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EINSTEIN SOLVMANIFOLDS HAVE MAXIMAL
SYMMETRY

Carolyn S. Gordon1 & Michael R. Jablonski2

Abstract

All known examples of homogeneous Einstein metrics of nega-
tive Ricci curvature can be realized as left-invariant Riemannian
metrics on solvable Lie groups. After defining a notion of maxi-
mal symmetry among left-invariant Riemannian metrics on a Lie
group, we prove that any left-invariant Einstein metric of negative
Ricci curvature on a solvable Lie group is maximally symmetric.
This theorem is motivated both by the Alekseevskii Conjecture
and by the question of stability of Einstein metrics under the Ricci
flow. We also address questions of existence of maximally sym-
metric left-invariant Riemannian metrics more generally.

Einstein metrics have long held a distinguished place among Rie-
mannian metrics. Even among homogeneous spaces, however, there is
no classification of Einstein spaces despite decades of study. (An ex-
ception is the case of homogeneous spaces of Ricci curvature zero; such
homogeneous spaces are not only Ricci flat but actually flat.) In the case
of homogeneous Einstein spaces of positive Ricci curvature, there are so
many examples that no classification is expected to exist. For example,
every compact semisimple Lie group of dimension 6 or greater admits
at least two such Einstein metrics, and many admit more than this.
However, in the setting of homogeneous Einstein spaces with negative
Ricci curvature, there is considerably more structural rigidity (see, for
example, [Heb98, LL14, JP14]), and there is a reasonable hope for an
eventual classification. Presently, all known examples of homogeneous
Einstein spaces of negative Ricci curvature are isometric to left-invariant
metrics on solvable Lie groups, and there is mounting evidence that Ein-
stein metrics on solvable Lie groups exhaust the class of homogeneous
Einstein spaces with negative Ricci curvature.
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In this article, we study left-invariant Einstein metrics with negative
Ricci curvature on solvable Lie groups and show that they satisfy a new,
rather strong, geometric property:

Theorem 0.1 (Main Theorem). If a solvable Lie group S admits a
left-invariant Einstein metric g of negative Ricci curvature, then g is
maximally symmetric.

The notion of maximal symmetry is defined in Definition 0.2 below.
The Main Theorem is motivated both by an interest in understanding

maximally symmetric Riemannian metrics and by questions concerning
homogeneous Einstein metrics and Ricci flow. We will address each of
these motivations in this introductory section.

Maximally symmetric Riemannian metrics. Given the implica-
tions of geometry on the topology of a Riemannian manifold, it is nat-
ural to ask whether a given manifold admits a distinguished metric and
to address the geometry of any such metric. As a first attempt at seek-
ing a distinguished metric, let’s say that a Riemannian metric g on a
manifold M has maximal symmetry if for any other Riemannian metric
h on M we have

Isom(M,h) ⊂ Isom(M,ψ∗g),

for some diffeomorphism ψ ∈ Diff(M). Here Isom(M,h) is the full
isometry group of (M,h). With this notion, the maximally symmetric
metrics on the 2-sphere are, as expected, precisely the constant curva-
ture metrics. This fact may be deduced from the works of H. Poincaré
and L.E.J. Brouwer; however, we provide a brief justification here using
modern techniques. Applying the (normalized) Ricci flow to any metric
on S2, one has that the Ricci flow converges to a metric of constant
curvature [Cho91]. Furthermore, the Ricci flow preserves isometries
[CZ06] and so the isometry group of the initial metric acts isometri-
cally on the limit metric. As the round metric is unique up to scaling
and diffeomorphism, we conclude that it has maximal symmetry.

Interestingly, this result does not hold for all spheres as there exist
finite groups acting on the sphere Sn which cannot be realized as sub-
groups of O(n + 1). Thus, higher-dimensional spheres do not admit
maximally symmetry metrics in this sense. This failure suggests that
the notion of maximal symmetry above is too demanding; perhaps one
needs to restrict attention to a subclass of all the Riemannian metrics,
for example.

In the setting of Lie groups, we define a notion of maximal symmetry
among left-invariant metrics:

Definition 0.2. A left-invariant Riemannian metric g on a Lie group
G will be said to be maximally symmetric if for any other left-invariant
Riemannian metric h on M we have
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Isom(M,h) ⊂ Isom(M,ψ∗g),

for some ψ ∈ Aut(G).

This definition appears to be more robust. While it is still the case
that not every Lie group admits a maximally symmetric left-invariant
Riemannian metric, large classes of Lie groups do. Two questions nat-
urally arise: (i) Which Lie groups admit maximally symmetric left-
invariant metrics? (ii) Are left-invariant metrics that are geometrically
distinguished, e.g., those with special curvature properties, maximally
symmetric?

We briefly address question (i) in Section 1. The primary focus of
this paper is the Main Theorem above, which is an instance of question
(ii).

Einstein motivations. The Main Theorem is partially motivated by
the well-known Alekseevskii Conjecture and stability questions for the
Ricci flow around Einstein metrics.

The Alekseevskii Conjecture asserts that every connected homoge-
neous Einstein manifold of negative Ricci curvature is diffeomorphic
to Rn. An only slightly stronger version of the conjecture is that every
such Einstein manifold is a solvmanifold, i.e., it is isometric to a solvable
Lie group with a left-invariant Riemannian metric. A major hurdle to
proving the conjecture is to show that if a homogeneous space G/K of a
semisimple Lie group G admits a left-invariant Einstein metric of nega-
tive Ricci curvature, then K must be a maximal compact subgroup of G
(in which case G/K is a symmetric space and is isometric to a solvmani-
fold, since an Iwasawa subgroup of G acts simply transitively). Recently,
P. Petersen and the second author [JP14, Corollary 1.3] showed that if
G is semisimple of noncompact type and G/K admits a left-invariant
Einstein metric g, then the identity component Isom0(G/K, g) of the
full isometry group consists only of G itself. Thus, any counterexample
to the Alekseevskii Conjecture of this form would in a sense be mini-
mally symmetric. In particular, it would have minimal possible isotropy
algebra among all possible G-invariant metrics on G/K. In contrast, the
Main Theorem asserts that Einstein metrics of negative Ricci curvature
on solvable Lie groups have maximal possible isotropy.

A second motivation for the Main Theorem above comes from study-
ing the Ricci flow. It is an open question whether Einstein metrics on
solvable Lie groups are stable under the Ricci flow [Arr13, JPW16,
WW16]. If such spaces were stable, then one would be able to deduce
that (locally) their isometry groups are maximal.

Outline of the proof of Main Theorem 0.1. We begin with an
arbitrary left-invariant metric h on S and let G be the full isometry
group and L the isotropy subgroup. The theorem is equivalent to the
statement that G/L admits a G-invariant Einstein metric, which is in
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turn equivalent to the condition that some simply transitive solvable
subgroup of G admits a left-invariant Einstein metric whose isometry
group includes G.

At the outset, we replace the original solvable group by one (that we
will continue to denote by S in this introductory outline) in so-called
“standard position” in G. Using results of [Heb98, Lau10] concerning
the structure of Einstein solvmanifolds along with results of [GW88]
concerning isometry groups of solvmanifolds, we show that S can be
written as a semi-direct product S = S1 n S2, where S1 is an Iwasawa
subgroup of a semisimple Levi factor of G and S2 = S ∩Rad(G). More-
over, this new solvable group S admits an Einstein metric isometric to
the one on the original solvable group.

The key step in proving that this Einstein metric is G-invariant is to
prove the following lemma, which is perhaps of interest in its own right:

Lemma 0.3. Suppose that S is a semi-direct product S = S1 nS2 of
solvable Lie groups satisfying the following hypotheses:

• S1 isomorphically embeds as an Iwasawa subgroup in a semisimple
Lie group G1.
• The adjoint action of S1 on the Lie algebra Lie(S2) extends to a

representation of G1 on Lie(S2).

Then, S admits a left-invariant Einstein metric of negative Ricci cur-
vature if and only if S2 does. In this case, the Einstein metric g on S
may be chosen so that its restriction to S2 is Einstein, its restriction to
S1 is symmetric, and the Lie algebras of S1 and S2 are orthogonal.

The “if” statement and the final statement are elementary. On the
other hand, the crucial “only if” statement exploits the deep relation-
ship between left-invariant Einstein metrics of negative Ricci curvature
on solvable Lie groups and geometric invariant theory. This relation-
ship first appeared in the work of Heber [Heb98] and was subsequently
refined by Lauret [Lau10] and Nikolayevsky [Nik11]. The connection
with geometric invariant theory arises as follows: The question of exis-
tence of an Einstein metric on a solvable group S reduces to the question
of existence of a nilsoliton metric on the nilradical N of S. Denoting
the Lie bracket of Lie(N) by µ, we may identify Lie(N) with {Rn, µ}
and view µ as an element of V = ∧(Rn)∗ ⊗ Rn, the space of brackets
on Rn. The group GLnR acts on V and there exists a naturally defined
subgroup Gφ ⊂ GLnR with the following property:

The orbit Gφ·µ⊂V is closed if and only if N admits a nilsoliton metric.

In the notation of Lemma 0.3, the nilradical N2 of S2 is a normal
subgroup of the nilradical N of S. Denote by µ2 the Lie bracket of
Lie(N2) ⊂ Lie(N), and denote the associated group by Gφ2 . To prove
the “only if” statement, assume that S admits a left-invariant Einstein
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metric of negative Ricci curvature. We show that Gφ2 · µ2 inherits the
topological property of being closed from the analogous property of the
orbit Gφ · µ. In this way, N2 obtains a nilsoliton metric and then S2

obtains an Einstein metric.
The completion of the proof of the Main Theorem, given the Lemma,

proceeds as follows: Since we have already established the existence of
an Einstein metric on S, the forward direction of the lemma gives us
an Einstein metric on S2 and a nilsoliton metric on the nilradical N2 of
S2. Using the fact that nilsoliton metrics on nilpotent Lie groups are
maximally symmetric (see Section 1) and that S2 and N2 are normal
in G, we find that some nilsoliton metric on N2 – and the resulting
Einstein metric on S2 – are Ad(L)-invariant and further Ad(G1) acts
by self-adjoint transformations on Lie(N2). It is then straightforward to
show that the extension of this metric on S2 to an Einstein metric on S,
given in the easier direction of the Lemma, isG-invariant. (This Einstein
metric on S may differ from the original one by an automorphism).

Organization. The paper is organized as follows: In Section 1, we
address maximal symmetry metrics on Lie groups. The structure theory
of Einstein solvmanifolds and their automorphism groups is reviewed in
Section 2. Section 3 contains the proof of the Main Theorem 0.1 modulo
Lemma 0.3. The proof of the lemma is presented in Section 5 after first
addressing the prerequisite Geometric Invariant Theory in Section 4.
The question of Einstein extensions is further addressed in Section 6.

1. Existence of maximally symmetric left-invariant metrics

In this section, we address the question of which Lie groups admit
maximally symmetric left-invariant Riemannian metrics, as defined in
Definition 0.2.

Proposition 1.1. Suppose G satisfies:

i) Aut(G) has only finitely many components. (This condition is al-
ways satisfied if G is simply-connected.)

ii) For every left-invariant metric h on G, Isom(G, h) < Go Aut(G),
where Isom(G, h) is the full isometry group of h.

Then G admits maximally symmetric left-invariant Riemannian met-
rics.

The second hypothesis is equivalent to the condition that G (more
precisely, the group of left-translations of G) is a normal subgroup of
Isom(G, h) for every choice of h.

Proof. Let K < Aut(G) be a maximal compact subgroup of Aut(G),
and let g be a K-invariant, left-invariant Riemannian metric. For h
any left-invariant metric, the first hypothesis implies that Isom(G, h) =
G o L for some compact subgroup L < Aut(G). The first hypothesis
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guarantees that all maximal compact subgroups of Aut(G) are conju-
gate. Thus, there exists τ ∈ Aut(G) such that τLτ−1 < K, and we have
Isom(G, h) < Isom(G, τ∗g). q.e.d.

