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FALTINGS DELTA-INVARIANT AND SEMISTABLE
DEGENERATION

Robin de Jong

Abstract

We determine the asymptotic behavior of the Arakelov metric,
the Arakelov–Green’s function, and the Faltings delta-invariant for
arbitrary one-parameter families of complex curves with semistable
degeneration. The leading terms in the asymptotics are given a
combinatorial interpretation in terms of S. Zhang’s theory of ad-
missible Green’s functions on polarized metrized graphs.

1. Introduction

In 1984 G. Faltings [13] introduced the delta-invariant δF (C) of a
compact and connected Riemann surface C. The delta-invariant ap-
pears as an archimedean contribution in the so-called Noether formula
for arithmetic surfaces, which we recall briefly in a simplified form (cf.
[13, Section 6] and [31] for more general versions). A precise definition
of the delta-invariant is given in Section 9 below.

Let π : X̄ → SpecZ be a semistable curve of positive genus over the
ring of integers. Assume that the total space X̄ is regular. Let ω̄ denote
the relative dualizing sheaf of π, equipped with the Arakelov canonical
metric at the archimedean place. Let deg detRπ∗ω̄ denote the Faltings
height of X̄, and let (ω̄, ω̄)Ar denote the self-intersection, in the Arakelov
sense, of ω̄. Then the Noether formula for π is the identity

(1.1) 12 deg detRπ∗ω̄ = (ω̄, ω̄)Ar +
∑
p

δp(X̄) log p+ δF (X̄(C))

in R. Here the summation is over the prime numbers p, and the non-
archimedean invariant δp(X̄) denotes the discriminant, i.e., the number
of singular points in the geometric fiber, at the prime p of Z.

The Noether formula suggests that the delta-invariant δF (X̄(C)) can
be seen as an archimedean analogue of the discriminant δp(X̄). Phrased
a little differently, this means that one should think of the delta-invariant
δF (C) of a compact connected Riemann surface C as the minus loga-
rithm of a suitable “distance” from the moduli point [C] in the moduli
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space of curves Mh(C) towards the boundary of Mh(C) in Deligne–
Mumford’s compactification Mh(C), parameterizing stable curves.

In view of this interpretation, Faltings raised in [13] the question to
determine the asymptotic behavior of his delta-invariant towards the
boundary inMh(C). Around 1990 J. Jorgenson [25] and R. Wentworth
[40] independently were able to describe the asymptotic behavior of the
delta-invariant in a one-parameter family of curves degenerating into a
stable curve with precisely one node. They also answered the question as
to the asymptotic behavior of the intimately related Arakelov canonical
metric and Arakelov–Green’s function. Note that the results of Jor-
genson and Wentworth correspond to considering holomorphic arcs in
Mh(C) passing through a generic point of the boundary. This leaves the
question as to what one can say in cases where the special fiber develops
more than one node, i.e., what happens near points in codimension ≥ 2
strata of Mh(C).

The purpose of the present paper is to answer this question. We give
a full description of the asymptotic behavior of the delta-invariant, the
Arakelov metric, and the Arakelov–Green’s function in cases of arbi-
trary semistable degenerations over the disc ∆. Our results yield those
of Jorgenson and Wentworth as a special case, and furnish an alternative
approach to them. In our setup, the leading coefficients of the asymp-
totics that we find are interpreted in terms of S. Zhang’s theory [44] of
admissible Green’s functions on polarized weighted graphs, and, thus,
come with a precise combinatorial interpretation. We recall Zhang’s
theory extensively in the main text below.

Let π : X̄ → ∆ be a semistable curve of positive genus over the unit
disc ∆. Assume that π is smooth over ∆∗, and write X = π−1∆∗. To
the special fiber X̄0 one has canonically associated a polarized weighted
graph G, by taking the dual complex of X̄0 and remembering the geo-
metric genera of the irreducible components of X̄0, as well as the local
multiplicities of the singularities of X̄0 on the total space X̄. For two
real-valued continuous functions φ1, φ2 on ∆∗ we write φ1 ∼ φ2 if the
difference φ1 − φ2 extends as a continuous function over ∆. Our result
on the asymptotics of the delta-invariant is then as follows.

Theorem 1.1. Let δ be the volume of the polarized weighted graph
G, and let ε be Zhang’s epsilon-invariant (6.4) of G. Let Ω(t) be the
family of normalized period matrices on ∆∗ determined by a symplectic
framing of R1π∗ZX . Then the Faltings delta-invariant has asymptotics

(1.2) δF (Xt) ∼ −(δ + ε) log |t| − 6 log det Im Ω(t)

as t→ 0.

As said, we also consider the asymptotics of the Arakelov metric
and the related Arakelov–Green’s function gAr in the family π : X̄ → ∆.
Denote by ω the relative dualizing sheaf of π. Then on the smooth locus
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Sm(π) ⊂ X̄ of π we can identify ω with the relative cotangent bundle.
Moreover, on X ⊂ X̄ the line bundle ω is equipped with a canonical
fiberwise Arakelov metric ‖ · ‖Ar. Let again G denote the polarized
weighted dual graph of the special fiber X̄0. Let P be a section of π
with image contained in the smooth locus Sm(π) of π.

Theorem 1.2. Let gµ denote the admissible Green’s function (6.2)
of G. Assume that P specializes to the irreducible component x ∈ V (G)
of X̄0.
(a) Let dz be a local generating section of the relative dualizing sheaf ω
around the point P (0) ∈ Sm(π). Then the asymptotics

log ‖dz(P )‖Ar,t ∼ −gµ(x, x) log |t|
hold as t→ 0.
(b) Assume that π has a second section Q with image contained in
Sm(π), such that P (0) 6= Q(0). Then we have the asymptotics

gAr,t(P,Q) ∼ gµ(x, y) log |t|

as t→ 0. Here x, y ∈ V (G) denote the irreducible components of X̄0 to
which P,Q specialize.

We make a number of remarks about Theorems 1.1 and 1.2. If the
total space X̄ is smooth, the volume δ of G is equal to the number
of singularities in the special fiber X̄0, i.e., to the discriminant of the
family π at the origin. The epsilon-invariant ε of G is slightly more
complicated to describe. For its definition and a discussion of its main
properties we refer to Section 6 below. One always has ε ≥ 0, and
actually ε > 0 unless the special fiber is smooth, or the generic fiber has
genus equal to one.

Classical estimates on period matrices (e.g., via the Nilpotent Orbit
Theorem) imply that there exists c ∈ Z≥0 such that

det Im Ω(t) ∼ −c log |t|
as t→ 0. Moreover, we have c = 0 if and only if the special fiber X̄0 has
only separating nodes, i.e., when the dual graph G is a tree. In this case
the log det Im Ω(t) term in (1.2) can be subsumed under the ∼-sign. In
the case where X̄0 has at least one non-separating node, one can replace
log det Im Ω(t) by log(− log |t|). Combined with the previous remark we
deduce that for all semistable degenerations over the disc with singular
special fiber δF (Xt) blows up towards plus infinity as t→ 0. This nicely
complements a result by R. Wilms [41, Corollary 1.2] that for each genus
h > 0, the delta-invariant δF is bounded from below on Mh(C), and
reinforces the idea that δF should be thought of as the minus logarithm
of a canonical distance to the boundary.

The results of Jorgenson [25] and Wentworth [40] on the delta-
invariant can be stated as follows (we note that [40] also gives precise
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expressions for constant terms, we leave them out here). Assume that
the total space X̄ of the family π : X̄ → ∆ is smooth, and assume that
the special fiber X̄0 has precisely one node. Then if the normalization
of the special fiber X̄0 has two connected components of genera i and
h− i (the “separating” case), one has the asymptotics

(1.3) δF (Xt) ∼ −
4i(h− i)

h
log |t|

as t→ 0. If the normalization of X̄0 is connected (the “non-separating”
case), one has the asymptotics

(1.4) δF (Xt) ∼ −
4h− 1

3h
log |t| − 6 log(− log |t|)

as t → 0. We claim that both (1.3) and (1.4) can be deduced in a
straightforward manner from Theorem 1.1.

Indeed, the epsilon-invariant of a polarized weighted graph G with
precisely one edge can be computed explicitly, see, for example, [32].
For G of genus h with one edge of weight one and with one vertex we
have ε = (h − 1)/3h, see [32, Corollary 4.3]. For G of genus h with
one edge of weight one and with two vertices of genera i and h − i
we have ε = −1 + 4i(h − i)/h, see [32, Lemma 4.4]. These two results
together with (1.2) immediately reproduce (1.3) and (1.4). Similarly, we
re-obtain to leading order the asymptotics for the Arakelov metric and
Arakelov–Green’s function in the one-node case as found by Jorgenson
and Wentworth by combining Theorem 1.2 with explicit calculations of
the admissible Green’s function for polarized weighted graphs with one
edge, as in [32, Proposition 4.2] and [32, Lemma 4.4].

Let ‖ ·‖Q,Ar denote the Quillen metric [38] on the line bundle detπ∗ω
over ∆∗ derived from the Arakelov metric, and let ‖ · ‖H denote the
Hodge–Petersson metric derived from the L2 inner product on π∗ω.
From Deligne’s functorial Riemann–Roch [10, Théorème 11.4] one can
derive the identity

(1.5) 12 log ‖ · ‖Q,Ar = 12 log ‖ · ‖H + δF

up to an additive constant depending only on h. This says that 1
12δF is

up to a constant depending only on h the Ray–Singer analytic torsion of
the Arakelov metric. Let σ denote a local generating section of detπ∗ω
over ∆. It can be seen that

(1.6) log ‖σ‖H ∼
1

2
log det Im Ω(t)

as t → 0 and combining (1.5) and (1.6) with Theorem 1.1 we deduce
that

(1.7) 12 log ‖σ‖Q,Ar ∼ −(δ + ε) log |t|

as t→ 0.
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For semistable families of curves the asymptotics of the Quillen metric
has so far mainly been studied in the context of the hyperbolic metric,
mostly using Selberg zeta function techniques, see, for instance, [16]
and the references therein. General asymptotic formulae for the Quillen
metric associated to a given relative Kähler metric are obtained in the
references [5] [6] [12] [42] [43]. These references usually assume the
relative Kähler metric to extend in a C∞ manner over the total space
of the degeneration. For example, [6, Corollaire 2.3] implies that in our
situation, assuming X̄ smooth, for any relative Kähler metric on X that
extends in a C∞ manner over X̄, the associated Quillen metric ‖ · ‖Q
on detπ∗ω satisfies the asymptotic

12 log ‖σ‖Q ∼ −δ log |t|
as t → 0. Comparing with (1.7) we see that ε measures the failure for
the Arakelov metric to extend as a C∞ metric over X̄.

Faltings has obtained in [15] an extension of Theorems 1.1 and 1.2
above to the case where the base ∆ is replaced by an arbitrary poly-
disk ∆n. This allows for a more complete description of the boundary
behavior of the functions δF resp. gAr and the metric ‖ · ‖Ar near the
boundary of moduli space. One of the main points of [15] is that, con-
trary to what one might naively expect, if h ≥ 2 no non-zero multiple
of the function δF can be obtained as the minus logarithm of the norm
of a rational section of a smooth hermitian line bundle with a metric
that is good in the sense of Mumford [33] on Mh(C).

From (1.2) we can also see this “non-good” behavior by observing
that for all h ≥ 2 there exist polarized graphs G of genus h such that
the epsilon-invariant ε(G) is not a linear form in the weights of its
edges. Similarly, for h ≥ 2 the Arakelov metric ‖ · ‖Ar is not a good
hermitian metric on the relative dualizing sheaf on the universal curve
over Mh(C).

In order to prove Theorems 1.1 and 1.2 we will use a number of tools.
One of them is the concept of a Lear extension of a hermitian line bun-
dle. The terminology is due to R. Hain and the use of Lear extensions as
an effective tool to study and formulate asymptotic properties in Hodge
theory and Arakelov theory is demonstrated already in the papers [19]
and [20]. Our approach and set-up is very much inspired by the former.

Let Ȳ ⊃ Y be complex manifolds, such that the complement D =
Ȳ \Y is a normal crossings divisor on Ȳ , and let (L, ‖·‖) be a continuous
hermitian line bundle on Y . Then, roughly speaking, a Lear extension
of (L, ‖ · ‖) over Ȳ is a line bundle L̄ over Ȳ coinciding with L over Y
such that the metric ‖ · ‖ on L extends continuously over L̄, away from
the singular locus Dsing of D. Note that if a Lear extension exists, it is
unique up to isomorphism, as Dsing has codimension at least two in Ȳ .
Also note that if Y is a curve, then a Lear extension over Ȳ is the same
as a continuous extension.
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Another tool that we will use is the Deligne pairing of two line bun-
dles on a family of nodal curves, as in [10]. Let Ȳ ⊃ Y be smooth
complex algebraic varieties. Let π : X̄ → Ȳ be a nodal curve, assumed
to be smooth over Y , and write X = π−1Y . Let L,M be line bun-
dles on X̄. The Deligne pairing associates to L,M in a functorial and
bi-multiplicative way a line bundle 〈L,M〉 on Ȳ . Assuming that L,M
both carry given C∞ hermitian metrics over X, then the Deligne pair-
ing 〈L,M〉 over Y is endowed with a canonical C∞ hermitian metric.
The idea to use the Deligne pairing as a device to study asymptotics of
Arakelov invariants is certainly not new, and goes back to [10], see also
[6] [12] [16].

Let ω denote the relative dualizing sheaf of π. Following traditional
notation, we set κ1 = 〈ω, ω〉, which is then a line bundle on Ȳ . If
P : Ȳ → X̄ is a section of π we put ψ = P ∗ω, again following traditional
notation. Then as we will see, the line bundle ψ can be canonically
identified with the Deligne pairing 〈O(P ), ω〉. We denote by O(P )Ar

the line bundle O(P ) on X endowed with its C∞ hermitian metric
derived from the Arakelov–Green’s function gAr, and we denote by ωAr

the restriction of ω to X, endowed fiberwise with the Arakelov metric
‖ · ‖Ar.

We will derive Theorems 1.1 and 1.2 from the following main results.

Theorem 1.3. Let Ȳ ⊃ Y be smooth complex algebraic varieties,
such that D = Ȳ \Y is a normal crossings divisor on Ȳ . Let π : X̄ → Ȳ
be a nodal curve of positive genus, which we assume to be smooth over
Y . Then the C∞ hermitian line bundle 〈ωAr, ωAr〉 on Y has a Lear
extension over Ȳ . Assume that π has a section P resp. two sections
P,Q. Then also the C∞ hermitian line bundles 〈O(P )Ar, ωAr〉 resp.
〈O(P )Ar,O(Q)Ar〉 on Y have a Lear extension over Ȳ .

Theorem 1.4. Assume that π : X̄ → ∆ is a nodal curve of positive
genus over the unit disc, smooth over ∆∗. Let G denote the polarized
weighted dual graph of the special fiber X̄0, and let ε be Zhang’s epsilon-
invariant (6.4) of G. Let gµ be Zhang’s admissible Green’s function
(6.2) of G.
(a) The Lear extension of 〈ωAr, ωAr〉 over ∆ satisfies the equality

(1.8) 〈ωAr, ωAr〉 = κ1 − ε[0] .

(b) Assume that π : X̄ → ∆ is equipped with a section P with image
contained in the smooth locus Sm(π), such that P specializes to x ∈
V (G). Then the Lear extension of 〈O(P )Ar, ωAr〉 over ∆ satisfies the
equality

(1.9) 〈O(P )Ar, ωAr〉 = ψ − gµ(x, x)[0] .

(c) Assume that π : X̄ → ∆ is equipped with two sections P,Q with
image contained in Sm(π). Assume that P,Q specialize to x ∈ V (G)
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resp. y ∈ V (G). Then the Lear extension of 〈O(P )Ar,O(Q)Ar〉 over ∆
satisfies the equality

(1.10) 〈O(P )Ar,O(Q)Ar〉 = 〈O(P ),O(Q)〉+ gµ(x, y)[0] .

We briefly describe the structure of our proof of Theorems 1.3 and
1.4. Let j : J → Y be the Jacobian fibration associated to the smooth
proper curve X → Y . Assume from the outset that π has a section
P : Ȳ → X̄. Let δP : X → J be the Abel–Jacobi map associated to the
section P , i.e., the Y -morphism X → J that sends a point z ∈ Xy to
the isomorphism class of Py − z in Jy = Jac(Xy). Let h > 0 denote
the genus of the fibers of π and let κ : Y → J denote the morphism
that sends y ∈ Y to the divisor class of the degree zero line bundle
(2h− 2)Py − ωXy in Jy.

As Jacobians are canonically self-dual, the product J ×Y J carries
a canonical Poincaré bundle P, together with a rigidification along the
zero section. By general results [7] [19] [23], the Poincaré bundle P
carries a canonical C∞ hermitian metric compatible with the rigidifica-
tion. We denote by B the restriction of P to the diagonal in J ×Y J .
From these data, we obtain a canonical C∞ hermitian line bundle δ∗PB
on X and a canonical C∞ hermitian line bundle κ∗B on Y .

The key to our argument is the observation (see Propositions 13.4
and 13.5) that there exist canonical isometries

(1.11) 〈δ∗PB, δ∗PB〉
∼−→ 〈O(P )Ar, ωAr〉⊗4h ⊗ 〈ωAr, ωAr〉,

and

(1.12) 〈O(P )Ar, ωAr〉⊗4h2 ∼−→ 〈δ∗PB, δ∗PB〉 ⊗ κ∗B
of C∞ hermitian line bundles over Y . The isometries (1.11) and (1.12)
imply that 〈ωAr, ωAr〉 and 〈O(P )Ar, ωAr〉 have a Lear extension over Ȳ
if and only if both 〈δ∗PB, δ∗PB〉 and κ∗B have a Lear extension over Ȳ .
It follows from general results [28] [19] [35] that δ∗PB and κ∗B have a
Lear extension over X̄ resp. Ȳ (in the case of δ∗PB, we need to assume
that X̄ is smooth). Following [19] they can be computed explicitly.

The main technical issue of this paper is then to prove that the
Deligne pairing 〈δ∗PB, δ∗PB〉 has a Lear extension over Ȳ . We will see

that the naive expectation that 〈δ∗PB, δ∗PB〉 should equal 〈δ∗PB, δ∗PB〉 fails
in general, due to a “height jump” of the metric on δ∗PB around the sin-
gular points of the fibers of X̄ → Ȳ . The terminology goes back to [19,
Section 14]. We are able to control the height jump, and an explicit

calculation shows that 〈δ∗PB, δ∗PB〉 exists, and that the defect between

〈δ∗PB, δ∗PB〉 and 〈δ∗PB, δ∗PB〉 can be directly expressed in terms of the
combinatorics of the dual graph of the special fiber.

Theorem 1.2 follows in a straightforward manner from Theorem 1.4(b)
and (c). To prove Theorem 1.1 we combine Theorem 1.4(a) with Mum-
ford’s functorial Riemann–Roch isomorphism (8.4). By doing so we
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avoid the use of the “spin-bosonization formula” [13, p. 402] for δF
which is crucial in [25] and [40].

