since ϕ(E) meets T (t1) transversely, it
follows that ϕ(E2) contains points in ∪t<t1T (t) near ϕ(α2), and we may
find t′∗ < t1, where t′∗ is the smallest t such that ϕ(E2) intersects T (t),
which by the previous argument gives a contradiction. This proves that
ϕ induces an immersion ϕ′ : E′ → ∪s≥tT (s).

By item 2 of Theorem 1.3, IΣ is bounded. Thus, by part C of The-
orem 1.2, ϕ′∗ : π1(E′) → π1(∪s≥tT (s)) is injective. This completes the
proof of Claim 4.2. q.e.d.

We next fix some notation. Because of Claim 4.2 we, henceforth,
assume, without loss of generality, that t0 = 1 and that ϕ(E) intersects
∂C = T (1) transversely in the set ∂E = α1. Moreover, we assume
that C is isometric to the quotient spaceM(1)/G(u, v), for two linearly
independent horizontal vectors u and v. Let ψ : M(1) → C be the

covering of C associated to G(u, v) and let Π: Ẽ → E be the universal

cover of E. Choose a base point p ∈ Ẽ and consider ϕ(Π(p)) ∈ C.
After choosing p̂ ∈ ψ−1(ϕ(Π(p))), covering space theory implies that

there exists a unique immersion φ : Ẽ → M(1) such that φ(p) = p̂
and ψ ◦ φ = ϕ ◦ Π; in particular, it follows that φ is proper, since
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Figure 3. The immersions φ and ϕ and the covering

maps Π: Ẽ → E and ψ : M(1)→ C.

ϕ∗ : π1(E)→ π1(∪s≥tT (s)) is injective. Moreover, φ(Ẽ) is an immersed
half-plane in H

3. See Figure 3.

To prove Proposition 4.1, it suffices to prove that φ(Ẽ) has bounded
norm of the second fundamental form ‖Aφ‖. Arguing by contradic-

tion, assume there exists a sequence of points {pn}n∈N in Ẽ such that
‖Aφ‖(p̂n) ≥ n, where we denote p̂n = φ(pn). Since ‖Aϕ‖ is bounded
on compact sets, the sequence of the image points {ψ(p̂n)}n∈N ⊂ ϕ(E)
is intrinsically (thus, extrinsically, since ϕ is proper) divergent. Af-
ter choosing a subsequence, we may assume dC(ψ(p̂n), ψ(p̂m)) > 2, for
n �= m; hence, the sequence {p̂n}n∈N in H

3 is extrinsically divergent
and dH3(p̂n, p̂m) > 2 for n �= m. For the construction that follows, see
Figure 4.

Without loss of generality, we may assume that the spheres

{∂BH3(p̂n, 1)}n are transverse to φ. For n ∈ N, let Cn ⊂ Ẽ be the
connected component of φ−1(BH3(p̂n, 1)) containing pn. Consider the
function

fn : Cn → R,
x �→ ‖Aφ‖(φ(x))dH3(φ(x), ∂BH3(p̂n, 1)).

Let qn ∈ Cn be a point where fn achieves its maximum. Let q̂n = φ(qn).
Then,

(29) ‖Aφ‖(q̂n)d(q̂n, ∂BH3(p̂n, 1)) = fn(qn) ≥ fn(pn) = ‖Aφ‖(p̂n) ≥ n.

Let λn = ‖Aφ‖(q̂n) and δn = dH3(q̂n, ∂BH3(p̂n, 1)). Note that, if

x ∈ Cn and φ(x) ∈ BH3(q̂n, δn/2), then ‖Aφ‖(φ(x)) ≤ 2λn, since
dH3(φ(x), q̂n) < δn/2.
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Figure 4. The domain Cn containing pn is immersed in
BH3(p̂n, 1), qn is a maximal point to fn and the subdo-
main Gn � qn is such that φ(Gn) is an embedded graph

over Tq̂nφ(Ẽ).

In this proof we use the following notation: for λ > 0 and a Riemann-
ian manifold M = (M, g), we denote λM = (M, λ2g) the Riemannian
manifold given by a scaling of the metric of M by λ.

Using exponential coordinates in H
3 centered at the point q̂n, con-

sider λnBH3(q̂n, δn/2) to be a ball of radius λnδn/2 in R
3 with q̂n

at the origin. From (29), we have λnδn → ∞, and so the sequence
{λnBH3(q̂n, δn/2)}n∈N of Riemannian balls converges to the Euclidean

space R
3 with its flat metric. Let Ĉn = φ(Cn) ∩ BH3(q̂n, δn/2) and, for

r > 0, let Bn(r) = BλnH
3(q̂n, r) = λnBH3(q̂n, r/λn). The scaled sur-

faces λnĈn are immersed in Bn(λnδn/2), with constant mean curvature
Hn = H/λn and satisfy

(30) ‖A
λn

̂Cn
‖ ≤ 2, ‖A

λn
̂Cn
‖(q̂n) = 1.

