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Abstract

One of the fundamental questions in CR geometry is: Given two
strongly pseudoconvex CR manifolds X1 and X2 of dimension 2n−
1, is there a non-constant CR morphism between them? In this
paper, we use Kohn–Rossi cohomology to show the non-existence
of non-constant CR morphism between such two CR manifolds.
Specifically, if dimHp,q

KR(X1) < dimHp,q
KR(X2) for any (p, q) with

1 ≤ q ≤ n− 2, then there is no non-constant CR morphism from
X1 to X2.

1. Introduction

CR manifolds are abstract models of complex manifolds’ boundaries.
The harmonic theory for the ∂b complex on compact strongly pseudo-
convex CR manifolds was developed by Kohn and Rossi [Ko-Ro 65].
Using this theory, on the one hand Boutet de Monvel [Bo 75] proved
that if X is a compact strongly pseudoconvex CR manifold of real di-
mension 2n − 1, n ≥ 3, then there exist C∞ functions f1, · · · fN on X
such that each ∂bfj = 0 and f = (f1, · · · , fN ) defines an embedding of
X in CN . Thus, any compact strongly pseudoconvex CR manifold of di-
mension at least five can be CR embedded in some complex Euclidean
space. On the other hand, 3-dimensional strongly pseudoconvex CR
manifolds are not necessarily embeddable. Throughout this paper, our
strongly pseudoconvex CR manifolds are always assumed to be compact
orientable and embeddable in some CN . A beautiful theorem of Harvey
and Lawson ([Ha-La 75], [Ha-La 00]) says that these CR manifolds
are the boundaries of subvarieties with only isolated normal singulari-
ties. The ultimate goal in CR geometry is to determine whether any
two given strongly pseudoconvex CR manifolds are CR biholomorphi-
cally equivalent. This is in general a very difficult problem. In order to
prove existence of biholomorphism between two compact strongly pseu-
doconvex manifolds, one must first establish a non-trivial CR morphism
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from one to the other. In 2011, the first author of this paper [Ya 11] in-
vestigated the existence of non-trivial CR morphisms between strongly
pseudoconvex CR manifolds using the singularity theory. In [Ya 11],
Yau proved that there is no non-constant CR morphism from X1 to X2

if pg(X1) < pg(X2), where pg is the so-called geometric genus for any
compact strongly pseudoconvex CR manifold [Ya-Yu 02]. Recently,
Lin, Yau and Zuo [LYZ 15] generalized pg and obtained a series of CR
invariants pm, called plurigenera of compact connected strongly pseudo-
convex CR manifolds. The p1 coincides with the previously defined pg.

Theorem 1.1. ([Ya 11], [LYZ 15]) Let X1 and X2 be two compact
connected (2n − 1)-dimensional embeddable strongly pseudoconvex CR
manifolds. If pm(X1) < pm(X2) for any positive integer m, then there
is no non-constant CR morphism from X1 to X2.

The following theorem states that existence of non-constant CR mor-
phism from X1 to X2 is very close to saying that X1 is CR biholomorphic
to X2.

Theorem 1.2. ([Ya 11], [TYZ 13]) Let X1 and X2 be two compact
strongly pseudoconvex CR manifolds of dimension 2n − 1 ≥ 5 which
bound complex varieties V1 and V2 with only isolated normal singulari-
ties in CN1 and CN2, respectively. Let S1 and S2 be the singular sets of
V1 and V2, respectively, and S2 is nonempty. Suppose 2n−N2 − 1 ≥ 1.
Then any nonconstant CR morphism from X1 to X2 is a covering map.
If |S1| is not divisible by |S2| or |S1| ≤ 2|S2| − 1, then any nonconstant
CR morphism from X1 to X2 is necessarily a CR biholomorphism.

In fact, Tu, Yau and Zuo proved the following surprising theorems.

Theorem 1.3. ([TYZ 13]) Let X1 and X2 be two (2n − 1)-dimen-
sional compact strongly pseudoconvex CR manifolds lying in a Stein
variety V of dimension n in CN . Let V1 ⊂ V , V2 ⊂ V with ∂Vi =
Xi, i = 1, 2. Assume that the singular set S of V is nonempty and is
equal to the singular set of Vi, i = 1, 2. Then nontrivial CR morphisms
from X1 to X2 are necessarily CR biholomorphisms.