Corollary 1.2. Let G be a connected Lie group satisfying any one
of the following conditions:

• G is compact and simple.
• G is semisimple of noncompact type.
• G is a simply-connected, completely solvable unimodular Lie group.

(E.g., all simply-connected nilpotent Lie groups satisfy this condi-
tion.)

Then G admits maximally symmetric left-invariant Riemannian met-
rics.

Proof. We apply Proposition 1.1. The first hypothesis of the propo-
sition is trivially satisfied in all three cases. The fact that each of these
types of Lie groups satisfy the second hypothesis is proven in [OT76],
[Gor80], and [GW88], respectively. (See also [Wil82] for the special
case of nilpotent Lie groups.) q.e.d.

In some cases included in Corollary 1.2, one can identify a maximally
symmetric left-invariant metric. For compact simple Lie groups, the
maximally symmetric left-invariant metrics are precisely the bi-invariant
metrics. For semisimple Lie groups of non-compact type, the first au-
thor has shown that the natural metric coming from the Killing form
is maximally symmetric, see [Gor80]. The second author proved the
following:

Proposition 1.3. [Jab11a] If a completely solvable unimodular Lie
group admits a left-invariant Ricci soliton metric g, then g is maximally
symmetric.

While Corollary 1.2 gives large families of Lie groups that admit
maximally symmetric left-invariant Riemannian metrics, the existence
of such metrics is far from universal.

Proposition 1.4. There exist compact semisimple Lie groups G that
do not admit a maximally symmetric left-invariant Riemannian metric.

Proof. Suppose that g0 is a maximally symmetric left-invariant Rie-
mannian metric on G. We first show that g0 must be bi-invariant. Let g
be a bi-invariant metric on G. Then there exists τ ∈ Aut(G) such that

Go Aut(G) = Isom(G, g) < Isom(G, τ∗g0).

In particular, τ∗g0 is invariant under all inner automorphisms and, thus,
under right, as well as left translations. I.e., τ∗g0 is bi-invariant. But
then τ∗g0 = g0, so g0 is bi-invariant.
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Definition 0.2, together with the fact that g0 is invariant under Aut(G),
thus, implies that for every left-invariant metric h, we have Isom(G, h) <
Isom(G, g0) = GoAut(G) and, hence, G is normal in Isom(G, h). How-
ever, Ozeki [Oze77] proved that there exist left-invariant Riemannian
metrics h on some compact semisimple Lie groups G such that the group
of left-translations of G is not a normal subgroup of Isom(G, h). q.e.d.

Remark 1.5. In the same article [Oze77] cited in the proof of Propo-
sition 1.4, Ozeki showed that for every left-invariant metric h on a
compact semisimple Lie group G, there exists a normal subgroup G′

of Isom(G, h) that is isomorphic to G. It is, thus, easy to see that
bi-invariant metrics g on G satisfy the following weaker notion of maxi-
mal symmetry: For every left-invariant Riemannian metric h on G, the
isometry group of h is isomorphic to a subgroup of Isom(G, g).

Example 1.6. Let S be the connected, simply-connected solvable
Lie group given by the direct product S = S1 × R where S1 is the
Iwasawa subgroup of SL(2,R), i.e., S1 is the unique connected, simply-
connected, non-abelian, two-dimensional solvable Lie group. We show
that S cannot admit a maximally symmetric left-invariant Riemann-
ian metric. First note that for any left-invariant metric on a three-
dimensional Lie group, the full isometry group must have dimension
3, 4 or 6, since the isotropy algebra must be isomorphic to a sub-
algebra of so(3). Moreover, every three-dimensional manifold with a
six-dimensional isometry group must have constant sectional curvature.
Since S does not admit a left-invariant metric of constant curvature,
the isometry group of any left-invariant metric on S must have di-
mension at most four. We will exhibit a pair of left-invariant metrics
h1 and h2 on S such that the identity components Isom0(S, h1) and
Isom0(S, h2) are non-isomorphic four-dimensional Lie groups. If S ad-
mitted a maximally symmetric left-invariant Riemannian metric g, then
Isom(S, g) would have to contain isomorphic copies of both Isom0(S, h1)
and Isom0(S, h2). This is impossible since Isom(S, g) can itself be at
most four-dimensional.

We construct the two metrics. We define h1 to be the direct product
of the hyperbolic metric on S1 and an Euclidean metric on R. Then

Isom0(S, h1) = PSL(2,R)×R.

To define h2, first consider a left-invariant metric h on the universal

cover S̃L(2,R) of SL(2,R), defined by an Ad(K)-invariant inner prod-
uct on the Lie algebra sl(2,R), where K = SO(2,R). The identity
component of the isometry group of h is given by

Isom0(S̃L(2,R), h) = (S̃L(2,R)× K̃)/D.

(See [Gor80].) Here K̃ ' R is the connected subgroup of S̃L(2,R)

with Lie algebra so(2,R). The action of (a, b) ∈ S̃L(2,R) × K̃ on c ∈
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S̃L(2,R) is given by c 7→ acb−1. The center of S̃L(2,R) is isomorphic to

Z and is contained in K̃. The subgroup D of S̃L(2,R)× K̃ is the image

of the center under the embedding z 7→ (z, z) ∈ K̃×K̃ < S̃L(2,R)×K̃.

Viewing the Iwasawa group S1 as a subgroup of S̃L(2,R), then S1× K̃
is a simply-transitive subgroup of Isom0(S̃L(2,R), h) isomorphic to S =
S1 ×R. Thus, the metric h defines a left-invariant Riemannian metric
h2 on S with

Isom0(S, h2) ' (S̃L(2,R)× K̃)/D.

This completes the proof that S does not admit a maximally symmetric
left-invariant Riemannian metric.

Remark 1.7. The metric h1 in Example 1.6 is a solvsoliton, i.e., a
left-invariant Ricci soliton on the solvable Lie group. Thus, the Main
Theorem 0.1 fails when Einstein is replaced by Ricci soliton.

2. Background

Notational Convention 2.1. In the remainder of this article, we
will always use the corresponding fraktur, with any appropriate sub-
scripts or superscripts, to denote the Lie algebra of a given Lie group.
E.g., if a Lie group is named G1, its Lie algebra will be denoted g1.

In this preliminary section, we first review existence and structural
results for Einstein solvmanifolds of negative Ricci curvature. We then
discuss a technique of Y. Nikolayevsky for determining whether a solv-
able Lie group admits such a metric. Finally, we review the structure
theory of isometry groups of arbitrary solvmanifolds.

2.1. Solvable Lie groups admitting Einstein metrics of negative
Ricci curvature. We restrict our attention to non-flat homogeneous
Einstein metrics. Any solvable Lie group admitting such a non-flat
Einstein metric is necessarily non-unimodular [DM88].

Definition 2.2.

i) A solvable Lie group S will be said to be of Einstein type if it
admits a left-invariant Einstein metric of negative Ricci curvature.
We will also say that its Lie algebra s is of Einstein type. We will
say that the nilradical N of S (or the nilradical n of s) is an Einstein
nilradical.

ii) A non-unimodular, metric solvable Lie algebra (s, 〈 , 〉) is said to be
standard if it can be written as an orthogonal direct sum s = a+ n
where a is abelian and n = [s, s] is the nilradical.

iii) A standard metric solvable Lie algebra is said to be of Iwasawa
type if ad(A)|n is symmetric and non-zero for all A ∈ a and if there
exists some H ∈ a such that ad(H)|n is positive-definite. We will
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say a solvable Lie algebra s is of Iwasawa type if it admits an inner
product satisfying these conditions.

iv) A solvable Lie group (with a left-invariant Riemannian metric) is
said to be standard, respectively of Iwasawa type, if the associated
metric Lie algebra is standard, respectively of Iwasawa type.

In 1998, J. Heber [Heb98] extensively addressed the structure of
standard Einstein solvmanifolds. Heber’s work resulted in great inter-
est in the question of whether all non-flat Einstein solvmanifolds are
standard. A decade later J. Lauret [Lau10] answered this question in
the affirmative. The three propositions in this and the next subsec-
tion summarize the part of the extensive work of Heber, Lauret and Y.
Nikolayevsky that provide the background needed in the later sections
of this paper.

Notation and Remarks 2.3.

i) Given a decomposition s = a + n of a solvable Lie algebra s, where
n = Nilrad(s) and a is an abelian complement, we will denote by
Der(s)a the space of derivations commuting with ads(a), i.e., the
derivations that vanish on a. Via the isomorphism α 7→ α|n, we
may identify Der(s)a with the space Der(n)a of all derivations of n
commuting with ad(a)|n.

ii) If T is a semisimple endomorphism of a finite-dimensional vector
space V , then T can be uniquely decomposed as T = TR + T iR

where TR, respectively T iR, is a semisimple endomorphism with
all eigenvalues real, respectively, purely imaginary, and where TR

and T iR commute with T (hence, with each other). Moreover, TR

and T iR commute with any other endomorphism that commutes
with T . We will refer to TR and T iR as the real and imaginary
parts of T . If D is a semisimple derivation of a Lie algebra g, then
DR and DiR are also derivations of g.

Proposition 2.4 (Heber [Heb98]). If a solvable Lie group S ad-
mits a standard Einstein metric g, then every Einstein metric on S is
isometric to g up to scaling.

Let s = a + n be a decomposition of s as in Definition 2.2. Then in
the notation of 2.3:

i) Der(s) = ads(n) + Der(s)a. Moreover, Der(s)a is reductive and
decomposes as k + p where the elements of k are skew-symmetric
and the elements of p are symmetric relative to g. (We will often
identify elements of Der(s)a with their restrictions to n.)

ii) For 0 6= A ∈ a, we have 0 6= ad(A)R ∈ p and ad(A)iR ∈ k. Let
a′ = {ad(A)R : A ∈ a} and let s′ be the semi-direct sum of a′ and
n. Then s′ is of Iwasawa type and the associated simply-connected
solvable Lie group acts simply-transitively on S.
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iii) Let H be the unique element of a such that g(H,A) = trace(ad(A))
for all A ∈ a. Then there exists λ ∈ R+ such that the eigenvalues of
λ ad(H)R|n are positive integers. Thus, s′ is of Iwasawa type. The
derivation ad(H)|Rn is sometimes called the Einstein derivation.

iv) Let c be any abelian subspace of p containing the Einstein deriva-
tion. Then the semi-direct product c n n of c with n admits an
Einstein inner product.

Definition 2.5. A left-invariant Riemannian metric g on a nilpotent
Lie group N is called a nilsoliton if it is a Ricci soliton. This condition is
equivalent to Ricg = cId+D for some constant c and some D ∈ Der(n).
(Here Ricg is the Ricci operator.)

Remark 2.6. In the definition above, the condition Ricg = cId+D
always produces a left-invariant Ricci soliton on a Lie group. In the
case of nilpotent groups, all Ricci solitons satisfy this condition, but
this is not true more generally for solvable Lie groups. If a left-invariant
metric on a solvable Lie group satisfies Ricg = cId + D, it is called a
solvsoliton.

It is known that a Ricci soliton on a solvable Lie group is isometric
to a solvsoliton (on a possibly different solvable Lie group) [Jab15a].
To go between these two different solvable Lie structures, one uses the
process of ‘modifications’, see Definition 2.15.

Proposition 2.7 (Lauret [Lau10, Lau01]).

i) Every Einstein solvmanifold of negative Ricci curvature is standard.
ii) Let N be a simply-connected nilpotent Lie group. Then N is an

Einstein nilradical if and only if N admits a nilsoliton metric. If
(S, g) is any Einstein solvmanifold of negative Ricci curvature with
nilradical N , then the restriction of g to N is a nilsoliton.

iii) A nilpotent Lie group admits at most one nilsoliton metric, up to
automorphism and scaling.