This uniform bound on the second fundamental form of λnĈn implies
that there is a δ > 0 such that for every n ∈ N, there exists a connected
domain Gn of Cn, containing qn and such that:

1) λnφ(Gn) ⊂ Bn(δ);
2) ∂[λnφ(Gn)] = λnφ(∂Gn) ⊂ ∂Bn(δ);
3) λnφ(Gn) is embedded and it is a graph over its projection to

Tq̂nλnφ(Gn), with graphing function having uniformly bounded
gradient, for all n ∈ N.

A subsequence of the graphs {λnφ(Gn)}n∈N (which we still denote
by {λnφ(Gn)}n∈N) converges, as n → ∞, to a minimal graph G∞ ⊂
R
3, embedded in BR3(�0, δ) and with ∂G∞ ⊂ ∂BR3(�0, δ). We next use

the Gauss map g : G∞ → S
2 of G∞ to prove that E has infinite total

curvature, from which we obtain a contradiction.
λH3 is well-known to be isometric to a Lie group together with a

left invariant metric. This Lie group is the semidirect product of R2

with R having associated homomorphism f : R → Gl(2,R) given by
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f(t) = exp(tIλ) ∈ Gl(2,R), where Iλ is the 2 × 2 diagonal matrix with
1/λ as diagonal entries; see, for instance, [14]. In this R

3-coordinate
model for λH3 the horizontal planes are left and right cosets of the
normal subgroup R

2 of the Lie group, which we view as being the (x, y)-
plane with the metric at the origin (0, 0, 0) corresponding to the usual
metric on R

3; also left translations by elements in R
2 correspond to

parabolic isometries in the previous upper halfspace model for λH3 given
by translations by horizontal vectors.

From this point of view, for each n ∈ N, the metric of λnH
3 is left

invariant and there is a left invariant Gauss map, defined for any ori-
ented surface immersed in λnH

3 and taking values in the unit sphere S2

of the tangent space to the identity element of this semidirect product.
Denote by gn : λnφ(Gn) → S

2 the left invariant Gauss map of the ori-
ented embedded surface λnφ(Gn) ⊂ λnH

3. Since the group structures of
λnH

3 converge to the abelian group structure of R3, then gn converges
to g : G∞ → S

2, the Gauss map of G∞. This convergence is explained
in [13], in the last paragraph of Step 4 of the proof of Theorem 4.1.

Note that (30) implies that

‖AG∞‖ ≤ 2, ‖AG∞‖(�0) = 1.

Hence, g is injective near �0 ∈ G∞, since G∞ is a minimal surface of R3

with Gaussian curvature −1/2 at �0. It follows that there exists δ̃ ∈ (0, δ)

such that the graph G∞∩BR3(�0, δ̃) is a disk and g : G∞∩BR3(�0, δ̃)→ S
2

is an injective diffeomorphism with its image. Note that there exists

some ε > 0 such that for all x ∈ G∞∩BR3(�0, δ̃) and X ∈ TxG∞ it holds
‖dgx(X)‖ ≥ ε‖X‖. Then, the fact that gn → g in the C1,α-topology

implies that there exists a δ′ ∈ (0, δ̃) such that, for n sufficiently large,
gn : λnφ(Gn) ∩Bn(δ

′)→ S
2 is also injective.

The fact that G∞ is not flat also implies that G∞ ∩ BR3(�0, δ′) has
strictly negative total curvature; hence, there is K0 > 0 such that, for n
sufficiently large, λnφ(Gn) ∩Bn(δ

′) has total curvature less than −K2
0 .

Since total curvature is invariant under scalings, it follows that

(31)

∫
Gn∩φ−1(Bn(δ′))

K
˜E
< −K2

0 < 0.

The assumption dC(ψ(p̂n), ψ(p̂m)) > 2 if n �= m implies that, for
n �= m, Π(Gn) ∩ Π(Gm) = ∅, therefore, {Π(Gn ∩ φ−1(Bn(δ

′)))}n∈N is
a collection of pairwise disjoint domains of E. Furthermore, the as-
sumption that the restriction of gn to Bn(δ

′) is injective implies that
Π|φ−1(Bn(δ′))∩Gn

is injective, then each domain Π(Gn∩φ−1(Bn(δ
′))) has

negative total curvature, uniformly bounded away from zero by (31).
Hence, we conclude that the total curvature of E is infinite.

On the other hand, we next prove the total curvature of E is finite.
Let {pn}n∈N ⊂ E be a divergent sequence of points. The proofs of
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items 1 and 2 apply and show that limn→∞ IE(pn) = 0; in particular,
IE is bounded. Since E has nonpositive Gaussian curvature, there are
geodesic loops γn based at each pn, and, as explained in the proof of
Theorem 1.2, γ1 and γn bound a compact annulus En such that {En}n∈N
exhaust a subend E′ of E. A simple argument using Gauss-Bonnet
formula shows that E′ has finite absolute total curvature at most 2π,
which implies that E has finite total curvature. This contradiction shows
that ‖Aφ‖ is bounded, finishing the proof of Proposition 4.1. q.e.d.

