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AND FIRST DIRICHLET EIGENVALUE OF
HYPOELLIPTIC OPERATORS
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Abstract

In this paper we prove a sub-Riemannian version of the classi-
cal Santaló formula: a result in integral geometry that describes
the intrinsic Liouville measure on the unit cotangent bundle in
terms of the geodesic flow. Our construction works under quite
general assumptions, satisfied by any sub-Riemannian structure
associated with a Riemannian foliation with totally geodesic leaves
(e.g., CR and QC manifolds with symmetries), any Carnot group,
and some non-equiregular structures such as the Martinet one. A
key ingredient is a “reduction procedure” that allows to consider
only a simple subset of sub-Riemannian geodesics.

As an application, we derive isoperimetric-type and (p-)Hardy-
type inequalities for a compact domain M with piecewise C1,1

boundary, and a universal lower bound for the first Dirichlet eigen-
value λ1(M) of the sub-Laplacian,

λ1(M) ≥ kπ2

L2
,

in terms of the rank k of the distribution and the length L of the
longest reduced sub-Riemannian geodesic contained in M . All
our results are sharp for the sub-Riemannian structures on the
hemispheres of the complex and quaternionic Hopf fibrations:

S1 ↪→ S2d+1 p−→ CPd, S3 ↪→ S4d+3 p−→ HPd, d ≥ 1,

where the sub-Laplacian is the standard hypoelliptic operator of
CR and QC geometries, L = π and k = 2d or 4d, respectively.

1. Introduction and results

Let (M, g) be a compact connected Riemannian manifold with bound-
ary ∂M . Santaló formula [17, 39] is a classical result in integral geom-
etry that describes the Liouville measure µ of the unit tangent bundle
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UM in terms of the geodesic flow φt : UM → UM . Namely, for any
measurable function F : UM → R we have
(1)∫

U�M
F µ =

∫
∂M

[∫
U+
q ∂M

(∫ `(v)

0
F (φt(v))dt

)
g(v,nq)ηq(v)

]
σ(q),

where σ is the surface form on ∂M induced by the inward pointing nor-
mal vector n, ηq is the Riemannian spherical measure on UqM , U+

q ∂M
is the set of inward pointing unit vectors at q ∈ ∂M and `(v) is the exit

length of the geodesic with initial vector v. Finally, U�M ⊆ UM is
the visible set, i.e., the set of unit vectors that can be reached via the
geodesic flow starting from points on ∂M .

In the Riemannian setting, (1) allows to deduce some very general
isoperimetric inequalities and Dirichlet eigenvalues estimates for the
Laplace–Beltrami operator as showed by Croke in the celebrated pa-
pers [19, 20, 21].

The extension of (1) to the sub-Riemannian setting and its conse-
quences are not straightforward for a number of reasons. Firstly, in
sub-Riemannian geometry the geodesic flow is replaced by a degen-
erate Hamiltonian flow on the cotangent bundle. Moreover, the unit
cotangent bundle (the set of covectors with unit norm) is not compact,
but rather has the topology of an infinite cylinder. Finally, in sub-
Riemannian geometry there is not a clear agreement on which is the
“canonical” volume, generalizing the Riemannian measure. Another as-
pect to consider is the presence of characteristic points on the boundary.

In this paper we extend (1) to the most general class of sub-Riemann-
ian structures for which Santaló formula makes sense. As an application
we deduce Hardy-like inequalities, sharp universal estimates on the first
Dirichlet eigenvalue of the sub-Laplacian and sharp isoperimetric-type
inequalities.

To our best knowledge, a sub-Riemannian version of (1) appeared
only in [36] for the three-dimensional Heisenberg group, and more re-
cently in [34] for Carnot groups, where the natural global coordinates
allow for explicit computations. As far as other sub-Riemannian struc-
tures are concerned, Santaló formula is an unexplored technique with
potential applications to different settings, including CR (Cauchy–Rie-
mann) and QC (quaternionic contact) geometry, Riemannian foliations,
and Carnot groups.

1.1. Setting and examples. Let (N,D, g) be a sub-Riemannian man-
ifold of dimension n, where D ⊆ TN is a distribution that satisfies the
bracket-generating condition and g is a smooth metric on D. Smooth
sections X ∈ Γ(D) are called horizontal. We consider a compact n-
dimensional submanifold M ⊂ N with boundary ∂M 6= ∅.
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If (N,D, g) is Riemannian, we equip it with its Riemannian volume
ωR. In the genuinely sub-Riemannian case we fix any smooth volume
form ω on M (or a density if M is not orientable). In any case, the
surface measure σ = ιnω on ∂M is given by the contraction with the
horizontal unit normal n to ∂M . For what concerns the regularity of the
boundary, we assume only that ∂M is piecewise C1,1. (See Remark 7
for the Lipschitz case.)

A central role is played by sub-Riemannian geodesics, i.e., curves tan-
gent to D that locally minimize the sub-Riemannian distance between
endpoints. In this setting, the geodesic flow1 is a natural Hamiltonian
flow φt : T ∗M → T ∗M on the cotangent bundle, induced by the Hamil-
tonian function H ∈ C∞(T ∗M). The latter is a non-negative, degener-
ate, quadratic form on the fibers of T ∗M that contains all the informa-
tion on the sub-Riemannian structure. Length-parametrized geodesics
are characterized by an initial covector λ in the unit cotangent bundle
U∗M = {λ ∈ T ∗M | 2H(λ) = 1}.

A key ingredient for most of our results is the following reduction
procedure. Fix a transverse sub-bundle V ⊂ TM such that TM = D⊕V.
We define the reduced cotangent bundle T ∗M r as the set of covectors
annihilating V. On T ∗M r we define a reduced Liouville volume Θr,
which depends on the choice of the volume ω on M . These must satisfy
the following stability hypotheses:

(H1) The bundle T ∗M r is invariant under the Hamiltonian flow φt;
(H2) The reduced Liouville volume is invariant, i.e., L ~HΘr = 0.

This allows to replace the non-compact U∗M with a compact slice
U∗M r := U∗M ∩ T ∗M r, equipped with an invariant measure (see Sec-
tion 4.3). These hypotheses are verified for:

• any Riemannian structure, equipped with the Riemannian volume;
• any sub-Riemannian structure associated with a Riemannian foli-

ation with totally geodesic leaves, equipped with the Riemannian
volume. These includes contact, CR, QC structures with trans-
verse symmetries, and also some non-equiregular structures as the
Martinet one on R3. See Section 5.2;
• any left-invariant sub-Riemannian structure on a Carnot group2 ,

equipped with the Haar volume, see Section 5.1.

An interesting example, coming from CR geometry, is the complex
Hopf fibration (CHF)

S1 ↪→ S2d+1 p−→ CPd, d ≥ 1,

where D := (ker p∗)
⊥ is the orthogonal complement of the kernel of the

differential of the Hopf map w.r.t. the round metric on S2d+1, and the

1Abnormal geodesics are allowed, but strictly abnormal ones, not given by the
Hamiltonian flow on the cotangent bundle, do not play any role in our construction.

2We stress that Carnot groups are not Riemannian foliations if their step is > 2.
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Figure 1. Exit length (left) and visible set (right). Cov-
ectors are represented as hyperplanes, the arrow shows
the direction of propagation of the associated geodesic
for positive time.

sub-Riemannian metric g is the restriction to D of the round one. An-
other interesting structure, coming from QC geometry and with corank
3, is the quaternionic Hopf fibration (QHF)

S3 ↪→ S4d+3 p−→ HPd, d ≥ 1,

where HPd is the quaternionic projective space of real dimension 4d
and the sub-Riemannian structure on S4d+3 is defined similarly to its
complex version.

1.2. Sub-Riemannian Santaló formulas. Consider a sub-Riemann-
ian geodesic γ(t) with initial covector λ ∈ U∗M . The exit length `(λ) ∈
[0,+∞) is the length after which γ leaves M by crossing ∂M . Similarly,
˜̀(λ) is the minimum between `(λ) and the cut length c(λ). That is,

after length ˜̀(λ) the geodesic either loses optimality or leaves M .

The visible unit cotangent bundle U�M ⊂ U∗M is the set of unit
covectors λ such that `(−λ) < +∞. (See Fig. 1.) Analogously, the

optimally visible unit cotangent bundle Ũ�M is the set of unit covectors
such that ˜̀(−λ) < +∞.

For any non-characteristic point q ∈ ∂M , we have a well defined inner
pointing unit horizontal vector nq ∈ Dq, and U+

q ∂M ⊂ U∗qM is the set of
initial covectors of geodesics that, for positive time, are directed toward
the interior of M .

As anticipated, we do not consider all the length-parametrized ge-
odesics, i.e., all initial covectors λ ∈ U∗qM ' Sk−1×Rn−k, but a reduced

subset U∗qM
r ' Sk−1. In the following the suffix r always denotes the

intersection with the reduced unit cotangent bundle U∗M r. We stress
the critical fact that U∗M r is compact, while U∗M never is, except in the
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Riemannian setting where the reduction procedure is trivial. With these
basic definitions at hand, we are ready to state the sub-Riemannian
Santaló formulas.

Theorem 1 (Reduced Santaló formulas). The visible set U�M r and

the optimally visible set Ũ�M r are measurable. For any measurable
function F : U∗M r → R we have∫

U�M r

F µr(2)

=

∫
∂M

[∫
U+
q ∂M r

(∫ `(λ)

0
F (φt(λ))dt

)
〈λ,nq〉ηrq(λ)

]
σ(q),∫

Ũ�M r

F µr(3)

=

∫
∂M

[∫
U+
q ∂M r

(∫ ˜̀(λ)

0
F (φt(λ))dt

)
〈λ,nq〉ηrq(λ)

]
σ(q).

In (2)–(3), µr is a reduced invariant Liouville measure on U∗M r, ηrq is
an appropriate smooth measure on the fibers U∗qM

r and 〈λ, ·〉 denotes
the action of covectors on vectors. Indeed, both include the Riemannian
case, where the reduction procedure is trivial and U∗M ' UM since
the Hamiltonian is not degenerate.

Remark 1. Hypotheses (H1) and (H2) are essential for the reduc-
tion procedure. An unreduced version of Theorem 1 holds for any vol-
ume ω and with no other assumptions but the Lipschitz regularity of
∂M (see Theorem 16 and Remark 7). However, the consequences we
present do not hold a priori, as their proofs rely on the summability of
certain functions on U∗M r, generally false on the non-compact U∗M .

1.3. Hardy-type inequalities. For any f ∈ C∞(M), let ∇Hf ∈ Γ(D)
be the horizontal gradient : the horizontal direction of steepest increase
of f . It is defined via the identity

(4) g(∇Hf,X) = df(X), ∀X ∈ Γ(D).

Consider all length-parametrized sub-Riemannian geodesic passing
through a point q ∈ M , with covector λ ∈ U∗qM . Set L(λ) := `(λ) +
`(−λ); this is the length of the maximal geodesic that passes through q
with covector λ.

Proposition 2 (Hardy-like inequalities). For any f ∈ C∞0 (M) it
holds ∫

M
|∇Hf |2ω ≥

kπ2

|Sk−1|

∫
M

f2

R2
ω,(5) ∫

M
|∇Hf |2ω ≥

k

4|Sk−1|

∫
M

f2

r2
ω,(6)
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where k = rankD and r,R : M → R are:
1

R2(q)
:=

∫
U∗qM

r

1

L2
ηrq,

1

r2(q)
:=

∫
U∗qM

r

1

`2
ηrq, ∀q ∈M.

We observe that r is the harmonic mean distance from the boundary
defined in [23]. One can also consider the following generalization of
Proposition 2 for Lp(M,ω) norms.