Remark 2.8. Let s be a solvable Lie algebra of Einstein type. By
Propostion 2.7, every Einstein inner product on s is standard. Given
such an inner product, write s = a + n, where a = n⊥. By Propo-
sition 2.4, ads(a) is a fully reducible subalgebra of ad(s). Moreover,
[a, n] = n, so s has trivial center and ads(X) is a non-trivial nilpotent
operator for every X ∈ n. Thus, ads(a) is a maximal fully reducible
subalgebra of ad(s). By the work of Mostow [Mos56, Theorem 4.1],
all maximal fully reducible subalgebras of linear Lie algebras, in par-
ticular, of ad(s), are conjugate by an inner automorphism. Since s has
no center, ad : s → gl(s) is an isomorphism onto its image. Thus, the
decomposition s = a + n is unique up to conjugacy by an element of
the nilradical and every maximal fully ad-reducible subalgebra of s is
conjugate to a.



EINSTEIN SOLVMANIFOLDS HAVE MAXIMAL SYMMETRY 11

If a is any maximal fully ad-reducible subalgebra of s, we will refer
to s = a + n as a standard decomposition of s. By the uniqueness
statement above, given any standard decomposition s = a + n of a
solvable Lie algebra of Einstein type, there exists an Einstein metric for
which a ⊥ n.

2.2. Nikolayevsky’s technique.

Definition 2.9. (See [Nik11].) A derivation ϕ ∈ Der(g) of a Lie
algebra g is a pre-Einstein derviation if it is semisimple as an element
of End(g) with all eigenvalues real, and satisfies

(2.1) trace(ϕA) = trace(A) for all A ∈ Der(g).

Proposition 2.10 (Nikolayevsky [Nik11]).

i) Every Lie algebra admits a pre-Einstein derivation ϕ, unique up to
automorphism. The eigenvalues of ϕ are rational.

ii) If N is an Einstein nilradical, then the Einstein derivation (see
Proposition 2.4(iii)) of every Einstein solvmanifold with nilradical
N is a positive multiple of a pre-Einstein derivation ϕ of n.

Proposition 2.11 (Nikolayevsky [Nik11]). Let n be a nilpotent Lie
algebra of dimension n. View the bracket µ : n × n → n as an element
of V = ∧2(Rn)∗ ⊗ Rn. The group GLn(R) acts on V via A.ν(x, y) =
Aν(A−1x,A−1y) for A ∈ GLn(R), ν ∈ V and x, y ∈ Rn, and this
action gives rise to an action of the Lie algebra gln(R) on V . Fix a
choice of pre-Einstein derivation ϕ of n. Let t : GLn(R)→ R be given
by t(A) = trace(Aϕ) and let

gϕ = sln(R) ∩ z(ϕ) ∩Ker t,

where z(ϕ) is the centralizer of ϕ in gln(R). Let Gϕ be the connected
subgroup of SLn(R) with Lie algebra gϕ. The group Gϕ is fully reducible,
and the simply-connected Lie group N with Lie algebra n
admits a nilsoliton metric if and only if the orbit Gϕ.µ is closed
in V .

Notation and Remarks 2.12.

i) Observe that the Lie algebra of the stabilizer of µ in Gϕ is precisely
Der(n) ∩ sl(n,R).

ii) As discussed in [Nik11], the group Gϕ is pre-algebraic; it is the

identity component of the algebraic, fully reducible subgroup Ĝϕ <
SL(n,R) given as follows: Let V1, . . . , Vk be the eigenspaces of ϕ
and λ1, . . . , λk the corresponding eigenvalues. By 2.10 the λj are
positive rational numbers. Let N be the least positive integer for
which all the aj := Nλj are integers. The group Ĝϕ is defined
by
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Ĝϕ = {(α1, . . . , αk) ∈
k∏
j=1

GL(Vj)

< GL(n) :
k∏
j=1

det(αj) =
k∏
j=1

det(αj)
aj = 1}.

iii) The subgroup Gϕ of SL(n,R) is self-adjoint with respect to any
inner product for which ϕ is symmetric.

iv) We will sometimes abuse language and identify the bilinear map
µ in Proposition 2.11 with the Lie algebra n. For X ∈ Rn, we
will write adµ(X) : Rn → Rn to mean the linear mapping of Rn

associated with the bracket µ.

We conclude this section with a corollary of Propositions 2.4, 2.7,
and 2.10.

Corollary 2.13. Let N be a simply-connected nilpotent Lie group
that admits a nilsoliton metric, and let ϕ be the pre-Einstein derivation
of n. Let a be any abelian subalgebra of Der(n), all of whose elements
are semisimple with non-zero real part, and suppose that the pre-Einstein
derivation ϕ is given by AR for some A ∈ a. Then a n n is a solvable
Lie algebra of Einstein type.

Since the corollary requires a slight strengthening of Proposi-
tion 2.4(iv), we include the proof here after first recalling results of
Mostow concerning Cartan decompositions. For later use, we state
Mostow’s results in greater generality than needed for the proof of Corol-
lary 2.13.

Notation and Remarks 2.14. In the language of Mostow [Mos55],
an “fcc” group is a Lie group with finitely many connected components.
If Ĥ is an fcc group, every maximal compact subgroup K̂ of Ĥ satisfies
Ĥ = HK̂ where H is the identity component of Ĥ. In particular,
K := K̂ ∩H is a maximal compact subgroup of H and K̂/K is finite.

Any two maximal compact subgroups of Ĥ are conjugate via an element
of H. Generalizing the language of semisimple Lie group theory, we say
that Ĥ = K̂P is a Cartan decomposition of Ĥ if: (i) K̂ is a maximal

compact subgroup of Ĥ and (ii) there exists a compact real form c of
the complexification hC of h such that k = h∩ c and P = exp(p), where

p = h ∩ ic. (Here i =
√
−1, and h and k are the Lie algebras of Ĥ

and K̂, respectively.) The existence of a Cartan decomposition implies

that Ĥ is a reductive Lie group. However, not every reductive fcc group
admits a Cartan decomposition. If a Cartan decomposition does exist,
it is unique up to conjugation by elements of the identity component H
of Ĥ.
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Theorem 4.1 of [Mos55] states: If Ĥ and Ĥ ′ are fcc Lie groups with

Ĥ < Ĥ ′ and if both Ĥ and Ĥ ′ admit Cartan decompositions, then for
each Cartan decomposition Ĥ = K̂P , there exists a compatible Cartan
decomposition Ĥ ′ = K̂ ′P ′. By compatible we mean that K̂ < K̂ ′ and
P < P ′.

Proof of Corollary 2.13. Let a0 be the one-dimensional Lie algebra
Rϕ where ϕ is the pre-Einstein derivation of n. By Propositions 2.7
and 2.10, s0 := a0 n n is a solvable Lie algebra of Einstein type. Let g0

denote both an Einstein metric on s0 and its restriction to a nilsoliton
metric on n. By 2.3 and the hypotheses that a is abelian and that ϕ =
AR for some A ∈ a, we have a < Der(n)a0 . Again by 2.3, XR and XiR ∈
Der(n)a0 for all X ∈ a. Let b = aR + aiR, where aR = {XR : X ∈ a}
and similarly for aiR. Note that b = aiR+aR is a Cartan decomposition
of b. By 2.14, there exists a Cartan decomposition k+p of Der(n)a0 such
that aiR ⊂ k and aR ⊂ p. By the conjugacy of Cartan decompositions
and Proposition 2.4, there exists τ ∈ Aut(n)a0 such that the elements
of k, respectively p, are skew-symmetric, respectively symmetric, with
respect to the nilsoliton metric τ∗(g0) on n. Since τ(ϕ) = ϕ, the Einstein
derivation of (s0, g) is again ϕ. By Proposition 2.4, r := aR + n is
of Einstein type. Let M be the associated simply-connected Einstein
manifold. Since aiR acts skew-symmetrically, the isometry algebra of
(R, g) contains aiR + r = b + n, and it is easy to see that the simply-
connected Lie group S with Lie algebra a + n < b + n acts simply-
transitively on M . Thus, a + n is of Einstein type. q.e.d.

2.3. Isometry groups of solvmanifolds. We review results of
[GW88] concerning the structure of isometry groups of arbitrary solv-
manifolds. We will restrict our attention here to simply-connected solv-
manifolds, since all solvable Lie groups of Einstein type are simply-
connected.

Definition 2.15. Let (M, h) be a simply-connected Riemannian
solvmanifold, let G = I0(M) be the identity component of the full
isometry group of M, and let g be the Lie algebra of G. Let R = R(h)
denote the collection of all simply-transitive solvable subgroups of G.
Fix once and for all a base point p ∈ M. For R ∈ R, we will continue
to denote by h the left-invariant Riemannian metric on R defined by
identifying R with M via a 7→ a(p) for a ∈ R.

i) For R ∈ R, recall that the normalizer Ng(r) of r in g is given by
the semi-direct sum Ng(r) = Derskew(r, h) + r where Derskew(r, h) is
the space of skew-symmetric derivations of (r, h). (See, for exam-
ple, [AW], Corollary 2.13.) The standard modification r′ of r with
respect to h is defined to be the orthogonal complement in Ng(r) of
Derskew(r, h) with respect to the Killing form. The connected sub-
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group R′ of G with Lie algebra r′ will also be called the standard
modification of R. Observe that R′ ∈ R.

ii) We say that R (or its Lie algebra r) is in standard position in G
with respect to h if it is equal to its own standard modification.

Notation and Remarks 2.16. (See [GW88].)

i) Let F be the collection of subgroups of G that are maximal with
respect to the property of having no non-trivial connected noncom-
pact simple subgroups. Then the elements F ∈ F form a conjugacy
class of subgroups of G given as follows: Let G = G1G2 be any Levi
decomposition of G and write G1 = GncGc, where Gnc and Gc are
the maximal semisimple connected normal subgroups of G of non-
compact and compact type, respectively. Let G1 = K1A1N1 be any
Iwasawa decomposition of G1 (in particular, Gc < K1), and let M1

be the centralizer of A1 in K1 ∩Gnc. Set

(2.2) F = (M1A1N1)GcG2.

Then F ∈ F , and every element of F is of this form.
ii) A subgroup S1 of G of the form S1 = A1N1, where K1A1N1 is an

Iwasawa decomposition of some semisimple Levi factor of G, will
be called an Iwasawa subgroup of G.

iii) In the notation of (i), the group K1 is compact if and only if Gnc
has finite center. This condition is equivalent to the condition that
the Lie algebra of some, hence any, maximal compact connected
subgroup of G is a maximal compactly embedded subalgebra of g.
In this case, every maximal compact subgroup U of G is of the form
U = K1(U ∩G2) relative to some Levi and Iwasawa decompositions
as in (i).

Proposition 2.17. [GW88] LetM be a simply-connected Riemann-
ian solvmanifold and let G = I0(M) be the identity component of the
full isometry group of M. Then:

i) The collection of all simply transitive solvable subgroups of G in
standard position with respect to h forms a (non-empty) conjugacy
class S = S(h) of subgroups of G.

ii) Given R ∈ R, let R′ be the standard modification of R and let R′′

be the standard modification of R′. Then R′′ is in standard position
in G with respect to h, and the normalizer of R′′ in G contains that
of R.

iii) (See the notation of 2.16.) For S ∈ S, the normalizer NG(S) is
an element of F . Conversely, given any F ∈ F , there exists S ∈ S
such that NG(S) = F .

iv) Let S ∈ S and let G = G1G2 and G1 = K1A1N1 be the Levi and
Iwasawa decompositions associated with F = NG(S) as in 2.16.
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Then the Lie algebra of S satisfies

a1 + n1 + [g, g2] ⊂ s ⊂ Z(m1) + a1 + n1 + g2,

where Z(m1) is the center of the Lie algebra m1 of M1. In particu-
lar, S contains an Iwasawa subgroup of G.