4.3. Asymptotics of annular ends of ϕ(Σ): proof of item 5. Next,
we proceed with the proof of the theorem by proving item 5, where we
analyze the asymptotic behavior of ϕ(E), where E is an annular end
representative of an end e of Σ. Fix a cusp end C =M(1)/G(u, v) of N .
We now describe the standard constant mean curvature annular ends in
C. Consider (k1, k2) ∈ Z × Z \ {(0, 0)} such that the greatest common
divisor of k1 and k2 equals 1. Let τ(k1, k2) be the parabolic isometry
of H3 given by (22) and let again ψ : M(1) → C denote the universal

covering transformation related to G(u, v) and φ(Ẽ) ⊂ M(1) be an
immersed half-plane as in the proof of Proposition 4.1 (see Figure 3).

For each c ∈ R, let P0,c(k1, k2) be the vertical plane defined by

P0,c(k1, k2)={(x, y, z)∈H3 |(k1uy+k2vy)x−(k1ux+k2vx)y+c=0, z > 0}.
Then, τ(k1, k2) leaves invariant P0,c(k1, k2); hence,

A0,c(k1, k2) = ψ(P0,c(k1, k2) ∩M(1))

is a properly embedded totally geodesic annulus in C. Note that the
family {A0,c(k1, k2)}c∈R is periodic in the sense that there exists l > 0
such that for any c ∈ R, A0,c(k1, k2) = A0,c+l(k1, k2), since for each
(m,n) ∈ Z× Z,

τ(m,n)(P0,c(k1, k2)) = P0,c+(k1n−k2m)(uxvy−uyvx)(k1, k2).

Finally, for each c ∈ R, we consider the two families {P+
H,c(k1,

k2)}H∈(0,1) and {P−
H,c(k1, k2)}H∈(0,1) of equidistant surfaces to

P0,c(k1, k2), formed by tilted planes of constant mean curvature H ∈
(0, 1) that meet {z = 0} along the line {(k1uy+k2vy)x−(k1ux+k2vx)y+
c = 0}, see Figure 5. Each P±

H,c(k1, k2) is also invariant by τ(k1, k2), and

so each of the surfaces P±
H,c(k1, k2) ∩M(1) descends to C as a properly

embedded annulus A±
H,c(k1, k2) of constant mean curvature H, and the

family {A±
H,c(k1, k2)}c∈R is also periodic with respect to c.

We will prove item 5 by showing that there is a pair of integers (k1, k2)

such that φ(Ẽ) is asymptotic either to P+
H,0(k1, k2) or to P−

H,0(k1, k2),

with multiplicity 1. Furthermore, we will show that ϕ(E) = ψ(Ẽ) is as-
ymptotic to A+

H,0(k1, k2) or to A−
H,0(k1, k2), with some finite multiplicity
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Figure 5. The tilted plane P+
H,c(k1, k2) has constant

mean curvature H = cos(α) ∈ (0, 1), where α is the
angle to the plane {z = 0}, and is equidistant to the
totally geodesic vertical plane P0,c(k1, k2).

k. Since P+
H,c(k1, k2) is asymptotic to P+

H,0(k1, k2) (and also P−
H,c(k1, k2)

is asymptotic to P−
H,0(k1, k2)) for every c ∈ R, this proves the result.

Let [α1] be the generator of π1(E). Since π1(C) ≡ Z × Z, we can
consider ϕ∗([α1]) to be an element of Z × Z. Claim 4.2 implies that
ϕ∗([α1]) is not the trivial element, hence, there are relatively prime
integers k1, k2 ∈ Z and some k ∈ N such that ϕ∗([α1]) = k(k1, k2).
Thus, the map τ = τ(kk1, kk2)

(32)
τ : H

3 → H
3,

p �→ p+ k(k1u+ k2v)

is such that τ(φ(Ẽ)) = φ(Ẽ).
Having fixed k, k1, k2, we simplify the notation to P±

H,c = P±
H,c(k1, k2)

and, in the c = 0 case, to P±
H = P±

H,0(k1, k2). We also let a = kk1ux +

kk2vx and b = kk1uy + kk2vy, so that the map τ of (32) is

(33)
τ : H

3 → H
3,

(x, y, z) �→ (x+ a, y + b, z),

the vertical planes P0,c are

P0,c = {(x, y, z) ∈ H
3 | bx− ay + c = 0, z > 0},

and the equidistant surfaces P±
H,c are the tilted planes with boundary

at {z = 0} given by the lines {bx− ay + c = 0}.
Since ∂φ(Ẽ) ⊂ H(1) is invariant under the action of τ and it is a

properly immersed curve, it follows that ∂φ(Ẽ) stays at a finite distance
to the line {(x, y, 1) | bx− ay = 0}. Thus, there is some c > 0 such that

∂φ(Ẽ) ⊂ {(x, y, 1) ∈ H
3 | |bx− ay| < c}.
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Figure 6. The region R, limited by the three planes
H(1), P−

H,c and P+
H,−c, and the constant mean curvature

H hyperspheres SH,r.