Proposition 3 (p-Hardy-like inequality). Let p > 1 and f ∈ C∞0 (M).
Then ∫

M
|∇Hf |pω ≥ πpp Cp,k

∫
M

|f |p

Rp
ω,(7) ∫

M
|∇Hf |pω ≥

(
p− 1

p

)p
Cp,k

∫
M

|f |p

rp
ω,(8)

where k = rankD, the constants πp and Cp,k are

πp =
2π(p− 1)1/p

p sin(π/p)
, Cp,k =

k

|Sk−1|

√
π Γ(k+p

2 )

2Γ(1+p
2 )Γ(k2 + 1)

,

and rp, Rp : M → R are

1

Rp(q)
:=

∫
U∗qM

r

1

Lp
ηrq,

1

rp(q)
:=

∫
U∗qM

r

1

`p
ηrq, ∀q ∈M.

1.4. Lower bound for the first Dirichlet eigenvalue. For any given
smooth volume ω, a fundamental operator in sub-Riemannian geome-
try is the sub-Laplacian ∆ω, playing the role of the Laplace–Beltrami
operator in Riemannian geometry. Under the bracket-generating condi-
tion, this is a hypoelliptic operator on L2(M,ω). Its principal symbol
is (twice) the Hamiltonian, thus, the Dirichlet spectrum of −∆ω on the
compact manifold M is positive and discrete. We denote it

0 < λ1(M) ≤ λ2(M) ≤ . . . .

As a consequence of Proposition 2 and the min-max principle, we obtain
a universal lower bound for the first Dirichlet eigenvalue λ1(M) on the
given domain. Here by universal we mean an estimate not requiring any
assumption on curvature or capacity.

Proposition 4 (Universal spectral lower bound). Let the length of
the longest reduced geodesic contained in M be L = supλ∈U∗M r L(λ).
Then, letting k = rankD,

(9) λ1(M) ≥ kπ2

L2
,

where we set the r.h.s. to 0 if L = +∞.
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Remark 2. In (9), L cannot be replaced by the sub-Riemannian
diameter, as M might contain very long (non-minimizing) geodesics, for
example, closed ones, and L = +∞. See Appendix B for more details.

In the Riemannian case, as noted by Croke, we attain equality in (9)
when M is the hemisphere of the Riemannian round sphere. We prove
the following extension to the sub-Riemannian setting.

Proposition 5 (Sharpness of the eigenvalue lower bound). In Propo-
sition 4, in the following cases we have equality, for all d ≥ 1:

(i) the hemispheres Sd+ of the Riemannian round sphere Sd;
(ii) the hemispheres S2d+1

+ of the sub-Riemannian complex Hopf fibra-

tion S2d+1;
(iii) the hemispheres S4d+3

+ of the sub-Riemannian quaternionic Hopf

fibration S4d+3;

all equipped with the Riemannian volume of the corresponding round
sphere. In all these cases, L = π and λ1(M) = d, 2d or 4d, respectively.
Moreover, the associated eigenfunction is Ψ = cos(δ), where δ is the
Riemannian distance from the north pole.

Remark 3. The Riemannian volume of the sub-Riemannian Hopf
fibrations coincides, up to a constant factor, with their Popp volume
[6, 35], an intrinsic smooth measure in sub-Riemannian geometry. This
is proved for 3-Sasakian structures (including the QHF) in [38, Prop.
34] and can be proved exactly in the same way for Sasakian structures
(including the CHF) using the explicit formula for Popp volume of [6].
For the case (i) ∆ω is the Laplace–Beltrami operator. For the cases (ii)
and (iii) ∆ω is the standard sub-Laplacian of CR and QC geometry,
respectively.

In principle, L can be computed when the reduced geodesic flow is ex-
plicit. This is the case for Carnot groups, where reduced geodesics pass-
ing through the origin are simply straight lines (they fill a k-plane for
rank k Carnot groups). It turns out that, in this case, L = diamH(M)
(the horizontal diameter, that is the diameter of the set M measured
through left-translations of the aforementioned straight lines). Thus, (9)
gives an easily computable lower bound for the first Dirichlet eigenvalue
in terms of purely metric quantities.

Corollary 6. Let M be a compact n-dimensional submanifold with
piecewise C1,1 boundary of a Carnot group of rank k, with the Haar
volume. Then,

(10) λ1(M) ≥ kπ2

diamH(M)2
,

where diamH(M) denotes the horizontal diameter of M .
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∂M

q

ϑ�q

M

Figure 2. Visibility angle on a 2D Riemannian man-
ifold. Only the geodesics with tangent vector in the
dashed slice go to ∂M .

In particular, if M is the metric ball of radius R, we obtain λ1(M) ≥
kπ2/(2R)2. Clearly (10) is not sharp, as one can check easily in the
Euclidean case.

1.5. Isoperimetric-type inequalities. In this section, we relate the
sub-Riemannian area and perimeter of M with some of its geometric
properties. Since M is compact, the sub-Riemannian diameter diam(M)
can be characterized as the length of the longest optimal geodesic con-
tained in M . Analogously, we define the reduced sub-Riemannian di-
ameter diamr(M) as the length of the longest reduced optimal geodesic
contained in M . Indeed, diamr(M) ≤ diam(M).

Consider all reduced geodesics passing through q ∈M with covector
λ. Some of them originate from the boundary ∂M , that is `(−λ) < +∞;
others do not, i.e., `(−λ) = +∞. The relative ratio of the lengths of
these two types of geodesics (w.r.t. an appropriate measure on U∗qM

r)

is called the visibility angle ϑ�q ∈ [0, 1] at q (see Definition 6). Roughly

speaking, if ϑ�q = 1 then any geodesic passing through q will hit the
boundary and, on the opposite, if it is equal to 0 then q is not visible
from the boundary (see Fig. 2). Similarly, we define the optimal visibility

angle ϑ̃�q by replacing `(−λ) with ˜̀(−λ). Finally, the least visibility

angle is ϑ� := infq∈M ϑ�q , and, similarly, for the least optimal visibility

angle ϑ̃� := infq∈M ϑ̃�q .

Proposition 7 (Isoperimetric-type inequalities). Let ` := sup{`(λ) |
λ ∈ U∗qM r, q ∈ ∂M} be the length of the longest reduced geodesic con-
tained in M starting from the boundary ∂M . Then
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(11)
σ(∂M)

ω(M)
≥ Cϑ

�

`
and

σ(∂M)

ω(M)
≥ C ϑ̃�

diamr(M)
,

where C = 2π|Sk−1|/|Sk| and we set the r.h.s. to 0 if ` = +∞.

The equality in (11) holds for the hemisphere of the Riemannian
round sphere, as pointed out in [19]. We have the following generaliza-
tion to the sub-Riemannian setting.

Proposition 8 (Sharpness of isoperimetric inequalities). In Propo-
sition 7, in the following cases we have equality, for all d ≥ 1:

(i) the hemispheres Sd+ of the Riemannian round sphere Sd;
(ii) the hemispheres S2d+1

+ of the sub-Riemannian complex Hopf fibra-

tion S2d+1;
(iii) the hemispheres S4d+3

+ of the sub-Riemannian quaternionic Hopf

fibration S4d+3;

where ω is the Riemannian volume of the corresponding round sphere.

In all these cases ϑ� = ϑ̃� = 1 and ` = diamr(M) = π.

We can apply Proposition 7 to Carnot groups equipped with the Haar

measure. In this case ϑ� = ϑ̃� = 1 and ` = diamr(M) = diamH(M).
Moreover, ω is the Lebesgue volume of Rn and σ is the associated
perimeter measure of geometric measure theory [14].

Corollary 9. Let M be a compact n-dimensional submanifold with
piecewise C1,1 boundary of a Carnot group of rank k, with the Haar
volume. Then,

σ(∂M)

ω(M)
≥ 2π|Sk−1|
|Sk| diamH(M)

,

where diamH(M) is the horizontal diameter of the Carnot group.

This inequality is not sharp even in the Euclidean case, but it is
very easy to compute the horizontal diameter for explicit domains. For
example, if M is the sub-Riemannian metric ball of radius R, then
diamH(M) = 2R.

1.6. Remark on change of volume. Fix a sub-Riemannian struc-
ture (N,D, g), a compact set M with piecewise C1,1 boundary and a
complement V such that (H1) holds. Now assume that, for some choice
of volume form ω, also (H2) is satisfied, so that we can carry on with
the reduction procedure and all our results hold. One can derive the
analogous of Propositions 2, 3, 4, 7 for any other volume ω′ = eϕω,
with ϕ ∈ C∞(M). In all these results, it is sufficient to multiply the
r.h.s. of the inequalities by the volumetric constant 0 < α ≤ 1 defined
as α := min eϕ

max eϕ , and, indeed, replace ω with ω′ = eϕω in Propositions 2
and 3, σ with σ′ = eϕσ in Proposition 7, and the sub-Laplacian ∆ω with



348 D. PRANDI, L. RIZZI & M. SERI

∆ω′ = ∆ω+〈dϕ,∇H ·〉 in Proposition 4. Analogously, one can deal with
Corollaries 6 and 9 about Carnot groups.

This remark allows, for example, to obtain results for (sub-)Riemann-
ian weighted measures. This is particularly interesting in the genuinely
sub-Riemannian setting since, in some cases, the volume satisfying (H2)
might not coincide with the intrinsic Popp one.

1.7. Remark on rigidity. The sharpness results of Propositions 5
and 8 hold for hemispheres of (sub-)Riemannian structures associated
with Riemannian submersions of the sphere with totally geodesic fibers,
which have been completely classified in [26]. The only case which is
not covered in these propositions is the so-called octonionic Hopf fi-
bration (OHF) S7 ↪→ S15 → OP1, which to our best knowledge has
not yet been studied from the sub-Riemannian point of view, and for
which explicit expressions for the sub-Laplacian do not appear in the
literature. It is, however, likely that the sharpness results of Proposi-
tions 5 and 8 hold also for the hemisphere S15

+ of the sub-Riemannian
OHF.

Finally, concerning the universal lower bound of Proposition 4, Croke
proved the following rigidity result in the Riemannian case (see [19,
Thm. 16]). As we already remarked, the lower bound (9) is non-trivial
if and only if all geodesics starting from points of M hit the boundary

at some finite time (i.e., ϑ� = 1). If, furthermore, every such geodesic
minimizes distance up to the point of intersection with the boundary

(i.e., ϑ̃� = 1), then we have equality in (9) if and only if M is a hemi-
sphere of the round sphere. See also [21] for a more general rigidity
result. The following question is, thus, natural.

Open question. Are the hemispheres of the CHF, QHF, and pos-
sibly OHF, the only domains on compact sub-Riemannian manifolds
tamed by a foliation with totally geodesic leaves (see Section 5.2) where
the lower bound of Proposition 4 is attained?

1.8. Afterwords. Despite its broad range of applications in Riemann-
ian geometry and its Finsler generalizations [42], only a few works used
Santaló formula in the hypoelliptic setting, all of them in the spe-
cific case of Carnot groups [34, 36] or 3D Sasakian structures [15].
It is interesting to notice that, in [36], Pansu was able to use San-
taló formula in pairs with minimal surfaces to eliminate the diam-
eter term in Corollary 9 and obtain his celebrated isoperimetric in-
equality. In our general setting, this is something worth investigat-
ing.

The study of spectral properties of hypoelliptic operators is an active
area of research. Many results are available for the complete spectrum
of the sub-Laplacian on closed manifolds (with no boundary conditions).
We recall [8, 10, 11] for the case of SU(2), CHF and QHF. Furthermore,
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in [18], one can find the spectrum of the “flat Heisenberg case” (a com-
pact quotient of the Heisenberg group) together with quantum ergod-
icity results for 3D contact sub-Riemannian structures. Lower bounds
for the first (non-zero) eigenvalue of the sub-Laplacian on closed folia-
tion, under curvature-like assumptions, appeared in [9] (see also [7] for
a more general statement).