3. The Main Theorem

Our goal is to prove the following theorem:

Theorem 3.1. Let R be a solvable Lie group of Einstein type and h a
left-invariant Riemannian metric on R. Let Ĝ = Isom(R, h) be the full

isometry group and let L̂ be the isotropy subgroup of Ĝ at the identity
e ∈ R. Then Ĝ/L̂ admits a Ĝ-invariant Einstein metric.

Since R acts simply-transitively on Ĝ/L̂, it will follow that R ad-
mits an Einstein metric whose isometry group contains that of h, thus,
proving the Main Theorem 0.1.

The proof of Theorem 3.1 has three main parts:

i) We apply a result of the second author to show that the normalizer

of R (or of any simply transitive solvable subgroup of Ĝ in Ĝ) leaves
an Einstein metric invariant. This result along with a study of the
structure of the isometry groups of left-invariant metrics on solvable
Lie groups of Einstein type enables us to reduce the theorem to
Lemma 0.3.

ii) We use Ricci curvature computations to prove the “if” statement
and the final statement of Lemma 0.3.

iii) We apply Nikolayevsky’s technique, as outlined in Subsection 2.2
to prove the forward statement of Lemma 0.3.

In this section, we carry out the first two parts of the proof.

3.1. Part (i) of the proof. In the notation of Theorem 3.1, we first

show that the normalizer of R in Ĝ leaves an Einstein metric invariant.
An elementary argument (see [AW], Corollary 2.13) shows that the nor-

malizer of R in Ĝ is given by the semi-direct product Ro(Autorth(R, h)),
where Autorth(R, h) is the group of all orthogonal automorphisms of
(R, h).

Proposition 3.2. Let R be a solvable Lie group that admits an Ein-
stein metric and let h be any left-invariant metric on R. Then there
exists an Einstein metric g on R such that

Isom(R, h) ∩Aut(R) ⊂ Isom(R, g).

Remark 3.3. We note that the proposition above holds more gen-
erally for solvsolitons, with the same proof, but we will not need this
fact.
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Proof. We apply results of [Jab11a]. (That article addresses the
more general setting of solvable Lie groups admitting solvsolitons but
we only apply it to the special case of those admitting Einstein met-
rics.) There is a natural correspondence between Einstein (or solvsoli-
ton) metrics on R and so-called distinguished metrics. Letting n denote
the nilradical of r, a distinguished metric and the corresponding Ein-
stein metric agree on n (and restrict to a nilsoliton metric on n), and
the orthogonal complement of n relative to both metrics is the same
abelian algebra a. The two metrics differ only on a. The expression for
the distinguished metric on a will not be needed below. The Einstein
metric is given on a by

(3.1) g(A,A) = c trace(SA)2,

where c is a constant and where SA is the symmetric part of ad(A)|n
with respect to the given nilsoliton metric on n; i.e., SA = 1

2(ad(A)|n +
ad(A)|tn).

Theorem 4.1 of [Jab11a] (stated as Proposition 1.3 above) states that
left-invariant solvsoliton metrics on completely solvable unimodular Lie
groups are maximally symmetric. In our case, R is not assumed to be
either completely solvable or unimodular. However, the first step in the
proof of Theorem 5.8 of [Jab11a] applies to all solvable Lie groups that
admit solvsoliton metrics. It asserts that for any left-invariant metric h
on R, there exists a distinguished metric g0 such that

Autorth(R, h) ⊂ Isom(R, g0).

Here Autorth(R, h) denotes the group Aut(R) ∩ Isom(R, h). As R is
simply-connected, this group corresponds precisely to the orthogonal
automorphisms of the Lie algebra, Aut(r) ∩O(r, h).

To complete the proof, we need only show that Autorth(R, g0) ⊂
Autorth(R, g) where g is the Einstein metric associated with g0. Let τ ∈
Aut(r)∩O(r, g0), and let A ∈ a. By Proposition 2.4, we have ad(A)|n =
SA + TA, where TA is a skew-symmetric derivation of n and SA, as
defined above, is a symmetric derivation. Moreover, SA and TA both
commute with ad(A) and, hence, with each other. Since τ ∈ Aut(r), we
have τ |n◦ad(A)|n = ad(τ(A))|n◦τ |n, so ad(τ(A))|n = τ |n◦ad(A)|n◦τ |−1

n .
Since τ |n is orthogonal, we also have that Sτ(A) = τ |n ◦ SA ◦ τ |−1

n . It is
now immediate from Equation (3.1) that τ ∈ O(r, g). q.e.d.

Restricting our attention to the identity component G of Ĝ for now,
we next apply Proposition 3.2 to describe the subgroups ofG in standard
position, in the language of Definition 2.15.

Lemma 3.4. Let R be a solvable Lie group of Einstein type and let
h be an arbitrary but fixed left-invariant metric on R (not necessarily
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an Einstein metric). Let G = I0(R, h) and let L be the isotropy sub-
group of G at the identity element. We use the notation of 2.16 and
Proposition 2.17. Then:

i) Each S ∈ S(h) is a solvable Lie group of Einstein type.
ii) There exist a Levi decomposition G = G1G2 and an Iwasawa de-

composition G1 = K1A1N1 such that, in the notation of 2.16,

L = K1(L ∩G2).

In particular, K1 has finite center and L is a maximal compact
subgroup of G.

iii) There exists a characteristic subgroup S2 of G contained in G2 such
that:
a) S(h) = {S1 n S2 : S1 is an Iwasawa subgroup of G}.
b) G2 = (L ∩G2) n S2.
c) Nilrad(G) = Nilrad(S2).

iv) Let F ∈ F . Then F/(F ∩ L) admits a left-invariant Einstein met-
ric. (In particular, the Einstein metric on R and on the associated
element S of S(h) can be chosen to be invariant under NG(S) ∈ F .)

Proof. (i) Write r = a+n as in Definition 2.2. Let h = Derskew(r, h)+r
(semi-direct product) and let H be the semi-direct product of R with
the group Autorth(R, h) of orthogonal automorphisms of (R, h). Then
H has Lie algebra h. By Proposition 3.2, there exists an Einstein met-
ric g on R invariant under Autorth(R, h). Thus, H/Autorth(R, h) ad-
mits a H-invariant Einstein metric. Since R′ acts simply-transitively on
H/Autorth(R, h), this Einstein metric defines a left-invariant Einstein
metric on R′. Thus, R′ is of Einstein type. Continuing, the standard
modification S of R′ is also of Einstein type and, by Proposition 2.17,
S ∈ S(h).

(ii) We have g = l+ r with l∩ r = {0}. Let u be a maximal compactly
embedded subalgebra of g containing l. Suppose X ∈ u∩r. Then ad(X)
is semisimple with purely imaginary eigenvalues. By Propositions 2.4(ii)
and 2.7, it follows that all eigenvalues of ad(X) are zero and, thus, X
must be central. However, by Propositions 2.4(iii) and 2.7, the center of
r is trivial. Thus, u ∩ r = {0}, and l is a maximal compactly embedded
subalgebra of g. Statement (ii) now follows from 2.16(iii).

(iii) Define s2 to be the orthogonal complement of l∩g2 in g2 with re-
spect to the Killing form Bg, and let S2 be the corresponding connected
subgroup of G. Then Nilrad(g) < s2 < g2. Since [g, g2] < Nilrad(g),
it follows that s2 is a g-ideal. We first show that it is a characteristic
ideal; i.e., that it is invariant under Aut(g). By statement (ii) and the
fact that Bg(g1, g2) = 0 for any semisimple Levi factor g1, we see that
s2 = l⊥ ∩ g2 where l⊥ is the orthogonal complement of l with respect to
Bg. Let τ ∈ Aut(G). Then τ(L) is a maximal compact subgroup of G
and, hence, is conjugate to L; i.e., τ∗(l) = Ad(a)(l) for some a ∈ G. For
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X ∈ s2, we have

Bg(l, τ∗(X)) = Bg(τ
−1
∗ (l), X)

= Bg(Ad(a−1)(l), X) = Bg(l,Ad(a)(X)) = 0,

where the last equality uses the fact that s2 is a g-ideal and, thus, is
invariant under Ad(G). Thus, τ∗(s2) ⊥ l with respect to Bg. Since also
τ∗(s2) < g2, we have τ∗(s2) < s2 and trivially equality must hold. Thus,
s2 is a characteristic ideal in g and S2 is a characteristic subgroup of G.

The fact that the Killing form of g is negative-definite on l implies
that g2 = (l ∩ g2) n s2. Thus, S2 satisfies condition (b).

For (c), since Nilrad(g) is a nilpotent ideal of s2, we have Nilrad(g) <
Nilrad(s2). For the opposite inclusion, note that any subspace of g2

containing Nilrad(g2) is a g-ideal since [g, g2] < Nilrad(g). In particular,
Nilrad(s2) is a nilpotent ideal of g and, hence, Nilrad(s2) < Nilrad(g).
Thus, S2 satisfies condition (c).

Finally, we prove that condition (a) holds. Consider the Levi and
Iwasawa decompositions in part (ii) of the Lemma and the corresponding
group F ∈ F given by F = (M1A1N1)GcG2. By (ii), L∩F = M1Gc(L∩
G2). Let S ∈ S(h) be the subgroup of F in standard position, i.e., s is
the orthogonal complement of l∩ f in f relative to Bf. For X ∈ l∩ f and
Y ∈ g2, we have

Bf(X,Y ) = trace(ad(X) ◦ ad(Y )|g2) = Bg(X,Y ).

It, thus, follows from the definition of s2 that s2 ⊥ (l ∩ f) relative to
Bf and, hence, s2 < s by Definition 2.15. By Proposition 2.17, we also
have that a1 + n1 < s. Write s1 = a1 + n1. Since f = (l ∩ f) + (s1 + s2),
we must have s = s1 + s2, and then S = S1 n S2. Thus, we have found
one element S ∈ S(h) of the form stated in condition (a). Condition
(a) now follows from Proposition 2.17(i), the fact that S2 is normal in
G and the fact that the Iwasawa subgroups of G form a G-conjugacy
class of subgroups.

(iv) is immediate from Proposition 3.2. q.e.d.

Remark 3.5. One can also show directly, using Proposition 2.4
and 2.7, that the standard modification of R with respect to h is of
Einstein type and, moreover, that it is given by r′ = a′ + n, where
n is the nilradical of both r and r′. Moreover, by the proof of Theo-
rem 3.5 of [GW88], the fact that the standard modification r′ satisfies
Nilrad(r′) = Nilrad(r) implies that R′ is in standard position with re-
spect to h. Thus, for solvable Lie groups of Einstein type, only a single
standard modification is needed to reach standard position. We will not
need this fact, however.

Lemma 3.4 says that each S ∈ S(h) satisfies the hypotheses of the
Key Lemma stated below.
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Key Lemma 3.6 (“Only if” statement of Lemma 0.3.). Suppose that
S is a solvable Lie group of Einstein type and that S is a semi-direct
product S = S1 n S2 of subgroups satisfying the following hypotheses:

• S1 isomorphically embeds as an Iwasawa subgroup in a semisimple
Lie group G1.
• The adjoint action of S1 on the Lie algebra Lie(S2) extends to a

representation of G1 on Lie(S2).

Then, S2 is of Einstein type.

In the remainder of this section, we assume the Key Lemma and
complete the proof of the Main Theorem 3.1. We will then prove the
Key Lemma in a later section.