With this, we can prove the following convex hull type property, see
Figure 6.

Claim 4.3. φ(Ẽ) is contained in the region R ofM(1), whose bound-
ary contains pieces of all the three planes P−

H,c, H(1) and P+
H,−c.

Proof of Claim 4.3. First, note that ϕ(E) ⊂ ∪t≥1T (t). Hence, φ(Ẽ)
is contained inM(1), and, thus, it is never below H(1). Next, we show

that φ(Ẽ) is also never below P−
H,c. In the plane {z = 0}, let {Cr}r>0

be a continuous family of circles of radius r, contained in the half plane
{bx − ay + c < 0} ∩ {z = 0} and converging, when r → ∞, to the line
{bx− ay + c = 0} ∩ {z = 0}. Let Sr be the upper half sphere of radius
r, centered in the center of the circle Cr. Then, Sr is a totally geodesic
surface of H3 and the family {Sr}r>0 converges, when r → ∞, to the
vertical half-plane P0,c.

Let SH,r be an equidistant surface to Sr with constant mean curvature
H with respect to the upwards orientation, see Figure 6. When r →∞,

SH,r converges to P−
H,c. Each SH,r does not intersect ∂φ(Ẽ), by its

construction. Moreover, for r sufficiently small, SH,r does not intersect

M(1), so it also does not intersect φ(Ẽ). Thus, it follows from the

maximum principle that SH,r ∩ φ(Ẽ) = ∅ for all r > 0, hence, there is

no point of φ(Ẽ) below P−
H,c. The same argument proves that there is

no point of φ(Ẽ) below P+
H,−c, proving the claim. q.e.d.

Consider the family of hyperbolic isometries of H3 defined, for each
t > 0, by

(34)
σt : H

3 → H
3,

(x, y, z) �→ e−t(x, y, z).

The planes P0 and P±
H are invariant under the action of σt, for all t > 0,

however, the same does not hold for c �= 0, since σt(P0,c) = P0,e−tc and

σt(P±
H,c) = P±

H,e−tc
. In particular, for every c fixed, σt(P0,c) converges to



PROPERLY IMMERSED SURFACES IN HYPERBOLIC 3-MANIFOLDS 253

P0 and σt(P±
H,c) converges to P±

H when t → ∞. Moreover, σt(H(1)) =

H(e−t).

Let Rt = σt(R) and let Ẽt = σt(φ(Ẽ)). Then Rt is the region of

M(e−t) bounded by pieces of P−
H,e−tc

,H(e−t) and P+
H,−e−tc

and Ẽt ⊂ Rt.

We also let R∞ = limt→∞Rt be the region of H3 in between the two
planes P−

H and P+
H . With this notation, we prove the next claim.

Claim 4.4. Consider the limit set of the family {Ẽt}t≥0, Ẽ∞ = {p ∈
H

3 | p = limn→∞ pn, pn ∈ Ẽtn , limn→∞ tn =∞} ⊂ R∞. Then, for each

p ∈ Ẽ∞ there exists a complete smooth surface L ⊂ Ẽ∞, of constant
mean curvature H, containing p. Moreover, L is invariant under a
1-parameter group of parabolic isometries which contains τ .

Proof of Claim 4.4. Let p ∈ Ẽ∞. Since Ẽt = σt(φ(Ẽ)) and σt is an

ambient isometry, it follows that Ẽt is a constant mean curvature H
surface with uniformly bounded norm of the second fundamental form.

Hence, there is a δ ∈ (0, 1) such that for every t > 0 and every q ∈ Ẽt of

distance at least 1 from ∂Ẽt, there exists some closed disk component of

q in Ẽt ∩ BH3(q, δ), with boundary contained in ∂BH3(q, δ), which is a

graph Gq in exponential coordinates, over a disk in TqẼt, with graphing
function having gradient less than 1. We will also assume that δ is chosen
sufficiently small so that, for r ∈ (0, δ], each of the spheres ∂BH3(q, r)
intersects Gq transversely in a simple closed curve; now, define Gq(r) to
be the corresponding closed subdisk of Gq = Gq(δ) in the closed ball of
radius r ∈ (0, δ] and centered at q.

In order to prove the existence of L as claimed, consider the sequences
{tn}n∈N ⊂ R and {pn}n∈N such that limn→∞ tn = ∞, limn→∞ pn = p

and, for every n ∈ N, pn ∈ Ẽtn . For each n ∈ N and r ∈ (0, δ], let

Gn(r) = Gpn(r) ⊂ Ẽtn be the graphs described above, based at pn;

without loss of generality, we may assume that every pn ∈ Ẽtn has
distance at least 1 from ∂Et, and so the graph Gn := Gn(δ) exists.
Then {Gn}n∈N, up to a subsequence, converges to a constant mean
curvature H graph G∞ ⊂ H

3, with p ∈ G∞; by its construction it

follows that G∞ ⊂ Ẽ∞. Since δ as above was uniform, we can iterate

this argument to extend G∞ to a complete surface L ⊂ Ẽ∞, containing
p and of constant mean curvature H.