Our asymptotic analysis of the metric on δ∗PB near points of codimen-
sion two builds on work by G. Pearlstein [35] [36], by J. I. Burgos Gil,
D. Holmes and the author [7], and by D. Holmes and the author [23].
Very similar results were obtained independently by O. Amini, S. Bloch,
J. I. Burgos Gil and J. Fresán [1]. The correct general framework to
carry out this type of analysis is that of the several variables SL2-orbit
theorem of Pearlstein [35] and Kato–Nakayama–Usui [26], as explained
in the work of T. Hayama and Pearlstein in [21].

The paper is organized as follows. In Sections 2–12, we discuss the
main tools that we will use. These preliminary sections mostly contain
known results and may well be skipped on first reading. In Section 2, we
recall various useful ways of describing the Jacobian of a compact and
connected Riemann surface. Then in Section 3, we recall from [3] the
Arakelov–Green’s function gAr and the associated Arakelov metric ‖·‖Ar.
Sections 4–6 treat weighted graphs, metrized graphs, harmonic analysis
on metrized graphs, the admissible Green’s function and the epsilon-
invariant. In Section 7, we set the necessary conventions concerning
nodal, semistable and stable curves. The Deligne pairing together with
its canonical metric and the Faltings delta-invariant are recalled in Sec-
tions 8 and 9. In Section 10, we study graded-polarized variations of
mixed Hodge structures and state the Nilpotent Orbit Theorem for such
variations due to Pearlstein. In Section 11, we discuss, using the ma-
chinery of Section 10, the asymptotics of the period and Abel–Jacobi
map for families of curves with nodal degeneration over polydiscs. In
Section 12, we recall from [20] [19] the notion of a Lear extension.

The first new results, including the isometries (1.11) and (1.12), are
then proven in Section 13. In Sections 14 and 15 we show the existence
of the Lear extensions of some relevant Deligne pairings, and compute
them explicitly in the case of a nodal curve over the unit disc. In
Section 16 we compute the Lear extension of 〈δ∗PB, δ∗PB〉, which is a
crucial step in our argument as discussed above. In Section 17, we
derive Theorems 1.3 and 1.4 from the results of this computation. In
Section 18, we rephrase the results of Theorem 1.4 in terms of Zhang’s
admissible Deligne pairing from [44], that we adapt here to the context
of a nodal curve over a disc. In Section 19, we finally derive Theorems 1.1
and 1.2 from Theorem 1.4.

Acknowledgments. I thank José Burgos Gil and David Holmes for
many valuable discussions.

2. Jacobians

The purpose of this preliminary section is to discuss various ways of
defining the Jacobian of a pure Hodge structure of type {(−1, 0), (0,−1)},
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as well as their interrelations. At the end of this section we discuss the
Abel–Jacobi element associated to two points P,Q on a compact and
connected Riemann surface C in each of the various disguises of Jac(C).
The material in this section is entirely classical.

Let (V, F •) be a pure Hodge structure of type {(−1, 0), (0,−1)}. We
call the set Ext1

MHS(Z(0), V ) of extensions of Z(0) by V in the category of
mixed Hodge structures the (intermediate) Jacobian of (V, F •). By [37,

Section 3.5] we have a canonical bijection Ext1
MHS(Z(0), V )

∼−→ VC/(V +
F 0VC), and this gives the Jacobian of (V, F •) a natural structure of
complex torus.

Let (V, F •, Q) be a polarized Hodge structure of type {(−1, 0), (0,−1)}
and rank 2h. Given a symplectic basis (e1, . . . , eh, f1, . . . , fh) of (V,Q),
there exists a unique associated normalized basis (w1, . . . , wh) of F 0VC,

determined by demanding that wi = −
∑h

j=1 Ωijej + fi for some ma-

trix Ω. We call Ω the period matrix of (V, F •, Q) with respect to
(e1, . . . , eh, f1, . . . , fh). The Riemann bilinear relations imply that Ωt =
Ω and Im Ω > 0, so that Ω lies in Siegel’s upper half space Uh of degree h.

Assume an extension

(2.1) 0→ V → V ′ → Z(0)→ 0

of mixed Hodge structures is given, i.e., an element of Ext1
MHS(Z(0), V ).

Then V ′ has weight filtration

W• : 0 ⊂W−1 = V ⊂W0 = V ′ .

We denote by F ′• the Hodge filtration of V ′. Taking F ′0(−)C in (2.1)
then yields the extension

0→ F 0VC → F ′0V ′C → C→ 0

of C-vector spaces. As can be readily checked, for each e0 ∈ V ′ that
lifts the canonical generator of Z(0) in (2.1) there exists a unique w0 ∈
F ′0V ′C such that w0 ∈ e0 + C-span(e1, . . . , eh). Given such a lift e0, we

let δ = (δ1, . . . , δh) ∈ Ch be the coordinate vector determined by the

identity w0 = e0 +
∑h

j=1 δjej . We call δ the period vector of the mixed

Hodge structure (V ′, F ′•,W•) on the basis (e0, e1, . . . , eh, f1, . . . , fh) of
the Z-module V ′. Replacing e0 by an element from e0 + V changes δ
by an element of Zh + ΩZh. The resulting map Ext1

MHS(Z(0), V ) →
Ch/(Zh + ΩZh) is a bijection, compatible with the canonical structure
of complex torus on Ext1

MHS(Z(0), V ).
Let C be a compact and connected Riemann surface of genus h. Then

its first homology group V = H1(C) carries a canonical pure polarized
Hodge structure of type {(−1, 0), (0,−1)}. The polarization is given by
the intersection form Q. The Hodge filtration on VC can be described as
follows. LetH denote the C-vector space of harmonic 1-forms on C. The
integration map H⊗ VC → C yields a natural identification VC

∼−→ H∗.
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Let ω(C) ⊂ H denote the subspace of holomorphic 1-forms on C, and

ω(C) ⊂ H the subspace of anti-holomorphic 1-forms. We have a natural

decomposition H = ω(C) ⊕ ω(C) and similarly H∗ = ω(C)∗ ⊕ ω(C)
∗
.

Then F 0VC is the subspace of VC corresponding to ω(C)∗ under the

isomorphism VC
∼−→ H∗.

We write Jac(C) as a shorthand for the Jacobian of (V, F •). The stan-

dard pairing H1(C)⊗H1(C)→ Z induces an isomorphism VC/F
0VC

∼−→
F 0H1(C)∗C = ω(C)∗. Then the inclusion V → VC/F

0VC corresponds to
the integration map V → ω(C)∗ given by c 7→

∫
c. We obtain a third

useful description of Jac(C) = VC/(V + F 0VC) as the complex torus
ω(C)∗/V .

For P,Q ∈ C we write V (P,Q) as a shorthand for the relative ho-
mology group H1(C, {P,Q}), endowed with its canonical mixed Hodge
structure. We obtain an extension of mixed Hodge structures

(2.2) 0→ V → V (P,Q)→ Z(0)→ 0

canonically associated to the divisor P − Q. Here the Z(0) on the
right hand side is to be identified with the reduced homology group
H̃0({P,Q}), with the class of P −Q corresponding to the positive gen-
erator of Z. We call the resulting element of Jac(C) = Ext1

MHS(Z(0), V )
the Abel–Jacobi element associated to the divisor P − Q, denoted by∫ P
Q . Under the identification Jac(C) = ω(C)∗/V the Abel–Jacobi ele-

ment corresponds to the element that is usually denoted by
∫ P
Q . If Ω is

a period matrix of C on a chosen symplectic basis of V , with normal-
ized basis (w1, . . . , wh) of F 0VC = ω(C)∗, the Abel–Jacobi element in
Ch/(Zh + ΩZh) associated to the divisor P − Q is given by the vector∫ P
Q (ω1, . . . , ωh), where (ω1, . . . , ωh) is the dual basis of (w1, . . . , wh).

3. Arakelov–Green’s function and Arakelov metric

In this section we introduce the Arakelov–Green’s function gAr of a
compact and connected Riemann surface of positive genus, see (3.3) and
(3.4). Also we introduce the Arakelov metric ‖ · ‖Ar on the line bundle
of holomorphic differentials. The main references for this section are [3]
and [13].

Let C be a compact and connected Riemann surface of genus h > 0.
Denote by ω the line bundle of holomorphic differentials on C. On ω(C)
we have a natural hermitian inner product via the prescription

(3.1) 〈η, η′〉 =
i

2

∫
C
η ∧ η̄′ .

Let (η1, . . . , ηh) be an orthonormal basis of ω(C). The Arakelov (1, 1)-
form of C is defined to be the element
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(3.2) µAr =
i

2h

h∑
j=1

ηj ∧ ηj

of A2(C). It follows from the Riemann–Roch theorem that µAr is ac-
tually a volume form. Moreover, the Arakelov (1, 1)-form is clearly
normalized such that

∫
C µAr = 1.

The Arakelov–Green’s function is the generalized function on C × C
determined by the conditions

(3.3) ∂∂̄z gAr(P, z) = πi (µAr(z)− δP (z)),

and

(3.4)

∫
C
gAr(P, z)µAr(z) = 0,

for all P ∈ C. An application of Stokes’s theorem shows that one has a
symmetry property

(3.5) gAr(P,Q) = gAr(Q,P ),

for all distinct P , Q in C. We have a local expansion

(3.6) gAr(P,Q) = log |t(P )− t(Q)|+O(|t(P )− t(Q)|),

for all distinct P , Q in a coordinate chart t : U
∼−→ ∆ of C. In this

expansion, the O-term is a C∞ function. It follows that the Arakelov–
Green’s function gAr(P, ·) develops a logarithmic singularity of order one
at P .

The Arakelov–Green’s function gAr induces a natural C∞ hermitian
metric ‖ · ‖ on the holomorphic line bundle L = OC×C(∆) on C ×
C, where ∆ is the diagonal, by putting log ‖1‖(P,Q) = gAr(P,Q) for
distinct P,Q in C. Here 1 denotes the canonical generating section of
OC×C(∆). By restriction to vertical or horizontal slices of C × C we
obtain natural C∞ hermitian metrics on the line bundles OC(P ) for
each P ∈ C.

There exists a canonical adjunction isomorphism

(3.7) OC×C(−∆)|∆
∼−→ ω .

By this isomorphism one obtains a canonical C∞ residual metric ‖ · ‖Ar

on ω. We call ‖ · ‖Ar the Arakelov metric, and we usually write ωAr

to denote the line bundle ω equipped with the Arakelov metric. A C∞

hermitian line bundle (L, ‖·‖) on C is called admissible if its first Chern
form c1(L, ‖·‖) is a multiple of µAr. Each OC(P ) with its metric derived
from gAr is admissible, and so is ωAr, by [3, Section 4].

Let Ω be a period matrix of C on a normalized basis of differentials
(ω1, . . . , ωh) (see Section 2). Then we have

(3.8) (Im Ω)jk =
i

2

∫
C
ωj ∧ ωk = 〈ωj , ωk〉 .
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This gives the useful formulas

(3.9) µAr =
i

2h

∑
1≤j,k≤h

(Im Ω)−1
jk ωj ∧ ωk,

and

(3.10) ‖ω1 ∧ · · · ∧ ωh‖2H = det Im Ω ,

see, for instance, [40, Section 2]. Here ‖ · ‖H is the norm on detω(C)
induced by the inner product (3.1).

Let J = Ch/(Zh + ΩZh) be the Jacobian of C. The intersection
form on H1(C) gives rise to a canonical isomorphism between J and
its dual torus J̌ . It follows that J × J carries a canonical Poincaré
bundle P together with a rigidification at the origin. We recall that P
carries a canonical hermitian metric, compatible with the rigidification.
We denote then by B the C∞ hermitian line bundle on J obtained by
restricting P to the diagonal. By a slight abuse of language, we will
refer to B as the Poincaré line bundle on J .

Proposition 3.1. Let p : Ch → J be the projection, and let U ⊂ J be
an analytic open subset. Let s be a holomorphic generating section of B
over U , and write f =

(
p|p−1U

)∗
s ∈ OCh(p−1U). Then for all z ∈ p−1U

we have

log ‖s‖(p(z)) = log |f |(z)− 2π (Im z)t(Im Ω)−1(Im z) .

For the first Chern form c1(B) of B the identity

c1(B) =
−1

πi
∂∂̄ 2π (Im z)t(Im Ω)−1(Im z)

of (1, 1)-forms holds on J .

Proof. For the first formula we refer to [23, Proposition 3.3]. The
second formula follows from the first since locally on U we can write

c1(B)|U =
1

πi
∂∂̄ log ‖s‖ ,

and the ∂∂̄ of log |f | vanishes. q.e.d.

For P ∈ C we denote by δP : C → J the Abel–Jacobi map that sends

(3.11) Q 7→
∫ P

Q
(ω1, . . . , ωh) .

Corollary 3.2. For all P ∈ C the equalities

c1(δ∗PB) =
−1

πi
∂∂̄ 2π(Im δP )t(Im Ω)−1(Im δP ) = 2hµAr

of (1, 1)-forms hold. In particular, δ∗PB is admissible.
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Proof. The first equality is clear from Proposition 3.1. From (3.11)
we find

2i ∂(Im δP )j = ωj , −2i ∂̄(Im δP )k = ωk,

and, hence,

4 ∂(Im δP )j ∧ ∂(Im δP )k = ωj ∧ ωk .
This then gives

−1

πi
∂∂̄ 2π(Im δP )t(Im Ω)−1(Im δP )

= 4i
∑

1≤j,k≤h
(Im Ω)−1

jk ∂(Im δP )j ∧ ∂(Im δP )k

= i
∑

1≤j,k≤h
(Im Ω)−1

jk ωj ∧ ωk .

The latter form is equal to 2hµAr by equation (3.9). q.e.d.

4. Graphs, weighted graphs, metrized graphs

We base our terminology on [4, Section 2]. A finite graph G consists
of a finite set E(G) and a non-empty finite set V (G) together with a
map of sets E(G) → (V (G) × V (G))/S2, the vertex assignment map.
We call E(G) the set of edges of G, and V (G) the set of vertices of G.

A divisor on G is an element of RV (G). An orientation of G is a lift
E(G) → V (G) × V (G) of the vertex assignment map, usually denoted
by e 7→ (e−, e+).

If G is a finite connected graph with set of edges E(G) and set
of vertices V (G), and M is a set, then an M -labeling of G is any
map ` : E(G) → M . When M is a subset of R>0, we call (G, `) a
weighted graph. Let (G, `) be a weighted graph. The discrete Laplacian

L : RV (G) → RV (G) is given as follows. Fix an orientation on G. For
f ∈ RV (G) we define d∗f ∈ RE(G) by

(d∗f)(e) =
f(e+)− f(e−)

`(e)
,

and for α ∈ RE(G) we define d∗α ∈ RV (G) by

(d∗α)(x) =
∑

e∈E : x=e+

α(e)−
∑

e∈E : x=e−

α(e) .

Then for f ∈ RV (G) we put L(f) = d∗d∗f ∈ RV (G). It can be checked
that L(f) is independent of the choice of orientation. It is often con-
venient to think of L as a matrix with rows and columns indexed by
V (G) and with entries L(x, y) = L(δx)(y) for x, y ∈ V (G). Let L+

be the Moore-Penrose pseudo-inverse of L. Then for x, y ∈ V (G) we
define ḡ(x, y) = L+(x, y). By extending bilinearly we obtain a map

ḡ : RV (G) × RV (G) → R.
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A metrized graph Γ is a compact connected metric space such that Γ
is a point or for each x ∈ Γ there exist n ∈ Z>0 and ε ∈ R>0 such that
x has a neighborhood isometric to the set

S(n, ε) = {z ∈ C : z = te2πik/n for some 0 ≤ t < ε and some k ∈ Z} ,

endowed with its path metric. If Γ is a metrized graph, not a point, then
for each x ∈ Γ the integer n is uniquely determined, and is called the
valence of x. An orientation of Γ is an oriented simplicial decomposition
of Γ. Let V0 ⊂ Γ be the set of points x ∈ Γ with valency 6= 2. This
is a finite set. We call any finite non-empty set V ⊂ Γ containing V0 a
vertex set of Γ.

If V is a vertex set of Γ then Γ \ V is a finite union of open intervals.
The closure of a connected component of Γ \ V is called an edge associ-
ated to V . Let E be the set of edges associated to V . For e ∈ E we call
e \ eo the set of endpoints of e. This is a finite set consisting of either
one (when e is a loop) or two (when e is a closed interval) elements. If
Γ is oriented, each set of endpoints is an ordered subset {e−, e+} of V .
We denote by `(e) the length of an edge e, and by δ(Γ) =

∑
e∈E `(e)

the volume of Γ.
A metrized graph Γ with vertex set V can be viewed as an electrical

network by identifying each element of V with a node, and each edge
e ∈ E with a wire of resistance `(e). In particular, when x, y are points
of Γ, we have the effective resistance r(x, y) between x and y. A divisor
on Γ is an element of RV .

Let (G, ` : E(G)→ R>0) be a finite connected weighted graph. Then
to (G, `) is naturally associated a metrized graph Γ by gluing the closed
intervals [0, `(e)], where e runs through E(G), according to the vertex
assignment map. The metrized graph Γ is equipped with a distinguished
vertex set V (G) ⊂ Γ. The valence of a vertex x ∈ V (G) is equal to
its valence as a point on Γ. It is well known, see, for instance, [23,
Section 7], that for all x, y ∈ V (G) the identity

(4.1) ḡ(x− y, x− y) = r(x, y)

holds, where r denotes effective resistance on the associated metrized
graph Γ.

5. Harmonic analysis on metrized graphs

The following is based on [4, Section 2], [9, Section 2] and [44, Ap-
pendix].

Let Γ be a metrized graph, not a point, and assume a vertex set V
is given, with associated edge set E. For e ∈ E, let d ye be the usual
Lebesgue measure on e and `(e) be the volume of e. For x ∈ V with

valence n, let S(n, ε)
∼−→ Ux ⊂ Γ be a star-shaped open neighborhood of



FALTINGS DELTA-INVARIANT AND SEMISTABLE DEGENERATION 255

x in Γ. A connected component of Ux\{x} is called an emanating direc-
tion from x. We denote the set of emanating directions from x by E(x).
Each emanating direction from x is naturally identified with a unit vec-
tor vk connecting the origin in C with the root of unity exp(2πik/n).
For f an R-valued function on Γ which is smooth outside V with respect
to the measure dy, we define the one-sided derivative of f at x in the
direction v ∈ E(x) to be

dfv(x) = lim
y→0+

f(x+ yv)− f(x)

y
,

if the limit exists. We denote by C(Γ) the set of R-valued continuous
functions on Γ that are smooth outside V and for which dfv(x) exists for
all x ∈ V and all emanating directions v ∈ E(x). We denote by C(Γ)∗

the set of linear functionals on C(Γ). We call an element of C(Γ)∗ a
current on Γ. For example, each x ∈ V gives rise to a Dirac measure
δx ∈ C(Γ)∗ given by sending f 7→ f(x). Integration of currents over Γ
gives a natural linear map C(Γ)∗ → R.