Concerning the Dirichlet spectrum on Riemannian manifolds with
boundary, a classical reference is [16]. In the sub-Riemannian setting,
we are aware of results for the sum of Dirichlet eigenvalues [40] by
Strichartz and related spectral inequalities [28] by Hansson and Laptev,
both for the case of the Heisenberg group. To our best knowledge,
Proposition 4 is the first sharp universal lower bound for the first Dirich-
let eigenvalue in the sub-Riemannian setting and, in particular, for non-
Carnot structures.

The study of Hardy’s inequalities, already in the Euclidean setting,
ranges across the last century and continues to the present day (see
[5, 12, 25] and references therein). The sub-Riemannian case is more
recent, for an account of the known result we mention the works for
Carnot groups of Capogna, Danielli and Garofalo (see, e.g., [13, 22]).

Poincaré inequalities are strictly connected to Hardy’s ones. On this
subject the literature is again huge, we already mentioned the works of
Croke and Derdzinski concerning the Riemannian case [19, 20, 21]. Fi-
nally, see [30] for results on CR and QC manifolds under Ricci curvature
assumptions in the spirit of the Lichnerowicz–Obata theorem.

In this paper we focused mostly on foliations, where our results are
sharp. For Carnot groups, Corollaries 6 and 9 appeared in [34] and are
not sharp. Let us consider for simplicity the 3D Heisenberg group, with
coordinates (x, y, z) ∈ R3. A relevant class of domains for the Dirichlet
eigenvalues problem are the “Heisenberg cubes” [0, ε]×[0, ε]×[0, ε2], ob-
tained by non-homogeneous dilation of the unit cube [0, 1]3. These rep-
resent a fundamental domain for the quotient H3/εΓ of the 3D Heisen-
berg group H3 by the (dilation of the) integer Heisenberg subgroup Γ (a
lattice). This is the basic example of nilmanifold, (we thank R. Mont-
gomery for pointing out this example). For these fundamental domains,
the first Dirichlet eigenvalue is unknown. However, we mention that
for any Carnot group the reduction technique developed here can be
further improved leading to a λ1 estimate for cubes, via the technique
sketched in Appendix B.

1.9. Structure of the paper. In Section 2, we recall some basic defini-
tions about sub-Riemannian geometry and sub-Laplacians. In Section 3,
we introduce some preliminary constructions concerning integration on
vector bundles that we need for the reduction procedure. In Section 4,
we prove the main result of the paper, namely the reduced Santaló for-
mula. Section 5 is devoted to examples, and contains the general class
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of structures where our construction can be carried out. Finally, in Sec-
tion 6, we apply the reduced Santaló formula to prove Poincaré, Hardy,
and isoperimetric-type inequalities.
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2. Sub-Riemannian geometry

We give here only the essential ingredients for our analysis; for more
details see [2, 35, 37]. A sub-Riemannian manifold is a triple (M,D, g),
where M is a smooth, connected manifold of dimension n ≥ 3, D is a
vector distribution of constant rank k ≤ n and g is a smooth metric on
D. We assume that the distribution is bracket-generating, that is

span{[Xi1 , [Xi2 , [. . . , [Xim−1 , Xim ]]]] | m ≥ 1}q = TqM, ∀q ∈M,

for some (and, thus, any) set X1, . . . , Xk ∈ Γ(D) of local generators
for D.

A horizontal curve γ : [0, T ]→ R is a Lipschitz continuous path such
that γ̇(t) ∈ Dγ(t) for almost any t. Horizontal curves have a well defined
length

`(γ) =

∫ T

0

√
g(γ̇(t), γ̇(t))dt.

http://www.cmap.polytechnique.fr/subriemannian/
http://www.newton.ac.uk/event/pep
http://www.esi.ac.at/activities/events/2015/modern-theory-of-wave-equations
http://www.esi.ac.at/activities/events/2015/modern-theory-of-wave-equations
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Furthermore, the sub-Riemannian distance is defined by:

d(x, y) = inf{`(γ) | γ(0) = x, γ(T ) = y, γ horizontal}.
By the Chow–Rashevskii theorem, under the bracket-generating condi-
tion, d is finite and continuous. Sub-Riemannian geometry includes the
Riemannian one, when D = TM .

2.1. Sub-Riemannian geodesic flow. Sub-Riemannian geodesics are
horizontal curves that locally minimize the length between their end-
points. Let π : T ∗M →M be the cotangent bundle. The sub-Riemann-
ian Hamiltonian H : T ∗M → R is

H(λ) :=
1

2

k∑
i=1

〈λ,Xi〉2, λ ∈ T ∗M,

where X1, . . . , Xk ∈ Γ(D) is any local orthonormal frame and 〈λ, ·〉
denotes the action of covectors on vectors. Let σ be the canonical sym-

plectic 2-form on T ∗M . The Hamiltonian vector field ~H is defined by

σ(·, ~H) = dH. Then the Hamilton equations are

(12) λ̇(t) = ~H(λ(t)).

Solutions of (12) are called extremals, and their projections γ(t) :=
π(λ(t)) on M are smooth geodesics. The sub-Riemannian geodesic flow

φt ∈ T ∗M → T ∗M is the flow of ~H. Thus, any initial covector λ ∈ T ∗M
is associated with a geodesic γλ(t) = π ◦ φt(λ), and its speed ‖γ̇(t)‖ =
2H(λ) is constant. The unit cotangent bundle is

U∗M = {λ ∈ T ∗M | 2H(λ) = 1}.
It is a fiber bundle with fiber U∗qM = Sk−1 × Rn−k. For λ ∈ U∗qM , the
curve γλ(t) is a length-parametrized geodesic with length `(γ|[t1,t2]) =
t2 − t1.

Remark 4. There is also another class of minimizing curves, called
abnormal, that might not follow the Hamiltonian dynamic of (12). Ab-
normal geodesics do not exist in Riemannian geometry, and they are
all trivial curves in some basic but popular classes of sub-Riemannian
structures (e.g., fat ones). Our construction takes in account only the
normal sub-Riemannian geodesic flow, hence, abnormal geodesics are
allowed, but ignored. Some hard open problems in sub-Riemannian
geometry are related to abnormal geodesics [1, 35, 31].

2.2. The intrinsic sub-Laplacian. Let (M,D, g) be a compact sub-
Riemannian manifold with piecewise C1,1 boundary ∂M , and ω ∈ ΛnM
be any smooth volume form (or a density, if M is not orientable). We
define the Dirichlet energy functional as

E(f) =

∫
M

2H(df)ω, f ∈ C∞0 (M).
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The Dirichlet energy functional induces the operator −∆ω on L2(M,ω).
Its Friedrichs extension, that we call the Dirichlet sub-Laplacian, is a
non-negative self-adjoint operator on L2(M,ω). Its domain is the space
H1

0 (M), the closure in the H1(M) norm of the space C∞0 (M) of smooth
functions that vanish on ∂M . Since ‖∇Hf‖2 = 2H(df), for smooth
functions we have

∆ωf = divω(∇Hf), ∀f ∈ C∞0 (M),

where the divergence is computed w.r.t. ω, and ∇H is the horizontal
gradient defined by (4). The spectrum of −∆ω is discrete and positive,

0 < λ1(M) ≤ λ2(M) ≤ . . .→ +∞.

In particular, by the min-max principle we have

(13) λ1(M) = inf

{
E(f)

∣∣∣∣ f ∈ C∞0 (M),

∫
M
|f |2 ω = 1

}
.

3. Preliminary constructions

We discuss some preliminary constructions concerning integration on
vector bundles that we need for the reduction procedure. In this section,
π : E →M is a rank k vector bundle on an n dimensional manifold M .
For simplicity we assume M to be oriented and E to be oriented (as a
vector bundle). If not, the results below remain true replacing volumes
with densities. We use coordinates x on O ⊂ M and (p, x) ∈ Rk × Rn
on U = π−1(O) such that the fibers are Eq0 = {(p, x0) | p ∈ Rk}. In
a compact notation we write, in coordinates, dp = dp1 ∧ . . . ∧ dpk and
dx = dx1 ∧ . . . ∧ dxn.

3.1. Vertical volume forms. Consider the fibers Eq ⊂ E as embed-

ded submanifolds of dimension k. For each λ ∈ Eq, let Λk(TλEq) be the
space of alternating multi-linear functions on TλEq. The space

Λkv(E) :=
⊔
λ∈E

Λk(TλEπ(λ))

defines a rank 1 vector bundle Π : Λkv(E) → E, such that Π(η) = λ if
η ∈ Λk(TλEπ(λ)).

To see this, choose coordinates (p, x) ∈ Rk × Rn on U = π−1(O)
such that the fibers are Eq0 = {(p, x0) | p ∈ Rk}. Thus, the vec-
tors ∂p1 , . . . , ∂pk tangent to the fibers Eq are well defined. The map
Ψ : Π−1(U) → U × R, defined by Ψ(η) = (Π(η), η(∂p1 , . . . , ∂pk)) is
a bijection. Suppose that (U ′, p′, x′) is another chart, and, similarly,
Ψ′ : Π−1(U ′) → U ′ × R. Then, on Π−1(U ′ ∩ U) × R we have Ψ′ ◦
Ψ−1(λ, α) = (λ,det(∂q′/∂q)). Finally, we apply the vector bundle con-
struction Lemma [32, Lemma 5.5].
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Definition 1. A smooth, strictly positive section ν ∈ Γ(Λkv(E)) is
called a vertical volume form on E. In particular, the restriction νq :=
ν|Eq of a vertical volume form defines a measure on each fiber Eq.

Lemma 10 (Disintegration 1). Let Ω ∈ Λn+k(E) be a volume form,
and ω ∈ Λn(M) be a volume form on the base space. Then there exists
a unique vertical volume form ν ∈ Λkv(E) such that, for any measurable
set D′ ⊆ E and measurable f : D → R,
(14)∫

D′
f Ω =

∫
π(D′)

[∫
D′q

fq νq

]
ω(q), fq := f |Eq , D′q := Eq ∩D′.

If, in coordinates, Ω = Ω(p, x)dp ∧ dx and ω = ω(x)dx, then

ν|(p,x) =
Ω(p, x)

ω(x)
dp.

Proof. The last formula does not depend on the choice of coordinates
(p, x) on E. So we can use this as a definition for ν. Moreover, in
coordinates,

Ω|(p,x) = Ω(p, x)dp ∧ dx =

(
Ω(p, x)

ω(x)
dp

)
∧ (ω(x)dx).

Both uniqueness and (14) follow from the definition of integration on
manifolds and Fubini theorem. q.e.d.

3.2. Vertical surface forms. Let E′ ⊂ E be a corank 1 sub-bundle of
π : E →M . That is, a submanifold E′ ⊂ E such that π|E′ : E′ →M is
a bundle, and the fibers E′q := π−1(q) ∩E′ ⊂ Eq are diffeomorphic to a

smooth hypersurface C ⊂ Rk. As a matter of fact, we will only consider
the cases in which C is a cylinder or a sphere.

Fix a smooth volume form Ω ∈ Λn+k(E). The Euler vector field is the
generator of homogenous dilations on the fibers λ 7→ eαλ, for all α ∈ R.
In coordinates (p, x) on E we have e =

∑n
i=1 pi∂pi . If e is transverse to

E′ we induce a volume form on E′ by µ := ιeΩ.
In this setting, a volume form µ ∈ Λn+k−1(E′) is called a surface

form. For any vertical volume form ν ∈ Λkv(E), we define a measure on
the fibers E′q as ηq = ιeν|Eq . With an abuse of language, we will refer
to such measures as vertical surface forms.

Lemma 11 (Disintegration 2). Let µ = ιeΩ ∈ Λn+k−1(E′) be a sur-
face form and ω ∈ Λn(M) be a volume form on the base space. For any
measurable set D ⊆ E′ and measurable f : D → R,

(15)

∫
D
fµ =

∫
π(D)

[∫
Dq

fq ηq

]
ω(q), fq := f |E′q , Dq := E′q ∩D.