For s ∈ R, let τs : H
3 → H

3 be the parabolic isometry defined by

τs(x, y, z) = (x+ as, y + bs, z);

recall that τ1 = τ corresponds to the generating covering transformation

τ̂ of Ẽ and τ leaves invariant φ(Ẽ). Our next argument is to prove that
for all s ∈ R, τs(L) ⊂ L, which finishes the proof of Claim 4.4.
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Since σt ◦ τ = τe−t ◦ σt and τ(φ(Ẽ)) = φ(Ẽ), it follows that

τe−tn (Ẽtn) = τe−tn (σtn(φ(Ẽ))) = σtn(τ(φ(Ẽ))) = Ẽtn ;

in particular, τe−tn leaves invariant Ẽtn .
Consider the graphs Gn(r) as above. We claim that there exists an

N0 ∈ N such that for n ≥ N0,

(35) τe−tn (Gn(δ/3)) ⊂ Gn(δ/2).

Arguing by contradiction, suppose the above statement fails for some
n arbitrarily large, and so, after replacing by a subsequence, we may
assume that equation (35) fails for all n sufficiently large. Note that the
isometries τe−tn converge uniformly on compact subsets of H3 to the
identity map as n approaches infinity. In particular, for n sufficiently
large, we have that τe−tn (BH3(pn, δ/3)) ⊂ BH3(pn, δ/2). However, since

Ẽtn is invariant under τe−tn , it follows that τe−tn (Gn(δ/3)) ⊂ Ẽtn ; hence,

there exist disks Fn, Hn ⊂ Ẽ such that

σtn(φ(Fn)) = Gn(δ/2), σtn(φ(Hn)) = τe−tn (Gn(δ/3)).

Since Gn(δ/2) and τe−tn (Gn(δ/3)) have their boundaries in the dis-
joint respective spheres ∂BH3(pn, δ/2) and τe−tn (∂BH3(pn, δ/3)), then
elementary separation properties imply that Hn ⊂ Fn, Fn ⊂ Hn or
Hn ∩ Fn = ∅. Note that Hn �⊂ Fn since (35) is assumed to fail, and
Fn �⊂ Hn since ∂Fn is clearly disjoint from Hn; hence, Hn ∩ Fn = ∅.

The property that Hn ∩ Fn = ∅ gives that the generating covering

transformation τ̂ of the covering space Π: Ẽ → E induced by τ is such
that τ̂−1(Hn) ⊂ Fn is disjoint from Hn. In particular, τ̂(Hn) is disjoint
from Hn, which implies that Π|Hn is injective, for n sufficiently large.
Since limn→∞ tn = ∞, then, after replacing by a subsequence, we may
assume that the projected disks Π(Hn) ⊂ E are pairwise disjoint for
n ∈ N. Since the areas of the disks Π(Hn) are bounded from below by
some ε > 0 and there are an infinite number of them, we conclude that
the area of E is infinite; this contradicts item 1 of Theorem 1.3, proving
that equation (35) holds for n sufficiently large.

Next, we prove the claim that L is invariant under the 1-parameter
group of isometries {τs}s∈R, that is, τs(L) = L for every s ∈ R. Let
Γn = {τs(pn) | s ∈ R} denote the orbit curve of each pn through the
action of {τs}s∈R. Also letting Γ = {τs(p) | s ∈ R} be the orbit curve of
p, then the curves Γn converge to Γ uniformly as n→∞.

The arguments used to derive equation (35) also show that for any
k ∈ N there exists an Nk ∈ N such that for n ≥ Nk,

(36) τe−tn (Gn(δ/(k + 1))) ⊂ Gn(δ/k).
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After iteration of (36), we have that for any positive integer j ≤ k, when
n is sufficiently large,

τe−jtn (Gn(δ/(k + 1))) ⊂ Gn.

Hence, for any positive integer j < k, τe−jtn (pn) ∈ Gn when n is suf-
ficiently large. Therefore, as k is arbitrary, Γn intersects Gn in an ar-
bitrarily large number of points as n → ∞. Since the analytic arcs
Γn converge smoothly to the analytic arc Γ on compact subsets of H3,
the analytic curve Γ has infinite order contact with the disk G∞, which
implies that Γ is contained in L. Since p was chosen arbitrarily, this
proves that the orbit of any q ∈ L, under the action of {τs}s∈R is also
contained in L, which completes the proof of Claim 4.4. q.e.d.

Claim 4.5. For any leaf L as given in Claim 4.4, then either L = P+
H

or L = P−
H .