The Laplacian ∆: C(Γ)→ C(Γ)∗ is the linear operator given by

∆(f) = ∆dis(f) + ∆cts(f) , ∆dis(f) = −δ(f) , ∆cts(f) = −f ′′(y) d y ,

where the map δ : C(Γ)→ C(Γ)∗ is defined via

δ(f) =
∑
x∈V

∑
v∈E(x)

dfv(x) δx,

for all f ∈ C(Γ).
We have the following connection with the usual discrete Laplacian

L : RV → RV associated to the vertex set V . We obtain a linear map
LV : C(Γ) → RV by putting LV (f) = L(f |V ) for f ∈ C(Γ). Let
ψ : RV → C(Γ)∗ be the canonical map sending a divisor c =

∑
x∈V c(x)x

to the corresponding Dirac measure ψ(c) =
∑

x∈V c(x)δx. In particular,

we have ψ(c)(g) =
∑

x∈V c(x)g(x) for all g ∈ C(Γ) and c ∈ RV . As-
sume that f ∈ C(Γ) is quadratic on each edge e ∈ E, and suppose that
f ′′ = a(e)/`(e) on e ∈ E. Let νf denote the discrete measure with sup-

port in V that assigns mass νf (x) = −1
2

∑
e∈E(x) a(e) to x ∈ V . Then

we have the equality of currents

(5.1) − δ(f) = ψ(LV (f))− νf
in C(Γ)∗. Indeed, if x is endpoint e+ of e and e lies in the emanating
direction v from x then a calculation shows that

dfv(x) = lim
y→0+

f(x+ yv)− f(x)

y
=
f(e−)− f(e+)

`(e)
− 1

2
a(e) .

Let Kcan be the canonical divisor on Γ given by Kcan(x) = v(x) − 2
for each x ∈ V . Let r(e) denote the effective resistance between the
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endpoints of e in Γ \ eo. This is set to be ∞ if Γ \ eo is disconnected.
Then we define the currents

µdis
can = −1

2
δKcan , µcts

can =
∑
e∈E

d ye
`(e) + r(e)

, µcan = µdis
can + µcts

can

in C(Γ)∗. We write

(5.2) F (e) =

∫
e
µcts

can =
`(e)

`(e) + r(e)
,

for each e ∈ E. We have borrowed this notation from [4], where F (e) is
called the “Foster coefficient”. From [9, Theorem 2.11] we deduce that∫

Γ µcan = 1.
For x ∈ Γ we have that r(x, -) is piecewise quadratic, hence, r(x, -) ∈

C(Γ). It follows from the proof of [9, Theorem 2.11] (see, in particular,
Lemma 2.14 of loc. cit.) that

(5.3)
1

2
∆dis
y r(x, y) = µdis

can − δx(y) and
1

2
∆cts
y r(x, y) = µcts

can ,

so that

(5.4)
1

2
∆yr(x, y) = µcan(y)− δx(y),

for all x ∈ Γ.
The following identities will turn out to be useful later. Let t : e

∼−→
[0, `(e)] denote a parametrization of e. Then we have the explicit formula
(5.5)

r(x, y) = r(x, e−)
t(y)

`(e)
+ r(x, e+)

`(e)− t(y)

`(e)
+ F (e)

t(y)(`(e)− t(y))

`(e)
,

for y ∈ e. In particular, we find that

(5.6) drv(x, e
+) =

r(x, e−)− r(x, e+)

`(e)
+ F (e) ,

where v is the emanating direction from e+ corresponding to e.
Finally, let ν be the measure supported on V with mass ν(v) =∑
e∈E(v) F (e) at the vertex v. Combining (5.1), (5.3) and (5.6) we find

the identity

(5.7) ψ(LV (r(x, y))) = 2 (µdis
can(y)− δx(y)) + ν(y)

in C(Γ)∗, for all x ∈ Γ.

6. Admissible Green’s function and epsilon-invariant

In this section we recall from [44] the definition of admissible measure
on a polarized metrized graph, and its associated admissible Green’s
function. Also we introduce the epsilon-invariant, and prove a couple of
identities for polarized metrized graphs that we will need later.
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Let Γ be a metrized graph, with a given vertex set V and associated
edge set E. Let h be a positive integer and let K ∈ ZV be an integer-
valued divisor of degree 2h − 2 on Γ. We define Zhang’s admissible
measure with respect to K to be the element

(6.1) µ =
1

2h
(δK + 2µcan)

of C(Γ)∗. It is clear that
∫

Γ µ = 1. We call h the genus of (Γ,K).
Let x ∈ Γ. Zhang’s admissible Green’s function relative to K is the

element of C(Γ) determined by the conditions

(6.2) ∆y gµ(x, y) = δx(y)− µ(y) ,

∫
Γ
gµ(x, y)µ(y) = 0 .

Note the similarity with the definition of the usual Arakelov–Green’s
function in (3.3) and (3.4). We refer to [44, Section 3 and Appendix]
for a proof that gµ(x, -) exists in C(Γ) for all x ∈ Γ, and a discussion
of some of its main properties. For example, let r(x, y) be the effective
resistance between x, y ∈ Γ, then we have the identity

(6.3) r(x, y) = gµ(x, x)− 2gµ(x, y) + gµ(y, y),

for all x, y ∈ Γ. See [44, Equation (3.5.1)].

Proposition 6.1. There exists a real number c(Γ,K) such that

c(Γ,K) + gµ(x, x) + gµ(K,x) = 0,

for all x ∈ Γ.

Proof. This is the content of [44, Theorem 3.2]. q.e.d.

We let the epsilon-invariant of (Γ,K) be the real number

(6.4) ε(Γ,K) =

∫
Γ
gµ(y, y)((2h− 2)µ(y) + δK(y)) .

By [44, Theorem 4.4] one always has ε(Γ,K) ≥ 0, and actually ε(Γ,K) >
0 unless Γ is a point, or the genus of (Γ,K) is equal to one.

Proposition 6.2. We have

ε(Γ,K) = 4(h− 1)(gµ(x, x) + gµ(K,x))− gµ(K,K),

for all x ∈ Γ.

Proof. From Proposition 6.1 we find

ε(Γ,K) = −
∫

Γ
(c(Γ,K) + g(K, y))((2h− 2)µ(y) + δK(y))

= −4(h− 1)c(Γ,K)− gµ(K,K) .

Using Proposition 6.1 again to eliminate c(Γ,K) we find the required
identity. q.e.d.
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Let x ∈ Γ. We put

τ(Γ) =
1

2

∫
Γ
r(x, y)µcan(y) .

By [9, Lemma 2.16] this is independent of the choice of x ∈ Γ.

Proposition 6.3. For each x ∈ Γ we have

2 r(x,K) + 4 τ(Γ) = 4h gµ(x, x) + ε(Γ,K) .

Proof. By [32, Lemma 4.1] we have

(6.5) ε(Γ,K) = 2h gµ(x,K) + r(x,K),

for all x ∈ Γ. Combining Proposition 6.1 and equation (6.5) we find

2 r(x,K) = 2 ε(Γ,K)− 4h gµ(x,K)

= 4h gµ(x, x) + 2 ε(Γ,K) + 4h c(Γ,K),

for all x ∈ Γ. We, thus, need to show that 4h c(Γ,K) = −ε(Γ,K) −
4 τ(Γ). Proposition 6.1 implies

c(Γ,K) = −
∫

Γ
gµ(x, x)µ(x) .

From (6.3) we then readily obtain

c(Γ,K) = −1

2

∫
Γ×Γ

r(x, y)µ(x)µ(y) .

Equation (6.5) gives

ε(Γ,K) =

∫
Γ×Γ

r(x, y) δK(y)µ(x) .

We, thus, find

ε(Γ,K) + 4h c(Γ,K) =

∫
Γ×Γ

r(x, y)µ(x) (δK(y)− 2hµ(y))

= −2

∫
Γ×Γ

r(x, y)µ(x)µcan(y) = −4 τ(Γ) .

This proves the proposition. q.e.d.

For each e ∈ E and x ∈ Γ we put

τ cts(Γ, x, e) =
1

2

∫
e
r(x, y)µcts

can(y) .

Next we put for x ∈ Γ

τ cts(Γ, x) =
∑
e∈E

τ cts(Γ, x, e) =
1

2

∫
Γ
r(x, y)µcts

can(y) .

Furthermore, we let

(6.6) η(Γ, e) =
1

3
F (e)2`(e) , η(Γ) =

∑
e∈E

η(Γ, e) =
1

3

∑
e∈E

F (e)2`(e) ,
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with F (e) the Foster coefficient of e as in Section 5. Recall from Section
5 that we denote by ν the discrete measure supported on V with mass
ν(v) =

∑
e∈E(v) F (e) at the vertex v.

Proposition 6.4. Let x ∈ Γ. Then the identity

4 τ cts(Γ, x) = η(Γ) +

∫
Γ
r(x, y) ν(y)

holds.

Proof. Let e ∈ E. Recall that µcts
can(y) = F (e) d ye/`(e) on e. Using

(5.5), putting u(y) = t(y)/`(e) we compute

4 τ cts(Γ, x, e) = 2

∫
e
r(x, y)µcts

can(y)

= 2F (e)

∫ 1

0

(
r(x, e−)u+ r(x, e+)(1− u) + F (e)`(e)u(1− u)

)
du

= F (e) ·
(
r(x, e−) + r(x, e+) +

F (e)`(e)

3

)
.

(6.7)

It follows that

4 τ cts(Γ, x) = η(Γ) +
∑
e∈E

F (e) · (r(x, e−) + r(x, e+)) .

Observing that∑
e∈E

F (e) · (r(x, e−) + r(x, e+)) =
∑
y∈V

r(x, y)
∑

e∈E(y)

F (e) =

∫
Γ
r(x, y) ν(y)

we obtain the proposition. q.e.d.

7. Nodal curves, semistable curves, stable curves

Our basic reference here is [2, Chapter X]. In this paper, a complex
algebraic curve C is said to be nodal if C is connected, reduced, projec-
tive, and each singular point of C is an ordinary double point. A nodal
curve C is called semistable (stable) if any P1 contained in C meets the
rest of C in at least two (three) points. For C a nodal curve, the dual
graph G associated to C is the finite connected graph whose vertex set
V (G) consists of the irreducible components of C, and whose edge set
E(G) consists of the singular points of C, with vertex assignment map
given by sending a singular point e ∈ E(G) to the set of irreducible
components of C that contain e.

A map of complex algebraic varieties π : X̄ → Ȳ is called a nodal
(semistable, stable) curve if π is proper, flat, and all fibers of π are
nodal (semistable, stable) curves. For a nodal curve π : X̄ → Ȳ we write
Sm(π) for the locus where π is smooth, and Sing(π) for the locus where
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π is not smooth. The singular locus Sing(π) of π is a closed subvariety
of X̄ which is finite unramified over Ȳ . We will often work with nodal
curves X̄ → ∆n over the polydisc ∆n of dimension n. By definition this
is to be the base change, in the category of analytic spaces, along a map
f : ∆n → Ȳ , of a nodal curve over a complex algebraic variety Ȳ .

Let π : X̄ → Ȳ be a nodal curve, and let y ∈ Ȳ be a point. Then
following [22, Section 2] we associate to y a canonical labeled graph
(Gy, `y) as follows. The underlying graph Gy is the dual graph of the
nodal curve X̄y. Let OȲ ,y be the local ring for the holomorphic structure

sheaf of Ȳ at y. The value set of `y is then OȲ ,y/O∗Ȳ ,y, and the labeling

`y : E(Gy)→ OȲ ,y/O∗Ȳ ,y is given by the following procedure.

Let e ∈ E(Gy) be a singular point of X̄y. The local structure of nodal
curves in the analytic category (cf. [2, Proposition X.2.1]) yields that
e on X̄ has a neighborhood which is isomorphic, as an analytic space
over Ȳ , to a neighborhood of (0, y) in the analytic subspace of C2 × Ȳ
with equation xy = a, for some a ∈ OȲ ,y. The function a is well-defined
up to units in OȲ ,y. We set `y(e) to be the class of a in OȲ ,y/O∗Ȳ ,y. If

OȲ ,y is a discrete valuation ring, and a 6= 0, then we usually think of
`y(e) ∈ Z≥0 as the normalized discrete valuation of a. In particular, the
graph Gy is then canonically weighted.

As is almost clear from the definitions, the canonical labeled graph
is functorial with respect to base change. In particular we can speak
about the canonical labeled graphs associated to the fibers of a nodal
curve X̄ → ∆n over a polydisc. When π : X̄ → ∆ is a nodal curve over
the unit disc, the canonical weighted graph behaves well with respect to
minimal desingularization of X̄, as is expressed by the next proposition.

Proposition 7.1. Let X̄ → ∆ be a nodal curve, assumed to be smooth

over ∆∗. Let ˜̄X → X̄ be the minimal desingularization of X̄. Let G,
G̃ be the canonically weighted dual graphs of the central fibers X̄0 resp.
˜̄X0. Then the associated metrized graphs of G and G̃ are canonically

isometric.

Proof. Let t be the coordinate on the unit disc. Let e ∈ E(G) be a
singular point of X̄0. A local equation of X̄ around e is then xy− tn for
some n ∈ Z>0, and, for instance, the proof of [11, Lemma 1.12] shows
that the local minimal desingularization of X̄ at e replaces e by a chain
of n − 1 projective lines. That is, upon passing from G to G̃, the edge
e of length n in the metrized graph associated to G is subdivided into
n segments of unit length. q.e.d.

8. Deligne pairing

Let X̄ and Ȳ be complex algebraic varieties and let π : X̄ → Ȳ be
a nodal curve. Then following [2, Section XIII.5] and [10] we have a
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canonical bi-multiplicative pairing for line bundles L,M on X̄, resulting
in a line bundle 〈L,M〉 on Ȳ . Locally on an open set U ⊂ Ȳ the line
bundle 〈L,M〉 is generated by symbols 〈`,m〉 with ` a nonzero rational
section of L on π−1U and m a nonzero rational section of M on π−1U ,
such that the divisors of `,m on X̄ have disjoint support. We have the
relations

(8.1) 〈`, fm〉 = f(div `)〈`,m〉 , 〈f`,m〉 = f(divm)〈`,m〉,

for rational functions f on X̄. Here, the function f(div `) should be in-
terpreted as coming from a norm: when D is an effective relative Cartier
divisor on X̄, then we put f(D) = NmD/Ȳ (f). The Weil reciprocity law

f(div g) = g(div f) shows that this construction by generators and re-
lations, indeed, gives a line bundle on Ȳ .

The formation of the Deligne pairing of two line bundles L,M on X̄
is compatible with base change. Assume that P is a section of π with
image contained in the smooth locus Sm(π) of π, and let N be a line
bundle on Ȳ . Then we have canonical isomorphisms
(8.2)

〈M,π∗N〉 ∼−→ N⊗ degM , 〈L,M〉 ∼−→ 〈M,L〉 , 〈O(P ),M〉 ∼−→ P ∗M

of line bundles on Ȳ . Let ω be the relative dualizing sheaf of π. Then
ω is a line bundle on X̄ by [11, Section 1], and we have a canonical
adjunction isomorphism

(8.3) 〈O(P ),O(P )〉 ∼−→ 〈O(P ), ω〉⊗−1 .

Assume now that the family π : X̄ → Ȳ is a semistable curve of genus
h > 0. Then Ȳ allows a canonical classifying map J : Ȳ →Mh to the
moduli stack of stable curves of genus h. (If h = 1, we assume that
a zero-section of the family is given so that we have a classifying map
to M1,1). The discriminant line bundle δ on Ȳ is defined to be the
pullback, along J , of the line bundle associated to the boundary divisor
ofMh inMh. Mumford’s functorial Riemann–Roch [33, Theorem 5.10]
[31, Théorème 2.1] gives an isomorphism

(8.4) µ : (detπ∗ω)⊗12 ∼−→ 〈ω, ω〉 ⊗ δ

of line bundles on Ȳ , canonical up to a sign. We refer to µ as the
Mumford isomorphism.

9. Metrization of the Deligne pairing, and the delta-invariant

Let Y be a smooth complex algebraic variety and consider a smooth
proper curve π : X → Y over Y of positive genus. Let L,M be line
bundles on X, both equipped with C∞ hermitian metrics. Then by
[10, Section 6] the Deligne pairing 〈L,M〉 has a canonical structure of
C∞ hermitian line bundle, which can be given explicitly as follows. Let
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`, m be non-zero rational sections of L, M resp. with disjoint support.
Then we have, as functions on Y

(9.1) log ‖〈`,m〉‖ = (log ‖m‖)[div `] +

∫
π

log ‖`‖c1(M) .

We have a symmetry relation ‖〈`,m〉‖ = ‖〈m, `〉‖, cf. [10, Section 6.3].
It is clear from (9.1) that for rational functions f on X̄ we have

log ‖〈`, fm〉‖ = log ‖〈`,m〉‖+ (log |f |)[div `] ,

showing that the Deligne norm ‖ · ‖ is compatible with the relations
(8.1). Finally, the canonical isomorphisms

(9.2) 〈M,π∗N〉 ∼−→ N⊗ degM , 〈L,M〉 ∼−→ 〈M,L〉

from (8.2) are isometries, when L,M and N are equipped with C∞

hermitian metrics.
Let P : Y → X be a section of π, and let ω denote the relative

dualizing sheaf of π. We denote by O(P )Ar resp. ωAr the C∞ hermitian
line bundles on X that we obtain by putting fiberwise the Arakelov
metric on O(P ) resp. ω. We recall that both O(P )Ar and ωAr are
fiberwise admissible. Each of the Deligne pairings 〈O(P ), ω〉, 〈ω, ω〉 and
〈O(P ),O(P )〉 now carries an induced structure of C∞ hermitian line
bundle on Y . If there is a second section Q of X → Y , then so does
the Deligne pairing 〈O(P ),O(Q)〉. We denote these C∞ hermitian line
bundles on Y respectively by
(9.3)
〈O(P )Ar, ωAr〉 , 〈ωAr, ωAr〉 , 〈O(P )Ar,O(P )Ar〉 and 〈O(P )Ar,O(Q)Ar〉 .

Now let M be a fiberwise admissible C∞ hermitian line bundle on X.
Denote by 1P the canonical rational section of O(P ). Then for any
nonzero rational section m of M with support away from P we have

log ‖P ∗m‖ = (log ‖m‖)[div 1P ] .

From (9.1) we obtain, on the other hand, that

log ‖〈1P ,m〉‖= (log ‖m‖)[div 1P ]+

∫
π

log ‖1P ‖c1(M) = (log ‖m‖)[div 1P ]

by the normalization condition (3.4). It follows that the canonical iso-

morphism 〈O(P )Ar,M〉
∼−→ P ∗M from (8.2) is an isometry. For ex-

ample, since ωAr is fiberwise admissible we find that the isomorphism
〈O(P )Ar, ωAr〉

∼−→ P ∗ωAr is an isometry. Further, by definition of the
Arakelov metric, the adjunction isomorphism (8.3) is an isometry. We
conclude that we have a canonical isometry

(9.4) 〈O(P )Ar,O(P )Ar〉
∼−→ 〈O(P )Ar, ωAr〉⊗−1

of C∞ hermitian line bundles on Y .
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Mumford’s functorial Riemann–Roch (8.4) gives a canonical isomor-
phism, up to sign

µY : (detπ∗ω)⊗12 ∼−→ 〈ω, ω〉
of line bundles on Y . The Faltings delta-invariant is defined to be the
minus logarithm of the norm of µY ,

(9.5) δF = − log ‖µY ‖ ,

where 〈ω, ω〉 is endowed with the Deligne metric derived from ωAr, and
detπ∗ω is endowed with the Hodge metric ‖ · ‖H induced from (3.1).