Here, ηq = ιeν|Eq and ν is the vertical volume form on E defined in
Lemma 10.
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Proof. Choose coordinates (p, x) on E. As in the proof of Lemma 10

µ|(p,x) = ιeΩ|(p,x) = Ω(p, x)
(
ιedp ∧ dx+ (−1)kdp ∧ ιedx

)
= Ω(p, x)ιedp ∧ dx

=

(
Ω(p, x)

ω(x)
ιedp

)
∧ (ω(x)dx).

Thus, (15) holds with η|(p,x) = Ω(p,x)
ω(x) ιedp. This, together with the local

expression of ν in Lemma 10, yields η = ιeν. q.e.d.

Example 1 (The unit cotangent bundle). We apply the above con-
structions to E = T ∗M and E′ = U∗M . In this case E′q = U∗qM
are diffeomorphic to cylinders (or spheres, in the Riemannian case).
Moreover, we set Ω = Θ, the Liouville volume form, and µ = ιeΘ, the
Liouville surface form.3 One can check that Θ = dµ.

Let ν ∈ Λnv(T ∗M) and η = ιeν as in Lemmas 10 and 11. In canonical
coordinates, Θ = dp ∧ dx. Then, if ω = ω(x)dx,

ν =
1

ω(x)
dp and η =

1

ω(x)

n∑
i=1

(−1)i−1pi dp1∧ . . .∧ d̂pi∧ . . .∧dpn.

Choose coordinates x around q0 ∈ M such that ∂x1 |q0 , . . . , ∂xk |q0 is
an orthonormal basis for the sub-Riemannian distribution Dq0 . In the
associated canonical coordinates we have

U∗q0M = {(p, x0) ∈ R2n | p2
1 + . . .+ p2

k = 1} ' Sk−1 × Rn−k.

In this chart, ηq0 is the (n− 1)-volume form of the above cylinder times
1/ω(x0).

Remark 5. This construction gives a canonical way to define a mea-
sure on U∗M and its fibers in the general sub-Riemannian case, depend-
ing only on the choice of the volume ω on the manifold M . It turns out
that this measure is also invariant under the Hamiltonian flow. Notice
though that in the sub-Riemannian setting, fibers have infinite volume.

3.3. Invariance. Here we focus on the case of interest where E ⊆ T ∗M
is a rank k vector sub-bundle and E′ ⊂ E is a corank 1 sub-bundle as
defined in Section 3.2. We stress that E′ is not necessarily a vector
sub-bundle, but typically its fibers are cylinders or spheres.

Recall that the sub-Riemannian geodesic flow φt : T ∗M → T ∗M is
the Hamiltonian flow of H : T ∗M → R. Moreover, in our picture, M ⊂
N is a compact submanifold with boundary ∂M of a larger manifold N ,
with dimM = dimN = n.

3Let ϑ ∈ Λ1(T ∗M) be the tautological form ϑ(λ) := π∗(λ). The Liouville invariant

volume Θ ∈ Λ2n(T ∗M) is Θ := (−1)
n(n−1)

2 dϑ ∧ . . . ∧ dϑ. In canonical coordinates
(p, x) on T ∗M we have Θ = dp ∧ dx.
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Definition 2. A sub-bundle E ⊆ T ∗M is invariant if φt(λ) ∈ E for
all λ ∈ E and t such that φt(λ) ∈ T ∗M is defined. A volume form
Ω ∈ Λn+k(E) is invariant if L ~HΩ = 0.

Our definition includes the case of interest for Santaló formula, where
sub-Riemannian geodesics may cross ∂M 6= ∅. In other words, E is
invariant if the only way to escape from E through the Hamiltonian flow
is by crossing the boundary π−1(∂M). Moreover, if Ω is an invariant
volume on an invariant sub-bundle E, then φ∗tΩ = Ω.

Lemma 12 (Invariant induced measures). Let E ⊆ T ∗M be an in-
variant vector bundle with an invariant volume Ω. Let E′ ⊂ E be a
corank 1 invariant sub-bundle. Let e be a vector field transverse to E′

and µ = ιeΩ the induced surface form on E′. Then µ is invariant if and

only if [ ~H, e] is tangent to E′.

In Example 1, E = T ∗M and E′ = U∗M are clearly invariant; in par-

ticular, ~H is tangent to E′. By Liouville theorem, Ω = Θ is invariant for
any Hamiltonian flow Moreover, if the Hamiltonian H is homogeneous of

degree d (on fibers), one checks that [ ~H, e] = −(d− 1) ~H and Lemma 12
yields the invariance of the Liouville surface measure µ = ιeΘ. In par-
ticular, this holds in Riemannian and sub-Riemannian geometry, with
d = 2.

4. Santaló formula

4.1. Assumptions on the boundary. Let (N,D, g) be a smooth con-
nected sub-Riemannian manifold, of dimension n, without boundary.
We focus on a compact n-dimensional submanifold M with piecewise
C1,1 boundary ∂M .

Let q ∈ ∂M such that the tangent space is well defined. We say that
q is a characteristic point if Dq ⊆ Tq∂M . If q is non-characteristic,
the horizontal normal at q is the unique inward pointing unit vector
nq ∈ Dq orthogonal to Tq∂M ∩ Dq. If q ∈ ∂M is characteristic, we
set nq = 0. We call C(∂M) the set of characteristic points. The size of
C(∂M) has been studied in [24, 4] under various regularity assumptions
on ∂M . We give a self-contained proof of the negligibility of C(∂M),
which we need in the following. The C1,1 regularity assumption cannot
be weakened to C1,α, with 0 < α < 1, as shown in [3, Thm. 1.4].

Proposition 13. Let ∂M be piecewise C1,1. Then, the set of char-
acteristic points C(∂M) has zero measure in ∂M .

Proof. Without loss of generality we assume that N = Rn and that
locally ∂M is the graph of a C1,1 function f : Rn−1 → R. Let also
u(x, z) = z − f(x), so that locally ∂M = {(x, z) ∈ Rn−1 × R | u(x, z) =
0}.
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Let Ã ⊂ Rn−1 be measurable with positive measure, and let A =
{(x, f(x)) | x ∈ Ã} ⊆ ∂M . We claim that if X,Y are smooth vector
fields (not necessarily horizontal), tangent to ∂M a.e. on A, then also
[X,Y ] is tangent to ∂M a.e. on A. Notice that X is tangent to ∂M

a.e. on A if and only if X(u)(x, f(x)) = 0 for a.e. x ∈ Ã. Consider the
Lipschitz function ξ(x) := X(u)(x, f(x)). As a consequence of coarea
formula [27], we have∫

Ã
|∇ξ(x)| dx =

∫
R
Hn−2(Ã ∩ ξ−1(t)) dt = 0,

where |∇ξ| is the norm of the Euclidean gradient of ξ : Rn−1 → R, and

Hn−2 is the Hausdorff measure. In particular, ∇ξ = 0 a.e. on Ã. Since Y
is tangent to ∂M a.e. on A, the above identity yields that Y (X(u)) = 0
a.e. on A. A similar argument shows that also Y (X(u)) = 0 a.e. on A.
Since [X,Y ](u)(x, f(x)) = X(Y (u))(x, f(x))−Y (X(u))(x, f(x)) for a.e.
x ∈ Rn−1, we have that [X,Y ] is tangent to ∂M a.e. on A, as claimed.

Assume by contradiction that C(∂M) has positive measure. In par-
ticular, applying the above claim to any pair X,Y ∈ Γ(D), and A =
C(∂M), we obtain that [X,Y ] is tangent to ∂M a.e. on C(∂M). Since
[X,Y ] ∈ Γ(TM), we can apply the claim a finite number of times, ob-
taining that any iterated Lie bracket of elements of Γ(D) is tangent to
∂M a.e. on C(∂M). This contradicts the bracket-generating assump-
tion. q.e.d.

4.2. (Sub-)Riemannian Santaló formula. For any covector λ ∈
U∗qM , the exit length `(λ) is the first time t ≥ 0 at which the corre-
sponding geodesic γλ(t) = π ◦ φt(λ) leaves M crossing its boundary,

while ˜̀(λ) is the smallest between the exit and the cut length along
γλ(t). Namely

`(λ) = sup{t ≥ 0 | γλ(t) ∈M},
˜̀(λ) = sup{t ≤ `(λ) | γλ|[0,t] is minimizing}.

We also introduce the following subsets of the unit cotangent bundle
π : U∗M →M :

U+∂M = {λ ∈ U∗M |∂M | 〈λ,n〉 > 0} ,

U�M = {λ ∈ U∗M | `(−λ) < +∞},

Ũ�M = {λ ∈ U�M | ˜̀(−λ) = `(−λ)}.

Some comments are in order. The set U+∂M consists of the unit covec-
tors λ ∈ π−1(∂M) such that the associated geodesic enters the set M for

arbitrary small t > 0. The visible set U�M is the set of covectors that
can be reached in finite time starting from π−1(∂M) and following the
geodesic flow. If we restrict to covectors that can be reached optimally

in finite time, we obtain the optimally visible set Ũ�M (see Fig. 1).
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Lemma 14. The cut-length c : U∗M → (0,+∞] is upper semicon-
tinuous (and, hence, measurable). Moreover, if any couple of distinct
points in M can be joined by a minimizing non-abnormal geodesic, c is
continuous.

Proof. The result follows as in [17, Thm. III.2.1]. We stress that the
key part of the proof of the second statement is the fact that, in absence
of non-trivial abnormal minimizers, a point is in the cut locus of another
if and only if (i) it is conjugate along some minimizing geodesic or (ii)
there exist two distinct minimizing geodesics joining them. q.e.d.

Lemma 15. The exit length ` : U+∂M → (0,+∞] is lower semicon-

tinuous (and, hence, measurable). Moreover, ˜̀ : U+∂M → (0,+∞] is
measurable.

Proof. Let λ0 ∈ U+∂M , and consider a sequence (λn)n∈N such that
lim infλ→λ0 `(λ) = limn `(λn). Then, the trajectories γn(t) = π ◦ φt(λn)
for t ∈ [0, `(λn)] converge uniformly as n → +∞ to the trajectory
γ0(t) = φt(λ0) for t ∈ [0, δ] where δ = limn `(λn). Moreover, by continu-
ity of ∂M and the fact that γn(`(λn)) ∈ ∂M , it follows that γ0(δ) ∈ ∂M .
This proves that δ ≥ `(λ0), proving the first part of the statement.

To complete the proof, observe that ˜̀= min{`, c}, which are measur-
able by the previous claim and Lemma 14. q.e.d.

Fix a volume form ω on M (or density, if M is not orientable). In
any case, ω and σ := ιnω induce positive measures on M and ∂M ,
respectively. According to Lemmas 10 and 11, these induce measures
νq and ηq = ιeνq on T ∗qM and U∗qM , respectively.

Theorem 16 (Santaló formulas). The visible set U�M and the op-

timally visible set Ũ�M are measurable. Moreover, for any measurable
function F : U∗M → R we have∫

U�M
F µ(16)

=

∫
∂M

[∫
U+
q ∂M

(∫ `(λ)

0
F (φt(λ))dt

)
〈λ,nq〉ηq(λ)

]
σ(q),∫

Ũ�M
F µ(17)

=

∫
∂M

[∫
U+
q ∂M

(∫ ˜̀(λ)

0
F (φt(λ))dt

)
〈λ,nq〉ηq(λ)

]
σ(q).

Remark 6. Even if M is compact and, hence, ˜̀< +∞, in general

Ũ�M ( U�M . Furthermore, if ` < +∞ (that is, all geodesics reach

the boundary of M in finite time), then U�M = U∗M . Thus, our
statement of Santalò formula contains [17, Thm. VII.4.1].