Assuming the Key Lemma, we have reduced the proof of the Main
Theorem to the following proposition:

Proposition 3.7. Let Ĝ be a (not necessarily connected) Lie group,

let L̂ be a compact subgroup of Ĝ and denote by G and L the identity
components of Ĝ and L̂, respectively. Suppose that there exists a Levi
decomposition G = G1G2, an Iwasawa decomposition G1 = K1S1, and
a connected solvable normal subgroup S2 of Ĝ satisfying the following:

i) L = K1(L ∩G2) and G2 = (L ∩G2)S2;

ii) The solvable group S := S1 n S2 acts simply transitively on Ĝ/L̂;
iii) S2 is of Einstein type.

Then Ĝ/L̂ admits a left-invariant Einstein metric of negative Ricci cur-
vature.

(There is some redundancy in the hypotheses of the proposition; one
can show that hypothesis (i) follows from the remaining hypotheses.)
Note that this proposition together with the Key Lemma 3.6 form
Lemma 0.3 stated in the introduction.

The Main Theorem 3.1 is an immediate consequence of Lemma 3.4,
Lemma 3.6 and Proposition 3.7. The statement of Proposition 3.7 is
actually stronger than needed to prove the Main Theorem, since it does
not assume that S itself is of Einstein type; instead the conclusion of
the proposition implies that S is of Einstein type.

Proposition 3.8. Let S be a solvable Lie group of Einstein type and
let W be a maximal compact (not necessarily connected) subgroup of
Aut(s). Then:

i) There exists a left-invariant Einstein metric g on S that is W -
invariant.

ii) Let H be the connected reductive subgroup of Aut(s) with Lie algebra
Der(s)a, where s = a+ n is the orthogonal decomposition of s given
in Proposition 2.4 with respect to the Einstein metric g in (i). Then

H is normalized by W . The Lie subgroup Ĥ := WH of Aut(S)
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has identity component H and has only finitely many connected
components.

iii) In the language of 2.14, Ĥ has a Cartan decomposition Ĥ = WP ,
with W acting orthogonally and P acting symmetrically on s with
respect to the inner product g.

Proof. The first statement is immediate from Proposition 3.2. For the
second statement, note that H is the identity component of Aut(s)a :=
{τ ∈ Aut(S) : τ |a = Ida}. The group W leaves a invariant since it acts
orthogonally relative to g and, thus, normalizes H. The Lie algebra of
Ĥ contains Der(s)a and consists of derivations that leave a invariant.

By Proposition 2.4, it follows that Ĥ has Lie algebra h := Der(s)a. This,
together with the fact that W is compact, yields (ii).

Proposition 2.4(i) gives us a Cartan decomposition H = WP , where
P = exp(p), with p consisting of all elements of h = Der(s)a that are

symmetric with respect to g. Since Ŵ acts orthogonally with respect
to g, this Cartan decomposition extends to a Cartan decomposition
Ĥ = ŴP . q.e.d.

3.9 (Choosing an Einstein metric on S2). In the notation of Proposi-

tion 3.7, the Lie group Ĝ acts by conjugation on S2. Let ρ : Ĝ→ Aut(s2)
be the resulting action on s2 so ρ∗(X) = ad(X)|s2 . By Proposition 3.2,
there exists a left-invariant Einstein metric h2 on S2 invariant under
the action of L̂. We have a standard decomposition s2 = a2 + n2 as
in Definition 2.2, with a2 ⊥ n2 relative to h2. The group L̂ normal-
izes a2 and L acts trivially on a2. By Proposition 2.4, we have that
g = n2+Zg(a2), and ρ∗(Zg(a2)) lies in the reductive Lie algebra Der(s2)a.
In fact, Zg(a2) is itself a reductive Lie algebra complementary to n2. In-
deed, by Proposition 2.4, we have Zg(a2) ∩ n2 = {0} and, thus, the
projection g → g/n2 restricts to an isomorphism of Zg(a2) with g/n2.
But it is easily seen that n2 = Nilrad(g). Thus, g/n2, and, hence, Zg(a2),
is reductive. The derived algebra of Zg(a2) is a semisimple Levi factor
of g, we replace g1 by [Zg(a2), Zg(a2)]. This may result in replacing L
(thus, K1) and S1 by conjugates, but that does not affect the validity
of Proposition 3.7.

The Lie group G1L̂ is a reductive fcc group (see 2.14) with identity
component G1(L ∩ G2). Let G1 = K1P1 be a Cartan decomposition.

Noting that K1 = L∩G1, we see that L̂P1 is a Cartan decomposition of
G1L̂. Let S2 play the role of S in Proposition 3.8. Then the Lie group Ĥ
in 3.8 contains G1L̂ and, thus, admits a Cartan decomposition Ĥ = WQ
compatible with the Cartan decomposition L̂P . By Proposition 3.8 and
the uniqueness of Cartan decompositions up to conjugacy, there exists
τ ∈ Ĥ such that W , hence L̂, acts orthogonally and Q, hence P , acts
symmetrically on s2 relative to the Einstein inner product τ∗h2. We set
g2 = τ∗h2.
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3.10 (Computing Ricci Curvature). We review the expression for
the Ricci curvature on a Riemannian homogeneous space G/K. Let
g = k + q be a reductive decomposition (I.e., q is an AdG(K)-invariant
complement of k), and let 〈 , 〉 be the Riemannian inner product on q.
We may extend 〈 , 〉 to an AdG(K)-invariant inner product on g with
k ⊥ q. For X ∈ g, write X = Xk + Xq with Xk ∈ k andXq ∈ q. Let
Rc : q × q → R denote the Ricci tensor of 〈 , 〉, and let Ric : q → q
denote the corresponding Ricci operator; i.e., 〈Ric(X), Y 〉 = Rc(X,Y )
for X,Y ∈ q. Let H ∈ q be the unique element such that 〈H,X〉 =
trace(ad(X)) for all X ∈ g. Let Bg denote the Killing form of g. Define
M : q→ q by

〈M(X), Y 〉 =
n∑
i=1

−1

2
〈[X,Xi]q, [Y,Xi]q〉(3.2)

+
1

4

n∑
i,j=1

〈[Xi, Xj ]q, X〉〈[Xi, Xj ]q, Y 〉,

where {X1, . . . , Xn} is an orthonormal basis of q. Then
(3.3)

Rc(X,Y ) = 〈M(X), Y 〉 − 1

2
Bg(X,Y )− 1

2
〈[H,X], Y 〉 − 1

2
〈X, [H,Y ]〉.

Proof of Proposition 3.7. Let u = Z(a2) = l + (p1 + a2) and q =
p1 + a2 + n2. Then u is a reductive Lie algebra and g = u + n2 = l + q
with each term in the two decompositions being AdĜ(L̂)-invariant. We
define an inner product 〈 , 〉 on q satisfying:

i) p1 ⊥ s2;
ii) The restriction of 〈 , 〉 to s2×s2 is the Einstein inner product defined

in 3.9;
iii) Writing the noncompact part gnc of g1 as a direct sum gnc = h1 ⊕

. . . hr of simple ideals and letting p1,i = p1 ∩ hi, then p1,i ⊥ p1,j for
i 6= j;

iv) The restriction of 〈 , 〉 to p1,i × p1,i is a positive multiple αiBhi of
the Killing form of hi.

Any such inner product is automatically invariant under AdG(L),

where L = K1(L ∩ G2) is the identity component of L̂. Our goal is to

choose the constants αi in such a way that 〈 , 〉 is AdĜ(L̂)-invariant and

so that the resulting Riemannian metric on Ĝ/L̂ is Einstein.
Let Rc : q × q → R denote the Ricci tensor of 〈 , 〉, let Rc1 and Rc2

denote, respectively, the Ricci tensors of G1/K1 and S2 with respect
to the Riemannian metrics defined by the restrictions of 〈 , 〉 to p1 × p1

and to s2 × s2, and let Ric1 and Ric2 denote the corresponding Ricci
operators. Since S2 is Einstein, we have Ric2 = c Ids2 for some negative
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constant c. The metric on G1/K1 is symmetric and we have

(3.4) Ric1 = −
(

1

α1
Idp1,1 × · · · ×

1

αr
Idp1,r

)
.

We now compare the Ricci tensors Rc1 and Rc2 to the restrictions
of Rc to p1 and s2, respectively. For i = 1, 2, we will write Hi and Mi

for the expressions in Equation 3.3 for Rci. Since G1 is semisimple, and
g1 ⊥ s2, we have

(3.5) H1 = 0 and H = H2 ∈ s2.

To compare M and Mi, we use a computation carried out by Lauret
and Lafuente in [LL14], Lemma 4.4. They considered the case of a
reductive decomposition g = l + q with q = h + n where u = l + h is a
reductive Lie algebra and n = Nilrad(g). In our notation, h = p1 + a2

and n = n2. For X ∈ g, write

ρ(X) = ad(X)|n2 .
Using Lauret–Lafuente’s computation, along with the fact that ad(X)|n2
is symmetric with respect to 〈 , 〉 for all X ∈ p1 (see 3.9), we find that

(3.6) M2 = M |s2×s2 ,

(3.7) 〈M1(X), Y 〉 = 〈M(X), Y 〉+
1

2
trace(ρ(X)ρ(Y )) for X,Y ∈ p1,

and

(3.8) 〈M(X), Y 〉 = 0 for X ∈ p1 and Y ∈ s2.

(The third equation uses the fact that trace(ρ(X)ρ(Y )) = 0 for X ∈ p1

and Y ∈ a2.)
The Killing forms satisfy

(3.9)
Bg|s2×s2 = Bs2 and

Bg(X,Y ) = Bg1(X,Y ) + trace(ρ(X)ρ(Y )) for X,Y ∈ p1.

Equations 3.3–3.9 yield

(3.10) Rc2 = Rc|s2×s2 ,
and

(3.11) Rc1(X,Y ) = Rc(X,Y ) + T (X,Y ),

where

(3.12) T (X,Y ) = trace(ρ(X)ρ(Y )) for X,Y ∈ gnc.

Since T is an Ad(G1) invariant bilinear form on g1, we have T (hi, hj) = 0
for i 6= j and, for each i, there exists a constant βi such that

(3.13) T |hi×hi = βiBhi =
βi
αi
〈 , 〉|p1,i×p1,i .
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Since ρ|p1 is symmetric, we have βi ≥ 0 with equality if and only
[hi, g2] = 0.

We now define the constants αi, i = 1, . . . r, in condition (iv) by

(3.14) αi =
−1− βi

c
,

and observe that αi > 0 since c < 0 and βi ≥ 0. By Equations 3.4,
3.10, 3.11, 3.13 and 3.14, we have Rc = c〈 , 〉 on all of q. Thus, we have
constructed a left-invariant Einstein metric on G/L.

It remains only to show that the inner product 〈 , 〉 on q is invariant

under AdĜ(L̂)|q. Condition (ii) guarantees that the restriction of 〈 , 〉 to

s2 × s2 is AdĜ(L̂)-invariant, so it remains only to check the restriction

to p1. By 3.9, the Cartan decomposition g1 = k1 + p1 is AdĜ(L̂)-

invariant. Thus, for each γ ∈ AdĜ(L̂), there exists a permutation σ of
{1, 2, . . . , r} such that γ(hi) = hσ(i) and γ(p1,i) = p1,σ(i) for all i. Since
the automorphism γ preserves both the bilinear form T in Equation 3.12
and intertwines the Killing form of hi with that of hσ(i), Equation 3.13
shows that βσ(i) = βi, and then Equation 3.14 implies ασ(i) = αi for
each i. Thus, by Condition (iv), 〈 , 〉 is γ-invariant. q.e.d.

4. Technical lemmas on GIT

In this section, the groups of primary interest are fully reducible sub-
groups of GL(V ), where V is a real or complex vector space. For a point
p ∈ V , we are interested understanding when the orbit G · p is closed
in V .

4.1. Preliminaries on fully reducible groups. We first recall the
definition of fully reducible.

Definition 4.1. A subgroup G ⊂ GL(V ) is called fully reducible
if for any G-invariant subspace W of V , there exists a complementary
G-invariant subspace W ′ of V .