Theorem 1.4. ([TYZ 13]) Let X be a compact strongly pseudocon-
vex CR manifold of dimension ≥ 3 lying in CN . Then any nonconstant
CR morphism from X to itself must be a CR biholomorphism.

Though Theorem 1.1 shows that the nonexistence of non-constant
CR morphism from X1 to X2 can be characterized by the plurigenera of
X1 and X2, there is no known method to compute them just using the
information of the CR manifolds. In order to compute pm(X), one needs
to solve the complex Plateau problem, i.e., find V such that ∂V = X.
Theorem 1.2 is effective when the co-dimension of X2 is small. Theorem
1.3 gives the best result, if X1 and X2 are in the same variety. In view
of this, it is very desirable to have the following theorem.
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Main Theorem A. Let X1 and X2 be two compact connected (2n−
1)-dimensional embeddable strongly pseudoconvex CR manifolds with
2n − 1 > 3. If dimHp,q

KR(X1) < dimHp,q
KR(X2) for any (p, q) with

1 ≤ q ≤ n − 2, then there is no non-constant CR morphism from X1

to X2.

When a compact connected strongly pseudoconvex CR manifold X
of dimension 2n − 1 is the boundary of a hypersurface in Cn+1 with
isolated singularities, Yau [Ya 81] showed that certain Hp,q

KR(X) carry
the structure of an algebra. Specifically, each of the groups Hp,q

KR(X),
for p+q = n−1 or n, and 1 ≤ q ≤ n−2, is isomorphic to the direct sum
of the moduli algebras of the singular points of the variety. The Thom-
Sebastiani properties of Kohn–Rossi cohomology of compact connected
strongly pseudoconvex CR manifolds were investigated in [YZ 17]. In
[La-Ya 87], Lawson and Yau proved the following theorem.

Theorem 1.5. ([La-Ya 87]) Let X1 and X2 be two compact con-
nected embeddable strongly pseudoconvex CR manifolds of dimension
2n− 1 > 3 sitting inside Cn+1. Suppose X1 and X2 admit holomorphic
transversal S1-actions and there exists an algebra isomorphism

Hp,q
KR(X1) ∼= Hp,q

KR(X2),

for any (p, q) with 1 ≤ q ≤ n − 2. Then there exists a diffeomorphism
f : Cn+1 → Cn+1 with f(X1) = X2.

Theorem 1.6. ([La-Ya 87]) Let X ⊂ Cn+1 be as above and suppose
that H∗,∗KR(X) = 0. Then X is diffeomorphic to the standard sphere.
Furthermore, if X ⊂ S2n+1 = {z ∈ Cn+1 : ‖ z ‖= 1}, then this embed-
ding is isotopic to the standard one.

It is well known that the vanishing of singular cohomology H∗(X) = 0
is not sufficient for the above conclusion. The Brieskorn spheres

Xd = {z ∈ C2n :‖ z ‖= 1 and zd1 +
∑
k>1

z2k = 0}

are often exotic, and even when they are not, they are knotted in S4n−1.

Main Theorem B. Let X1 and X2 be two compact connected em-
beddable strongly pseudoconvex CR manifolds of dimension 2n − 1 > 3
sitting inside Cn+1. Suppose X1 and X2 admit holomorphic transversal
S1-actions and an algebra isomorphism Hp,q

KR(X1) ∼= Hp,q
KR(X2) for any

(p, q) with 1 ≤ q ≤ n− 2. If Hp,q
KR(X1) 6= 0, then any non-constant CR

morphism from X1 to X2 is necessarily a CR biholomorphism.