Let j : J → Y be the Jacobian fibration associated to X → Y . Then
J ×Y J carries a canonical Poincaré bundle P, together with a rigidifi-
cation at the origin, and P carries a canonical hermitian metric, com-
patible with the rigidification. We denote by B the C∞ hermitian line
bundle on J obtained by restricting P to the diagonal.

Suppose that E, F are divisors on X of relative degree zero over Y .
Then we obtain a section η of J ×Y J → Y given by sending y ∈ Y to
the classes of Ey, Fy in Jac(Xy). We have a canonical isometry (see, for
example, [30, Corollaire 4.14.1])

η∗P ∼−→ 〈O(E)Ar,O(F )Ar〉⊗−1 .

In particular, for the section ν : Y → J associated to the divisor E we
have a canonical isometry

(9.6) ν∗B ∼−→ 〈O(E)Ar,O(E)Ar〉⊗−1 .

Assume that X → Y extends into a nodal curve X̄ → Ȳ , where Ȳ is a
smooth complex algebraic variety and where Ȳ \Y is a normal crossings
divisor on Y . Then the section ν is a normal function section (cf. [19,
Definition 5.2]) of the family of Jacobians J → Y .

10. Variations of mixed Hodge structures

The purpose of this section is to recall a few notions and results re-
lated to graded-polarized variations of mixed Hodge structures, in par-
ticular, the Nilpotent Orbit Theorem from [36]. In the next section we
then make this Nilpotent Orbit Theorem explicit for families of curves
with nodal degeneration, in order to obtain precise asymptotic formulae
for the period and Abel–Jacobi map in such families. For the notion of
a graded-polarized variation of mixed Hodge structures over a complex
manifold we refer to [36] and [37, Chapter 14.4].

Let V be a Q-vector space, and N a nilpotent endomorphism of V .
There is then a unique increasing filtration L• of V such that

1) for each i ∈ Z one has NLi ⊆ Li−2,

2) for each i ∈ N the map N i induces an isomorphism N i : GrLi V
∼−→

GrL−iV of vector spaces.
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Assume that V is, moreover, equipped with a finite increasing filtration
W•, such that N preserves W•. An increasing filtration M• of V is then
called a weight filtration for N relative to W• if:

1) for each i ∈ Z one has NMi ⊆Mi−2,
2) for each k ∈ Z and each i ∈ N one has that N i induces an isomor-

phism

N i : GrMk+iGrWk V
∼−→ GrMk−iGrWk V

of vector spaces.

If a weight filtration for N relative to W• exists on V , it is unique.
Let (V,W•, F

•, Q•) be a graded-polarized mixed Hodge structure on
V , with weight filtration W•, graded-polarization Q• and Hodge filtra-
tion F •. Associated to (V,W•, F

•, Q•) one has a natural classifying
space (period domain) M of graded-polarized mixed Hodge structures
on (V,W•, Q•), by varying the Hodge filtration. Let G = G(V,W•, Q•)
be the associated Q-algebraic group consisting of elements g ∈ GL(V )W

such that GrW• (g) ∈ Aut(Q•). Then G(R) acts transitively on M, and
providesM with an embedding into a “compact dual” M̌ ⊃M, which
is the orbit, inside a flag variety parameterizing decreasing filtrations of
VC compatible with W•, of any point in M under the action of G(C).
The inclusion M ⊂ M̌ gives M a natural structure of complex mani-
fold.

Let n ≥ m ≥ 0 be integers, let Y = (∆∗)m × ∆n−m, and let
(V ,W •,F•,Q•) be a graded-polarized variation of mixed Hodge struc-
tures over Y . Let (V,W•, F

•, Q•) be a reference fiber at a point t0 ∈ Y
near the origin, write G = G(V,W•, Q•) as above, and let M be the
associated period domain. Then we have a monodromy representation
ρ : π1(Y, t0) → G(Q), and denoting by Γ ⊂ G(Q) its image we have a
natural associated holomorphic period map φ : Y →M/Γ.

Assume from now on that the variation (V ,W •,F•,Q•) on Y is
admissible. For a precise definition we refer to [37, Section 14.4.1]. The
admissibility condition implies, in particular, that all local monodromy
operators around the branches of the boundary divisor D = ∆n \ Y are
unipotent. The vector bundle V = V ⊗C OY has a canonical Deligne
extension Ṽ over ∆n, and the central fiber Ṽ(0) comes equipped with a

natural Hodge filtration F̃•(0).
Moreover, let (V,W•, F

•, Q•) be a reference fiber of (V ,W •,F•,Q•)
near D, and denote the local monodromy logarithms in g = LieG(R)
by N1, . . . , Nm. Let C be the R>0-span of the Ni inside g. Then each
element of C is nilpotent, and compatible with W•, the relative weight
filtration of (V,W•) exists for each element in C, and is, in fact, con-
stant on C. Using parallel transport along the Gauss–Manin connection,
the central fiber Ṽ(0) of the Deligne extension is then equipped with a

canonical increasing filtration M•. The triple (Ṽ(0), F̃•(0),M•) is a
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mixed Hodge structure, the limit mixed Hodge structure of the varia-
tion.

Let U be Siegel’s upper half plane. We denote by e : Um → (∆∗)m the
uniformization map (z1, . . . , zm) 7→ (exp(2πiz1), . . . , exp(2πizm)). Via

e the period map φ of our variation lifts to a map φ̃ : Um × ∆n−m →
M. Then as Ni ∈ LieG(R) we have exp(

∑m
i=1 ziNi) ∈ G(C) for all

z1, . . . , zm ∈ U . Let then ψ̃ : Um ×∆n−m → M̌ be the map

ψ̃(z1, . . . , zm, tm+1, . . . , tn) = exp(−
m∑
i=1

ziNi)φ̃(z1, . . . , zm, tm+1, . . . , tn) .

Then ψ̃ descends to an “untwisted” period map ψ : (∆∗)m×∆n−m → M̌.
In this set-up, one has the following Nilpotent Orbit Theorem [36,

Section 6].

Theorem 10.1. Consider an admissible graded-polarized variation of
mixed Hodge structures (V ,W •,F•,Q•) over Y = (∆∗)m×∆n−m. (a)
The untwisted period map ψ extends to a holomorphic map ψ : ∆n → M̌.
(b) The value ψ(0) at zero coincides with the Hodge filtration of the limit

mixed Hodge structure (Ṽ(0), F̃•(0),M•).

11. Asymptotics of the period and Abel–Jacobi map

The purpose of this section is make the Nilpotent Orbit Theorem
sufficiently explicit for the period and Abel–Jacobi map associated to
a family of curves with nodal degeneration. We note that the relevant
graded-polarized variations of mixed Hodge structure will, indeed, be
admissible. We mention [8, Section 1], [17, Section 2] and [18] as refer-
ences for the material below. However, we warn the reader that these
references deal with the Hodge structure on cohomology (pure weight
+1) of curves, whereas here we deal with homology (pure weight −1).
The results we find are certainly well known, but we have not been able
to localize them as such in the literature.

If (V, F •,W•) is a mixed Hodge structure, we call Ext1
MHS(Z(0), V )

the generalized Jacobian of (V, F •,W•). For example, let C be a nodal
complex algebraic curve of arithmetic genus h, and write M = H1(C).
Then we let Jac(C) = Ext1

MHS(Z(0),M) be the generalized Jacobian of
(the homology) of C. It turns out that Jac(C) can be given a natural
structure of complex algebraic group, namely as the group of isomor-
phism classes of invertible sheaves on C that are of degree zero on every
component of C. Let ν : C̃ → C denote the normalization of C, and
write U = H1(C̃) = ⊕H1(C̃i), with C̃i the normalizations of the irre-

ducible components of C. Let E = Jac(U) = ⊕ Jac(C̃i). Then E is the
Jacobian of a pure polarized Hodge structure of type {(−1, 0), (0,−1)}.
Write F = Jac(C).
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Let G be the dual graph of the nodal curve C. Pulling back invertible
sheaves along ν gives a canonical extension of algebraic groups

(11.1) 1→ H1(G)⊗Gm → F → E → 0 .

Taking the homotopy long exact sequence of (11.1) we obtain an exten-
sion of mixed Hodge structures

0→ H1(G)⊗ Z(1)→ H1(C)→ H1(C̃)→ 0 .

Vice versa, we may obtain (11.1) by applying Ext1
MHS(Z(0),−) to the

above extension.
Let P,Q ∈ C be points. Then we have an extension

0→M = H1(C)→ H1(C, {P,Q})→ Z(0)→ 0

of mixed Hodge structures. Generalizing the notation from Section 2

we denote by
∫ P
Q the corresponding element of F = Ext1

MHS(Z(0),M).

By a slight abuse of notation, we also denote by
∫ P
Q the resulting image

in E = Ext1
MHS(Z(0), U) under the projection F → E.

An alternative way of describing
∫ P
Q is as follows. Let ωC , ωC̃ de-

note the dualizing sheaves of C and C̃, respectively. The canonical
map ν∗ωC̃ → ωC yields an inclusion ωC̃(C̃) → ωC(C) and, hence, a

surjection ωC(C)∨ → ωC̃(C̃)∨. This surjection coincides with the in-
duced map Lie(F ) → Lie(E) from (11.1). We can alternatively write

E = ωC̃(C̃)∨/H1(C̃), and we find the following lemma.

Lemma 11.1. The Abel–Jacobi element
∫ P
Q of E = ωC̃(C̃)∨/H1(C̃)

is the functional given by integrating elements of ωC̃(C̃) ⊂ ωC(C) along
paths from P to Q over C.

Now let Ȳ = ∆n, and let π : X̄ → Ȳ be a nodal curve, assumed to
be smooth over Y = (∆∗)m × ∆n−m. Let X = π−1Y and let V =
R1π∗ZX(1). Then V underlies a canonical admissible variation of pure
polarized Hodge structure (V ,F•,Q) of weight −1 over Y . From now
on, we will usually suppress the polarizations from our notation, as they
will be clear from the context. Let X̄0 be the fiber of X̄ → Ȳ over the

origin, let G be its dual graph, and let ν : ˜̄X0 → X̄0 be its normalization.
Our discussion above yields an extension of mixed Hodge structures

0→ H1(G)→ H1(X̄0)→ H1( ˜̄X0)→ 0,

with H1(G) pure of type (−1,−1). Let (V, F •) be a reference fiber of
V near the origin. By the very construction of the limit mixed Hodge
structure on the central fiber of the canonical extension of V = V ⊗COY ,
the first part H1(G) → H1(X̄0) of the extension can be realized as a
piece of the monodromy (relative) weight filtration on V . More precisely,
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let N be any element of the monodromy cone associated to VQ, then we
have N2 = 0 and the associated filtration on VQ reads

M• : 0 ⊂M−2 ⊂M−1 ⊂M0 = VQ ,

with (given our choice of coordinates) canonical identifications M−2 =
ImN ∼= H1(G)Q and M−1 = KerN ∼= H1(X̄0)Q.

Let r = rankH1(G). One has a symplectic basis (e1, . . . , eh,
f1, . . . , fh) of (V,Q) such that:

1) H1(G) = span (e1, . . . , er),
2) H1(X̄0) = span (e1, . . . , eh, fr+1, . . . , fh).

In particular, (ēr+1, . . . , ēh, f̄r+1, . . . , f̄h) is a symplectic basis of the pure

polarized Hodge structure GrM−1V
∼= H1( ˜̄X0) of type {(−1, 0), (0,−1)}.

With respect to our chosen basis, each local monodromy operator Nj

has the form

Nj =

0 Aj

0 0

 ,

where Aj is an integral symmetric positive semi-definite h-by-h matrix,
and where each non-zero element of Aj is in the left upper r-by-r block
of Aj .

As is well known, the period domain M associated to V can be
realized as Siegel’s upper half space Uh of degree h. We have G(V ) =
Sp(2h)Q, and the action of G(V )(R) on Uh is given byA B

C D

·M = (AM+B)(CM+D)−1,

A B

C D

 ∈ Sp(2h,R), M ∈ Uh.

The period map Ω: Y → Uh/Γ is given by associating to each t ∈ Y the
period matrix of Xt on the chosen symplectic basis of V (cf. Section 2).
Here Γ is the image of the monodromy representation into G(V )(Q) =
Sp(2h,Q). For a commutative ring R, denote by S(r × r,R) the set of
symmetric r-by-r matrices with values in R.

Proposition 11.2. (a) There exists a holomorphic single-valued map
ψ : ∆n → S(h × h,C) such that for (z, t) ∈ Um × ∆n−m with e(z)
sufficiently close to zero the equality

Ω(e(z), t) =
m∑
j=1

Ajzj + ψ(e(z), t)

holds in S(h× h,C). (b) Writing

ψ =

ψ11 ψ12

ψ21 ψ22

 ,
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with ψ11 an r-by-r matrix we have that ψ22(0) is equal to the period ma-

trix of (GrM−1V, F̃•(0)) on the symplectic basis (ēr+1, . . . , ēh, f̄r+1, . . . , f̄h).

Proof. First of all, we have exp(Njzj)M = Ajzj + M for each M ∈
Uh, zj ∈ U , and j = 1, . . . ,m. Part (a) then follows from Theorem
10.1(a). As for part (b), we know by Theorem 10.1(b) that ψ(0) is

the period matrix of the limit mixed Hodge structure (V, F̃•(0),M•) of
(V ,F•) on the symplectic basis (e1, . . . , eh, f1, . . . , fh) of V . That is,

there exists a basis (v1, . . . , vh) of F̃0(0)VC such that the identities vi =

−
∑h

j=1 ψ(0)ijej + fi hold in VC for i = 1, . . . , h. Note that vr+1, . . . , vh
are all in M−1,C = C-span (e1, . . . , eh, fr+1, . . . , fh). Let

p : F̃0(0)VC ∩M−1,C → F̃0(0)(M−1,C/M−2,C)

be the projection. Then we have p(vi) = −
∑h

j=r+1 ψ(0)ij ēj + f̄i in

M−1,C/M−2,C = GrM−1VC for i = r + 1, . . . , h. As the p(vi) are clearly

linearly independent and as dim F̃0(0)GrM−1VC = h−r we conclude that

ψ22(0) is the period matrix of the pure polarized Hodge structure GrM−1V
on its symplectic basis (ēr+1, . . . , ēh, f̄r+1, . . . , f̄h). q.e.d.

Now assume two distinct sections P , Q of π : X̄ → Ȳ are given. Over
each t ∈ Y we obtain an extension

0→ H1(Xt)→ H1(Xt, {Pt, Qt})→ Z(0)→ 0

in the category of mixed Hodge structures. Varying t ∈ Y we obtain a
canonical extension

0→ V → V (P,Q)→ Z(0)→ 0

of variations of mixed Hodge structure over Y . The variation V (P,Q)
is graded-polarized and, moreover, admissible. We are interested in the
asymptotics of its period map near D = Ȳ \ Y .

The weight filtration of the variation is

W• : 0 ⊂W−1 = V Q ⊂W 0 = V (P,Q)Q ,

so that GrW−1V (P,Q)Q = V Q, GrW0 V (P,Q)Q = Q(0). We denote the
Hodge filtration of V (P,Q)Q by F ′•. We start by taking a reference fiber
V (P,Q) of V (P,Q) and augmenting our chosen symplectic basis of V
by an e0 ∈ V (P,Q) lifting the canonical generator of Z(0) as in Section
2. Letting M• as before be the monodromy (relative) weight filtration
on VQ, we recall that, given our choice of coordinates, there is a natural
isomorphism M−1

∼= H1(X̄0)Q. The topological construction of this
isomorphism via Picard–Lefschetz theory (cf. [2, Section X.9]) makes
it clear that, likewise, the relative homology H1(X̄0, {P (0), Q(0)})Q can
be realized inside V (P,Q)Q, as the submodule M−1 + Qe0.

The admissibility of our variation implies that the relative weight fil-
tration M ′• on the reference fiber V (P,Q)Q exists. Let N be any element
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from the monodromy cone acting on V (P,Q)Q. Our first aim is to deter-
mine the matrix shape ofN on our chosen basis (e0, e1, . . . , eh, f1, . . . , fh)
of V (P,Q). As N2 = 0, the filtration L• associated to N (see the be-
ginning of Section 10) on V (P,Q)Q is

L• : 0 ⊂ L−1 ⊂ L0 ⊂ L1 = V (P,Q)Q ,

with L−1 = Im(N), L0 = Ker(N). On the other hand, the weight
filtration is

W• : 0 ⊂W−1 = VQ ⊂W0 = V (P,Q)Q ,

which is, indeed, compatible with N . As the monodromy action on
GrW0 = Q(0) is trivial, we have that Im(N) ⊂ VQ, so that N−1VQ =
V (P,Q)Q. We note that W• has length two. It then follows from [39,
Proposition 2.16] and [39, Proposition 2.11] that N is a “strict” endo-
morphism, and that the weight filtration of N relative to W• is equal
to the “convolution” of L• and W•. The first statement means that
N−1Wk = Wk + KerN for all k ∈ Z, and the second statement means
that V (P,Q)Q = N−1VQ and that

M ′• : 0 ⊂M ′−2 ⊂M ′−1 ⊂M ′0 ⊂M ′1 = V (P,Q)Q,

with M ′−2 = Im(N), M ′−1 = Im(N) + Ker(N |VQ) = Ker(N |VQ) = M−1

and M ′0 = VQ+Ker(N) = V (P,Q)Q is the weight filtration of N relative
to W•. The equalities V (P,Q)Q = N−1VQ = VQ + Ker(N) imply that
Ker(N) % Ker(N |VQ) and, hence, that Im(N) = Im(N |VQ), that is,
M ′−2 = M−2.

The period domain associated to (V (P,Q),W•) is Ch × Uh, and the
associated algebraic group has as Q-points the group


1 0 0

m A B

n C D

 : m,n ∈ Qh ,

A B

C D

 ∈ Sp(2h,Q)

 .

The action of G(V (P,Q),W•)(R) on Ch × Uh is given by
1 0 0

m A B

n C D

 (v,M) = (v +m+Mn, (AM +B)(CM +D)−1) ,

for v ∈ Ch, M ∈ Uh. Varying t ∈ Y and then taking F 0 we obtain a
(Ch × Uh)/Γ-valued period map

(δ,Ω): Y → (Ch × Uh)/Γ
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associated to the variation V (P,Q). For each t ∈ Y , the vector δ(t) is
a lift of the Abel–Jacobi element in Ch/(Zh + Ω(t)Zh) associated to the
divisor P (t)−Q(t) of Xt.