358 D. PRANDI, L. RIZZI & M. SERI

Remark 7. If ∂M is only Lipschitz and C(∂M) has positive measure,
the above Santaló formulas still hold by removing on the left hand side

from U�M and Ũ�M the set {φt(λ) | π(λ) ∈ C(∂M) and t ≥ 0}.
Nothing changes on the right hand side as σ(C(∂M)) = 0, since σ = ιnω
and n vanishes on C(∂M) by definition.

Proof. Let A ⊂ [0,+∞)× U+∂M be the set of pairs (t, λ) such that
0 < t < `(λ). By Lemma 15 it follows that A is measurable. Let

also Z = π−1(∂M) ⊂ U�M which has zero measure in U∗M . Define

φ : A→ U�M \Z as φ(t, λ) = φt(λ). This is a smooth diffeomorphism,

whose inverse is φ−1(λ̄) = (`(−λ̄),−φ`(−λ̄)(−λ̄)). In particular, U�M

is measurable. Then, using Lemma 17 (see below), and Fubini theorem,
we have

(18)

∫
U�M

F µ =

∫
φ(A)

F µ =

∫
A

(F ◦ φ)φ∗µ =

=

∫
∂M

[∫
U+
q ∂M

(∫ `(λ)

0
F (φt(λ))dt

)
〈λ,nq〉ηq(λ)

]
σ(q),

which proves (16). Analogously, with Ã = {(t, λ) | 0 < t < ˜̀(λ)} and

Z̃ = Z ∪ {φ˜̀(λ)(λ) | λ ∈ U+∂M} the map φ : Ã → Ũ�M \ Z̃ is a

diffeomorphism with the same inverse. Then, the same computations
as (18) replacing A with Ã and Z with Z̃ yield (17). q.e.d.

Lemma 17. The following local identity of elements of Λ2n−1(R ×
U+∂M) holds

φ∗µ|(t,λ) = 〈λ,nq〉 dt ∧ σ ∧ η, λ ∈ U+∂M,

where, in canonical coordinates (p, x) on T ∗M

η = ιeν, ν =
1

ω(x)
dp, σ = ιnω, ω = ω(x)dx.

Proof. For any (t, λ) ∈ R × U+∂M let {∂t, v1, . . . , v2n−2} be a set of
independent vectors in T (R× U+∂M) = TR⊕ TU+∂M . Observe that
φ∗µ = dt ∧ (ι∂tφ

∗µ). Then,

ι∂tφ
∗µ(v1, . . . , v2n−2) = µ|φ(t,λ)

(
d(t,λ)φ∂t, d(t,λ)φ v1, . . . , d(t,λ)φ v2n−2

)
.

Notice that,

(a) d(t,λ)φ∂t = (dλφt) ~H, this is, in fact, just ~H|φt(λ),
(b) d(t,λ)φ vi = (dλφt)vi for any i = 1, . . . , 2n− 2.

Hence, it follows that

(19) ι∂tφ
∗µ = ι ~Hφ

∗
tµ = ι ~Hµ,
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where in the last passage we used the invariance of µ (see the discus-
sion below Lemma 12). By Lemma 11 and its proof (in particular, see
Example 1) locally µ = η∧ω. By the properties of the interior product,

(20) ι ~Hµ = (ι ~Hη) ∧ ω + (ι ~Hω) ∧ η.
The first term on the r.h.s. vanishes: as a 2n − 2 form, its value at
a point λ ∈ U+∂M is completely determined by its action on 2n − 2
independent vectors of TλU

+∂M . We can choose coordinates such that
∂M = {xn = 0}. Then a basis of TλU

+∂M is given by ∂x1 , . . . , ∂xn−1

and a set of n− 1 vectors vi =
∑n

j=1 v
j
i ∂pj in TλU

+
π(λ)∂M . Since ι ~Hη is

an n− 2 form, then ω necessarily acts on at least one vi, and vanishes.
Now, notice that

(21) ι ~Hω|λ(·) = ω|π(λ)(π∗ ~H, π∗·)
= 〈λ,nπ(λ)〉ω|π(λ)(nπ(λ), π∗·) = 〈λ,nπ(λ)〉σ|λ(·).

Putting together equations (19), (20), and (21) completes the proof of
the statement. q.e.d.

4.3. Reduced Santaló formula. The following reduction procedure

replaces the non-compact set U�M in Theorem 16 with a compact
subset that we now describe.

To carry out this procedure we fix a transverse sub-bundle V ⊂ TM
such that TM = D⊕V. We assume that V is the orthogonal complement
of D w.r.t. to a Riemannian metric g such that g|D coincides with the
sub-Riemannian one and the associated Riemannian volume coincides
with ω. In the Riemannian case, where V is trivial, this forces ω = ωR,
the Riemannian volume. In the genuinely sub-Riemannian case there
is no loss of generality since this assumption is satisfied for any choice
of ω.

Definition 3. The reduced cotangent bundle is the rank k vector
bundle π : T ∗M r → M of covectors that annihilate the vertical direc-
tions:

T ∗M r := {λ ∈ T ∗M | 〈λ, v〉 = 0 for all v ∈ V} .
The reduced unit cotangent bundle is U∗M r := U∗M ∩ T ∗M r.

Observe that U∗M r is a corank 1 sub-bundle of T ∗M r, whose fibers
are spheres Sk−1. If T ∗M r is invariant in the sense of Definition 2, we
can apply the construction of Section 3.3. The Liouville volume Θ on
T ∗M induces a volume on T ∗M r as follows.

Let X1, . . . , Xk and Z1, . . . , Zn−k be local orthonormal frames for D
and V, respectively. Let ui(λ) := 〈λ,Xi〉 and vj(λ) := 〈λ, Zj〉 smooth
functions on T ∗M . Thus,

T ∗M r = {λ ∈ T ∗M | v1(λ) = . . . = vn−k(λ) = 0}.
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For all q ∈ M where the fields are defined, (u, v) : T ∗qM → Rn are
smooth coordinates on the fiber and, hence, ∂u1 , . . . , ∂uk , ∂v1 , . . . , ∂vn−k

are vectors on Tλ(T ∗qM) ⊂ Tλ(T ∗M) for all λ ∈ π−1(q). In particular,
the vector fields ∂v1 , . . . , ∂vn−k

are transverse to T ∗M r, hence, we give
the following definition.

Definition 4. The reduced Liouville volume Θr ∈ Λn+k(T ∗M r) is

Θr
λ := Θλ(. . . , . . . , . . .︸ ︷︷ ︸

k vectors

, ∂v1 , . . . , ∂vn−k
, . . . , . . . , . . .︸ ︷︷ ︸

n vectors

), ∀λ ∈ T ∗M r.

The above definition of Θr does not depend on the choice of the local
orthonormal frame {X1, . . . , Xk, Z1, . . . , Zn−k} and Riemannian metric
g|V on the complement, as long as its Riemannian volume remains the
fixed one, ω. In fact, let X ′, Z ′ be a different frame for a different
Riemannian metric g′|V . Then4 , X ′ = RX and Z ′ = SX + TZ for
R ∈ SO(k), T ∈ SL(n − k) and S ∈ M(k, n). One can check that ∂v =
S∂u′ + T∂v′ and that Θr = Θ(. . . , ∂v, . . .) = Θ(. . . , T∂v′ , . . .) = (Θr)′,
where both frames are defined.

Assumptions for reduction. We assume the following hypotheses:

(H1) The bundle T ∗M r ⊆ T ∗M is invariant.
(H2) The reduced Liouville volume is invariant, i.e., L ~HΘr = 0.

Remark 8. Assumption (H1) depends only on V, while (H2) de-
pends also on ω (since Θr does). In the Riemannian case, with ω = ωR,
both are trivially satisfied.

Under these assumptions U∗M r = U∗M∩T ∗M r is an invariant corank
1 sub-bundle of T ∗M r. Moreover, µr = ιeΘ

r is an invariant surface form

on U∗M r. This follows from Lemma 12 observing that [ ~H, e] = − ~H is
tangent to U∗M r. As, in Section 3.1, the volume Θr ∈ Λn+k(T ∗M r) in-
duces a vertical volume νrq on the fibers T ∗qM

r and a vertical surface form
ηrq = ιeνq on U∗qM

r. As a consequence of Lemmas 10 and 11 the latter
has the following explicit expression, whose proof is straightforward.

Lemma 18 (Explicit reduced vertical measure). Let q0 ∈M and fix
a set of canonical coordinates (p, x) such that q0 has coordinates x0 and

• {∂x1 , . . . , ∂xk}q0 is an orthonormal basis of Dq0,
• {∂xk+1

, . . . , ∂xn}q0 is an orthonormal basis of Vq0.

In these coordinates ω|x0 = dx|q0. Then νrq0 = volRk and ηrq0 = volSk−1.
In particular, ∫

U∗q0M
r

ηrq0 = |Sk−1|, ∀q0 ∈M,

4For simplicity, assume that D is orientable as a vector bundle and that X1 . . . , Xk

is an oriented frame.
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where |Sk−1| denotes the Lebesgue measure of Sk−1 and volRk , volSk−1

denote the Euclidean volume forms of Rk and Sk−1.

We now state the reduced Santaló formulas. The sets U+∂M r, U�M r,

and Ũ�M r are defined from their unreduced counterparts by taking the
intersection with T ∗M r.

Theorem 19 (Reduced Santaló formulas). The visible set U�M r

and the optimally visible set Ũ�M r are measurable. For any measurable
function F : U∗M r → R we have∫

U�M r

F µr(22)

=

∫
∂M

[∫
U+
q ∂M r

(∫ `(λ)

0
F (φt(λ))dt

)
〈λ,nq〉ηrq(λ)

]
σ(q),∫

Ũ�M r

F µr

=

∫
∂M

[∫
U+
q ∂M r

(∫ ˜̀(λ)

0
F (φt(λ))dt

)
〈λ,nq〉ηrq(λ)

]
σ(q).

Proof. The proof follows the same steps as the one of Theorem 16
replacing the invariant sub-bundles, volumes, and surface forms with
their reduced counterparts. q.e.d.

Remark 9. Let HsR be the sub-Riemannian Hamiltonian and HR

be the Riemannian Hamiltonian of the Riemannian extension. The two
Hamiltonians are (locally on T ∗M)

HR =
1

2

 k∑
i=1

u2
i +

n−k∑
j=1

v2
j

 , HsR =
1

2

k∑
i=1

u2
i .

Let φsRt = et
~HsR and φRt = et

~HR be their Hamiltonian flows. Since
T ∗M r = {λ | v1(λ) = . . . = vn−k(λ) = 0}, by assumption (H1) we have

HsR = HR, and φsRt = φRt on T ∗M r.

In particular, the sub-Riemannian geodesics with initial covector λ ∈
U∗M r are also geodesics of the Riemannian extension and viceversa.

5. Examples

5.1. Carnot groups. A Carnot group (G, ?) of step m is a connected,
simply connected Lie group of dimension n, such that its Lie algebra
g = TeG admits a nilpotent stratification of step m, that is

g = g1 ⊕ . . .⊕ gm,
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with

[g1, gj ] = g1+j , ∀1 ≤ j ≤ m, gm 6= {0}, gm+1 = {0}.

Let D be the left-invariant distribution generated by g1, and consider
any left-invariant sub-Riemannian structure on G induced by a scalar
product on g1.

We identify G ' Rn with a polynomial product law by choosing a
basis for g as follows. Recall that the group exponential map,

expG : g→ G,

associates with V ∈ g the element γ(1), where γ : [0, 1] → G is the
unique integral line starting from γ(0) = 0 of the left invariant vector
field associated with V . Since G is simply connected and g is nilpotent,
expG is a smooth diffeomorphism.

Let dj := dim gj . Indeed, d1 = k. Let {Xj
i }, for j = 1, . . . ,m and

i = 1, . . . , dj be an adapted basis, that is gj = span{Xj
1 , . . . , X

j
dj
}. In

exponential coordinates we identify

(x1, . . . , xm) ' expG

 m∑
j=1

dj∑
i=1

xjiX
j
i

 , xj ∈ Rdj .