In §2, we shall recall some basic notations and facts about CR mani-
folds. Also definitions of Kohn–Rossi cohomology groups are stated. In
§3, we shall give the proofs of our main theorems.
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2. Kohn–Rossi’s ∂b-complex

In this section, we recall Kohn–Rossi theory [Ko-Ro 65] for the ∂b-
complex. An excellent reference for this section is [Fo-Ko 72]. Let M
be a Hermitian complex manifold of complex dimension n with smooth
boundary X = ∂M such that M = M ∪ X is compact. We shall
assume, without loss of generality, that M is embedded in a slightly
large open manifold M ′ and that X = ∂M is defined by the equation
r = 0 where r is a real function with r < 0 inside M, r > 0 outside
M , and |dr| = 1 on X = ∂M . Let Ap,q(M) be the space of C∞(p, q)-
forms on M . Ap,q(M) is the subspace of Ap,q(M) whose elements can
be extended smoothly to M . Ap,q

c (M) is the subspace of Ap,q(M) whose
elements have compact support disjoint withX. Recall that a Hermitian
metric on a complex manifold M is a Hermitian inner product <,>x on
each π1,0(CTxM) varying smoothly in x, where π1,0 : CTxM → T1,0M
is the natural projection from the complexified tangent bundle to the
subbundle consisting of the (1, 0) vectors. For ξ, η ∈ CTxM , we define

< ξ, η >x=< π1,0ξ, π1,0η >x +< π1,0ξ, π1,0η >x.

The inner product <,>x extends naturally to all the spaces Λp,qCT ∗xM .
If ω1, · · · , ωn is an orthonormal basis for Λ1,0CT ∗xM , then ω1∧ω1∧· · ·∧
ωn ∧ ωn = γ is the volume element on M at x. We define global scalar
products for the forms by

(φ, ψ) =

∫
M
< φ,ψ > γ for φ, ψ ∈ Ap,q(M).

The formal adjoint of ∂, denoted as ϑ, is the differential operator
from Ap,q(M) to Ap,q−1(M) defined by (ϑφ, ψ) = (φ, ∂ψ), for all ψ ∈
Ap,q−1
c (M). The operator � = ∂ϑ+ϑ∂ is called the complex Laplacian.

Let Hp,q
0 be the space of square integrable (p, q)-forms on M . We shall

use the symbol ∂ to mean the closure of ∂ |Ap,q(M) with respect to Hp,q
0 ;

in other words, the operator whose graph is the closure of the graph of
∂ |Ap,q(M) in Hp,q

0 × Hp,q+1
0 . The following proposition is obtained by

integration by parts.

Proposition 2.1. For all φ ∈ Ap,q(M), θ ∈ Ap,q+1(M), ψ ∈
Ap,q−1(M),
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(∂φ, θ) = (φ, ϑθ) +

∫
∂M

< σ(∂, dr)φ, θ >,

and

(ϑφ, ψ) = (φ, ∂ψ) +

∫
∂M

< σ(ϑ, dr)φ, ψ >,

where σ(∂, dr) and σ(ϑ, dr) are the symbols of the differential operator
∂ and ϑ at dr, respectively.

The relation between the Hilbert space adjoint of ∂, denoted as ∂
∗
,

and its formal adjoint ϑ is given by the following proposition. Recall that
∂
∗
, is defined on the domain Dom(∂

∗
) consisting of all φ ∈ Hp,q

0 such

that for some constant c > 0, |(φ, ∂ψ)| ≤ c‖ψ‖ for all ψ ∈ Ap,q−1
c (M).

For such a φ, the ψ → (φ, ∂ψ) extends to a bounded functional on Hp,q
0

and ∂
∗
φ its dual vector.

Proposition 2.2. Let Dp,q = Dom(∂
∗
) ∩ Ap,q(M). Then

Dp,q = {φ ∈ Ap,q(M) : σ(ϑ, dr)φ = 0 on ∂M},

and

∂
∗

= ϑ on Dp,q.

Definition 2.1. For each p ∈ ∂M , the Levi form at p is the Hermitian
form on the (n− 1)-dimensional space (π1,0CTpM) ∩ CTp∂M given by

(L1, L2)→ 2 < ∂∂r, L1 ∧ L2 > .

(It is Hermitian because ∂∂ = −∂∂ = −∂∂.)

We shall work in special boundary charts U , with the special basis,
{ωi}, 1 ≤ i ≤ n, ωn =

√
2∂r for A1,0(U). Let L1, · · · , Ln be the dual

vector fields. Then {(Li)p}, 1 ≤ i ≤ n − 1, is an orthonormal basis
of the space (π1,0CTpM) ∩ CTp∂M and the Levi form is defined with
respect to this basis is given by the matrix coefficients of the Levi form
cij = 2 < ∂∂r, Li ∧ Lj >.