Proposition 11.3. (a) There exist a holomorphic single-valued map
α : ∆n → Ch and vectors b1, . . . , bm ∈ Qh with Ajbj ∈ Zh for j =
1, . . . ,m such that for (z, t) ∈ Um × ∆n−m with e(z) sufficiently close
to zero the equality

δ(e(z), t) =

m∑
j=1

Ajbjzj + α(e(z), t)

holds in Ch. (b) Writing α =
(
α1

α2

)
with α1 : ∆n → Cr we have that

the vector α2(0) lifts the Abel–Jacobi element
∫ P (0)
Q(0) of E = Jac( ˜̄X0)

determined by integrating elements of ω ˜̄X0
( ˜̄X0) along paths from P (0)

to Q(0) on X̄0.

Proof. Let Nj denote the local monodromy operator of V (P,Q)
around the branch of D determined by tj = 0. The equality Im(Nj) =
Im(Nj |VQ) that we established above shows that Nj has a matrix

Nj =


0 0 0

Ajbj 0 Aj

0 0 0


on the basis (e0, e1, . . . , eh, f1, . . . , fh), for some bj ∈ Qh such that

Ajbj ∈ Zh for each j = 1, . . . ,m. Then for all (v,M) ∈ Ch × Uh
and zj ∈ U we have exp(Njzj)(v,M) = (v+Ajbjzj ,M +Ajzj), and we
find part (a) of the proposition by applying Theorem 10.1(a). As for
part (b), we know by Theorem 10.1(b) that α(0) is the period vector

of the limit mixed Hodge structure (V (P,Q), F̃ ′•(0),M ′•) of the vari-

ation V (P,Q). That is, the normalized basis (v1, . . . , vh) of F̃0(0)VC
on the symplectic basis (e1, . . . , eh, f1, . . . , fh) that we obtained in the
proof of Theorem 11.2(b) can be extended to a basis (v0, v1, . . . , vh) of

F̃ ′0(0)V (P,Q)C in such a way that the identity v0 = e0 +
∑h

i=1 α(0)iei
holds in V (P,Q)C. As we discussed above, the sub-mixed Hodge struc-

ture H1(X̄0) + Ze0 of (V (P,Q), F̃ ′•(0),M ′•) can be realized as the ex-
tension H1(X̄0, {P (0), Q(0)}) of H1(X̄0). Let U = H1(X̄0)/H1(G) and
U(P,Q) = (H1(X̄0) + Ze0)/H1(G). We then obtain an extension

(11.2) 0→ U → U(P,Q)→ Z(0)→ 0

of mixed Hodge structures. From Lemma 11.1 we obtain that the el-
ement of E = Ext1

MHS(Z(0), U) corresponding to (11.2) is the Abel–

Jacobi element determined by integrating elements of ω ˜̄X0
( ˜̄X0) along
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paths from P (0) to Q(0) on X̄0. Our task is, thus, to show that
α2(0) = (α(0)r+1, . . . , α(0)h) is a period vector of the mixed Hodge
structure U(P,Q). Let

p : F̃0(0)VC ∩M−1,C → F̃0(0)(M−1,C/M−2,C) = F̃0(0)UC

be the projection. We recall from the proof of Theorem 11.2(b) that

vr+1, . . . , vh ∈M−1,C and that (p(vr+1), . . . , p(vh)) is a basis of F̃0(0)UC.
Next we note that v0 ∈M ′−1,C + Ce0. Let

q : F̃ ′0(0)V (P,Q)C ∩ (M ′−1,C + Ce0)

→ F̃ ′0(0)(M ′−1,C + Ce0)/M ′−2,C = F̃ ′0(0)U(P,Q)C

be the canonical projection. Then (q(v0), q(vr+1), . . . , q(vh)) is a basis

of F̃ ′0(0)U(P,Q)C extending the F̃0(0)UC-basis (q(vr+1), . . . , q(vh)) =

(p(vr+1), . . . , p(vh)). We have the identity q(v0) = ē0 +
∑h

i=r+1 α(0)iēi
in U(P,Q)C. This shows that (α(0)r+1, . . . , α(0)h) is a period vector of
U(P,Q). q.e.d.

12. Lear extensions

The notion of Lear extension is introduced by Hain in [19] [20]. The
notion has turned out to be a very useful tool in formulating and ana-
lyzing asymptotic properties of Hodge theoretic and Arakelov theoretic
invariants. The terminology is justified by Theorem 12.2 below, which
was first obtained by D. Lear in his PhD thesis [28].

Let Y ⊂ Ȳ be complex manifolds, and assume that D = Ȳ \ Y is a
normal crossings divisor on Ȳ . Let L be a holomorphic line bundle on Y .
An extension of L over Ȳ consists of a pair (L̄, α : L̄|Y

∼−→ L), where L̄ is
a holomorphic line bundle on Ȳ and α is an isomorphism of holomorphic
line bundles. There is a natural notion of isomorphism of extensions
(L̄, α). We denote the set of isomorphism classes of extensions of L by
PicL(Ȳ ) ⊂ Pic(Ȳ ).

Assume that L is equipped with a continuous hermitian metric ‖ · ‖.
A Lear extension of (L, ‖ · ‖) over Ȳ is an extension (L̄, α) of L over
Ȳ with the property that the continuous metric α∗‖ · ‖ on L̄|Y extends
as a continuous metric over L|Ȳ \Dsing . Note that if (L, ‖ · ‖) has a

Lear extension over Ȳ , the underlying line bundle L̄ is unique up to
isomorphism, since Dsing lies in codimension ≥ 2 on Ȳ .

We conclude that all Lear extensions yield the same class in PicL(Ȳ ),
and usually we think of “the” Lear extension of (L, ‖ · ‖) as this class
in PicL(Ȳ ). By slight abuse of language, if a tensor power L⊗N has a

Lear extension (L⊗N , α), we also say that L has a Lear extension, and

we call the class of the Q-line bundle 1
NL
⊗N in PicL(Ȳ ) ⊗ Q its Lear

extension. Note that this class is independent of the choice of N .
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Let p ∈ D \Dsing. We say a coordinate chart (t1, . . . , tn) : U
∼−→ ∆n

of Ȳ with center p is adapted to D if D ∩ U is given by the equation
t1 = 0. Clearly one can verify Lear extendability over D locally on
coordinate charts adapted to D. Write D1 for the divisor of ∆n given
by the equation t1 = 0. The following gives a criterion for continuous
extendability of a continuous hermitian line bundle on ∆n \D1 = ∆∗×
∆n−1 over ∆n, and, hence, for Lear extendability in general.

Proposition 12.1. Let (L, ‖·‖) be a continuous hermitian line bundle
over ∆n \D1, and let M be a holomorphic line bundle on ∆n coinciding
with L on ∆n \D1. Let µ ∈ Q. Let s be a generating section of M over
∆n. The following assertions are equivalent: (i) the function log ‖s‖ −
µ log |t1| on ∆n \D1 extends continuously over ∆n, (ii) the continuous
hermitian line bundle (L, ‖ · ‖) has a Lear extension L̄ over ∆n and we
have L̄ = M + µD1.

Proof. Write M(µ) as a shorthand for M + µD1. Note that M(µ)

coincides with L over ∆n \D1, and that the rational section s′ = t−µ1 s
is a generating section of M(µ) over ∆n. We have that M(µ) can
be equipped with the structure of continuous hermitian Q-line bundle
extending (L, ‖ · ‖) over ∆n if and only if log ‖s′‖ extends continuously
over ∆n. Since log ‖s′‖ = log ‖s‖ − µ log |t1| we obtain the equivalence
of assertions (i) and (ii). q.e.d.

Now assume that Ȳ is a smooth complex algebraic variety, with D =
Ȳ \Y a normal crossings divisor on Ȳ . Let V be a polarized variation of
Hodge structures of weight −1 over Y . Following [19, Section 5] we have
canonically associated to V a family of intermediate Jacobians J(V )→
Y . The total space J(V ) carries a Poincaré line bundle B, rigidified
along the origin and equipped with a canonical C∞ hermitian metric.
The main result of Lear’s thesis [28], reproduced in [19, Corollary 6.4],
is the following extension result.

Theorem 12.2. Let ν : Y → J(V ) be a normal function section (cf.
[19, Definition 5.2]) of the family of intermediate Jacobians J(V )→ Y .
Then the C∞-hermitian line bundle L = ν∗B on Y has a Lear extension
over Ȳ .

The case of special interest to us is given by sections of Jacobians
obtained from relative degree zero divisors on families of curves with
nodal degeneration over D, cf. the end of Section 9.

13. Key isometries

We continue with the notation set in Section 9. We draw here a few
consequences of the canonical isometry (9.6). Let h > 0 denote the
genus of the fibers of the family π : X → Y , and assume that a section
P : Y → X of π is given.
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Proposition 13.1. Let κ : Y → J be the section of the Jacobian
fibration j : J → Y associated to the relative degree zero divisor E =
(2h− 2)P − ω on X over Y . Then one has a canonical isometry

κ∗B ∼−→ 〈O(P )Ar, ωAr〉⊗4h(h−1) ⊗ 〈ωAr, ωAr〉⊗−1

of C∞ hermitian line bundles on Y .

Proof. By equation (9.6) we have a canonical isometry

κ∗B ∼−→ 〈(2h− 2)O(P )Ar − ωAr, (2h− 2)O(P )Ar − ωAr〉⊗−1 .

We obtain the result upon expanding the right hand side using the
canonical adjunction isometry 〈O(P )Ar,O(P )Ar〉

∼−→ 〈O(P )Ar, ωAr〉⊗−1

from (9.4). q.e.d.

If X → Y has two sections P,Q : Y → X, we let δ : Y → J be
the section of j : J → Y associated to the relative degree zero divisor
E = P −Q of X over Y .

Proposition 13.2. Assume X → Y has two sections P,Q : Y → X.
Then we have a canonical isometry

δ∗B ∼−→ 〈O(P )Ar,O(Q)Ar〉⊗2 ⊗ 〈O(P )Ar, ωAr〉 ⊗ 〈O(Q)Ar, ωAr〉
of C∞ hermitian line bundles on Y .

Proof. Equation (9.6) yields a canonical isometry

δ∗B ∼−→ 〈O(P −Q)Ar,O(P −Q)Ar〉⊗−1 .

The stated result follows upon expanding the right hand side, using the
canonical adjunction isometry 〈O(P )Ar,O(P )Ar〉

∼−→ 〈O(P )Ar, ωAr〉⊗−1

from (9.4). q.e.d.

Assume X → Y has a section P : Y → X. Let δP : X → J be the Y -
morphism given by sending z ∈ Xy to the class of P (y)− z in Jac(Xy).

Proposition 13.3. We have a canonical isometry

δ∗PB
∼−→ O(P )⊗2

Ar ⊗ π
∗〈O(P )Ar, ωAr〉 ⊗ ωAr

of C∞ hermitian line bundles on X.

Proof. Consider the first projection π1 : X ×Y X → X. It comes
equipped with two tautological sections, namely a section denoted P̃
induced from P , and the diagonal section Q. Let B̃ on X ×Y J denote
the pullback of B along the second projection X×Y J → J . Let δ : X →
X ×Y J be the section of the projection X ×Y J → X associated to the
two sections P̃ and Q of X ×Y X → X. Then we have a canonical
isometry δ∗PB

∼−→ δ∗B̃. Let ω̃Ar = π∗2ωAr denote the relative dualizing
sheaf of π1 endowed with the Arakelov metric. Then by Proposition
13.2 we have a canonical isometry

δ∗B̃ ∼−→ 〈O(P̃ )Ar,O(Q)Ar〉⊗2 ⊗ 〈O(P̃ )Ar, ω̃Ar〉 ⊗ 〈O(Q)Ar, ω̃Ar〉
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of C∞ hermitian line bundles on X. The proof follows upon observing
the canonical isometries

〈O(P̃ )Ar,O(Q)Ar〉
∼−→ Q∗O(P̃ )Ar

∼−→ O(P )Ar,

and

〈O(P̃ )Ar, ω̃Ar〉
∼−→ π∗〈O(P )Ar, ωAr〉,

and

〈O(Q)Ar, ω̃Ar〉
∼−→ Q∗ω̃Ar

∼−→ ωAr

of C∞ hermitian line bundles on X. q.e.d.

Proposition 13.4. Assume X → Y has a section P : Y → X. Then
we have a canonical isometry

〈δ∗PB, δ∗PB〉
∼−→ 〈O(P )Ar, ωAr〉⊗4h ⊗ 〈ωAr, ωAr〉

of C∞ hermitian line bundles on Y .

Proof. Expand the Deligne pairing of the right hand side in Proposi-
tion 13.3 with itself, using the adjunction isometry 〈O(P )Ar,O(P )Ar〉

∼−→
〈O(P )Ar, ωAr〉⊗−1 and the canonical isometries

〈O(P )Ar, π
∗〈O(P )Ar, ωAr〉〉

∼−→ 〈O(P )Ar, ωAr〉,
and

〈ωAr, π
∗〈O(P )Ar, ωAr〉〉

∼−→ 〈O(P )Ar, ωAr〉⊗2h−2

that we obtain from (9.2). q.e.d.

Proposition 13.5. Assume X → Y has a section P : Y → X. Then
we have a canonical isometry

〈O(P )Ar, ωAr〉⊗4h2 ∼−→ 〈δ∗PB, δ∗PB〉 ⊗ κ∗B
of C∞ hermitian line bundles on Y .

Proof. This follows immediately upon combining Propositions 13.1
and 13.4. q.e.d.

14. Calculation of Lear extensions

Our aim in this section is to explicitly calculate the Lear extensions
associated to the various C∞ hermitian line bundles in Section 13.

Let π : X̄ → ∆ be a nodal curve over the unit disc, smooth over ∆∗.
Let G be the weighted dual graph of the special fiber X̄0 (see Section 7).
Let P (X̄) be the (additively written) group of line bundles on X̄. Then

we have a canonical specialization map R : P (X̄) → RV (G) given by
R(L)(x) = (L · x)0 = deg(L|x) for all L ∈ P (X̄) and x ∈ V (G). We put

K = R(ω) in RV (G) where ω is the relative dualizing sheaf of π. Let ḡ
denote the Green’s function on G determined by the discrete Laplacian
as in Section 4.
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Let E be a Cartier divisor on X̄ with support in Sm(π), and with rel-
ative degree zero over ∆. Equip O(E) over X = π−1∆∗ with the metric
derived from the Arakelov–Green’s function gAr, notation O(E)Ar.

Proposition 14.1. Write E = R(O(E)). Then the Lear extension

〈O(E),O(E)〉 of the restriction of 〈O(E),O(E)〉 to ∆∗ exists. We have
an equality

〈O(E),O(E)〉 = 〈O(E),O(E)〉+ ḡ(E , E)[0]

of Q-line bundles over ∆.

Proof. The existence of 〈O(E),O(E)〉 follows from Theorem 12.2

above in combination with (9.6). As to the formula for 〈O(E),O(E)〉,
let ˜̄X → X̄ denote the minimal desingularization of X̄. Let Γ̃ resp. Γ
denote the metrized graphs associated to the dual graphs of the special

fibers of ˜̄X resp. X̄. By Proposition 7.1, the minimal desingularization
˜̄X → X̄ of X̄ induces a canonical isometry Γ̃

∼−→ Γ. We see that, since
E has support in the smooth locus of π, upon passing to the minimal

desingularization ˜̄X neither the left hand side nor the right hand side
of the equality to be proven changes. Hence, we may assume that X̄ is
smooth. Then the formula follows upon combining [23, Theorem 2.2]
and [23, Corollary 7.5]. q.e.d.

Now let Ȳ be a smooth complex algebraic variety, and let D be a nor-
mal crossings divisor on Ȳ . Let π : X̄ → Ȳ be a nodal curve of genus
h > 0, assumed to be smooth over Y = Ȳ \ D, and put X = π−1Y .
Using Proposition 14.1 we will calculate several Lear extensions asso-
ciated to sections of the family of Jacobians j : J → Y associated to
X → Y explicitly. Let B denote the Poincaré bundle on J . The Lear
extensions κ∗B and δ∗B considered in Propositions 14.2 and 14.3 below
were calculated on the moduli stack of pointed stable curves by Hain in
[19, Theorems 10.2 and 11.5]. Our results reproduce Hain’s by a test
curve argument.

Assume that π has a section P . Let ω denote the relative dualizing
sheaf of π. As before we put κ1 = 〈ω, ω〉 and ψ = 〈O(P ), ω〉 = P ∗ω.
From Proposition 13.1 we recall the map κ : Y → J associated to the
relative divisor (2h− 2)P − ω on X over Y .

Proposition 14.2. The Lear extension of κ∗B over Ȳ exists. If
π : X̄ → ∆ is a nodal curve over the unit disc, let G be the weighted
dual graph of the special fiber X̄0. Assume that the section P : ∆ → X̄
passes through Sm(π). Then one has an equality

κ∗B = 4h(h− 1)ψ − κ1 − ḡ((2h− 2)x−K, (2h− 2)x−K)[0]

of Q-line bundles over ∆. Here K is the divisor on G induced by ω, and
x ∈ V (G) is the irreducible component of G where P specializes.
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Proof. The existence of the Lear extension of κ∗B over Ȳ follows
from Theorem 12.2 since κ is a normal function section of J → Y . Let
E = (2h− 2)P − ω. By equation (9.6) we have a canonical isometry

κ∗B ∼−→ 〈O(E)Ar,O(E)Ar〉⊗−1

of C∞ hermitian line bundles over Y . The formula is then obtained by
applying Proposition 14.1, noting that the equalities

〈O(E),O(E)〉 = 〈(2h−2)O(P )−ω, (2h−2)O(P )−ω〉 = −4h(h−1)ψ+κ1

hold over ∆ by the isomorphism 〈O(P ),O(P )〉 ∼−→ 〈O(P ), ω〉⊗−1. q.e.d.

Next assume that π : X̄ → Ȳ has two sections P , Q. We recall from
Proposition 13.2 the section δ of J → Y associated to the divisor P −Q.

Proposition 14.3. The Lear extension of δ∗B over Ȳ exists. If
π : X̄ → ∆ is a nodal curve over the unit disc, let G be the weighted dual
graph of the special fiber X̄0, and assume that the sections P,Q : ∆→ X̄
both pass through Sm(π). Assume that P specializes onto x ∈ V (G), and
Q specializes onto y ∈ V (G). Let r denote the effective resistance on
the weighted dual graph G of X̄0. Then one has the equalities

δ∗B = −〈O(P −Q),O(P −Q)〉 − ḡ(x− y, x− y)[0]

= 2 〈O(P ),O(Q)〉+ 〈O(P ), ω〉+ 〈O(Q), ω〉 − ḡ(x− y, x− y)[0]

= 2 〈O(P ),O(Q)〉+ 〈O(P ), ω〉+ 〈O(Q), ω〉 − r(x, y)[0]

of Q-line bundles on ∆.