Observe that if a subspace W is invariant under G, then it is also
invariant under the Zariski closure G of G. In this way we see that
G being fully reducible implies G is also fully reducible. Further, if
G is connected and fully reducible, then G may be written as G =
[G,G]Z(G), where [G,G] is semisimple, Z(G) is the center of G, and
the elements of Z(G) are semisimple (i.e., diagonalizable). This fact is
well-known for algebraic groups and the proof is more or less the same
in the case of connected Lie groups.

Let H be an algebraic, fully reducible subgroup of an algebraic, fully
reducible subgroup G of GL(V ). It is well-known that the normalizer
NG(H) and centralizer ZG(H) of H in G are also fully reducible and
algebraic. Further, ZG(H) ·H is a finite index subgroup of NG(H). At
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the Lie algebra level, this is precisely

Ng(h) = Zg(h) + h.

Definition 4.2. Let k = R or C and consider the multiplicative group
k∗ of all non-zero elements. A 1-parameter subgroup of G is a homomor-
phism λ : k∗ → G, where we consider k = R for real Lie groups G and
k = C for complex Lie groups G. We say λ is an algebraic 1-parameter
subgroup if the map λ is regular (i.e., a map between algebraic groups).

Remark 4.3. Let λ be a 1-parameter subgroup of G. The image
λ(R) is a subgroup of G and we will often abuse notation by denoting
this subgroup simply by λ.

Our definition of 1-parameter subgroup is somewhat restrictive as
it does not include one-parameter subgroups of nilpotent Lie groups,
however, this is a standard definition when studying reductive algebraic
groups. Note that algebraic 1-parameter subgroups are fully reducible.
(This can be worked out by hand, but it is also a special case of a gen-
eral result of Mostow on regular representations of algebraic, reductive
groups [Mos56].)

4.2. Geometric Invariant Theory.

Theorem 4.4. [Hilbert–Mumford criterion] Let G be an algebraic,
fully reducible subgroup of GL(V ). Suppose the stabilizer subgroup Gp
is finite. Then G ·p is closed if and only if λ ·p is closed for all algebraic
1-parameter subgroups λ of G.

The theorem above was proven over C by Mumford and extended to
real algebraic groups by Birkes [Bir71]. Applying the criterion twice, we
have the following immediate consequence on the inheritance of closed
orbits.

Corollary 4.5. Let G be a fully reducible, algebraic group such that
G·p is closed and Gp is finite. For any fully reducible, algebraic subgroup
G′ of G, we have that G′ · p is closed.

Proof. The orbit G ·p being closed implies λ ·p closed for all algebraic
1-parameter subgroups λ of G. Now consider only those λ which are
subgroups of G′. The stabilizer subgroup G′p ⊂ Gp is finite and so
applying the Hilbert–Mumford criterion, we see that G′ · p is closed.

q.e.d.

The statement of the corollary is rather strong and, in fact, does not
hold without the condition on the stabilizer; see, e.g., [Jab08, Example
6]. However, the corollary generalizes in a partial and useful way, as
we will see. In the results below, we do not specify whether the ground
field is R or C as knowing the result for one ground field implies that it
holds for the other, cf [BHC62, RS90]. The following are well-known.
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Proposition 4.6. Let G be a fully reducible, algebraic group. Denote
the connected component of the identity (in the Hausdorff topology) by
G0. Then G · p is closed if and only if G0 · p is closed.

We say a group G is pre-algebraic if G is the connected component of
the identity of an algebraic group. Obviously, if G is pre-algebraic we
have G = (G)0 where G is the Zariski closure of G. We note that a pre-
algebraic group is fully reducible if and only if its Zariski closure is fully
reducible; this follows from the fact that a (not necessarily connected)
algebraic group is fully reducible if and only if its Lie algebra is so
[Mos56].

Proposition 4.7. Let G be an algebraic group. The stabilizer sub-
group Gp of a point p is an algebraic group. Further, if G is fully
reducible and the orbit G · p is closed, then Gp is fully reducible as well.

Proposition 4.8. [Lun75, Corollary 3.1] Let G be a fully reducible,
algebraic group. Let H be a fully reducible, algebraic subgroup of G
which stabilizes a point p. Then G · p is closed if and only if NG(H) · p
is closed.

From this result, we have the following useful lemma.

Lemma 4.9. Let G be a fully reducible, pre-algebraic group and H
a connected, fully reducible (not necessarily algebraic) subgroup of G
which stabilizes a point p. Then G · p is closed if and only if ZG(H)0 · p
is closed.

Proof. We prove the lemma first in the special case thatG is algebraic.
Let H denote the Zariski closure of H. First observe that ZG(H) =
ZG(H). As H is fully reducible, we have H = [H,H] Z(H), where Z(H)
is the center of H. Using the fact that connected, linear semisimple
groups are necessarily pre-algebraic, we have [H,H] is pre-algebraic and

so H = [H,H] Z(H), where ([H,H])0 = [H,H].
As H is fully reducible we have thatH is fully reducible. Additionally,

H is algebraic and so
Ng(h) = Zg(h) + h,

which implies NG(H)0 = ZG(H)0 ·H0 = ZG(H)0 ·H. As H stabilizes p
we see that NG(H)0 · p = ZG(H)0 · p. Noting that ZG(H) is algebraic
and applying Propositions 4.6 & 4.8, the lemma follows for G algebraic.

For the general case, consider a pre-algebraic group G0 with Zariski
closure G. By Proposition 4.6 and the work above, we have G0 · p is
closed if and only if ZG(H)0 · p is closed. However, ZG(H)0 = ZG0(H)0

as they have the same Lie algebra and the lemma is proven. q.e.d.

Corollary 4.10. Let G be a fully reducible, pre-algebraic group. The
orbit G · p ⊂ V is closed if and only if the stabilizer H = (Gp)0 is fully
reducible and ZG(H)0 · p is closed.
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The following is a slight generalization of the Hilbert–Mumford cri-
terion.

Lemma 4.11. Let G be a fully reducible, (pre-)algebraic group such
that H = (Gp)0 ⊂ Z(G), the center of G. Then G · p is closed if and
only if λ · p is closed for all (pre-)algebraic 1-parameter subgroups λ of
G.

We note that the condition on H makes it a fully reducible subgroup
automatically.

Proof. LetG be a pre-algebraic group with Zariski closureG. Observe
that Z(G) ⊂ Z(G). This fact together with Proposition 4.6 implies that
it suffices to prove the lemma in the case that G and λ are algebraic.

We begin by decomposing G as a product G = IH, where I is a
fully reducible, algebraic subgroup with finite stabilizer. The group I is
defined as the Lie group whose Lie algebra is defined by

Lie I = {X ∈ g | trace(XY ) = 0 for all Y ∈ h}.

Details for showing I is fully reducible and algebraic are the same as
those given in Section 6 of [Jab11a], see the discussion after Proposition
6.6. To see that G = IH is a product of groups, it suffices to show
g = i + h is a direct sum of Lie algebras.

By hypothesis, h commutes with all of g and so commutes with i;
hence, we simply need to show the sum g = i+h is a vector space direct
sum. As H and G are pre-algebraic subgroups of some GL(V ), there
exists some inner product on V under which H and G are self-adjoint
[Mos55]. Using the resulting inner product on gl(V ), we see that i
is precisely the orthogonal complement of h in g, thence, we have the
direct sum g = i + h.

Let λ be a (pre-)algebraic 1-parameter subgroup of G. Observe that
λ = λ1λ2, where λ1 is a (pre-)algebraic 1-parameter subgroup of I and
λ2 is a (pre-)algebraic 1-parameter subgroup of H. As H stabilizes p,
we see from Theorem 4.4 that G · p = I · p is closed if and only if
λ ·p = λ1 ·p is closed for all (pre-)algebraic 1-parameter subgroups λ1 of
I or, equivalently, for all (pre-)algebraic 1-parameter subgroups λ of G.

q.e.d.

The next result on the inheritance of closed orbits is one of the main
technical results needed in the proof of the Key Lemma (see Section 5).

Corollary 4.12. Let G be a fully reducible, pre-algebraic group such
that (Gp)0 ⊂ Z(G). Consider a fully reducible, pre-algebraic subgroup
G′ of G. If G · p is closed, then so is the orbit G′ · p.

One proves this corollary in the same way that one proves Corol-
lary 4.5. We note that (G′p)0 being central in G′ follows from (Gp)0
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being central in G. In the sequel, we make use of the following well-
known proposition.

Proposition 4.13. Let G be a fully reducible, pre-algebraic subgroup
of GL(V ) such that G · p is closed for some p ∈ V . If N is a normal,
fully reducible, pre-algebraic subgroup of G, then N · p is closed.

Remark 4.14. As this result is known to many working in geometric
invariant theory, a reference is hard to find and so we provide a short
argument for completeness.

Proof. By Proposition 4.6, we may assume that G and N are alge-
braic.

Since N is a fully reducible, algebraic group acting on the closed
variety G · p, we know that there exists g ∈ G such that N · gp is
closed. In fact, this is true for ‘almost all’ g ∈ G; this is the main result
of [Lun72]. However, N · gp = g(N · p), as N is normal. The map
g : V → V being a homeomorphism gives that N · p is closed as well.

q.e.d.

5. Proof of the Key Lemma 3.6

The goal of this section is to prove the Key Lemma 3.6, which we
restate here for convenience:

Lemma 5.1 (Key Lemma). Let S be a solvable Lie group of Einstein
type. Suppose that S can be written as a semi-direct product S = S1nS2

satisfying the following hypotheses:

• S1 isomorphically embeds as an Iwasawa subgroup in a semisimple
Lie group G1. In particular, we can write S1 = A1N1, where G1 =
K1A1N1 is an Iwasawa decomposition.
• The adjoint action of S1 on the ideal s2 of s extends to a represen-

tation of G1 on s2. We, thus, view S as a subgroup of G1 n S2.

Then S2 is of Einstein type.

Simplifying hypotheses 5.2. We may assume that G1 is semisim-
ple of noncompact type. Indeed, in the language of Lemma 5.1, the
group S1 lies in the noncompact part Gnc of G1, and the hypotheses of
the Lemma trivially remains true if we replace G1 by Gnc.

We will apply Nikolayevsky’s technique, described in Subsection 2.2
to prove Lemma 5.1.

5.1. The pre-Einstein derivation of N2.

Notation 5.3. The representation of G1 on s2 in Lemma 5.1 leaves
the nilradical n2 of s2 invariant. We will denote by ρ : g1 → End(n2)
the induced representation of the Lie algebra g1 on n2.
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Lemma 5.4. Let H be a semisimple Lie group of noncompact type
and let ρ : H → GL(V ) be a finite-dimensional representation. Let
H = KS be an Iwasawa decomposition. If an element T ∈ End(V )
commutes with all elements of ρ(S), then it commutes with all of ρ(H).

Proof. H acts on End(V ) by (h, T ) 7→ ρ(h)Tρ(h)−1 for h ∈ H,
T ∈ End(V ). If T commutes with ρ(S), then the orbit of T under
the action of H is compact. By [Jab15b, Lemma 7.2], every compact
orbit of a finite-dimensional representation of a semisimple Lie group of
noncompact type consists of a single point. The lemma follows. q.e.d.

Lemma 5.5. Let H be a connected Lie group and N its nilradical. Let
W ∈ h, and suppose that ad(W )|n : n→ n is a non-singular derivation.
Then the orbit of W under AdH(N) is given by

AdH(N)(W ) = {W +X : X ∈ n}.

Proof. We induct on the step size of the nilpotent Lie algebra n. If n is
abelian, then we have Ad(exp(Y ))(W ) = W +[Y,W ] = W −ad(W )(Y ).
Thus, the lemma follows in this case from the non-singularity of ad(W )|n.