Proposition 2.3. The number of nonzero eigenvalues and the abso-
lute value of the signature of the Levi form (cij) at each point p ∈ ∂M
are independent of the choice of L1, . . . , Ln.

Definition 2.2. (a) M is said to be pseudoconvex (pseudoconcave)
if the Levi form is positive (negative) semi-definite at each point of ∂M
and strongly pseudoconvex (pseudoconcave) if it is positive (negative)
definite at each point of ∂M .

(b) We say that M satisfies the condition Z(q) if the Levi form has
at least n− q positive eigenvalues or at least q + 1 negative eigenvalues
at each point of ∂M . (Thus, a strongly pseudoconvex manifold satisfies
the condition Z(q) for all q > 0.)



572 S. S.-T. YAU & H. ZUO

Suppose H is a Hilbert space and Q is a Hermitian form defined on
a dense subspace D of H satisfying Q(φ, φ) ≥‖ φ ‖2 for φ ∈ D. Assume
further that D is a Hilbert space under the inner product Q. Then there
is a canonical self-adjoint operator F on H associated with Q such that
for each α ∈ H,ψ → (α,ψ) is a Q-bounded functional on D. Thus, there
is a unique φ ∈ D such that Q(φ, ψ) = (α,ψ) for all ψ ∈ D. Define
T : H → D ⊂ H by Tα = φ. Then T is bounded, self-adjoint and
injective. By setting F = T−1, we have the following famous Friedrichs
Extension Theorem.

Theorem 2.1. F is the unique self-adjoint operator with Dom(F ) ⊆
D satisfying Q(φ, ψ) = (Fφ, ψ) for all φ ∈ Dom(F ) and ψ ∈ D.

In our case, we define the form Q on Dp,q by

Q(φ, ψ) = (∂φ, ∂ψ) + (ϑφ, ϑψ) + (φ, ψ),

and let D̃p,q be the completion of Dp,q under Q. The inclusion Dp,q →
Hp,q

0 extends uniquely to a norm-decreasing map D̃p,q → Hp,q
0 . This

map is injective. Hence, we can identify D̃p,q with a subspace ofHp,q
0 and

apply the Friedrichs construction. We denote the Friedrichs operator
associated to Q by F . Since for φ, ψ ∈ Ap,q

c (M), Q(φ, ψ) = ((�+I)φ, ψ),
we see that F is a self-adjoint extension of the Hermitian operator (�+

I) |Ap,q
c (M). The smooth elements of D̃p,q are described by the boundary

condition σ(ϑ, dr)φ = 0 on ∂M , while the smooth elements of Dom(F )
are characterized by a further first order boundary condition (the so-
called “free boundary condition”).

Proposition 2.4. If φ ∈ Dp,q, then φ ∈ Dom(F ) if and only if
∂φ ∈ Dp,q+1 in which case Fφ = (� + I)φ.

Let �F = F − I and let the harmonic space Hp,q = N (�F ) be the
nullspace of the operator �F . Kohn [[Fo-Ko 72], p. 51] proved that
the harmonic space Hp,q is a finite-dimensional subspace of Ap,q(M) pro-
vided M satisfies the condition Z(q). As a consequence of his beautiful
solution of the ∂-Neumann problem, Kohn proved the following:

Theorem 2.2. If M satisfies the condition Z(q), then Hp,q(M) ∼=
H̃p,q(M) ∼= Hp,q, where

Hp,q(M) =
{φ ∈ Ap,q(M) : ∂φ = 0}

∂Ap,q−1(M)
,

and

H̃p,q(M) =
{φ ∈ Hp,q

0 ∩Dom(∂) : ∂φ = 0}
∂(Hp,q−1

0 ∩Dom(∂))
.

On the other hand, the Dolbeault Theorem asserts that

Hp,q(M) =
{φ ∈ Ap,q(M) : ∂φ = 0}

∂Ap,q−1(M)
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is isomorphic to Hq(M,Ωp), where Ωp is the sheaf of germs of holomor-
phic p-forms. The relationship between these important groups and the
previous one is due to Hormander [Ho 65].