Proof. The existence of the Lear extension δ∗B follows from Theorem
12.2 since δ is a normal function section of J → Y . To obtain the first
equality, we apply Proposition 14.1 to π : X̄ → ∆ with E = P −Q. We
obtain the second equality by expanding 〈O(P − Q),O(P − Q)〉 using

the adjunction isomorphism 〈O(P ),O(P )〉 ∼−→ 〈O(P ), ω〉⊗−1. The third
equality follows from (4.1). q.e.d.

Recall the Y -morphism δP : X → J given by sending the point z ∈ Xy

to the Abel–Jacobi element
∫ P
z in Jy for all y ∈ Y . Our next aim is to

study the Lear extension of δ∗PB. From now on we assume, therefore,
that X̄ is smooth. It is then automatic that the image of any section
P : Ȳ → X̄ is contained in the smooth locus Sm(π) of π : X̄ → Ȳ . Also
we note that X̄ \X is a normal crossings divisor on X̄.

Proposition 14.4. Assume that X̄ is smooth, and let P : Ȳ → X̄
be a section of π. Then the Lear extension of δ∗PB over X̄ exists. Let
π : X̄ → ∆ be a nodal curve over the unit disc, with X̄ smooth, and with
π smooth over ∆∗. Let G be the weighted dual graph of X̄0 and let r
denote effective resistance on G. Then one has an equality

(14.1) δ∗PB = 2O(P ) + π∗〈O(P ), ω〉+ ω −
∑

y∈V (G)

r(x, y) y
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of Q-line bundles on X̄. Here ω is the relative dualizing sheaf of π, and
x ∈ V (G) is the irreducible component of X̄0 where P specializes.

Proof. Let Z̄ = X̄ ×Ȳ X̄. The first projection π1 : Z̄ → X̄ comes

equipped with two natural sections, one called P̃ induced by P , and the
diagonal section Q. Let B̃ on X×Y J denote the pullback of B along the
second projection X ×Y J → J . Let δ : X → X ×Y J be the section of
the projection X×Y J → X obtained by taking the difference of the two
sections P̃ and Q. Then we have a canonical isometry δ∗PB

∼−→ δ∗B̃. The

existence of the Lear extension δ∗PB follows then from Proposition 14.3.

Consider the case that Ȳ = ∆. Note that P̃ and the restriction of Q to
Sm(π) pass through the smooth locus of π1. Formula (14.1) then follows
from the formula in Proposition 14.3 using a test curve argument over
Sm(π) ⊂ X̄. There are two things to note. First, let π2 : Z̄ → X̄ be the
second projection, and let ω̃ = π∗2ω denote the relative dualizing sheaf
of π1. Then over X̄ we have canonical isomorphisms of line bundles

〈O(P̃ ),O(Q)〉 ∼−→ O(P ) , 〈O(P̃ ), ω̃〉 ∼−→ π∗〈O(P ), ω〉 , 〈O(Q), ω̃〉 ∼−→ ω ,

where the Deligne pairings on the left hand sides are taken along the
nodal curve π1 : Z̄ → X̄. Second, note that labeled dual graphs are
functorial under the base change from X̄ → Ȳ to Z̄ → X̄, and next
under the base change along any holomorphic map f : ∆→ X̄. So if we
let f : ∆ → X̄ be a holomorphic map with f(0) a smooth point of an
irreducible component of X̄0 then the labeled dual graph at the origin
of the nodal curve f∗Z̄ → ∆ is canonically isomorphic to G. q.e.d.

15. Lear extension of a Deligne pairing

In this section we prove a technical result (Theorem 15.1) that allows
one, under quite general conditions, to prove the existence of, and to
calculate precisely, the Lear extension of a Deligne pairing of two C∞

hermitian line bundles. We will see that, in general, the statement “the
Lear extension of the Deligne pairing is equal to the Deligne pairing of
the Lear extensions” does not hold true. This non-functoriality is closely
related to the “height jumping” phenomenon near points of codimension
two as discussed in [19, Section 14]. Our result gives a quantitative
approach to the height jump.

Let D be the divisor of ∆n given by the equation t1 = 0. In this
section we consider nodal curves π : X̄ → ∆n, such that X̄ itself is
smooth, and such that π is smooth over Y = ∆n \ D. We write X =
π−1Y as usual. Let Σ be the singular locus of π. We have that X̄ \X =
π−1D is a normal crossings divisor of X̄, and (π−1D)sing = Σ. The map
Σ→ D induced by π is finite and unramified. Put Σ0 = Σ∩ X̄0; this is
a finite set.
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Let e ∈ X̄0 be a point. If e ∈ Σ0, then locally around e we can
choose coordinates (u, v, t2, . . . , tn) such that the projection π is given
by (u, v, t2, . . . , tn) 7→ (uv, t2, . . . , tn). On the other hand, if e /∈ Σ0, then
locally around e we can choose coordinates (z, t1, . . . , tn) such that the
projection π is given by (z, t1, . . . , tn) 7→ (t1, . . . , tn). For each ε ∈ R>0

and for each e ∈ X̄0 we let Ue,ε denote the following open neighborhood

of e in X̄. If e ∈ Σ0 we let Ue,ε be given by the conditions |u|, |v| < ε1/2,
|ti| < ε for i = 2, . . . , n. If e /∈ Σ0 we let Ue,ε be given by the conditions
|z| < ε, |ti| < ε for i = 1, . . . , n.

For ε ∈ R>0 small enough there exists a finite set U of mutually
disjoint open neighborhoods Ue,ε with centers e ∈ X̄0 such that (i) U
contains all Ue,ε with e ∈ Σ0, and (ii) the elements of U together cover
π−1∆n

ε up to a subset of Lebesgue measure zero. We call such a set U
a distinguished collection of open neighborhoods associated to ε.

Let L be a C∞ hermitian line bundle on X, and let ` be a non-zero
rational section of L. Assume that L has a Lear extension L̄ over X̄. Let
V denote the set of irreducible components of π−1D. There are well-
defined rational numbers a(x) for each x ∈ V such that for ` viewed as
a rational section of L̄, the equality

divX̄ ` = divX `+
∑
x∈V

a(x)x

holds in Pic(X̄)⊗Q. Following Proposition 12.1, this equality is to be
interpreted as saying that on a coordinate chart U of X̄ with center p in
the smooth locus of x ∈ V , adapted to π−1D and disjoint from divX `
the function log ‖`‖ − a(x) log |t1| on U \ π−1D extends continuously
over U .

Let ε ∈ R>0. Assume a distinguished collection U of open neigh-
borhoods associated to ε is given. Let U ⊂ X̄ denote the union of all
elements of U . Then we define a logarithmic current χ on U \ π−1D
associated to ` as follows. On an Ue,ε with e /∈ Σ0 we put χ =
log ‖`‖ − a(x) log |t1|, if x is the unique irreducible component of π−1D
such that e ∈ x. On an Ue,ε with e ∈ Σ0 we put χ = log ‖`‖ −
a(x) log |u| − a(y) log |v|, where x is the irreducible component of π−1D
corresponding to the branch through e ∈ Ue,ε given by the equation
u = 0, and where y is the irreducible component of π−1D correspond-
ing to the branch through e ∈ Ue,ε given by the equation v = 0. We note
that χ extends as a logarithmic current over U \ (π−1D)sing = U \ Σ,
with locus of indeterminacy given by divX `.

We say that a function γ : ∆n
ε \D → R has a log singularity along D

if there exists a ∈ Q such that the function γ− a log |t1| extends contin-
uously over ∆n

ε . In this case we call a the order of the log singularity of
γ along D.
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Theorem 15.1. Let π : X̄ → ∆n be a nodal curve with X̄ smooth,
such that π is smooth over Y = ∆n \ D, where D is the divisor of
∆n given by the equation t1 = 0. Let X = π−1Y . Let L,M be C∞

hermitian line bundles on X and let `,m be non-zero rational sections
of L,M such that divX ` and divX m are disjoint from the singular locus
Σ of π. Let ε ∈ R>0 and let U = {Ue,ε} be a distinguished collection
of open neighborhoods on π−1∆n

ε with centers e ∈ X̄0 associated to ε.
Let χ denote the current associated to ` as above. Assume the following
conditions hold:

(a) L,M have Lear extensions L̄, M̄ over X̄;
(b) for each fiber F of π−1D over D the following holds. The first

Chern current c1(M̄) of the continuous hermitian line bundle M̄
on Sm(π) restricts as a smooth (1, 1)-form on F \ F sing ⊂ Sm(π).
Moreover, the smooth (1, 1)-form c1(M̄)|F\F sing extends as a

smooth (1, 1)-form over the normalization of F ;
(c) the function

γ : ∆n
ε \D → R , t 7→

∑
e∈Σ0

∫
Xt∩Ue,ε

χ c1(M)

has a log singularity along D.

Then 〈L,M〉 has a Lear extension 〈L,M〉 over ∆n
ε . Assume that n = 1,

and let c ∈ Q be the order of γ along [0]. Then the equality

〈L,M〉 = 〈L̄, M̄〉+ c[0]

of Q-line bundles holds on ∆ε.

Proof. We note that up to adding a bounded continuous function on
∆n
ε , the integral in (c) remains unchanged upon replacing ` by f` or

m by gm, where f , g are nonzero rational functions on X̄. Using this
freedom to change `, m, and shrinking ∆ε if necessary we may assume,
in addition, that divX ` and divX m have disjoint support. Then `,m
give rise to a generating section 〈`,m〉 of 〈L,M〉, with log norm

log ‖〈`,m〉‖ = (log ‖m‖)[div `] +

∫
Xt

log ‖`‖c1(M)

by equation (9.1). By Proposition 12.1 our task is to show that the
restriction of log ‖〈`,m〉‖ to ∆n

ε \D has a log singularity along D. The
assumptions that L,M have Lear extensions over X̄ and that divX `
and divX m are disjoint and disjoint from Σ imply that (log ‖m‖)[div `]
has a log singularity along D. We are, thus, reduced to showing that
the function

∆n
ε \D → R , t 7→

∫
Xt

log ‖`‖ c1(M)
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has a log singularity along D. Let R denote the set of e ∈ X̄0 such that e
occurs as a center of one of the given distinguished open neighborhoods
associated to ε. Recall that Σ0 ⊂ R. As the elements of U together
cover π−1∆n

ε up to a subset of Lebesgue measure zero we can write∫
Xt

log ‖`‖ c1(M)

=
∑
e∈R

∫
Xt∩Ue,ε

χ c1(M) +
∑
e∈R

∫
Xt∩Ue,ε

(log ‖`‖ − χ) c1(M),
(15.1)

for each t ∈ ∆n
ε \ D. In the first sum on the right hand side, when

e /∈ Σ0, the integrand is a bounded continuous current on Ue,ε, and the
integral extends as a bounded continuous function over ∆n

ε . Hence for
our purposes we may replace the first sum by the restricted sum∑

e∈Σ0

∫
Xt∩Ue,ε

χ c1(M)

over centers e ∈ Σ0. This sum has a log singularity along D by assump-
tion (c).

As to the second sum on the right hand side, Picard–Lefschetz theory
implies (see, for example, [2, Lemma X.9.19]) that for ε sufficiently small
there exists a deformation retraction r : X̄ → X̄0 such that for each
t ∈ ∆n

ε \D and each p ∈ Σ0 the intersection r−1(p) ∩Xt is a smoothly
embedded circle of Xt. Let V denote the set of irreducible components
of π−1D. For each x ∈ V let Ux = r−1(x). Then for each x ∈ V we
have a real analytic submersion Ux → ∆n

ε \D. We can, thus, estimate∑
e∈R

∫
Xt∩Ue,ε

(log ‖`‖ − χ) c1(M) ∼
∑
x∈V

∫
Xt∩Ux

(log ‖`‖ − χ) c1(M),

for each t ∈ ∆n
ε \D. Viewing ` as a rational section of L̄ and writing

divX̄ ` = divX `+
∑
x∈V

a(x)x

we recall that for each x ∈ V the equality log ‖`‖ − χ = a(x) log |t1|
holds over Ux. This gives the equality∫

Xt∩Ux
(log ‖`‖ − χ) c1(M) = a(x) log |t1|

∫
Xt∩Ux

c1(M) .

By assumption (b) c1(M) extends as a smooth (1, 1)-form over the nor-
malization of each fiber of π−1D overD. This gives, putting Fx = x∩X̄0,
the estimate ∫

Xt∩Ux
c1(M) ∼ (Fx · M̄)
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as t→ 0. We obtain that∑
e∈R

∫
Xt∩Ue,ε

(log ‖`‖ − χ) c1(M) ∼ log |t1|
∑
x∈V

a(x)(Fx · M̄) ,

hence, the second sum on the right hand side in (15.1) has a log singu-
larity of order

∑
x∈V a(x)(Fx · M̄) along D. We conclude that

(15.2)∫
Xt

log ‖`‖c1(M) ∼
∑
e∈Σ0

∫
Xt∩Ue,ε

χ c1(M) +
∑
x∈V

a(x)(Fx · M̄) log |t1|

has a log singularity along D, and, hence, that the Lear extension of
〈L,M〉 exists.

In order to compute the Lear extension of 〈L,M〉 explicitly we make
the above argument more precise, under the additional assumption that
the base is a small disc ∆ε. We observe first of all that 〈L̄, M̄〉 is a line
bundle extending 〈L,M〉 over ∆. Following Proposition 12.1 we have

that 〈L,M〉 = 〈L̄, M̄〉 + c [0] if and only if log ‖s‖ ∼ c log |t| as t → 0
for a generating section s of 〈L̄, M̄〉. The latter condition is equivalent
with

log ‖〈`,m〉‖ ∼ (ord0〈`,m〉+ c) log |t|
as t→ 0. We will compute the value of c from this estimate. Let G be
the dual graph of X̄0. Viewing `,m as rational sections of L̄, M̄ we may
write

div ` = divX `+
∑

x∈V (G)

a(x)x , divm = divX m+
∑

y∈V (G)

b(y) y,

for suitable a(x), b(y) ∈ Q. Still assuming that the supports of divX `
and divX m do not meet, we find that the local intersection product
(div ` · divm)0 of div ` and divm above the origin satisfies

(div ` · divm)0 = divX m ·
∑

x∈V (G)

a(x)x+ divX ` ·
∑

y∈V (G)

b(y)y

+
∑

x,y∈V (G)

a(x)b(y)(x · y) .

We have

(divX m ·
∑

x∈V (G)

a(x)x) log |t| ∼ (log ‖`‖)[divm] ,

and similarly

(divX ` ·
∑

y∈V (G)

b(y) y) log |t| ∼ (log ‖m‖)[div `] .

As, moreover,

ord0〈`,m〉 = (div ` · divm)0
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we find that

ord0〈`,m〉 log |t| ∼ (log ‖`‖)[divm] + (log ‖m‖)[div `]

+
∑

x,y∈V (G)

a(x)b(y)(x · y) log |t| .

Recalling that

log ‖〈`,m〉‖ = (log ‖m‖)[div `] +

∫
Xt

log ‖`‖c1(M)

it follows that if 〈L,M〉 = 〈L̄, M̄〉+ c [0] then

c log |t| ∼ log ‖〈`,m〉‖ − ord0〈`,m〉 log |t|

∼
∫
Xt

log ‖`‖c1(M)− (log ‖`‖)[divm]−
∑

x,y∈V (G)

a(x)b(y)(x · y) log |t|

∼
∫
Xt

log ‖`‖c1(M)−
∑

x∈V (G)

a(x)(divX m · x) log |t|

−
∑

x,y∈V (G)

a(x)b(y)(x · y) log |t|

∼
∫
Xt

log ‖`‖c1(M)−
∑

x∈V (G)

a(x)(M̄ · x) log |t| .

From (15.2) we obtain that∫
Xt

log ‖`‖c1(M) ∼
∑
e∈Σ0

∫
Xt∩Ue,ε

χ c1(M) +
∑

x∈V (G)

a(x)(M̄ · x) log |t| .

We conclude that

c log |t| ∼
∑
e∈Σ0

∫
Xt∩Ue,ε

χ c1(M) .

This, finally, proves our formula for 〈L,M〉. q.e.d.

16. Main auxiliary result

Let Ȳ be a smooth complex algebraic variety, or a polydisc, and let D
be a normal crossings divisor on Ȳ . Write Y = Ȳ \D. Let π : X̄ → Ȳ be
a nodal curve, assumed to be smooth over Y ⊂ Ȳ . We write X = π−1Y
as usual. Let j : J → Y be the associated Jacobian fibration. Associated
to any section P : Ȳ → X̄, we have an Abel–Jacobi map δP : X →
J . The family J → Y carries a canonical Poincaré bundle B with a
canonical C∞ hermitian metric. Let ω denote the relative dualizing
sheaf of π. As before we put κ1 = 〈ω, ω〉 and ψ = P ∗ω = 〈O(P ), ω〉.
The purpose of this section is to prove the following main auxiliary
result.
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Theorem 16.1. The Lear extension of 〈δ∗PB, δ∗PB〉 over Ȳ exists. In
the case that Ȳ is the unit disc, assume that P passes through the smooth
locus of π, and let (Γ,K) be the polarized metrized graph associated to
the dual graph G of X̄0. Denote by gµ the admissible Green’s function
of (Γ,K), and by ε its epsilon-invariant. Then we have

〈δ∗PB, δ∗PB〉 = 4hψ + κ1 − (4h gµ(x, x) + ε) [0] ,

where x ∈ V (G) is the irreducible component of X̄0 to which P special-
izes.

We will derive Theorem 16.1 from Propositions 16.2 and 16.3 below.

Proposition 16.2. Let π : X̄ → ∆ be a nodal curve over the unit
disc, smooth over ∆∗, and assume that the total space X̄ is smooth.
Also assume that a section P of π is given, which then necessarily passes
through Sm(π). Then the Lear extension of δ∗PB exists over X̄. Let
(Γ,K) be the polarized metrized graph associated to the dual graph G of
X̄0. Denote by gµ the admissible Green’s function of (Γ,K), by ε the
epsilon-invariant of (Γ,K), and by η the eta-invariant of Γ as defined
in (6.6). The Deligne pairing of δ∗PB with itself satisfies

〈δ∗PB, δ∗PB〉 = 4hψ + κ1 − (4h gµ(x, x) + ε− η)[0],

where x ∈ V (G) is the irreducible component of X̄0 to which P special-
izes.

Proposition 16.3. Assume that π : X̄ → Ȳ = ∆n is a nodal curve,
with X̄ smooth, and with π smooth over Y = ∆∗×∆n−1. Assume a sec-
tion P of π is given, which then necessarily passes through the smooth
locus of π. Then the Lear extension of 〈δ∗PB, δ∗PB〉 over Ȳ exists. As-
sume that n = 1 and let η denote the eta-invariant (6.6) of the polarized
metrized graph associated to X̄0. Then the equality

(16.1) 〈δ∗PB, δ∗PB〉 = 〈δ∗PB, δ∗PB〉 − η [0]

holds.

Proof of Proposition 16.2. From Proposition 14.4 we obtain that δ∗PB
exists and that

(16.2) δ∗PB = 2O(P ) + π∗〈O(P ), ω〉+ ω −
∑

y∈V (G)

r(x, y)y .