The identity e ∈ G is the point (0, . . . , 0) ∈ Rn and, by the Baker–
Campbell–Hausdorff formula the group law ? is a polynomial expression
in the coordinates (x1, . . . , xm). Finally,

Xj
i =

∂

∂xji

∣∣∣∣∣
0

,

so that D|e ' {(x, 0, . . . , 0) | x ∈ Rk} and Dq = Lq∗D|e, where Lq∗ is
the differential of the left-translation Lq(p) := q ? p.

We equip G with the Lebesgue volume of Rn, which is a left-invariant
Haar measure. In order to apply the reduction procedure of Section 4.3,
let V be the left-invariant distribution generated by

V|e := g2 ⊕ . . .⊕ gm,

and consider any left-invariant scalar product g|V on V. Thus, up to a
renormalization, g = g|D ⊕ g|V is a left-invariant Riemannian extension
such that TM = D⊕V is an orthogonal direct sum and its Riemannian
volume coincides with the Lebesgue one.

Proposition 20. Any Carnot group satisfies assumptions (H1) and
(H2).

Proof. Let X1, . . . , Xk ∈ Γ(D) and Z1, . . . , Zn−k ∈ Γ(V) be a global
frame of left-invariant orthonormal vector fields. Let ui(λ) := 〈λ,Xi〉
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and vj(λ) := 〈λ, Zj〉 be smooth functions on T ∗G. We have the following
expressions for the Poisson brackets

{ui, vj} =

k∑
i=1

n−k∑
`=1

d`ijv`, i = 1, . . . , k, j = 1, . . . , n− k,

for some constants d`ij . We stress that the above expression does not
depend on the ui’s, as a consequence of the graded structure. Denoting

the derivative along the integral curves of ~H with a dot, we have

v̇j = {H, vj} =

k∑
i=1

ui{ui, vj} =

k∑
i=1

n−k∑
`=1

uid
`
ijv`.

Thus, any integral line of ~H starting from λ ∈ T ∗M r = {v1 = . . . =
vn−k = 0} remains in T ∗M r and the latter is invariant.

To prove the invariance of Θr, consider, for any fixed left-invariant
X ∈ Γ(D), the adjoint map adX : V|e → V|e, given by adX(Z) =
[X,Z]|e. This map is well defined (as a consequence of the graded
structure) and nilpotent. In particular, Trace(adX) = 0. Thus, we
obtain from an explicit computation (see Appendix A)

L ~HΘr = −

 k∑
i=1

n−k∑
j=1

uid
j
ij

Θr = −

(
k∑
i=1

ui Trace(adXi)

)
Θr = 0.

q.e.d.

Proposition 21 (Characterization of reduced geodesics for Carnot
groups). The geodesics γλ(t) with initial covector λ ∈ T ∗qM r are obtained
by left-translation of straight lines, that is, in exponential coordinates,

γλ(t) = q ? (ut, 0, . . . , 0), u ∈ Rk.

Proof. Let X1, . . . , Xk ∈ Γ(D) and Z1, . . . , Zn−k ∈ Γ(V) be a global
frame of left-invariant orthonormal vector fields. Let ui(λ) := 〈λ,Xi〉
and vj(λ) := 〈λ, Zj〉 be smooth functions on T ∗G. Let u ∈ Rk. The
extremal λ(t) = φt(λ), with initial covector λ = (q, u, 0) satisfies v ≡ 0
by Proposition 20 and, as a consequence of the graded structure,

u̇i = {H,ui} =
k∑
j=1

uj{uj , ui} =
k∑
j=1

n−k∑
`=1

ujc
`
jiv` = 0.

In particular, λ(t) = (q(t), u, 0). Moreover, the geodesic γλ(t) = π(λ(t))
satisfies

γ̇λ(t) =
k∑
i=1

uiXi(γλ(t)).

Since the ui’s are constants, γλ(t) is an integral curve of
∑k

i=1 uiXi

starting from q. Then L−1
q γλ(t) is an integral curve of

∑k
i=1 uiL

−1
q∗ Xi =
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i=1 uiXi starting from the identity. By definition of exponential co-

ordinates

γλ(t) = q ? expG

(
t

k∑
i=1

uiXi

)
' q ? (ut, 0). q.e.d.

Remark 10. In the case of a step 2 Carnot group, the group law
is linear when written in exponential coordinates. In fact, for a fixed
left-invariant basis X1, . . . , Xk ∈ Γ(D) and Z1, . . . , Zn−k ∈ Γ(V) it holds

[Xi, Xj ] =
n−k∑
`=1

c`ijZ`, c`ij ∈ R.

By the Baker–Campbell–Hausdorff formula, (x, z)?(x′, z′) = (x′+x, z′+
z + f(x, x′)), where

f(x, x′)` =
1

2

k∑
i,j=1

xic
`
ijx
′
j , ` = 1, . . . , n− k.

As a consequence, the geodesics γλ(t) with initial covector λ ∈ T ∗qM r

span the set q ? D|e. The latter is not a hyperplane, in general, when
q 6= e and the step m > 2.

Example 2 (Heisenberg group). The (2d+1)-dimensional Heisenberg
group H2d+1 is the sub-Riemannian structure on R2d+1 where (D, g) is
given by the following set of global orthonormal fields

Xi := ∂xi −
1

2

2d∑
i=1

Jijxj∂z, J =

(
0 In
−In 0

)
, i = 1, . . . , 2d,

written in coordinates (x, z) ∈ R2d × R. The distribution is bracket-
generating, as [Xi, Xj ] = Jij∂z. These fields generate a stratified Lie
algebra, nilpotent of step 2, with

g1 = span{X1, . . . , X2d}, g2 = span{∂z}.
There is a unique connected, simply connected Lie group G such that
g = g1 ⊕ g2 is its Lie algebra of left-invariant vector fields. The group
exponential map expG : g → G is a smooth diffeomorphism and then
we identify G = R2d+1 with the polynomial product law

(x, z) ? (x′, z′) =

(
x+ x′, z + z′ +

1

2
x · Jx′

)
.

Notice that X1, . . . , X2d (and ∂z) are left-invariant.
To carry on the reduction, we consider the Riemannian extension g

such that ∂z is a unit vector orthogonal to D. The geodesics associated
with λ ∈ U∗M r and starting from q reach the whole Euclidean plane
q ? {z = 0} (the left-translation of R2d ⊂ R2d+1). At q = (x, z) this is
the plane orthogonal to the vector

(
1
2Jx, 1

)
w.r.t. the Euclidean metric.
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5.2. Riemannian foliations with bundle like metric. A Riemann-
ian foliation has bundle like metric if locally it is a Riemannian submer-
sion w.r.t. the projection along the leaves.

Definition 5. Let M be a smooth and connected n-dimensional Rie-
mannian manifold. A k-codimensional foliation F on M is said to be
Riemannian with bundle like metric if there exists a maximal collection
of pairs {(Uα, πα), α ∈ I} of open subsets Uα of M and submersions
πα : Uα → U0

α ⊂ Rk such that

• {Uα}α∈I is a covering of M ,
• If Uα∩Uβ 6= ∅, there exists a local diffeomorphism Ψαβ : Rk → Rk

such that πα = Ψαβπβ on Uα ∩ Uβ,
• the maps πα : Uα → U0

α are Riemannian submersions when U0
α are

endowed with a given Riemannian metric.

On each Uα, the preimages π−1
α (x0) for fixed x0 ∈ U0

α are codimension k
embedded submanifolds, called the plaques of the foliation. These sub-
manifolds form maximal connected injectively immersed submanifolds
called the leaves of the foliation. The foliation is totally geodesic if its
leaves are totally geodesic submanifolds [41].

To any Riemannian foliation with bundle-like metric we associate the
splitting TM = D ⊕V, where V is the bundle of vectors tangent to the
leaves of the foliation and D is its orthogonal complement (we call V
the bundle of vertical directions, and its sections vertical vector fields).
If D is bracket-generating, then (D, g|D) is, indeed, a sub-Riemannian
structure on M that we refer to as tamed by a foliation and we assume
to be equipped with the corresponding Riemannian volume.

We say that a vector field X ∈ Γ(TM) is basic if, locally on any Uα,
it is πα-related with some vector X0 on U0

α. If X ∈ Γ(TM) is basic,
and V ∈ Γ(V) is vertical, then the Lie bracket [X,V ] is vertical. In
this setting we consider a local orthonormal frame Z1, . . . , Zn−k ∈ Γ(V)
of vertical vector fields and a local orthonormal frame of basic vector
fields X1, . . . , Xk ∈ Γ(D) for the distribution. The structural functions
are defined as

[Xi, Xj ] =

k∑
`=1

b`ijX` +

n−k∑
`=1

c`ijZ`, [Xi, Zj ] =

n−k∑
`=1

d`ijZ`,

[Zi, Zj ] =
n−k∑
`=1

e`ijZ`.

The totally geodesic assumption is equivalent to the fact that any basic
horizontal vector field X generates a vertical isometry, that is

(23) (LXg)(Z,W ) = 0, ∀Z,W ∈ Γ(V) ⇐⇒ d`ij = −dji`.
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Proposition 22. Any sub-Riemannian structure tamed by a foliation
with totally geodesic leaves satisfies assumptions (H1) and (H2).

Proof. Locally, T ∗M r is the zero-locus of the functions vi(λ) = 〈λ, Zi〉
for some family {Zj}n−kj=1 of generators of V. Thus, denoting the deriva-

tive along the integral curves of ~H with a dot, we have

v̇j = {H, vi} =
k∑
i=1

ui{ui, vj} =
k∑
i=1

n−k∑
`=1

uid
`
ijv` = 0, on T ∗M r.

This readily implies the invariance of T ∗M r. To prove the invariance of
Θr, we obtain from an explicit computation (see Appendix A)

L ~H(Θr) = −

(
k∑
i=1

n−k∑
`=1

uid
`
i`

)
Θr = 0.

In the last step, we used the totally geodesic assumption (23). q.e.d.

5.2.1. Riemannian submersions. Any Riemannian submersion π :
(M, g) → (M̄, ḡ) is trivially a Riemannian foliation with bundle-like
metric. Let M be a sub-Riemannian manifold tamed by a Riemannian
submersion π : M → M̄ . We have the following characterization.

Proposition 23. Let M be a sub-Riemannian manifold tamed by a
Riemannian submersion π : M → M̄ . Then γλ : [0, T ] → M is a sub-
Riemannian geodesic associated with λ ∈ U∗M r if and only if it is the
lift of a Riemannian geodesic γ̄λ := π ◦ γλ of M̄ .

Proof. Let X̄1, . . . , X̄k ∈ Γ(TM̄) be a local orthonormal frame for
(M̄, ḡ). Let X1, . . . , Xk ∈ Γ(D) the corresponding local orthonormal
frame of basic vector fields on M , such that π∗Xi = X̄i. Let also
Z1, . . . , Zn−k ∈ Γ(V) be a local orthonormal frame for V. Indeed,

[Xi, Xj ] =

k∑
`=1

b`ijX` +

n−k∑
`=1

c`ijZ`, b`ij , c
`
ij ∈ C∞(M).

Since the Xi’s are basic, the functions b`ij ∈ C∞(M) are constant along
the fibers of the submersion and descend to well defined functions in
C∞(M̄). Moreover,

[X̄i, X̄j ] =

k∑
`=1

b`ijX̄`.