Theorem 2.3. If M satisfies the condition Z(q) and Z(q + 1), then
Hq(M,Ωp) ∼= Hp,q.

Definition 2.3. Let Cp,q = {φ ∈ Ap,q(M) : ∂r ∧ φ = 0 on ∂M},
which can be also written as

Cp,q = {φ ∈ Ap,q(M) : σ(∂, dr)φ = 0 on ∂M},

since σ(∂, dr) = ∂r ∧ ( · ).

Recall that the Hodge star operator ∗ : Ap,q(M) → An−q,n−p(M) is
defined by ψ ∧ ∗φ =< ψ, φ > γ, where γ is the volume form on M .
It is not hard to prove the properties that ∗∗ = (−1)p+q, ∗φ = ∗φ and
ϑ = −∗∂∗. There is a duality of the space Cp,q and Dp,q, and the spaces
Cp,q form a complex under ∂.

Proposition 2.5. Cp,q = ∗Dn−p,n−q and ∂Cp,q ⊂ Cp,q+1.

We may, therefore, form the cohomology

Hp,q(C) = {φ ∈ Cp,q : ∂φ = 0}/∂Cp,q−1.

In [Ko-Ro 65], Kohn–Rossi introduced the zero-boundary-value co-
homology

Hp,q(0) =
{φ ∈ Ap,q(M) : ∂φ = 0, φ |∂M= 0}

∂{φ ∈ Ap,q−1(M) : φ |∂M= 0, ∂φ |∂M= 0}
.

Proposition 2.6. Hp,q(C) = Hp,q(0).

Kohn–Rossi [Ko-Ro 65] also proved the following important Kohn–
Rossi duality on pseudo-convex manifolds.

Proposition 2.7. If M satisfies the condition Z(q), Hp,q(M) is nat-
urally dual to Hn−p,n−q(C). In particular, Hn−p,n−q(0) ∼= (Hp,q(M))∗.

Following [Fo-Ko 72], we now introduce space Bp,q of forms on ∂M ,
according to the following equivalent definitions:

(1) Bp,q is the space of (smooth) sections of the vector bundle
∧p,qCT ∗M ∩ ∧p+qCT ∗∂M on ∂M .

(2) Bp,q is the space of (p, q)-forms restricted to ∂M , which are point-
wisely orthogonal to the ideal generated by ∂r (i.e., to all forms of the
type ∂r ∧ θ).

(3) Bp,q is the space of restrictions of elements Dp,q to ∂M .

(4) Let Ãp,q and C̃p,q denote the sheaves of germs of Ap,q and Cp,q on
M , respectively. Then there is a natural injection:

0→ C̃p,q → Ãp,q.
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The quotient sheaf B̃p,q = Ãp,q/C̃p,q is a locally free sheaf supported on
∂M , and Bp,q is its space of sections.

In view of Proposition 2.5, we have the following commutative dia-
gram:

0 // C̃p,q

∂
��

// Ãp,q

∂
��

// B̃p,q

∂b
��

// 0

0 // C̃p,q+1 // Ãp,q+1 // B̃p,q+1 // 0,

where ∂b is the quotient map induced by ∂. Actually, ∂b may be ex-
plicitly described on sections as follows: if φ ∈ Bp,q, choosing φ′ ∈ Ap,q

such that φ′ |∂M= φ, then ∂bφ is the projection of ∂φ′ |∂M onto Bp,q.

Since ∂
2

= 0, it follows that ∂
2
b = 0, so we have the boundary complex

0 // Bp,0 ∂b // Bp,1 ∂b // · · · ∂b // Bp,n−1 // 0.

Definition 2.4. The cohomology of the above boundary complex is
called Kohn–Rossi cohomology and is denoted by Hp,q

KR(∂M).

Following [Ta 75], we now reformulate the definition in a way inde-
pendent of the interior manifold.

Definition 2.5. Let X be a connected orientable manifold of real
dimension 2n − 1. A CR-structure on X is an (n − 1)-dimensional
subbundle S of CT (X) (complexified tangent bundle) such that

1) S ∩ S̄ = {0},
2) If L, L′ are local sections of S, then so is [L,L′].