As X̄ is smooth, all edges in G have weight one, and the (standard

matrix of the) discrete Laplacian L : RV (G) → RV (G) is equal to minus
the intersection matrix of X̄0. We then obtain by direct calculation
from (16.2) that
(16.3)

〈δ∗PB, δ∗PB〉 = 4hψ + κ1 − (2 r(x,K) +
∑

y,z∈V (G)

r(x, y)r(x, z)L(y, z))[0] .
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Denote by ψ : RV (G) → C(Γ)∗ the canonical map. Let ν denote the
discrete measure supported on V with mass ν(v) =

∑
e∈E(v) F (e) at the

vertex v. Then by (5.7) we have

ψ(
∑

z∈V (G)

r(x, z)L(y, z)) = 2 (µdis
can(y)− δx(y)) + ν(y) .

It follows that∑
y,z∈V (G)

r(x, y)r(x, z)L(y, z) =

∫
Γ
r(x, y)(2 (µdis

can(y)− δx(y)) + ν(y))

=

∫
Γ
r(x, y)(2µdis

can(y) + ν(y))

= 4 τ(Γ)− 4 τ cts(Γ, x) +

∫
Γ
r(x, y)ν(y) .

Invoking Proposition 6.4 we deduce from this that

(16.4)
∑

y,z∈V (G)

r(x, y)r(x, z)L(y, z) = 4 τ(Γ)− η(Γ) .

By Proposition 6.3 we have

(16.5) 2 r(x,K) + 4 τ(Γ) = 4h gµ(x, x) + ε(Γ,K) .

Combining (16.4) and (16.5) we find

2 r(x,K) +
∑

y,z∈V (G)

r(x, y)r(x, z)L(y, z) = 4h gµ(x, x) + ε(Γ,K)− η(Γ) .

We obtain the proposition by inserting this into (16.3). q.e.d.

Our proof of Proposition 16.3 consists in an application of Theorem
15.1 above, which gives a general criterion for the existence of a Lear
extension of a given Deligne pairing, as well as an explicit formula for it
once it exists. In particular, we will need to control the behavior of the
log norm (the archimedean height) of a section of δ∗PB on coordinate
neighborhoods Ue,ε as in the Theorem.

From the formula in Proposition 3.1 we see that it suffices to control
the maps Im Ω and Im δP on Ue,ε. We will use the general expansions
of the period and Abel–Jacobi map in local coordinates from Section
11. Expansions for Im Ω and Im δP follow readily, and we combine them
carefully to obtain suitable expansions for the log norm of a section of
δ∗PB.

A general approach to local expansions in several variables for the
archimedean height is explained in [21]. It is based on the several vari-
ables SL2-orbit Theorem from [26] [35]. We also mention [1] and [7],
where similarly the asymptotic behavior of the norm on the Poincaré
bundle is studied, over a several variables parameter space.
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Proof of Proposition 16.3. We write V = R1π∗ZX(1), viewed as a
variation of polarized Hodge structures over Y with polarization given
by the intersection product. Let h be the genus of the general fiber
of π and denote by Uh the Siegel upper half-space in degree h. Let
Ω: Y → Γ \ Uh with Γ ∼= Z be the associated period map obtained by
taking normalized period matrices on a symplectic frame of V .

Let Σ ⊂ X̄ be the singular locus of π and put Σ0 = Σ ∩ X̄0. By
[29, Proposition 9.1.11] we may choose a non-zero rational section s of
δ∗PB such that divX s is disjoint from Σ. We will apply Theorem 15.1
with both L, M equal to δ∗PB and with both `, m equal to s. Thus,
let ε ∈ R>0 and let U = {Ue,ε}e∈R be a distinguished collection of open
coordinate neighborhoods with centers e ∈ X̄0 associated to ε. By our
assumption that divX s is disjoint from Σ we can assume that the Ue,ε
are small enough so that s is generating over Ue,ε \ π−1D for all e ∈ Σ0.

Our task is to verify that for sufficiently small ε each of the three
conditions (a)–(c) of Theorem 15.1 is satisfied. As to condition (a), the
existence of a Lear extension δ∗PB of δ∗PB follows directly from Proposi-
tion 14.4.

As to condition (b), let R be the set of e ∈ X̄0 such that e occurs as a
center of one of the given open neighborhoods associated to ε. We first
work locally on a distinguished open neighborhood Ue,ε with a center
e ∈ R \ Σ0. Then over Ue,ε \ π−1D the Poincaré–Lelong formula gives
us

(16.6) c1(δ∗PB) =
1

πi
∂∂̄ log ‖s‖+ δdivX s .

In order to study c1(δ∗PB) and its behavior near π−1D we develop log ‖s‖
in the coordinates (z, t1, . . . , tn) of Ue,ε. Following Proposition 3.1, this
requires developing both (Im Ω)−1 and Im δP in these coordinates. We
will turn to this task first.

Proposition 11.2(a) yields an integer r ∈ Z≥0 as well as a matrix

A =

A′ 0

0 0

 ∈M(h× h,Z),

with A′ ∈M(r× r,Z) symmetric positive definite together with a holo-
morphic function ψ : ∆n

ε → S(h× h,C) such that

Ω(t) =
A

2πi
log t1 + ψ(t),

for all t ∈ ∆n
ε \D. This gives for the imaginary part of the period matrix

that

(16.7) − 2π Im Ω(t) = A log |t1|+B(t)
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away from D, where B = −2π Imψ. The function B(t) is bounded and
continuous on ∆n

ε . Writing

B =

B11 B12

B21 B22

 ,

with B11 ∈ M(r × r,R), the positive definiteness of Im Ω(t) for each
t ∈ ∆n

ε \D implies that the matrices B22(t) are invertible away from D.
Moreover, we have that the Schur complements

Q = A′ log |t1|+B11 −B12B
−1
22 B21

of B22 in −2π Im Ω are invertible away from D as well. The inverse of
A log |t1|+B = −2π Im Ω can be written as
(16.8)

(A log |t1|+B)−1 =

 Q−1 −Q−1B12B
−1
22

−B−1
22 B21Q

−1 B−1
22 +B−1

22 B21Q
−1B12B

−1
22

 .

Making ε smaller if necessary, we can write, using the boundedness of
B(t),

(16.9) Q−1 =
1

log |t1|
A′−1 +

1

(log |t1|)2
δ(t),

with δ : ∆n
ε → M(r × r,R) a bounded continuous function. Formulae

(16.8) and (16.9) taken together yield an expansion of (Im Ω)−1 that
will be sufficiently precise for our purposes.

We next turn our attention to Im δP . By Proposition 11.3(a) we have

δP = Ab
log t1
2πi

+ α,

for some holomorphic function α : Ue,ε → Ch and b ∈ Qh. It follows that

−2π Im δP = Ab log |t1|+ a

where a = −2π Imα.
By Proposition 3.1 we have

log ‖s‖ = log |f | − 2π(Im δP )t(Im Ω)−1(Im δP )

= log |f |+ (Ab log |t1|+ a)t(A log |t1|+B)−1(Ab log |t1|+ a),

(16.10)

for some meromorphic f on Ue,ε. In order to expand (16.10) we write

b =

(
b1
b2

)
, a =

(
a1

a2

)
,

with b1 ∈ Qr, b2 ∈ Qh−r, a1 : Ue,ε → Rr, a2 : Ue,ε → Rh−r. Using
equations (16.8) and (16.9) we find that there exist unique bounded
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continuous functions σ, γ : Ue,ε → R such that the equality

log ‖s‖ = log |f |+ bt1A
′b1 log |t1|+ σ +

1

log |t1|
γ

holds on Ue,ε. An explicit calculation yields that

(16.11) σ = at2B
−1
22 a2 + 2 at1b1 − 2 at2B12B

−1
22 b1 + bt1A

′δA′b1 .

For (1, 1)-forms ω, ω′ on Ue,ε\π−1D we write ω ∼π ω′ if, upon writing
in local coordinates (z, t1, . . . , tn)

ω − ω′ = g dz dz +

n∑
i=1

hidz dti +

n∑
i=1

ki dz dti +

n∑
i,j=1

lij dti dtj ,

we have g = 0. If ω ∼π ω′ then for all t ∈ ∆n
ε \D the restrictions of ω

and ω′ to Xt ∩ Ue,ε are equal.
Combining (16.6) and (16.10) and using that

1

πi
∂∂̄ log |f |+ δdivX s = 0 and

1

πi
∂∂̄ log |t1| = 0

on Ue,ε \ π−1D we find that on Ue,ε \ π−1D the equivalence

c1(δ∗PB) ∼π
1

πi
∂∂̄σ +

1

log |t1|
1

πi
∂∂̄γ

holds. As α is holomorphic, the entries of Imα and, hence, of a1, a2 are
annihilated by ∂∂̄. With this it follows from (16.11) that

∂∂̄ σ ∼π ∂∂̄ at2B−1
22 a2 .

We conclude that the equivalence

c1(δ∗PB) ∼π
1

πi
∂∂̄ at2B

−1
22 a2 +

1

log |t1|
1

πi
∂∂̄ γ

holds away from π−1D. Now the term (1/ log |t1|) 1
πi∂∂̄γ converges uni-

formly to zero as t1 → 0. Let p = (0, t2, . . . , tn) ∈ Dε = ∆n
ε ∩ D. We

find that for t→ p the family of smooth (1, 1)-forms c1(δ∗PB)t restricted
to Ue,ε \π−1D has a well-defined limit on X̄p ∩Ue,ε, namely the smooth
(1, 1)-form

1

πi
∂∂̄z a2(z, p)tB−1

22 (p)a2(z, p)

=
−1

πi
∂∂̄z 2π(Imα2)(z, p)(Imψ22)−1(p)(Imα2)(z, p) .

(16.12)

Let G be the dual graph of the fiber F = X̄p of π above p. Let
x ∈ V (G) be the unique irreducible component of X̄0 that intersects
Ue,ε non-trivially, and let q(x) be the genus of the normalization of
x. We claim that (16.12) coincides with the restriction to x ∩ Ue,ε of
2 q(x) times the Arakelov volume form (3.2) of the normalization of x.
Varying e through R \ Σ0 and varying p through Dε this claim then
shows, in particular, that condition (b) is verified: let F be any fiber of
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the projection π−1D → D. Then the first Chern current c1(δ∗PB) of δ∗PB
on Sm(π) restricts as a smooth (1, 1)-form on F \ F sing ⊂ Sm(π), and
the smooth (1, 1)-form c1(δ∗PB)|F\F sing extends as a smooth (1, 1)-form
over the normalization of F .

In order to prove our claim, we invoke Propositions 11.2(b) and
11.3(b). From Proposition 11.2(b) we obtain that ψ22(p) is the period

matrix of the Jacobian Jac( ˜̄Xp) of the normalization ˜̄Xp of X̄p. Proposi-

tion 11.3(b) then yields that α2(z, p) ∈ Ch−r is a lift of the Abel–Jacobi

image
∫ z
P in Jac( ˜̄Xp). Note that (16.12) remains unchanged upon re-

placing the section P by any other section. Hence, we may assume
without loss of generality that the section P passes through x. In this
case our claim follows immediately from Corollary 3.2.

Finally we consider condition (c) of Theorem 15.1. We turn our
attention to a coordinate neighborhood Ue,ε with center e ∈ Σ0. Our
task is then to show that the function

∆n
ε \D → R , t 7→

∫
Xt∩Ue,ε

χ c1(δ∗PB)

has a log singularity along D, where χ denotes the function log ‖s‖
without its linear part determined by the Lear extension of δ∗PB over
Ue,ε \ π−1D. We recall that ε is chosen small enough so that Ue,ε
is disjoint from divX s. Also we recall that on Ue,ε we have coordi-
nates (u, v, t2, . . . , tn), with equation uv = t1, and projection π given
by (u, v, t2, . . . , tn) 7→ (uv, t2, . . . , tn). We will need to develop log ‖s‖
on Ue,ε \ π−1D in these coordinates. As before, this requires developing
(Im Ω)−1 and Im δP in these coordinates. For (Im Ω)−1 there is noth-
ing new, and we can work with the conjunction of formulae (16.8) and
(16.9) above (where now t1 = uv).

The situation is different for Im δP . By Proposition 11.3(a) there
exist vectors b1, b2 ∈ Qh and a holomorphic map α : Ue,ε → Ch such
that

δP = Ab1
log u

2πi
+Ab2

log v

2πi
+ α

on Ue,ε \ π−1D. This gives the identity

−2π Im δP = Ab1 log |u|+Ab2 log |v|+ a,

with a = −2π Imα. Combining with Proposition 3.1 we find

log ‖s‖ = log |f |+ (Ab1 log |u|+Ab2 log |v|+ a)t (A log |t1|+B)−1 ·
· (Ab1 log |u|+Ab2 log |v|+ a)

on Ue,ε \ π−1D, where f is a meromorphic function on Ue,ε. As by

assumption divX s lies away from Ue,ε we can write log |f | = c1 log |u|+
c2 log |v| + log |ν| with c1, c2 ∈ Z and with ν a holomorphic unit on
Ue,ε. Using (16.8) and (16.9) and the relation log |v| = log |t1| − log |u|
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we find unique bounded continuous functions σ, γ1, γ2, γ3 on Ue,ε and
d1, d2, d3 ∈ Q such that

log ‖s‖ = d1 log |u|+ d2 log |v|+ d3
log |u| log |v|

log |t1|

+ log |ν|+ σ +
1

log |t1|
γ1 +

log |u|
log |t1|

γ2 +

(
log |u|
log |t1|

)2

γ3

(16.13)

on Ue,ε \ π−1D.
We put

(16.14) ρ(u, v) = d1 log |u|+ d2 log |v|+ d3
log |u| log |v|

log |t1|
,

and
(16.15)

τ(u, v, t2, . . . , tn) = log |ν|+ σ +
1

log |t1|
γ1 +

log |u|
log |t1|

γ2 +

(
log |u|
log |t1|

)2

γ3 .

We note that, away from π−1D,

∂∂̄

πi
ρ(u, v) =

∂∂̄

πi
d3

log |u|(log |t1| − log |u|)
log |t1|

= −∂∂̄
πi

d3
(log |u|)2

log |t1|

∼π −d3
1

log |t1|
1

2πi

1

|u|2
dudu .

(16.16)

In polar coordinates u = reiθ this reads

(16.17)
∂∂̄

πi
ρ(u, v) ∼π

2d3

log |t1|
1

2π
dθ d log r .

We find

(16.18) c1(δ∗PB) =
1

πi
∂∂̄ log ‖s‖ ∼π

2d3

log |t1|
1

2π
dθ d log r +

1

πi
∂∂̄τ

on Ue,ε \ π−1D.
Further we note that

χ = d3
log |u| log |v|

log |t1|
+ τ(u, v, t2, . . . , tn) .

Our task is, thus, to show that∫
Xt∩Ue,ε

(
d3

log |u| log |v|
log |t1|

+ τ

)(
2d3

log |t1|
1

2π
dθ d log r +

1

πi
∂∂̄τ

)
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has a log singularity along D. First we note that τ extends as a bounded
continuous function over Ue,ε \ {(0, 0)}. Moreover, if we write

bi =

(
bi1
bi2

)
, a =

(
a1

a2

)
,

for i = 1, 2, with bi1 ∈ Qr, bi2 ∈ Qh−r, a1 : Ue,ε → Rr, a2 : Ue,ε → Rh−r,
then explicitly we have

σ = at2B
−1
22 a2 + 2at1b21 − 2at2B12B

−1
22 b21 + bt21A

′δA′b21 .

Similarly to the case e /∈ Σ0 considered above, we have

∂∂̄ σ ∼π ∂∂̄ at2B−1
22 a2 .

We then obtain from (16.15) that, up to the addition of terms that
converge uniformly to zero as t1 → 0, the form 1

πi∂∂̄τ extends as a
bounded continuous current over Ue,ε. A term-by-term analysis using
(16.15) reveals that each of the three fiber integrals∫

Xt∩Ue,ε
d3

log |u| log |v|
log |t1|

1

πi
∂∂̄τ ,

∫
Xt∩Ue,ε

τ
2d3

log |t1|
1

2π
dθ d log r ,

∫
Xt∩Ue,ε

τ
1

πi
∂∂̄τ

extends as a continuous function over ∆n
ε .

We are, thus, left to show that∫
Xt∩Ue,ε

d3
log |u| log |v|

log |t1|
2d3

log |t1|
1

2π
dθ d log r

acquires a log singularity along D. Note that the fiber integral, viewed
as a function on ∆n

ε \D, depends only on the t1-coordinate, so that we
can proceed directly to the case where n = 1, where we write t1 = t.
The whole proposition is proved once we have shown that with n = 1,
the asymptotic estimate

(16.19)

∫
Xt∩Ue,ε

d3
log |u| log |v|

log |t1|
2d3

log |t1|
1

2π
dθ d log r ∼ −η(Γ, e) log |t|

holds as t → 0. Indeed, then condition (c) from Theorem 15.1 is veri-
fied, and, moreover, we find that the order of the log singularity of the
function ∑

e∈Σ0

∫
Xt∩Ue,ε

χ c1(δ∗PB)

along the origin of ∆ε is equal to −
∑

e∈Σ0
η(Γ, e) = −η(Γ). This gives

formula (16.1) by the second part of Theorem 15.1.
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Assume from now on, therefore, that n = 1. We explicitly compute

∫
Xt∩Ue,ε

log |u| log |v|
log |t|

2

log |t|
1

2π
dθ d log r

=
2

(log |t|)2

∫ r=ε1/2

r=|t|ε−1/2

log r(log |t| − log r) d log r

= 2

(
− 1

12

(log ε)3

(log |t|)2
+

1

4

(log ε)2

log |t|
− 1

6
log |t|

)
∼ −1

3
log |t| .

(16.20)

Let G be the labeled dual graph of the central fiber X̄0 of X̄ → ∆ε (cf.
Section 7). Recall that we are assuming that X̄ is smooth; this implies
that each edge e ∈ E(G) has label t, and, hence, the corresponding edge
of Γ is isometric to the unit interval. In particular we find that η(Γ, e) =
1
3F (e)2. By (16.20) we find (16.19) once we prove that d2

3 = F (e)2. This
will be our objective in the remainder of the proof.

Let Z̄ = X̄ ×∆ε X̄. The first projection π1 : Z̄ → X̄ has two tauto-

logical sections, one called P̃ induced by the given section P , and the
diagonal section Q. The section P̃ induced by P passes through the
smooth locus of π1. However, for each double point e ∈ Σ0 the image
(e, e) under the section Q lies in the singular locus of π1. This prevents
us from an immediate application of Proposition 14.3, and we need a
modification of Z̄ to separate the two sections.

Knudsen’s specialization theorem [27, Theorem 2.4] gives a modifi-
cation β : Z̄ ′ → Z̄ which is a contraction, and, moreover, admits liftings
P̃ ′, Q′ of the sections P̃ , Q such that P̃ ′ and Q′ are disjoint, and pass
through the smooth locus of the composed map ξ = π1β. Let e ∈ Σ0.
We will need to know the precise structure of the labeled dual graph of
the fiber of ξ at e. Let Ge be the labeled dual graph of the fiber of π1

above e. Note that Ge has the same underlying graph as G, but has the
label t on each edge of G replaced by the monomial uv. We let w, z be
the endpoints of the tautological edge e of Ge; say that the branch of
X̄0 through e given by u = 0 corresponds to the endpoint w of e, and
the branch given by v = 0 corresponds to the endpoint z of e.