Proof of Claim 4.5. Any surface invariant under a 1-parameter group
G of parabolic isometries is called a parabolic-invariant surface, and the
intersection of any such surface with a totally geodesic surface perpen-
dicular to the orbit curves of G is called a profile curve. The classifi-
cation of constant mean curvature parabolic-invariant surfaces is well-
explained by Gomes in Chapter 3 of his doctoral thesis [10]. It follows
from this classification that a constant mean curvature parabolic invari-
ant surface contained in R∞ is either P+

H , P−
H or, after a homothety,

it is a certain surface S. Furthermore, such a surface S has a specific
value of its mean curvature, is symmetric with respect to the plane P0

and attains a maximal height, which is isolated in any profile curve, see
Figure 7. Our next argument rules out the possibility L = S, proving
the claim.

Arguing by contradiction, suppose L = S. Then there exists p ∈ L
where the height function of L attains its maximal value; in particular,
TpL is a horizontal plane in the sense that TpL = TpH(h1), for some
h1 > 0.

The uniform bound on the second fundamental form of φ(Ẽ) yields

a δ > 0 such that for all t > 0 and every point x ∈ Ẽt, a neighborhood

of Ẽt containing x is a graph over a disk of radius δ in TxẼt. We
may assume such δ is sufficiently small so that a neighborhood G ⊂ L
containing p is a vertical graph of small gradient over the horizontal
disk D = B(p, δ) ⊂ H(h1). Hence, the height function f of G may be
written as f : D → R, a function over D in such a way that

G = {(x, y, f(x, y)) | (x, y, h1) ∈ D}.

Consider a sequence of points pn ∈ Ẽtn such that limn→∞ pn = p and
limn→∞ tn = ∞. After passing to a subsequence, we may assume that

there are neighborhoods Gn ⊂ Ẽtn containing pn which are also vertical
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Figure 7. If L = S, a neighborhood G of L containing
p is a horizontal graph over a domain D in the plane
H(h0)’.

graphs over D, in the sense that there exist functions fn : D → R such
that

Gn = {(x, y, fn(x, y)) | (x, y, h1) ∈ D}.
Since Gn converges smoothly to G, the sequence (fn)n∈N converges in
the C2,α norm to f .

Let Γ be the profile curve of L through p. Since the height function
of Γ attains a strict local maximum at p, there is h0 < h1 such that
H(h0) intersects Γ in two points; in particular, H(h0) intersects G in two
disjoint horizontal segments α1, α2, that separate G into three disjoint
regions (see Figure 7, right). Let ε = h1−h0

2 > 0, then there exist n0 ∈ N

and open, connected and disjoint domains Ω1, Ω2, Ω3 ⊂ D such that
for every n ≥ n0 it holds:{

fn < h0 − ε in Ω1 ∪ Ω3,
fn > h0 + ε in Ω2.

In particular, D \ (Ω1∪Ω2∪Ω3) is composed by two disjoint, connected
domains C1, C2 such that αi ⊂ Ci.

For each n ≥ n0, consider f
−1
n ({h0}) ⊂ D. It contains two connected

curves, one contained in C1 and the other contained in C2, which map
via fn to two disjoint curves γ1n, γ

2
n ⊂ Gn ∩ H(h0). Using the same

arguments of the proof of Claim 4.4, we can fix points q1n ∈ γ1n, q
2
n ∈ γ2n

and obtain that the action of τe−tn is such that both τe−tn (q1n) ∈ γ1n and
τe−tn (q2n) ∈ γ2n.

Fix any such n ≥ n0 and let

Γ1
n = σ−tn(γ

1
n) ⊂ φ(Ẽ), Γ2

n = σ−tn(γ
2
n) ⊂ φ(Ẽ),

q̂1n = σ−tn(q
1
n) ∈ Γ1

n, q̂2n = σ−tn(q
2
n) ∈ Γ2

n.



PROPERLY IMMERSED SURFACES IN HYPERBOLIC 3-MANIFOLDS 257

Since τe−tn (q1n) ∈ γ1n, it follows that τ(q̂1n) ∈ Γ1
n, hence, ϕ−1(Π(Γ1

n))
contains a nontrivial closed curve β1

n in E. Analogously, ϕ−1(Π(Γ2
n))

also contains a nontrivial closed curve β2
n in E.

We next show that β1
n∩β2

n = ∅ for n sufficiently large; this proves the
claim since Γ1, Γ2 ⊂ H(etnh0) gives ϕ(β

1
n), ϕ(β

2
n) ⊂ ϕ−1T (etnh0), which

is a contradiction with Claim 4.2 (since h0 can be chosen generically).
Note that G(u, v), σt and τs preserve the left invariant Gauss map (see
the discussion in the proof of Proposition 4.1) of ϕ(E), g : E → S

2.
Moreover, when n → ∞, g|β1

n
and g|β2

n
converge respectively to the

values of the Gauss map of L along α1 and α2, which are distinct. In
particular, for n large enough we have β1

n∩β2
n = ∅. As explained before,

this is a contradiction that proves the claim. q.e.d.