Sub-Riemannian extremals λ(t) ∈ U∗M r satisfy
(24)

vj(t) ≡ 0, u̇j(t) =

k∑
i,`=1

ui(t)b
`
iju`(t), γ̇λ(t) =

k∑
i=1

ui(t)Xi(γλ(t)),
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where the structural functions b`ij = b`ij(γλ(t)) are computed along the
sub-Riemannian geodesic. On the other hand, Riemannian extremals
λ̄(t) ∈ UM̄ satisfy

(25) ˙̄uj(t) =
k∑

i,`=1

ūi(t)b
`
ij ū`(t), γ̇λ(t) =

k∑
i=1

ūi(t)X̄i(γ̄λ(t)),

where ūi : T ∗M̄ → R are the smooth functions ui(λ̄) = 〈λ̄, X̄i〉, for i =
1, . . . , k and are computed along the extremal. The statement follows by
observing that the projections γ̄λ = π ◦γλ of sub-Riemannian extremals
satisfy (25) with ūi(t) = ui(t). Viceversa, for any Riemannian geodesic
γ̄λ̄ on M̄ , its horizontal lift γλ on M satisfies (24) with ui(t) = ūi(t) and
vj ≡ 0. q.e.d.

Example 3 (Complex Hopf fibrations). Consider the odd dimen-
sional spheres S2d+1

S2d+1 = {(z0, z1, . . . , zd) ∈ Cd+1 | ‖z‖ = 1},
equipped with the standard round metric. The unit complex numbers
S1 = {z ∈ C | |z| = 1} give an isometric action of U(1) on S2d+1 by

z → eiϑz, z ∈ S2d+1, ϑ ∈ (−π, π].

Hence, the quotient space S2d+1/S1 ' CPd (the complex projective
space) has a unique Riemannian structure (the Fubini–Study metric)
such that the projection

p(z0, . . . , zd) = [z0 : . . . : zd]

is a Riemannian submersion. The fibration S1 ↪→ S2d+1 p−→ CPd is called
the complex Hopf fibration. In real coordinates zj = xj + iyj on Cd+1,
the vertical distribution V = ker p∗ is generated by the restriction to
S2d+1 of the unit vector field

ξ =
d∑
j=0

(xj∂yj − yj∂xj ).

The orthogonal complement D := V⊥ with the restriction g|D of the
round metric define the standard sub-Riemannian structure on the com-
plex Hopf fibrations. In real coordinates, as subspaces of R2d+2, the
hemisphere M := S2d+1

+ and its boundary are

M =

{
d∑
i=0

x2
i + y2

i = 1 | x0 ≥ 0

}
, ∂M =

{
d∑
i=0

x2
i + y2

i = 1 | x0 = 0

}
.

A different set of coordinates we will use is the following

(ϑ,w1, . . . , wd) 7→

(
eiϑ√

1 + |w|2
,

w1e
iϑ√

1 + |w|2
, . . . ,

wde
iϑ√

1 + |w|2

)
,
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where ϑ ∈ (−π, π) and w = (w1, . . . , wd) ∈ Cd. In particular, with
wj = zj/z0, the (w1, . . . , wd) are inohomgeneous coordinates for CPd,
and ϑ is the fiber coordinate. The north pole corresponds to ϑ = 0
and w = 0. The hemisphere is characterized by ϑ ∈ [−π

2 ,
π
2 ] and its

boundary by cos(ϑ) = 0.

Example 4 (Quaternionic Hopf fibrations). Let H be the field of
quaternions. If q = x+iy+jz+kw, with x, y, z, w ∈ R, the quaternionic
norm is

‖q‖ = x2 + y2 + z2 + w2.

Consider the sphere S4d+3 as a subset of the quaternionic space Hd,

S4d+3 = {(q0, q1, . . . , qd) ∈ Hd+1 | ‖q‖ = 1},

equipped with the standard round metric. The left multiplication by
unit quaternions S3 = {q ∈ H | |q| = 1} gives an isometric action of
SU(2) on S4d+3. The quotient space S4d+3/S3 ' HPd (the quaternionic
projective space) has a unique Riemannian structure such that the pro-
jection

p(q0, . . . , qd) = [q0 : . . . : qd]

is a Riemannian submersion. The fibration S3 ↪→ S4d+3 p−→ HPd is the
quaternionic Hopf fibration. In real coordinates qj = xj+iyj+jzj+kwj
on Hd+1, the vertical distribution V = ker p∗ is generated by

ξI =

d∑
i=0

yi∂xi − xi∂yi + wi∂zi − zi∂wi ,

ξJ =
d∑
i=0

zi∂xi − wi∂yi − xi∂zi + yi∂wi ,

ξK =
d∑
i=0

wi∂xi + zi∂yi − yi∂zi − xi∂wi .

The restriction of the round metric g|D on the orthogonal complement
D := V⊥ defines the standard sub-Riemannian structure on the quater-
nionic Hopf fibrations.

In real coordinates, the hemisphere M := S4d+4
+ ⊂ R4d+4 and its

boundary are

M =

{
d∑
i=0

x2
i + y2

i + z2
i + w2

i = 1 | x0 ≥ 0

}
,

∂M =

{
d∑
i=0

x2
i + y2

i + z2
i + w2

i = 1 | x0 = 0

}
.
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A different set of coordinates we will use is the following

(ϑ1, ϑ2, ϑ3, w1, . . . , wd) 7→(
eiϑ1+jϑ2+kϑ3√

1 + |w|2
,
w1e

iϑ1+jϑ2+kϑ3√
1 + |w|2

, . . . ,
wde

iϑ1+jϑ2+kϑ3√
1 + |w|2

)
,

where |ϑ|2 = ϑ2
1 + ϑ2

2 + ϑ2
3 < π2 and w = (w1, . . . , wd) ∈ Hd. In

particular, (w1, . . . , wd) are inohomgeneous coordinates for HPd given
by wj = q−1

0 qj and ϑ1, ϑ2, ϑ3 are local coordinates on SU(2). The north
pole corresponds to ϑ1 = ϑ2 = ϑ3 = 0 and w = 0. The hemisphere is
characterized by |ϑ| ≤ π/2 and its boundary by cos |ϑ| = 0.

6. Applications

In this section, we present the proofs of the applications of the reduced
Santaló formula presented in Sections 1.3, 1.4 and 1.5.

6.1. Hardy-type inequalities. It is well known that if f ∈ C∞0 ([0, a])
it holds

(26)

∫ a

0
f ′(t)2dt ≥ π2

a2

∫ a

0
f(t)2dt, (1D Poincaré inequality)

with equality holding if and only if f(t) = C sin
(
π
a t
)
. Moreover,∫ a

0
f ′(t)2dt ≥ 1

4

∫ a

0

f(t)2

d(t)2
dt, (1D Hardy inequality)

where d(t) = min{t, a − t} is the distance from the boundary and the
equality holds if and only if f(t) = 0.

Recall that `(λ) is the length at which the geodesic with initial covec-
tor λ leaves M crossing the boundary ∂M and, in general, t 7→ `(φt(λ))
is a decreasing function. Then `(·) is not invariant under the flow φt.
For this reason, in Section 1.3, we introduced the function L : U∗M →
[0,+∞] defined as L(λ) := `(λ)+`(−λ), that measures the length of the

projection of the maximal integral line of ~H passing through λ. Indeed,
L(·) is φt-invariant and coincides with `(·) on U+∂M , since it can be
equivalently defined as

L(λ) :=

{
`(−φ`(−λ)(−λ)), if `(−λ) < +∞,
+∞, otherwise.

Proof of Proposition 2. Choose coordinates x around a fixed q ∈ M
as in Lemma 18, and let (p, x) be the associated canonical coordinates
on T ∗M . Let Q be a quadratic form on T ∗qM

r. In particular, Q(λ) =
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i,j=1 piQijpj , where λ = (p1, . . . , pk). By Lemma 18 we have∫
U∗qM

r

Q(λ)ηrq0(λ) =

∫
Sk−1

k∑
i,j=1

Qijpipj dvolSk−1(p) =
|Sk−1|
k

Trace(Q),

where we performed the standard integral of a quadratic form on Sk−1.
Choosing Q(λ) = 〈λ,∇Hf(q)〉2, then Trace(Q) = |∇Hf(q)|2. Thus, for
any point q ∈M we have

(27)
|Sk−1|
k
|∇Hf(q)|2 =

∫
U∗qM

r

〈λ,∇Hf(q)〉2ηrq(λ), ∀f ∈ C∞(M).

Using the reduced Santaló formula (22),

|Sk−1|
k

∫
M
|∇Hf(q)|2ω(q) =

∫
M

[∫
U∗qM

r

〈λ,∇Hf(q)〉2ηrq(λ)

]
ω(q)

=

∫
U∗M r

〈λ,∇Hf〉2µr

≥
∫
U�M r

〈λ,∇Hf〉2µr

=

∫
∂M

[∫
U+
q ∂M r

(∫ `(λ)

0
〈φt(λ),∇Hf〉2dt

)
〈λ,nq〉ηrq(λ)

]
σ(q).

Consider the subset D = U+∂M r∩{` < +∞}. Let fλ(t) := f(π◦φt(λ)).
For λ ∈ D we have fλ(0) = fλ(`(λ)) = 0 and the one-dimensional
Poincaré inequality (26) gives

(28)

∫ `(λ)

0
〈φt(λ),∇Hf〉2dt =

∫ `(λ)

0
f ′λ(t)2dt ≥ π2

`2(λ)

∫ `(λ)

0
fλ(t)2dt.

Indeed, we can replace ` with L, which is φt-invariant. Then

|Sk−1|
k

∫
M
|∇Hf(q)|2ω(q)

≥ π2

∫
∂M

[∫
Dq

(∫ `(λ)

0

fλ(t)2

L(λ)2
dt

)
〈λ,nq〉ηrq(λ)

]
σ(q).

Since on U+
q ∂M \Dq the function 1/L(λ)2 = 0, we can replace Dq with

U+
q ∂M . Using again Santaló formula to restore the integral on U�M r,

we obtain∫
M
|∇Hf(q)|2ω(q) ≥ kπ2

|Sk−1|

∫
U�M r

(π∗f)2

L2
µr

=
kπ2

|Sk−1|

∫
M

[∫
U∗qM

r

1

L2
ηrq

]
f(q)2ω(q).



A SUB-RIEMANNIAN SANTALÓ FORMULA 371

The second equality follows by Lemma 11. This yields (5).
To prove (6), we replace Poincaré inequality with Hardy in (28):∫ `(λ)

0
〈φt(λ),∇Hf〉2dt =

∫ `(λ)

0
f ′λ(t)2dt

≥ 1

4

∫ `(λ)

0

fλ(t)2

min{t, `(λ)− t}2
dt ≥ 1

4

∫ `(λ)

0

fλ(t)2

`(φt(λ))2
dt,

where we used the fact that if λ ∈ U+∂M then `(φt(λ)) = `(λ)− t. We
then proceed as in the previous case without replacing ` with L. q.e.d.

Proof of Proposition 3. The result is obtained by mimicking the proof
of Proposition 2. Observe that, for any f ∈ C∞0 (M) and q ∈ M , we
have∫

U∗qM
r

|〈λ,∇Hf(q)〉|pηrq(λ) = |∇Hf(q)|p
∫
U∗qM

r

∣∣∣∣〈λ, ∇Hf(q)

|∇Hf(q)|
〉
∣∣∣∣p ηrq(λ)

= 2|∇Hf(q)|p
∫
Sk−1∩{p1>0}

pp1 dvolSk−1(p)

= |∇Hf(q)|pC−1
p,k ,

where we used coordinates as in Lemma 18, the rotational invariance of
the measure and

Cp,k :=
Γ(k+p

2 )

2Γ(1+p
2 )π(k−1)/2

=
k

|Sk−1|

√
π Γ(k+p

2 )

2Γ(1+p
2 )Γ(k2 + 1)

.

Using the above in place of (27), by Santaló formula (22) we obtain

C−1
p,k

∫
M
|∇Hf |pω(q)

≥
∫
∂M

[∫
U+
q ∂M r

(∫ `(λ)

0
|〈φt(λ),∇Hf〉|pdt

)
〈λ,nq〉ηrq(λ)

]
σ(q).