For the general case, let X ∈ n. We need to find n ∈ N such that
AdH(n)(W ) = W + X. Write [N,N ] for the normal subgroup of H
with Lie algebra [n, n], and let H̄ = H/[N,N ]. Let π : H → H̄ be the
homomorphic projection. Since H̄ has abelian nilradical N̄ = N/[N,N ],
there exists n̄1 ∈ N̄ such that AdH̄(n̄1)(W̄ ) = W̄ + X̄. Choose n1 ∈ N
such that π(n1) = n̄1. We then have

V := Ad(n1)(W ) ≡W +X mod [n, n].

Set U = (W+X)−V ∈ [n, n]. Since ad(V )|n is conjugate to ad(W )|n via
the automorphism Ad(n1) of n, the hypothesis of the lemma implies that
ad(V )|n is a non-singular derivation and, thus, restricts to a non-singular
derivation of [n, n]. Let s be the subalgebra of h given by s = RV +[n, n]
and let S denote the corresponding connected subgroup of H. The Lie
algebra s has nilradical [n, n]. Since the step size of [n, n] is less than
that of n, the inductive hypothesis gives us an element n2 of [N,N ] such
that AdS(n2)(V ) = V +U . Note that AdH(n2)(V ) = AdS(n2)(V ). Let
n = n2n1. We then have

AdH(n)(W ) = AdH(n2)(V ) = V + U = W +X,

and the lemma follows. q.e.d.

Proposition 5.6. We assume the hypotheses of Lemma 5.1 and 5.2.
Then, letting n2 = Nilrad(s2), there exists an abelian complement a2 of
n2 in s2 such that:

i) Letting a = a1 + a2 and n = n1 + n2, then s = a + n is a standard
decomposition of s. (See Remark 2.8 for the definition of standard
decomposition.)

ii) a2 commutes with g1.
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iii) There exist an element W = W1 + W2 ∈ a with Wi ∈ ai, i = 1, 2
such that, in the notation of 2.3, ϕ := ad(W )|Rn is a pre-Einstein
derivation of n and ϕ2 := ad(W2)|Rn2 is a pre-Einstein derivation
of n2.

iv) ϕ2 is positive-definite.

Proof of Proposition 5.6. We view s1 as a subalgebra of g1. By the
second hypothesis, the representation X 7→ ad(X)|s2 of s1 extends to a
representation ρ : g1 → End(s2). Thus, we may view s as a subalgebra
of the semi-direct sum g1 n s2. Since ρ(s1) is an Iwasawa subalgebra
of ρ(g1), we see that ρ(a1) consists of fully reducible elements. Since
also a1 acts fully reducibly on n1, it follows that ads(a1) consists of
fully reducible elements. Let a′ be a maximal fully ad-reducible abelian
subalgebra of s containing a1, and let n = Nilrad(s). By Remark 2.8,
s = a′ + n is a standard decomposition.

Define a′2 := (n1 + s2)∩ a′. Since s = a1 + n1 + s2 (vector space direct
sum) and a1 ⊂ a′, we have a′ = a1+a′2. From the facts that a1 commutes
with a′, normalizes each of n1 and s2, and contains an element which is
non-singular on n1, we see that a′2 ⊂ s2. Thus, s2 = a′2 + n2.

By Propositions 2.4 and 2.10, there exists an element W ′ ∈ a′ such
that (ad(W ′)|n)R is a pre-Einstein derivation of n. Write W ′ = W ′1 +
W ′2 with W ′i ∈ a′i. Since [g1, s2] ⊂ n2, there exists a subspace c of s2

complementary to n2 such that [g1, c] = 0. Write W ′2 = W2 + X with
W2 ∈ c and X ∈ n2. Since both c and a′2 commute with a1, so does
the element X; i.e., X lies in the zero-eigenspace q of ad(a1)|n. The
eigenspace q is a subalgebra of n2. Since a′2 commutes with a1, ad(a′2)
leaves q invariant. Moreover, since [W ′, n] = n and [W ′1, q] = 0, we must
have [W ′2, q] = q. Thus, ad(W ′2)|q is a non-singular semisimple derivation
of the nilpotent Lie algebra q. By Lemma 5.5 there exists an element
Y ∈ q such that Ad(exp(Y ))(W ′2) = W ′2 − X = W2. Set W1 = W ′1
and W = W1 + W2. Observe, W = Ad(exp(Y ))(W ′) is a pre-Einstein
derivation. Let a2 = Ad(exp(Y ))(a′2) ⊂ s2 and set a = a1 + a2.

We need to show that a and W satisfy conditions (i)–(iv). Noting that
a = Ad(exp(Y ))(a′), we see that a+n is again a standard decomposition
of s, and, thus, we have (i).

We next prove (iv). Let λ be an eigenvalue of ad(W2)|n2 and Vλ
the corresponding eigenspace. Then Vλ is ρ(g1)-invariant since W2

commutes with ρ(g1). Since g1 is semisimple, we must have
trace(ad(X)|Vλ) = 0 for all X ∈ g1 and, thus,

trace(ad(W )Vλ) = trace(ad(W2)Vλ) = λ dim(Vλ).

Since ϕ = ad(W )|Rn is the pre-Einstein derivation of the Einstein nil-
radical n, all eigenvalues of ad(W )n2 have positive real part by Propo-
sition 2.4 and, thus, we must have Real(λ) > 0. This proves (iv).
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We next prove that a2 satisfies (ii). Since W2 ∈ c, we have [W2, g1] =
0. On the other hand, [W2, n2] = n2 by (iv). Hence, g1 + a2 is the
zero-eigenspace of adg1ns2(W2). All elements of adg1ns2(a2) commute
with adg1ns2(W2) and, thus, leave g1 + a2 invariant. Since [g1, s2] ⊂ n2,
we, thus, have [a2, g1] ⊂ (g1 + a2) ∩ n2 = (0), proving (ii).

(iii) We are left to prove that ϕ2, as defined in (iii), is the pre-Einstein
derivation of n2; i.e., that

(5.1) trace(ϕ2D) = trace(D),

for all D ∈ Der(n2).
We use the shorthand notation Der for Der(n2). As Der is the Lie

algebra of the algebraic group Aut(n2), it has a Levi decomposition

Der = Der1 + Der2,

where Der1 is a maximal semisimple subalgebra and the radical Der2

splits as a semi-direct sum

Der2 = Derab + Nilrad(Der),

with Derab an abelian subalgebra commuting with Der1. The subalge-
bra Der1 + Derab is a maximal fully reducible subalgebra of Der (i.e.,
maximal among all subalgebras of Der that act fully reducibly on n2),
and Derab consists of semisimple derivations of n2. The elements of
Nilrad(Der) are nilpotent derivations. By Mostow [Mos56, Theorem
4.1], the maximal fully reducible subalgebra of Der is unique up to con-
jugation. Every pre-Einstein derivation ψ of n2 lies in the center of
a maximal fully reducible subalgebra (see proof of [Nik11, Theorem
1.1(a)]) and hence is conjugate to an element of Derab.

To prove that ϕ2 is the pre-Einstein derivation, we are required to
show that Equation 5.1 holds for all D ∈ Der. However, the next lemma
(with ϕ2 playing the role of σ) shows that it, in fact, suffices to verify
Equation 5.1 only for a select subset of derivations D. The lemma is
motivated by the proof of Theorem 1 in [Nik11].

Lemma 5.7. Let σ be a semisimple derivation of n2 with real eigen-
values. Let r be any fixed choice of subalgebra of Der1 + Derab which
contains σ and Derab. If trace(σD) = trace(D) holds for all D ∈ r (cf.
Eqn 5.1), then σ is a pre-Einstein derivation of n2.

Remark 5.8. Although the pre-Einstein derivation is contained in
Derab, we are careful to note that, a priori, our subalgebra r must ex-
plicitly contain both σ and Derab.

Proof. Let ψ denote the unique pre-Einstein derivation contained in
Derab. As such, we know that

trace(ψD) = traceD for all D ∈ Der.
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By hypothesis, we have that ψ, σ ∈ r and that σ satisfies Eqn 5.1 for
D ∈ r. This yields

trace(ψ − σ)2 = trace(ψ(ψ − σ))− trace(σ(ψ − σ)) = 0.

Now recall that ψ is diagonalizable over R as it is a pre-Einstein
derivation. Together with the fact that σ is diagonalizable over R (being
positive definite) and that ψ and σ commute, we see that ψ − σ is
diagonalizable over R.

Finally, trace(ψ−σ)2 = 0 implies ψ = ϕ2, thence, σ is a pre-Einstein
derivation and so Eqn 5.1 holds for all derivations. q.e.d.

To use the lemma above, we carefully select a subalgebra of
Der1 + Derab which satisfies the hypotheses. Given any subalgebra b
of Der(n2), denote by Der(n2)b the subalgebra of all derivations that
commute with b.

Lemma 5.9. Let e = {D ∈ Der(n)a : D|n1 = 0}. Then:

i) e is an ideal in Der(n)a.

ii) Der(n2)a2+ρ(s1) = {D|n2 : D ∈ e}. (Here we are identifying a2 with
ad(a2)|n2.)

iii) Der(n2)a2+ρ(s1) = Der(n2)a2+ρ(g1).

iv) e acts fully reducibly on n and Der(n2)a2+ρ(s1) acts fully reducibly
on n2.

v) Equation 5.1 holds for every D ∈ Der(n2)a2+ρ(s1).

Proof. (i) Since a2 ⊂ a and n1 is the zero-eigenspace of a2 while
n2 = [a2, n2], all elements of Der(n)a leave each of n1 and n2 invariant.
Thus, e is an ideal in Der(n)a.

(ii) is elementary and (iii) follows from Lemma 5.4.
(iv) By Proposition 2.4, Der(n)a acts fully reducibly on n and, thus,

also on n2. Since e is an ideal in Der(n)a, it also acts fully reducibly.
(See [Mos56], p. 208.) The second statement in (iv) follows from (ii).

(v) Let D ∈ Der(n2)a2+ρ(s1). By (ii), D extends to a derivation D̃ ∈
Der(n) satisfying D̃|n1 = 0. Since ϕ is the pre-Einstein derivation of n,
we have (writing ϕ1 = (ad(W1)|n)R)

trace(D) = trace(D̃) = trace(ϕD̃) = trace(ϕ1D̃) + trace(ϕ2D)

= trace(ϕ1|n2D) + trace(ϕ2D).

Thus, we need only show that trace(ϕ1|n2D) = 0. By (iii), each eigen-
space V of D in n2 is preserved by ρ(g1) and we have trace(ρ(X)|V ) =
0 for all X ∈ g1, since every finite-dimensional representation of a
semisimple Lie algebra is traceless. This holds, in particular, for X =
W1, and, hence, we have trace(ϕ1|V ) = 0 on each such eigenspace. Thus,
trace(ϕ1|n2D) = 0 as was to be shown. This completes the proof of the
lemma. q.e.d.



32 C. S. GORDON & M. R. JABLONSKI

As Der(n2)a2+ρ(s1), a2, and ρ(g1) all act fully reducibly on n2 and

commute, the subalgebra Der(n2)a2+ρ(s1) + a2 + ρ(g1) acts fully re-
ducibly. Thus, there is some maximal reductive subalgebra Der1 + Derab

which contains them all. Clearly, Derab ⊂ Der(n2)a2+ρ(s1). Since ϕ2 ∈
Der(n2)a2+ρ(s1), we may apply the lemmas above to see that, in fact, ϕ2

is a pre-Einstein derivation of n2. This completes the proof of Proposi-
tion 5.6. q.e.d.

Corollary 5.10. To prove Lemma 5.1, it suffices to show that N2

admits a nilsoliton metric.

Corollary 5.10 follows from Proposition 5.6 and Corollary 2.13.
We will carry out the proof of the existence of a nilsoliton metric on

N2 in the next subsection.