Let G̃e denote the labeled dual graph of ξ over e. The proof of
Theorem 2.4 in [27] shows that β only modifies Z̄ over points where Q
meets the singular locus of π1 (called “Case I” in [27]) or over points

where P̃ and Q meet (“Case II”). In the fiber of Z̄ over e “Case I”
applies, the modified point being (e, e). The explicit calculation in “Case
I” of the proof of Theorem 2.4 in [27] shows then that the inverse image
of (e, e) under β is a rational component y of the fiber of ξ above e,

and that G̃e is obtained from Ge by replacing the tautological edge e
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(carrying label uv) of Ge by two edges, one, which we call ew, with label
u attached to it, and with endpoints w and y; and one, which we call
ez, with label v attached to it, and with endpoints y and z.

In graphical terms, in order to obtain G̃e from Ge one has to replace
the piece

w uv
e

z

uv

uv

uv

uv

of Ge by the piece

w u vy

ew ez
z

uv

uv

uv

uv

and leave everything else untouched. Note that the section Q′ of ξ
specializes onto the new vertex y. Let x be the vertex of G̃e such that
the section P̃ ′ of ξ specializes onto x.

Let a, b be two formal variables and let G̃a,be be the labeled graph
obtained from G̃e by replacing the label u by a, the label v by b, and
each label uv by a + b. Let r(x, y)(a, b) ∈ Q(a, b) be the effective re-

sistance between the vertices x and y on G̃a,be . Then r(x, y)(a, b) is a
rational homogeneous function of weight one in a, b. Let r(p, q) ∈ Q
denote the effective resistance between vertices p, q of G. Then we have
that r(x, y)(a, 0) = r(x, z)a and r(x, y)(0, b) = r(x,w)b. Imitating the
derivation of formula (5.5) we find the explicit formula

(16.21) r(x, y)(a, b) = r(x, z)a+ r(x,w)b+ F (e)
ab

a+ b
,

for r(x, y)(a, b). From the construction of β : Z̄ ′ → Z̄ we deduce that

δ∗PB coincides with the restriction to X of the line bundle 〈O(P̃ ′ −
Q′),O(P̃ ′−Q′)〉⊗−1 on X̄. As we are only interested in d3, from (16.13)
it follows that we may as well replace s by another local section of δ∗PB.
Using again [29, Proposition 9.1.11] we change the rational section s in
such a way that s, when seen as a rational section of the line bundle
〈O(P̃ ′ −Q′),O(P̃ ′ −Q′)〉⊗−1 on X̄, is generating on Ue,ε.

Recall that on Ue,ε \π−1D, the function τ(u, v, t2, . . . , tn) is bounded.
From (16.13) we then obtain that ρ(u, v) = d1 log |u| + d2 log |v| +

d3
log |u| log |v|

log |t| can be characterized as the unique rational linear combina-

tion of log |u|, log |v| and log |u| log |v|/ log |t| such that on Ue,ε \ π−1D
an equality

(16.22) log ‖s‖(u, v) = ρ(u, v) + bounded function
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holds. For each pair of positive integers m,n, let f̄m,n : ∆ε → Ue,ε ⊂ X̄
be a test curve given by sending q 7→ (qm, qn). We see that for each
m,n the estimates(

f̄∗m,n log ‖s‖
)

(q) = ρ(qm, qn) +O(1)

= (d1m+ d2n+ d3
mn

m+ n
) log |q|+O(1)

hold. On the other hand, combining Propositions 12.1 and 14.3 it is not
difficult to see that(

f̄∗m,n log ‖s‖
)

(q) = −r(x, y)(m,n) log |q|+O(1)

holds. We deduce that for each pair of positive integers m,n the identity

d1m+ d2n+ d3
mn

m+ n
= −r(x, y)(m,n)

holds. Combining with (16.21) we obtain d3 = −F (e), which is what
we wanted. q.e.d.

Remark 16.4. Let π : X̄ → ∆ with X̄ smooth be a nodal curve
over the unit disc, assumed to be smooth over ∆∗. Write X = π−1∆∗.
The above proof shows that the family of Arakelov measures µAr,t on
the fibers Xt has a natural limit measure µ0 on the special fiber X̄0.

The measure µ0 can be described as follows: let ν : ˜̄X0 → X̄0 be the

normalization of X̄0, and let M be the measure on ˜̄X0 which on a
connected component x is q(x) times the Arakelov volume form on x if
x has positive geometric genus q(x), and the zero measure if x has genus
zero. For each node e of X̄0 let F (e) be the associated Foster coefficient.
From (16.18) and the identity d3 = −F (e) we deduce that the area of
the “collar” around the node e with respect to c1(δ∗PB) tends to 2F (e)
as t→ 0. We find that

µ0 =
1

h

ν∗M +
∑

e∈E(G)

F (e) δe

 .

Let G be the dual graph of X̄0 and (Γ,K) the associated polarized
metrized graph. Then we note that to µ0 naturally corresponds the
measure

1

h

 ∑
x∈V (G)

q(x) δx +
∑

e∈E(G)

F (e)
dy(e)

`(e)


on Γ. Not surprisingly, this is precisely Zhang’s admissible measure µ
as defined in (6.1). Indeed, note that K(x) = v(x) − 2 + 2 q(x) for all
x ∈ V (G).

Proof of Theorem 16.1. We first show that 〈δ∗PB, δ∗PB〉 has a Lear ex-
tension over Ȳ . It suffices to consider the case that Ȳ = ∆n and D ⊂ Ȳ
is the smooth irreducible divisor given by t1 = 0. The truth value of
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the statement is unaffected by modifications of the total space X̄ in the
inverse image of D. By [24, Lemma 3.2] there exists a projective modi-
fication X̄ ′ → X̄ such that the composed morphism X̄ ′ → Ȳ is a nodal
curve, smooth over Ȳ \D, and with Sing(X̄ ′) either empty or of codi-
mension at least three in X̄ ′. The codimension three condition implies
that D is reducible (cf. Remark 3.5 of [24]), so, as D is irreducible, we
conclude that we can reduce to the case that X̄ is smooth. Then the
statement follows from Proposition 16.3.

We turn next to the proof of the formula

〈δ∗PB, δ∗PB〉 = 4hψ + κ1 − (4hgµ(x, x) + ε) [0]

in the case that Ȳ is the unit disc, and P passes through Sm(π). Also
in this case we can reduce to the case that X̄ is smooth. Indeed, upon

passing to the minimal desingularization ˜̄X → X̄ of X̄, the left hand
side of the equality does not change, and neither does the right hand
side: the line bundles ψ and κ1 remain unchanged, and by Proposition
7.1 the expression 4hgµ(x, x)+ε remains unchanged as well. In the case
that X̄ is itself smooth, the claimed formula follows upon combining the
formulae in Propositions 16.2 and 16.3. q.e.d.

17. Proof of Theorems 1.3 and 1.4

We can now give the proof of our main results, Theorems 1.3 and
1.4. Localizing in the analytic topology we may assume from the outset
that two sections P , Q of X̄ → Ȳ are given. Proposition 14.2 and
Theorem 16.1 imply that the Lear extensions of κ∗B and of 〈δ∗PB, δ∗PB〉
exist. From Proposition 13.5 we then deduce that the Lear extension of
〈O(P )Ar, ωAr〉 exists, and that

(17.1) 4h2〈O(P )Ar, ωAr〉 = 〈δ∗PB, δ∗PB〉+ κ∗B .
Invoking Proposition 13.4 we next obtain that the Lear extension of
〈ωAr, ωAr〉 exists, and that

(17.2) 〈ωAr, ωAr〉 = 〈δ∗PB, δ∗PB〉 − 4h〈O(P )Ar, ωAr〉 .
Proposition 14.3 states that the Lear extension of δ∗B exists. Com-
bining this with Proposition 13.2 and the existence of 〈O(P )Ar, ωAr〉
and 〈O(Q)Ar, ωAr〉 established above gives that the Lear extension of
〈O(P )Ar,O(Q)Ar〉 exists. More precisely we find the equality

(17.3) 2〈O(P )Ar,O(Q)Ar〉 = δ∗B − 〈O(P )Ar, ωAr〉 − 〈O(Q)Ar, ωAr〉
on Ȳ . This settles Theorem 1.3.

Specializing to the case when the base is the unit disc ∆, we have
the following more precise formulae. From now on we assume that the
sections P,Q pass through Sm(π). Let G be the dual graph of X̄0, and
let (Γ,K) be the associated polarized metrized graph. Let gµ be the
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admissible Green’s function of (Γ,K) and let ḡ be the Green’s function
on G introduced in Section 4 using the Moore-Penrose pseudo-inverse
of the discrete Laplacian on G. Then for any two divisors E ,F of degree
zero on G we obtain from (4.1) and (6.3) the identities

(17.4) ḡ(E ,F) = −1

2
r(E ,F) = gµ(E ,F) .

Let ε be the epsilon-invariant of G. Let x, y ∈ V (G) be the components
of X̄0 to which P,Q specialize. From Proposition 14.2 combined with
(17.4) we obtain that

(17.5) κ∗B = 4h(h− 1)ψ − κ1 − gµ((2h− 2)x−K, (2h− 2)x−K)[0] ,

and from Theorem 16.1 we recall that

(17.6) 〈δ∗PB, δ∗PB〉 = 4hψ + κ1 − (4h gµ(x, x) + ε) [0] .

Together with (17.1) we then find

4h2〈O(P )Ar, ωAr〉 = 〈δ∗PB, δ∗PB〉+ κ∗B
= 4h2 ψ − (4hgµ(x, x) + ε+ gµ((2h− 2)x−K, (2h− 2)x−K))[0] .

(17.7)

From Proposition 6.2 we recall that

ε = 4(h− 1)(gµ(x, x) + gµ(K,x))− gµ(K,K) .

We obtain from this that

4h gµ(x, x) + ε+ gµ((2h− 2)x−K, (2h− 2)x−K) = 4h2 gµ(x, x) .

Combining with (17.7) we find that

(17.8) 〈O(P )Ar, ωAr〉 = ψ − gµ(x, x)[0] ,

which settles part (b) of Theorem 1.4. Combining (17.2), (17.6) and
(17.8) we then obtain

〈ωAr, ωAr〉 = κ1 − ε[0],

which settles part (a). Write ψ1 = 〈O(P ), ω〉 and ψ2 = 〈O(Q), ω〉. From
Proposition 14.3 we obtain that

(17.9) δ∗B = 2〈O(P ),O(Q)〉+ ψ1 + ψ2 − gµ(x− y, x− y)[0] .

Combining (17.3), (17.8) and (17.9) gives that

〈O(P )Ar,O(Q)Ar〉 = 〈O(P ),O(Q)〉+ gµ(x, y)[0] ,

which settles part (c). This finishes the proof of Theorem 1.4.
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18. Zhang’s admissible Deligne pairing

The identities in Theorem 1.4 can be conveniently rephrased in terms
of Zhang’s admissible Deligne pairing from [44]. The purpose of this
section is to explain this. Let π : X̄ → ∆ be a nodal curve of positive
genus, such that π is smooth over ∆∗. Let ω be the relative dualizing
sheaf of π. Let G be the dual graph of the special fiber X̄0, and let Γ be
the associated metrized graph, with vertex set V = V (G). We let C(Γ)
and ∆ be the function space and Laplacian on Γ as in Section 5.

A compactified divisor on Γ is to be any element of RV ⊕C(Γ). If D+f
and E + g are compactified divisors on Γ, one defines their intersection
product to be the real number

(D + f,E + g) = g(D) + f(E)−
∫

Γ
g∆ f .

The intersection product on RV ⊕C(Γ) is symmetric and bilinear. The
curvature form of a compactified divisor D + f is to be the current
δD −∆f in C(Γ)∗.

Let P (X̄) be the (additively written) group of line bundles on X̄.
We recall from Section 14 that we have a canonical specialization map
R : P (X̄) → RV . We put K = R(ω). We note that degK = 2h − 2,
where h > 0 is the genus of π. An element of the group P (X̄) ⊕ C(Γ)
is called a compactified line bundle on X̄. The curvature form of a
compactified line bundle L+f is by definition the curvature form of the
compactified divisor R(L) + f . For compactified line bundles L+ f and
M + g we let 〈L+ f,M + g〉 be the line bundle on ∆ given by

〈L+ f,M + g〉 = 〈L,M〉+ (R(L) + f,R(M) + g)[0] ,

where 〈L,M〉 is the usual Deligne pairing of the ordinary line bundles
L and M .

Let gµ be Zhang’s admissible Green’s function on (Γ,K). An admis-
sible line bundle on X̄ is by definition a compactified line bundle on
X̄ of the shape L + c + gµ(R(L), -) for some c ∈ R and L ∈ P (X̄).
The terminology “admissible” is explained by the fact that among the
compactified line bundles, the admissible ones are precisely those whose
curvature form is a multiple of Zhang’s admissible measure µ (cf. Sec-
tion 3).

Let P : ∆→ X̄ be a section of π with image contained in the smooth
locus of π. Then one has the special admissible line bundles

O(P )a = O(P ) + gµ(R(P ), -),

and

ωa = ω + c(Γ,K) + gµ(K, -) = ω − gµ(-, -)

on X̄, where c(Γ,K) ∈ R is as in Proposition 6.1.
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It follows easily from the above that for each pair of sections P,Q of
X̄ → ∆ with image contained in Sm(π) we have

(18.1) 〈O(P )a,O(Q)a〉 = 〈O(P ),O(Q)〉+ gµ(x, y)[0] ,

where x = R(P ), y = R(Q). Let ε denote the epsilon-invariant of
(G,K). By [44, Theorem 4.2] resp. [44, Theorem 4.4] there exist canon-
ical isomorphisms

(18.2) 〈O(P )a, ωa(Pa)〉
∼−→ O and 〈ωa, ωa〉

∼−→ 〈ω, ω〉 − ε[0]

of line bundles on ∆.
The above set-up for a generically smooth nodal curve over a disc ex-

tends in a straightforward manner to the setting of a generically smooth
nodal curve X̄ → Ȳ over a smooth complex algebraic curve Ȳ . We
omit the details. In this global setting, one readily sees, using the lo-
cal equalities (18.1) and (18.2), that Theorem 1.4 implies the following
result phrased in terms of the admissible Deligne pairing.

Theorem 18.1. Let π : X̄ → Ȳ be a nodal curve of positive genus
over a complex algebraic curve Ȳ . Assume that π is smooth over the
dense open subset Y ⊂ Ȳ . Write X = π−1Y and denote by ωAr the
line bundle ω on X equipped with the Arakelov metric. Let ωa denote
Zhang’s admissible relative dualizing sheaf of π. Then the equality

〈ωAr, ωAr〉 = 〈ωa, ωa〉
holds. Suppose that π has a section P , resp. two sections P,Q, with
image contained in the smooth locus Sm(π). Denote by O(P )Ar and
O(Q)Ar the line bundles O(P ) and O(Q) on X equipped with the
Arakelov metric. Then we further have the equalities

〈O(P )Ar, ωAr〉 = 〈O(P )a, ωa〉,
and

〈O(P )Ar,O(Q)Ar〉 = 〈O(P )a,O(Q)a〉 .
Here O(P )a and O(Q)a denote the canonical admissible line bundles on
X̄ associated to the sections P resp. Q.

19. Proofs of Theorems 1.1 and 1.2

In this final section we derive Theorems 1.1 and 1.2 from Theorem 1.4.

Proof of Theorem 1.1. Let (ω1, . . . , ωh)t be the family of normalized
bases of the Hodge bundle π∗ωX/∆∗ determined by some symplectic

frame of R1π∗ZX . Write σ = ω1 ∧ . . . ∧ ωh and let λH denote the
determinant of π∗ωX/∆∗ over ∆∗ equipped with the norm derived from

the L2-metric (3.1) on π∗ωX/∆∗ . By equation (3.10) we have

log ‖σ‖H =
1

2
log det Im Ω(t),
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for all t ∈ ∆∗. This equality together with the growth rate

det Im Ω(t) ∼ −c log |t|

as t → 0 that follows from the Nilpotent Orbit Theorem (cf. Proposi-
tion 11.2) shows that σ extends as a generating section of the canonical
Mumford extension [34] of λH over ∆. Following [14, p. 225] the Mum-
ford extension of λH is equal to λ1 = detπ∗ω, and so the section σ
extends as a generating section of λ1 over ∆. Now the Mumford iso-
morphism (8.4) gives a globally trivializing section µ of the hermitian
line bundle λ⊗12

H ⊗ 〈ωAr, ωAr〉⊗−1 over ∆∗. We recall that by definition
the Faltings delta-invariant satisfies

δF = − log ‖µ‖ .

Let τ be a local generating section of κ1 = 〈ω, ω〉 around 0. Then from
part (a) in Theorem 1.4 combined with Proposition 12.1 we obtain the
asymptotics

log ‖τ‖ ∼ −ε log |t|
as t→ 0. Let δ be the volume of the weighted dual graph of X̄0. We are
assuming X̄ → ∆ to be semistable, and, hence, from (8.4) we obtain
that the section µ extends as a global trivializing section of the line
bundle 12λ1−κ1− δ[0] over ∆. We derive from this that t−δµ is a local
generating section of 12λ1 − κ1. Hence, t−δµ differs by a holomorphic
unit from the local generating section σ⊗12⊗ τ⊗−1 of 12λ1−κ1. We see
that

δ log |t|+ δF = − log ‖t−δµ‖ ∼ −12 log ‖σ‖H + log ‖τ‖
∼ −6 log det Im Ω(t)− ε log |t| ,

and Theorem 1.1 follows. q.e.d.

Proof of Theorem 1.2. Part (b) of Theorem 1.4 states that

〈O(P )Ar, ωAr〉 = ψ − gµ(x, x)[0] .

By assumption we have that P ∗dz is a local generating section of the
line bundle ψ = P ∗ω = 〈O(P ), ω〉 around the origin. We recall that we

have a canonical isometry P ∗ωAr
∼−→ 〈O(P )Ar, ωAr〉 over ∆∗. Applying

Proposition 12.1 we then find the asymptotics

log ‖P ∗dz‖Ar,t ∼ −gµ(x, x) log |t|

as t → 0. This gives part (a) of Theorem 1.2. Part (c) of Theorem 1.4
states that

〈O(P )Ar,O(Q)Ar〉 = 〈O(P ),O(Q)〉+ gµ(x, y)[0] .

As by assumption P,Q have empty intersection above the origin, we
have that 〈1P , 1Q〉 is a local generating section of the Deligne pairing
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〈O(P ),O(Q)〉 around the origin. Applying again Proposition 12.1 we
obtain the asymptotics

gAr,t(P,Q) = log ‖〈1P , 1Q〉‖t ∼ gµ(x, y) log |t|

as t→ 0, and this yields part (b) of Theorem 1.2. q.e.d.
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