To prove (7) we proceed as in the proof of Proposition 2 replacing the
step (28) with the Lp Poincaré inequality [33, Sec. 5.3]∫ a

0
|f ′(t)|pdt ≥

(πp
a

)p ∫ a

0
|f(t)|pdt.

We proceed similarly for the proof of (8), replacing (28) with the Lp

Hardy’s inequalities [29, Thm. 327]∫ a

0
|f ′(t)|pdt ≥

(
p− 1

p

)p ∫ a

0

|f(t)|p

d(t)p
dt. q.e.d.



372 D. PRANDI, L. RIZZI & M. SERI

Proof of Proposition 4. With L := supλ∈U∗Mr L(λ), the Hardy in-
equality (5) can be further simplified into∫

M
|∇Hf |2ω ≥

kπ2

L2

∫
M
f2ω.

By the min-max principle (13), whenever any f ∈ C∞0 (M) such that∫
M f2ω = 1, we have

λ1(M) ≥
∫
M
|∇Hf |2ω ≥

kπ2

L2
. q.e.d.

Proof of Proposition 5. Fix a north pole q0 and the hemisphere M
whose center is q0. By Remark 9, in all three cases, the reduced sub-
Riemannian geodesics are a subset of the Riemannian ones (great cir-
cles). In particular, L = π and Proposition 4 gives

λ1(M) ≥ k,

where k = d for the Riemannian sphere, k = 2d for the CHF and k = 4d
for the QHF.

In all cases, uniqueness of Φ = cos(δ) ∈ C∞0 (M) follows as in the Rie-
mannian case from the min-max principle [16, Corollary 2, p. 20]. To
complete the proof, we show that Φ is an eigenfunction of the positive
(sub-)Laplacian with eigenvalue d, 2d, 4d, respectively. In the Riemann-
ian case this is well known. For the CHF we use coordinates (ϑ,w) of
Example 3. Then,

Φ = x0 =
cos(ϑ)√
1 + |w|2

= cos(ϑ) cos(r),

where we have set tan(r) = |w|. In [10, Proposition 2.3] the authors
show that for a function depending only on ϑ and r the action of the
sub-Laplacian reduces to the action of its cylindrical part, given by

∆̃ = ∂2
r + ((2d− 1) cot(r)− tan(r))∂r + tan2(r)∂2

ϑ.

In particular, ∆Φ = ∆̃Φ = (−2d)Φ.
For the QHF we use coordinates (ϑ1, ϑ2, ϑ3, w) of Example 4. Using

the expression

eiϑ1+jϑ2+kϑ3 = cos(η)+(iϑ1+jϑ2+kϑ3)
sin(η)

η
, η :=

√
ϑ2

1 + ϑ2
2 + ϑ2

3,

we obtain

Φ = x0 =
cos(η)√
1 + |w|2

= cos(η) cos(r),

where we have set tan(r) = |w|. In [11, Definition 2.1 and Proposition
2.2] the authors show that, for a function depending only on η and r,
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the action of the sub-Laplacian reduces to the action of its cylindrical
part, given by

∆̃ = ∂2
r + ((4d− 1) cot(r)− 3 tan(r))∂r + tan2(r)

(
∂2
η + 2 cot(η)∂η

)
.

In particular, ∆Φ = ∆̃Φ = (−4d)Φ. q.e.d.

6.2. Isoperimetric inequalities. We define some quantities that we
already introduced.

Definition 6. The visibility angle at q ∈M and the optimal visibility
angle are

ϑ�q :=
ηrq(U

�
q M

r)

ηrq(UqM
r)
, ϑ̃�q :=

ηrq(Ũ
�
q M

r)

ηrq(UqM
r)
.

The least visibility angle and the least optimal visibility angle are

ϑ� = inf
q∈M

ϑ�q , ϑ̃� = inf
q∈M

ϑ̃�q .

Notice that ϑ�q , ϑ̃
�
q , ϑ

�, ϑ̃� ∈ [0, 1] and do not depend on the choice
of the volume ω.

Definition 7. The sub-Riemannian diameter and reduced diameter
are:

diam(M) := sup{d(x, y) | x, y ∈M} = sup{˜̀(λ) | λ ∈ U∗M},

diamr(M) := sup{˜̀(λ) | λ ∈ U∗M r}.

Clearly diamr(M) ≤ diam(M).

Proof of Proposition 7. The proof follows as in [17, 19], considering
F = 1 in (22). The l.h.s. is estimated from below using the disintegration
of µr given in Lemma 11. For the estimate of the r.h.s. we only observe
that, by Lemma 18 we have∫

U+
q ∂M r

〈λ,nq〉ηrq(λ) =

∫
Sk−1∩{p1>0}

p1 dvolSk−1(p) =
|Sk|
2π

. q.e.d.

Proof of Proposition 8. For all these structures, all the inequalities in
the proof of Proposition 7 are equalities, hence, the sharpness follows.
Anyway, here we perform the explicit computation for the hemisphere
of the sub-Riemannian complex Hopf fibration; the remaining case of
the quaternionic Hopf fibration can be checked following the same steps.

We use the notation of Example 3, and real coordinates. Let q =
(0, y0, . . . , xd, yd) ∈ ∂M . The sub-Riemannian normal nq is the unique
inward pointing unit vector in Dq orthogonal to Dq ∩ Tq∂M . Indeed,
Tq∂M is the orthogonal complement to ∂x0 w.r.t. to the Riemannian
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round metric, while Dq is the orthogonal complement to ξ. Thus, nq =
αξ + β∂x0 . The condition nq ∈ D and the normalization imply

nq =
1√

1− g(∂x0 , ξ)
2

(∂x0 − g(∂x0 , ξ)ξ) .

Using the explicit expression for ξ we obtain

nq =
√

1− y2
0 ∂x0 mod Tq∂M.

Notice that C(∂M) = {y2
0 = 1} ∩ ∂M . Due to the factor ρ(y0) :=√

1− y2
0, the sub-Riemannian surface measure σ is different from the

Riemannian one, which, in cylindrical coordinates, is given by σR =
ι∂x0ω = ρ2d−2dy0 dvolS2d−1 . In particular,

σ(∂M) =

∫
∂M

ρ(y0)σR = |S2d−2|
∫ 1

−1
ρ(y0)2d−1dy0 =

|S2d+1|
|S2d|

.

Moreover, ω(M) = |S2d+1|/2. By Remark 9, the reduced geodesics γλ
with λ ∈ U∗M r are a subset of Riemannian geodesics, hence, ϑ� =

ϑ̃� = 1 and ` = diamr(M) = π. q.e.d.

Appendix A. Lie derivative of the reduced Liouville volume

Lemma 24. In the notation of Section 4.3, we have

L ~HΘr = −

n−k∑
j=1

k∑
i=1

ui∂vj{ui, vj}

Θr.

Proof. For any `-tuple w = (w1, . . . , w`) of vector fields and `-form
α, we denote

α(L ~H(w)) =
∑̀
i=1

α(w1, . . . , [ ~H,wi], . . . , w`).

Let (x1, . . . , xn) : U → Rn be coordinates on U ⊂ M . Then (x, u, v) :
π−1(U) → R2n are local coordinates for T ∗M and T ∗M r ∩ π−1(U) =
{(x, u, v) | v = 0}.

Let ∂v = (∂v1 , . . . , ∂vn−k
), ∂u = (∂u1 , . . . , ∂uk) and ∂x = (∂x1 , . . . , ∂xn).

Recall that Θr(∂u, ∂x) = Θ(∂u, ∂v, ∂x) = (−1)k(n−k)Θ(∂v, ∂u, ∂x). Then,

using twice (L ~Hα)(w) = ~H(α(w)) − α(L ~H(w)) for any `-form α and
`-uple w, we obtain

(L ~HΘr)(∂u, ∂x) = ~H(Θr(∂u, ∂x))−Θr(L ~H(∂u, ∂x))

= (−1)k(n−k)
[
~H(Θ(∂v, ∂u, ∂x))−Θ(∂v,L ~H(∂u, ∂x))

]
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= (−1)k(n−k)
[
(L ~HΘ)(∂v, ∂u, ∂x) + Θ(L ~H(∂v), ∂u, ∂x)

]
= Θ(∂u,L ~H(∂v), ∂x),(29)

where, in the last step, we used that L ~HΘ = 0. Now observe that, for
j = 1, . . . , n− k,

[ ~H, ∂vj ] =
k∑
i=1

[ui~ui, ∂vj ] =
k∑
i=1

ui[~ui, ∂vj ]

= −
k∑
i=1

k∑
`=1

ui∂vj{ui, u`}∂u` −
k∑
i=1

n−k∑
`=1

ui∂vj{ui, v`}∂v` .(30)

Plugging (30) in (29), and using complete skew-symmetry, we obtain
the statement. q.e.d.

Appendix B. Improving estimates through reduction

We sketch a strategy to improve the lower bound for the (sub-)Lapla-
cian of Proposition 4, when the latter is trivial, i.e., when L = +∞.
Similar considerations hold also for isoperimetric-type inequalities.

Let M be a (sub-)Riemannian manifold with boundary ∂M , and as-
sume that a reduced bundle U∗M r has been found in such a way that
the reduced Santaló formula, and all its consequences, hold. Assume
that there exists a reduced geodesic that never hits the boundary of M .
This happens if there exists a covector λ ∈ U∗M r such that L(λ) = +∞.
This phenomenon occurs already in the Riemannian case, where no re-
duction is required, and, in particular, if M contains closed Riemann-
ian geodesics. For example, consider the small rotationally symmetric
neighborhood

M = {(ϑ, φ) | π/2− ε ≤ ϑ ≤ π/2 + ε} ⊂ S2,

of the equator ϑ = π/2 of the two dimensional round sphere, equipped
with the standard measure. In this cases, since L = supλ∈U∗M L(λ) =
+∞, the lower bound of Proposition 4 for the Dirichlet spectrum on M
is trivial. Nevertheless, the reduction procedure can be still applied to
circumvent this problem, as we now sketch for the spherical band above.

The idea is to define a set of reduced geodesics by considering only
those which are normal to the boundary ∂M . More precisely, we let

D := span{∂ϑ}, V := span{∂φ},

and we set T ∗M r = V⊥ = span{dϑ}. The restriction of g to D in-
duces a sub-Riemannian structure (which does not satisfy the bracket-
generating condition, but this is inconsequential here). The Dirichlet
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energy of (M,D, g) is not greater than the one of the original Riemann-
ian structure. Hence, a lower bound for the first eigenvalue of the sub-
Laplacian of (M,D, g|D) yields a lower bound for the Laplace–Beltrami
operator on M .

Geodesics with λ ∈ U∗M r cross the spherical band longitudinally,
and L(λ) = 2ε. Both (H1) and (H2) are verified, and, thus, we obtain
from Proposition 4 the sharp estimate

λ1(M) ≥ π2

(2ε)2
.

This construction highlights the fact that the reduction procedure can
be used in both the Riemannian and sub-Riemannian case to improve
estimates such as the one of Proposition 4, when the geometry of the
problem is quite explicit. The general philosophy is that the smaller is
the set of reduced geodesics, the better is the bound in Proposition 4.
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[36] P. Pansu. Une inégalité isopérimétrique sur le groupe de Heisenberg. C. R. Acad.
Sci. Paris Sér. I Math., 295(2):127–130, 1982. MR676380, Zbl 0502.53039.

[37] L. Rifford. Sub-Riemannian geometry and optimal transport. Springer Briefs in
Mathematics. Springer, Cham, 2014. MR3308395, Zbl 06265590.

[38] L. Rizzi and P. Silveira. Sub-Riemannian Ricci curvatures and universal diameter
bounds for 3-Sasakian structures. J. Inst. Math. Jussieu, doi: https://doi.org/
10.1017/S1474748017000226.
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