A manifold with a CR structure is called a CR manifold.
There is a unique subbundle H of T (X) such that

CH = S ⊕ S̄.

Furthermore, there is a unique homomorphism J : H → H such that

J2 = −1.

The pair (H, J) is called the real expression of the CR structure.

Definition 2.6. With the notations in Definition 2.5, a smooth S1-
action on X is said to be holomorphic if it preserves the subbundle
H ⊂ T (X) and commutes with J . It is said to be transversal if, in
addition, the vector field V which generates the action, is transversal to
H at all points of X.

Let {Ak(X), d} be the De Rham complex of X with complex coeffi-
cients, and let Hk(X) be the De Rham cohomology groups. There is a
natural filtration of the De Rham complex. In fact, for any integer p
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and k, let Ak(X) = ∧k(CT (X)∗) and F p(Ak(X)) be the subbundle of
Ak(X) consisting of all φ ∈ Ak(X) satisfying the equality

φ(Y1, . . . , Yp−1, Z̄1, . . . , Z̄k−p+1) = 0,

for all Y1, . . . , Yp−1 ∈ CT (X)0 and Z1, . . . , Zk−p+1 ∈ S0, and 0 being the
origin of φ. Then

Ak(X) =F 0(Ak(X)) ⊃ F 1(Ak(X)) ⊃ · · · ⊃ F k(Ak(X))

⊃ F k+1(Ak(X)) = 0.

Setting F p(Ak(X)) = Γ(F p(Ak(X))), we have

Ak(X) =F 0(Ak(X)) ⊃ F 1(Ak(X)) ⊃ · · · ⊃ F k(Ak(X))

⊃ F k+1(Ak(X)) = 0.

Since clearly dF p(Ak(X)) ⊆ F p(Ak+1(X)), the collection {F p(Ak(X))}
gives a filtration of the De Rham complex.

We denote Hp,q
KR(X) be the groups Ep,q

1 (X) of the spectral sequence

{Ep,q
r (X)} associated with the filtration {F p(Ak(X))}. Hp,q

KR(X) is the
Kohn–Rossi cohomology group of type (p, q). More explicitly, let

Ap,q(X) = F p(Ap+q(X)),Ap,q(X) = Γ(Ap,q(X)),

and

Cp,q(X) = Ap,q(X)/Ap+1,q−1(X),Cp,q(X) = Γ(Cp,q(X)).

Since d : Ap,q(X) −→ Ap,q+1(X) maps Ap+1,q−1(X) into Ap+1,q(X), it
induces an operator d′′ : Cp,q(X) −→ Cp,q+1(X). Hp,q

KR(X) are then the
cohomology groups of the complex {Cp,q(X), d′′}.

3. Proofs of the Main Theorems

Let us first recall the following fundamental theorem of Harvey–
Lawson.

Theorem 3.1. ([Ha-La 75], [Ha-La 00]) For any compact con-
nected embeddable strongly pseudoconvex CR manifold X, there is a
unique complex variety V in CN for some N such that the boundary of
V is X and V has only normal isolated singularities.

The following proposition was the starting point of our investigation.
It can be found in [Ya 11]. It was proved by using the results of For-
naess [Fo 76] and Prill [Pr 67].

Proposition 3.1. Let X1 and X2 be two compact strongly pseudocon-
vex CR manifolds of dimension 2n−1 > 1 which bound complex varieties
V1 and V2 in CN1 and CN2, respectively. Suppose the singular set Si
of Vi, i = 1, 2, is either an empty set or a set consisting of only isolated
normal singularities. If Φ: X1 −→ X2 is a non-constant CR morphism,
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then Φ is surjective and it can be extended to a proper surjective holo-
morphic map from V1 to V2 such that Φ(S1) ⊆ S2, Φ−1(X2) = X1 and
Φ: V1 − Φ−1(S2) −→ V2 − S2 is a covering map. Moreover, if S2 does
not have quotient singularity, then Φ−1(S2) = S1.

Proof of the Main Theorem A. For i = 1, 2, let Vi be the complex
variety in CNi as shown in Theorem 3.1 such that the boundary of
Vi is Xi. Let Si be the singular set of Vi. Then Si consists of only
finite number of isolated normal singularities. Let Mi be a resolution of
singularities of Vi with exceptional set Ai.