Claim 4.6. There exists t∗ > 1 such that φ(Ẽ)∩M(t∗) is a topological
half-plane which is a horizontal graph over P0.

Proof. Fix ε > 0. By Claim 4.5, there exist t0 depending on ε

such that the left invariant Gauss map g of φ(Ẽ) ∩ M(t0) lies in an
ε-neighborhood of v+, v−, which are the values assumed by the left in-
variant Gauss maps of P+

H , P−
H . We denote such neighborhoods respec-

tively by V +, V − and note that, if ε is sufficiently small, V + ∩ V − = ∅
and both V +, V − stay at a positive distance to the great circle in S

2 of
vectors perpendicular to the image vector of the Gauss map of P0.

Note that t0 is such that T (t) intersects ϕ(E) transversely for all
t ≥ t0. Let α ⊂ E be the unique homotopically nontrivial closed curve
in ϕ−1(T (t0)) given by Claim 4.2 and let E′ ⊂ E be the subannular end

of E determined by α, then ϕ(E′) = ϕ(E) ∩ ∪t≥t0T (t), hence, if Ẽ′ =
Π−1(E′), then it is topologically a half plane and φ−1(M(t0)) = Ẽ′.

To finish the proof of the claim, note that the image g(φ(Ẽ′)) of

the Gauss map of φ(Ẽ′) is connected; hence, either g(φ(Ẽ′)) ⊂ V + or

g(φ(Ẽ′)) ⊂ V −. In either case, it follows that φ(Ẽ′) = φ(Ẽ) ∩M(t0) is
a graph over P0. q.e.d.

Note that when H = 0, Ẽ∞ = P0 by Claim 4.4. Hence, Claim 4.6

gives that Ẽ∞ contains a single leaf L = P0, from which the asymptotic
behavior follows. This special case was proved previously by Collin,
Hauswirth and Rosenberg in [5], Theorem 1.1.

Assume now that H ∈ (0, 1) and that φ(Ẽ) is oriented by its mean

curvature vector �H. To complete the proof of item 5, we use the notation

in the proof of Claim 4.6: if g(φ(Ẽ) ∩M(t0)) ⊂ V + (resp. V −), then
Ẽ∞ contains a single leaf L = P+

H (resp. P−
H). In either case, the

restriction of φ(Ẽ) to M(t0) is a graph over its limit set. Since ‖Aφ‖ is
uniformly bounded, this graphing function converges, with multiplicity
1, smoothly to 0 along H(t), when t→∞.
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Note that the covering transformation ψ : M(1)→ C is a finite multi-
ple k of a generator (k1, k2) in the fundamental group π1(C). Therefore,
ϕ(E) = ψ(φ(Ẽ)) is asymptotic, with multiplicity k, to the embedded
annulus A+

H = ψ(P+
H) or A−

H = ψ(P−
H). This completes the proof of

Theorem 1.3.

4.4. Some remarks on Theorem 1.3. A simple consequence of The-
orem 1.3 is the following corollary, which generalizes to the bounded
mean curvature case some of the corollaries of Theorem 1.1 of [5].

Corollary 4.7. Let N be a complete, noncompact, hyperbolic 3-
manifold of finite volume. Let Σ be a complete, properly immersed sur-
face in N of finite topology with mean curvature function HΣ satisfying
|HΣ| ≤ H < 1. Then, the area of Σ satisfies

(37) Area(Σ) ≤ 2π

H2 − 1
χ(Σ),

where χ(Σ) is the Euler characteristic of Σ and equality in (37) holds
if and only if Σ is a totally umbilic surface of constant mean curvature
H. In particular, if Σ has genus zero, it has at least three ends.

Proof. The proof is straightforward and relies only on item 3 of The-
orem 1.3 and on the Gauss equation, after observing that if Σ has genus
g and n ends, χ(Σ) = 2 − 2g − n. The details are left to the reader.

q.e.d.

The next proposition demonstrates some differences between the H < 1
case treated in Theorem 1.3 and the H ≥ 1 case.

Proposition 4.8. For any H ≥ 1 and any hyperbolic 3-manifold N
of finite volume there exists a complete, properly immersed annulus A
with constant mean curvature H, and A can be chosen to satisfy:

1) A has infinite area, positive injectivity radius and bounded norm
of its second fundamental form.

2) Any lift of A to the hyperbolic 3-space is a properly embedded ro-
tationally symmetric annulus.

Proof. After possibly passing to the oriented two-sheeted covering
of N , we may assume that N is orientable. Let C = ∪t≥1T (t) be a
parameterized cusp end of N as described in the proof of Theorem 1.3.
Let Π: H3 → N be the universal covering map of N and assume without
loss of generality that Π({z = t}) = T (t). Consider the fundamental
group Γ = π1(N) ⊂ ISO(H3) of N as a subgroup of the isometry group
of H

3; each element ϕ ∈ Γ satisfies Π ◦ ϕ = Π. Since N has finite
volume there exists a subgroup G of Γ isomorphic to Z × Z such that
{z ≥ 1}/G � C, and there exists some α ∈ Γ \G.