5.2. Existence of a nilsoliton metric on N2. By Proposition 5.6,
we know that s2 can be written as a2 + n2 where a2 is abelian and
[g1, a2] = 0. Moreover, there exists an element W = W1 +W2 ∈ a with
Wi ∈ ai, i = 1, 2 such that ϕ := ad(W )|Rn is a pre-Einstein derivation of
n and ϕ2 := ad(W2)|Rn2 is a pre-Einstein derivation of n2.

Simplifying hypotheses 5.11. In addition to the hypotheses of
Lemma 5.1 and our first simplification 5.2, we claim that it suffices to
prove the existence of a nilsoliton metric on N2 under the following
additional hypotheses on S:

i) All eigenvalues of ad(W2)|n2 are real; equivalently, ϕ2 := ad(W2)|n2 .
ii) a2 is one-dimensional; equivalently, a2 = RW2.

Indeed, let s′2 be the semi-direct sum of Rϕ2 n n2. By Remark 2.3
and Proposition 5.6, ϕ2 commutes with the action ρ of g1 on n2. In
particular, s′ = s1 n s′2 is a well-defined solvable Lie algebra and, by
Corollary 2.13, the corresponding simply-connected Lie group S′ is of
Einstein type. We can again use Remark 2.3 to form the semi-direct
product G1 nS′2. Since the nilradical N2 of S′2 coincides with that of S2

and since S′ satisfies the hypotheses of Lemma 5.1, the claim follows.

Notation and Remarks 5.12. In the notation of Proposition 5.6,
we will identify W2 with ϕ2 and, thus, write ϕ2 ∈ a2. We will similarly
identify the pre-Einstein derivation ϕ of s with W = W1 + ϕ2. (Note
that W1 = WR

1 since W1 ∈ a1 and s1 = a1 + n1 is an Iwasawa algebra.)
(ii) We use the identifications in 2.12. Let n = dim(n) and ni =

dim(ni). We identify Rn with Rn1 ×Rn2 and let

i : GL(Rn2)→ GL(Rn)

be the associated embedding. Thus,

i(α) =

[
I 0
0 α

]
,
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and

i∗(X) =

[
0 0
0 X

]
,

for α ∈ GL(n2,R) and X ∈ gl(n2,R). In the notation of Proposi-
tion 2.11, we write µ for the Lie bracket of n = n1 + n2 and µi for the
Lie bracket of ni and view n, respectively ni, as the vector space Rn, re-
spectively Rni , with bracket µ, respectively µi. Under the identification
of Rn with Rn1 ×Rn2 , we may write

(5.2) µ = µ1 + µ12 + µ2,

where µ12 denotes the adjoint action of n1 on the ideal n2. Note that

µ12(X,Y ) = ρ(X)Y for allX ∈ n1, Y ∈ n2,

where ρ : g1 → Der(s2) is the differential of the representation of G1 in
Lemma 5.1.

Let Gϕ < SL(n,R) and Gϕ2 < SL(n2,R) be the pre-algebraic groups
defined in Proposition 2.11. To prove Lemma 5.1, we need to show that
Gϕ2 · µ2 is closed. We will use Equation 5.2 and the fact that Gϕ · µ is
closed.

Lemma 5.13.

i) ρ(g1) < gϕ2.
ii) Let cρ = Zgϕ2

(ρ(g1)) be the centralizer of ρ(g1) in gϕ2 and let Cρ be
the corresponding connected subgroup of Gϕ2. Then i(Cρ) < Gϕ.

iii) For α ∈ Cρ, we have

i(α) · µ = µ1 + µ12 + α · µ22.

Proof. (i) is immediate since ρ(g1) consists of derivations of trace zero
that commute with ϕ2, as noted immediately following the statement
of 5.11. For (ii), let X ∈ cρ. Recalling that ϕ = W1 +ϕ2 with W1 ∈ a1,
we see that

[ϕ, i∗X]gl(n,R) = i∗([ρ(W1), X]gl(n2,R) + [ϕ2, X]gl(n2,R)) = 0.

(Here [· ·]gl(m,R) denotes the Lie bracket of gl(m,R).) Thus, i∗(X) ∈
z(ϕ). Moreover,

trace(ϕ i∗(X)) = trace(ϕ2X) = 0.

(The first equality follows from the fact that each element of ρ(g1)–in
particular, ρ(W1)–restricts to a traceless representation on each eigen-
space of ϕ2, and the second equality is immediate from the definition
of gϕ2 in Proposition 2.11.) Hence, i∗X ∈ gϕ. Finally, (iii) follows from
Equation 5.2 and the fact that α commutes with ρ(g1). q.e.d.

As noted in 2.12(i), the stabilizer of µ2 in Gϕ2 has Lie algebra
Der(n2)∩sl(n2,R). Let H be any connected fully reducible subgroup of
the stabilizer and let C := ZGϕ2 (H)0. By Lemma 4.9, Gϕ2 ·µ2 is closed
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if and only if C · µ2 is closed. If, moreover, we choose H so that its
Lie algebra contains ρ(g1), then by Lemma 5.13, the latter condition is
equivalent to i(C) · µ being closed. In the following corollary, we make
a choice of H.

Corollary 5.14. Let d = Der(n2)a2+ρ(s1) ∩ sl(n2,R) and let h =
ρ(g1) + d < Der(n2). Let c = Zgϕ2

(h), and let C be the corresponding
connected subgroup of Gϕ2. Then the following are equivalent:

• N2 admits a nilsoliton metric;
• the orbit C · µ2 is closed;
• the orbit i(C) · µ is closed.

Proof. By Lemma 5.9, d is fully reducible and it commutes with the
fully reducible algebra ρ(g1); thus, h is fully reducible. Hence, the equiv-
alence of the first two conditions follows from Lemma 4.9 and Propo-
sition 2.11. The equivalence of the second and third conditions follows
from Lemma 5.13(iii) since C < Cρ. q.e.d.

To complete the proof of the Key Lemma, we need to show that
i(C) ·µ is closed. We exploit the notion of ‘inheritance of closed orbits’,
see Section 4.

Lemma 5.15. Let gaϕ be the subalgebra of gϕ consisting of all el-
ements that commute with ads(a)|n, and let Ga

ϕ be the corresponding
connected subgroup of Gϕ. Then Ga

ϕ is a pre-algebraic fully reducible
subgroup of Gϕ, and Ga

ϕ · µ is closed.

Proof. By 2.12, Gϕ is fully reducible and pre-algebraic. By Defi-
nition 2.9 and Proposition 2.11, ad(a) ∩ ker(t) = ad(a) ∩ sl(n,R) and,
hence, there exists a codimension one subspace a0 of a such that ad(a0) ⊂
gϕ and a = a0 +Rϕ. Since all elements of Gϕ commute with ϕ, we have
Ga
ϕ = ZGϕ(ad(a0)). The group Ad(A0) is an abelian group of real

semisimple transformations and, hence, is fully reducible. Hence, Ga
ϕ is

also pre-algebraic and fully reducible. By Luna’s result Lemma 4.9, the
orbit Ga

ϕ · µ is closed. q.e.d.

Lemma 5.16. Let F = {X ∈ Ga
ϕ : X|n1 = Id}0. Then

i) F is a fully reducible, pre-algebraic, normal subgroup of Ga
ϕ.

ii) F · µ is closed.
iii) The Lie algebra of the stabilizer Fµ coincides with e∩sl(n,R) where

e is the subalgebra of Der(n) defined in Lemma 5.9.
iv) Writing E = (Fµ)0, then (ZF (E))0 · µ is closed.
v) i(C) < (ZF (E))0.

Proof. Since Ga
ϕ commutes with ϕ2, it normalizes each of n1 and

n2. Statement (i) is, thus, immediate. Statement (ii) follows from
the closedness of the orbit Ga

φ · µ together with Proposition 4.13, and

Statement (iii) follows from Lemma 5.9(i). (iv) is a consequence of
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Lemma 4.9. Finally, (v) follows from the definition of C in Corol-
lary 5.14; in fact, i(C) = (ZF (E))0 ∩ i(Cρ). q.e.d.

To complete the proof of the Key Lemma, note that i(C) is a fully
reducible, pre-algebraic group. We apply Corollary 4.12 with (ZF (E))0

playing the role of G and i(C) playing the role of G′ to conclude that
i(C) · µ is closed. The Key Lemma now follows from Corollary 5.14.

6. Extensions of soliton metrics

A long standing and important question is to understand when a solv-
able or nilpotent Lie group admits an Einstein or Ricci soliton metric.
The first characterization on the existence of Ricci soliton metrics on
nilpotent Lie groups was due to Lauret [Lau01].

Theorem 6.1 (Lauret). A nilpotent Lie group N admits a Ricci
soliton metric if there exists an abelian group A acting reducibly on n
such that AnN admits an Einstein metric.

This was later extended to solvable Lie groups for which the Ricci
soliton is a so-called ‘algebraic Ricci soliton’ [Lau11] and in [Jab15a]
it was shown that all Ricci solitons on solvable Lie groups are algebraic.
Thus, we have the following.

Theorem 6.2 (Lauret, Jablonski). A solvable Lie group S admits a
Ricci soliton metric if there exists an abelian group A acting reducibly
on s such that An S admits an Einstein metric.

Upon inspection of the structure of these groups, one can drop the
condition that A act reducibly, a priori, as it can be deduced.

All known examples of non-compact, homogeneous Einstein and Ricci
soliton spaces are isometric to solvable Lie groups with left-invariant
Riemannian metrics. Naturally, one asks if results analogous to The-
orem 6.2 are possible if A is replaced with some non-abelian solvable
Lie group. The Key Lemma above (Lemma 3.6) is one such extension
where a nilpotent Lie group is extended by a solvable group with some
conditions on the action of the extension.

Question 6.3. Consider an extension S1nN2 as in the Key Lemma.
Can we drop the hypothesis that the adjoint representation of S1 on n2

extend to a representation of the full semisimple to which S1 belongs?

Proposition 6.4. There exists a solvable group S1 and a nilpotent
group N2 such that S = S1nN2 admits an Einstein metric, but N2 does
not admit a soliton.

To build such an example, we begin by defining the bracket relations
for a nilpotent Lie algebra which will be the nilradical n of s. Let n =
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span{e0, . . . , e8, z1, z2} as a vector space. We define a 2-step nilpotent
Lie bracket structure on n according to the following relations.

[e1, e2] =
√

8 z1, [e0, e1] =
√

8 z2,

[e3, e4] =
√

12 z1,

[e5, e6] =
√

3 z1, [e5, e8] = 3 z2,

[e7, e8] =
√

3 z1, [e6, e7] = 3 z2.

Using skew-symmetry and bilinearity, these relations completely deter-
mine the Lie bracket. Notice that the center of n is spanned by {z1, z2}.

We now extend the Lie bracket on n to a solvable Lie algebra of
dimension one greater. Let s = a n n where a is 1-dimensional and
spanned by an element A acting on n by

ad A|n = diag{21, 17, 21, 19, 19, 19, 19, 19, 19, 38, 38},
where the diagonal matrix is relative to the basis {e0, . . . , e8, z1, z2} of n.

If we choose {A, e0, . . . , e8, z1, z2} to be an orthonormal basis of s,
then the Lie group S with Lie algebra s has a left-invariant Einstein
metric.

Now observe that s1 = span{A, e0} is isomorphic to the Iwasawa alge-
bra of the semisimple Lie algebra sl(2,R). Consider n2 = span{e1, . . . ,
e8, z1, z2} and observe that n2 is an ideal. In this way, we have decom-
posed the group S into a semi-direct product

S = S1 nN2.

All that remains is to prove N2 does not admit a left-invariant Ricci
soliton. By Proposition 4.4 of [Jab11b], we see that N2 does not admit
such a metric. (In the notation of that work, we have k = 2 and n = 1.)
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