Following [La 72], we consider the sheaf cohomology with support at
infinity. Let us recall briefly the definition.

In general, let X be any compact connected strongly pseudoconvex
CR manifold which bounds a complex variety V in CN with only normal
isolated singularities S. Let M be resolution of singularities of V with
exceptional set A. Take a 1-convex exhaustion function φ on M such
that φ ≥ 0 on M and φ(y) = 0 if and only if y ∈ Ai. Let Mr = {y ∈
M : φ(y) ≤ r}. Then by Laufer [La 72],

lim−→
r

Hq(M −Mr,Ω
p) ∼= Hq

∞(M,Ωp).

On the other hand, by Andreoti and Grauert (Théorème 15,
[An-Gr 62]), Hq(M − A,Ωp) is isomorphic to Hq(M − Mr,Ω

p) for
q ≤ n− 2 and Hn−1(M −A,Ωp)→ Hn−1(M −Mr,Ω

p) is injective.
Consider the following commutative diagram:

0 // Ap,∗
c

��

// Ap,∗(M)

��

// A
p,∗
∞

��

// 0

0 // Ap,∗
c

// Ap,∗(M) // Ap,∗
∞ // 0.

It follows from Theorem 2.2, Theorem 2.3 and the five lemma that

Hq(A
p,∗
∞ ) ∼= Hq(Ap,∗

∞ ), q ≥ 1.(3.1)

We claim that the natural inclusion map ι from Ap,∗
c to Cp,∗ induces

isomorphisms from Hq(Ap,∗
c ) to Hq(Cp,∗) for 1 ≤ q ≤ n− 1. To see this,

recall that, on the other hand, Hq(Ap,∗
c ) is Serre dual to Hn−q(M,Ωn−p)

by integration pairing. On the other hand, Hq(Cp,∗) is Kohn–Rossi
dual to Hn−q(M,Ωn−p) and, hence, to Hn−q(M,Ωn−p) for q ≤ n − 1,
again by integration pairing (cf. Propositions 2.6 and 2.7). Our claim
follows easily, due to the fact that ι is compatible with these inte-
gration pairings. Now the following commutative diagram with exact
rows
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0 // Ap,∗
c

��

// Ap,∗(M)

��

// A
p,∗
∞

��

// 0

0 // Cp,∗ // Ap,∗(M) // Bp,∗ // 0

gives

Hq(A
p,∗
∞ ) = Hq(Bp,∗) := Hp,q

KR(X).(3.2)

Combining (3.1) and (3.2), we have shown that for 1 ≤ q ≤
n− 2

Hp,q
KR(X) ∼= Hq(M −A,Ωp) ∼= Hq(V − S,Ωp).

Thus, in our case, we have for 1 ≤ q ≤ n− 2

Hp,q
KR(Xi) ∼= Hq(Mi −Ai,Ω

p) ∼= Hq(Vi − Si,Ωp).(3.3)

Suppose on the contrary that there is a non-constant CR morphism
Φ from X1 to X2. In view of Proposition 3.1, Φ can be extended to a
proper surjective holomorphic map from V1 to V2 such that Φ(S1) ⊆ S2,
Φ−1(X2) = X1 and Φ : V1−Φ−1(S2) −→ V2−S2 is a covering map. We
claim that the induced map

Φ∗ : Hq(V2 − S2,ΩP ) −→ Hq(V1 − Φ−1(S2),Ω
P )(3.4)

is injective. To see this, let (αp,q) be an element in Hq(V2 − S2,ΩP ),
where (αp,q) is a ∂-closed (p, q)-form. Suppose that Φ∗(αp,q) is zero in
Hq(V1 − Φ−1(S2),Ω

p). Then there exists βp,q−1 which is a (p, q − 1)
form on V1 − Φ−1(S2) such that ∂βp,q−1 = Φ∗(αp,q). Since Φ: V1 −
Φ−1(S2) −→ V2 − S2 is a covering map, any form γ on V1 − Φ−1(S2)
can be pushed down via the trace map Φ∗ to become a form Φ∗(γ) on
V2−S2 as follows. Take an open cover {Uj} of V2−S2 such that Φ−1(Uj)