Let p ∈ ∂∞H
3 be the point at infinity of the horospheres {z = t}.

Note that α induces a map on ∂∞H
3 such that α(p) �= p. Let q = α(p)
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and let γ be the complete geodesic of H3 whose points at infinity are p
and q. Let A be an embedded rotationally symmetric annulus around
γ of constant mean curvature H. If H > 1, A is a Delaunay surface
(see [11]), which is periodic and, therefore, is a bounded distance from
γ; in particular, Π(A) is properly immersed in N . If H = 1, then A
is called a catenoid cousin (see, for instance, [2]) and the intersections
A ∩ {z = t}, A ∩ α({z = t}) are circles for t sufficiently large, hence,
again Π(A) is a properly immersed surface in N . In either case, the
properties 1 and 2 hold. q.e.d.

5. Appendix

The proof of item D of Theorem 1.2 used the next elementary intrinsic
result for annular ends of complete surfaces of nonpositive Gaussian
curvature. As we did not find its statement in the literature, we present
its proof in this appendix.

Lemma 5.1. Let Σ be a complete surface of finite topology with non-
positive Gaussian curvature. Let e be an end of Σ and E be an annular
end representative. Then for any divergent sequence of points {pn}n∈N
in E,

lim
n→∞ IΣ(pn) = I∞Σ (e) ∈ [0,∞].

Proof. When Σ is simply connected, IΣ is infinite at every point of Σ;
hence, the lemma holds in this case. Assume now that Σ is not simply
connected, thus, IΣ(p) is finite for every p ∈ Σ. Let e and E be as
in the statement of the lemma and let IE denote the restriction of the
injectivity radius function of Σ to E.

To prove the lemma it suffices to show that given any two intrinsically
divergent sequences of points {pn}n∈N, {qn}n∈N in E, then the two limits
limn→∞ IE(pn), limn→∞ IE(qn) exist in [0,∞] and

lim
n→∞ IE(pn) = lim

n→∞ IE(qn).

The failure of the previous statement implies that (after possibly passing
to subsequences) there exist intrinsically divergent sequences {pn}n∈N,
{qn}n∈N in E such that

lim
n→∞ IE(pn) = � ∈ [0, ∞), lim

n→∞ IE(qn) = L ∈ (�, ∞].

There exist embedded geodesic loops γn, Γn based respectively at the
points pn, qn with Length(γn) = 2IE(pn) = 2�n, Length(Γn) =
2IE(qn) = 2Ln, and such that, for all n ∈ N,

(38) �n < �+ ε, Ln > �+ 3ε,

for some ε > 0. After passing to subsequences, we will assume that

1) the geodesic loops γn form a pairwise disjoint family;
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2) for all n, k ∈ N, pn+k lies in the annular subend Wn of E with
boundary γn;

3) qn lies in the compact annulus in E bounded by γn and γn+1.

Since IE is continuous and Wn is connected, there exists a point
q′n ∈ Wn \ Wn+1 with I(q′n) ∈ (� + 3ε, � + 4ε). Hence, replacing the
points qn by the points q′n, we may assume that L is a finite number.

Let En be the compact annulus in E bounded by Γn and Γn+1. By
the same argument as in the proof of Proposition 3.1, since � and L
are finite, we may assume that {γn, Γn}n∈N is a collection of pairwise
disjoint curves, with γn ⊂ En.

We claim that there exists a smooth, homotopically nontrivial, sim-
ple closed geodesic αn ⊂ Int(En), with length at most �n. Let Λn be
the set of simple closed rectifiable curves in En homotopic to γn. If
β ∈ Λn admits a point p in β ∩ BE(qn, ε), then Length(β) > 2�n. In-
deed, if Length(β) ≤ 2�n, it would follow from the triangle inequality
and from (38) that, for every x ∈ β we have dE(qn, x) ≤ Ln. Since
BE(qn, Ln) is simply connected, β is homotopically trivial in E, which
implies that it is also homotopically trivial in En, contradicting β ∈ Λn.
A similar argument shows that if β admits a point p ∈ BE(qn+1, ε), then
Length(β) > 2�n.

Hence, any minimizing sequence in Λn can be assumed to stay at least
at a distance ε from the pair of points qn, qn+1, where the boundary
of En is not smooth. Then standard minimization arguments imply
that there exists a smooth closed geodesic αn ∈ Λn which minimizes
the lengths of curves in Λn, and, since En is an annulus and αn is the
generator of the fundamental group of En, αn is a simple closed geodesic.

The Gauss-Bonnet formula implies that each compact annulus An

bounded by α1 and αn+1 is flat, thus, E has a subend A∞ that is
isometric to a flat cylinder with boundary being a simple closed geodesic.
In fact, the flat A∞ is easily seen to be isometric to a metric product of a
circle with [0,∞), which implies that the injectivity radius function has
the constant value Length(α1)/2 on A∞. This contradicts (38), proving
the lemma. q.e.d.
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