is a disjoint union of W 1
j ,W

2
j , · · · ,W d

j , where each W i
j , i = 1, 2, · · · , d

is biholomorphic to Uj via Φ and d is the degree of the covering map
Φ. Then Φ∗(γ) on Uj is defined as the sum of the pull back of γ re-

stricted on W 1
j ,W

2
j , · · · ,W d

j via the local inverse Φ−1. For the form

αp,q defined on V2 − S2, it is clear that Φ∗Φ
∗(αp,q) = dαp,q. It follows

that

∂Φ∗β
p,q−1 = Φ∗∂β

p,q−1 = Φ∗Φ
∗(αp,q) = dαp,q.

As a result, αp,q is zero in Hq(V2 − S2,ΩP ). This completes the proof
that the map Φ∗ in (3.4) is injective.

We next prove that Hq(V1 −Φ−1(S2),Ω
p) is naturally isomorphic to

Hq(V1−S1,Ωp). In view of Proposition 3.1, Φ−1(S2) is a finite set con-
taining S1. In particular, Φ−1(S2) − S1 is a finite set of smooth point
in V1. It follows that

Hq(V1 − S1,Ωp) ∼= Hq(V1 − Φ−1(S2),Ω
p).
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This together with (3.4), we obtain a natural injective map

Φ∗ : Hq(V2 − S2,Ωp) ↪→ Hq(V1 − S1,Ωp).(3.5)

In view of (3.3), we have a natural injective map

Φ∗ : Hp,q
KR(X2) ↪→ Hp,q

KR(X1).

In particular, dimHp,q
KR(X2) ≤ dimHp,q

KR(X1), which is a contradiction
to our hypothesis. q.e.d.

In preparation of proving the Main Theorem B, we need to recall the
theory developed by Lawson and Yau [La-Ya 87].

Theorem 3.2. ([La-Ya 87]) Let X ⊆ CN be a CR manifold of di-
mension 2n− 1 > 1, and suppose that X admits a transversal holomor-
phic S1-action. Then there exists a holomorphic equivariant embedding
X ↪→ V as a hypersurface in a n-dimensional algebraic variety V ⊆ CN

with a linear C∗-action.

Corollary 3.1. ([La-Ya 87]) Let X ⊆ Cn+1 be a CR manifold of
dimension 2n−1 > 1, and suppose X admits a transversal holomorphic
S1-action. Then after a holomorphic change of coordinates in Cn+1,
X is contained in an affine algebraic hypersurface V ⊆ Cn+1. The
hypersurface V has at most one singular point. It also has a C∗-action
and the embedding X ↪→ V is S1-equivariant.

Proof of the Main Theorem B. In view of Corollary 3.1, Xi is con-
tained in an affine algebraic hypersurface Vi ∈ Cn+1. The hypersurface
Vi has precisely one singular point xi. It also has a C∗-action and
the embedding Xi ↪→ Vi is S1-equivariant. Recall that for p + q =
n − 1 and 1 ≤ q ≤ n − 2, there is a natural isomorphism Hp,q

KR(Xi) ∼=
Axi(Vi), where Axi(Vi) is the moduli algebra of Vi at xi, i.e., Axi(Vi) =

C{z0, · · · , zn}/(f, ∂f
∂z0

, · · · , ∂f
∂zn

), where f ∈ C{z0, · · · , zn} is the func-

tion, which defines the hypersurface Vi in a neighborhood of xi (see
[Ya 81]). Our main hypothesis now implies that there is an algebra
isomorphism:

Ax1(V1) ∼= Ax2(V2).

It then follows from a result of Mather and Yau [Ma-Ya 82] that there
is a holomorphic change of coordinates H : U1 → U2, where Ui is a
neighborhood of xi in Cn+1, so that

H(x1) = x2 and H(U1 ∩ V1) = U2 ∩ V2.

As a consequence, we may assume that X1 and X2 are lying in the same
variety as in the statement of Theorem 1.3. Therefore, any non-constant
CR morphism from X1 to X2 is necessarily a CR-biholomorphism by
Theorem 1.3. q.e.d.
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