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Abstract

For projective conifold transitions between Calabi—Yau three-
folds X and Y, with X close to Y in the moduli, we show that the
combined information provided by the A model (Gromov-Witten
theory in all genera) and B model (variation of Hodge structures)
on X, linked along the vanishing cycles, determines the corre-
sponding combined information on Y. Similar result holds in the
reverse direction when linked with the exceptional curves.

0. Introduction

0.1. Statements of main results. Let X be a smooth projective 3-
fold. A (projective) conifold transition X Y is a projective degenera-
tion 7 : ¥ — A of X to a singular variety X = Xy with a finite number
of ordinary double points (abbreviated as ODPs or nodes) p1, ..., pk,
locally analytically defined by the equation

r} 4+ a5+ a5+ 25 =0,

followed by a projective small resolution v : Y — X. In the process of
complex degeneration from X to X, k vanishing spheres S; = S3 with
trivial normal bundle collapse to nodes p;. In the process of “Kéhler
degeneration” from Y to X, the exceptional loci of 1) above each p; is
a smooth rational curve C; = P! with N¢,/y = Opi(—1)%2. We write
Y N\ X for the reverse process.

Notice that v is a crepant resolution and 7 is a finite distance degen-
eration with respect to the quasi-Hodge metric [39, 40]. A transition
of this type (in all dimensions) is called an extremal transition. In
contrast to the usual birational K-equivalence, an extremal transition
may be considered as a generalized K-equivalence in the sense that the
small resolution v is crepant and the degeneration 7 preserves sections
of the canonical bundle. It is generally expected that simply connected
Calabi—Yau 3-folds are connected through extremal transitions, of which
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conifold transitions are the most fundamental. (This has been exten-
sively checked numerically [17].) It is, therefore, a natural starting point
of investigation.

We study the changes of the so-called A model and B model under a
projective conifold transition. In this paper, the A model is the Gromov—
Witten (GW) theory of all genera; the B model is the variation of Hodge
structures (VHS), which is in a sense only the genus zero part of the
quantum B model.

In general, the conditions for the existence of projective conifold tran-
sitions is an unsolved problem except in the case of Calabi—Yau 3-folds,
for which we have fairly good understanding. For the inverse coni-
fold transition Y N\, X, a celebrated theorem of Friedman [8] (see also
[15, 38]) states that a small contraction Y — X can be smoothed if
and only if there is a totally nontrivial relation between the exceptional
curves. That is, there exist constants a; # 0 for all 4 = 1,...,k such
that Zle a;[C;] = 0. These are relations among curves [C;]’s in the
kernel of Hy(Y)z — H2(X)z. Let u be the number of independent re-
lations and let A € M}y, (Z) be a relation matrix for C;’s, in the sense
that the column vectors span all relations. Conversely, for a conifold
transition X Y, Smith, Thomas and Yau proved a dual statement in
[36], asserting that the k vanishing 3-spheres S; must satisfy a totally
nontrivial relation Zle bi[Si] = 0 in Vz = ker(H3(X)z — H3(X)z)
with b; # 0 for all i. Let p be the number of independent relations and
B € My ,(Z) be a relation matrix for S;’s. It turns out that u+p ==k
[5] and the following exact sequence holds.

Theorem 0.1 (= Theorem 1.14). Under a conifold transition X /Y
of smooth projective threefolds, we have an exact sequence of weight two
Hodge structures:

(0.1) 0 HX(Y)/H2(X) B A v o,

We interpret this as a partial exchange of topological information
between the excess A model of Y/X (in terms of H2(Y)/H?(X)) and
the excess B model of X/Y in terms of the space of vanishing cycles V.

To study the changes of quantum A and B models under a projective
conifold transition of Calabi—Yau 3-folds and its inverse, the first step is
to find a D-module version of Theorem 0.1. We state the result below
in a suggestive form and leave the precise statement to Theorem 4.1:

Theorem 0.2 (= Theorem 4.1). Via the exact sequence (0.1), the
trivial logarithmic connection on (C @ CV)* — CF induces simultane-

ously the logarithmic part of the Gauss—Manin connection on'V and the
Dubrovin connection on H*(Y)/H?*(X).

Note that the Gauss—Manin connection on V determines the excess
B model and Dubrovin connection on H?(Y)/H?(X) determines the
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excess A model in genus zero. The logarithmic part of the connection
determines the residue connection and, hence, the monodromy. One
can interpret Theorem 0.2 heuristically as “excess A theory + excess
B theory ~ trivial”. In other words, the logarithmic parts of two flat
connections on excess theories “glues” to form a trivial theory. This
gives a strong indication towards a unified A + B theory.

“Globalizing” this result, i.e., going beyond the excess theories, is the
next step towards a true A + B theory, which is still beyond immediate
reach. Instead we will settle for results on mutual determination in
implicit form. Recall that the Kuranishi spaces M x, My of Calabi—Yau
manifolds are unobstructed (the Bogomolov—Tian—Todorov theorem).
For a Calabi-Yau conifold X, the unobstructedness of M ¢ also holds
[15, 38, 27].

Theorem 0.3. Let X /'Y be a projective conifold transition of
Calabi-Yau threefolds such that [X| is a nearby point of [X] in Mx.
Then

(1) A(X) is a sub-theory of A(Y).

(2) B(Y) is a sub-theory of B(X).

(3) A(Y) can be reconstructed from a refined A model of X° := X \
Ui:1 Si “linked” by the vanishing spheres in B(X).

(4) B(X) can be reconstructed from a refined B model of Y° :=Y \
Ule C; “linked” by the exceptional curves in A(Y').

The meaning of these slightly obscure statements will take the entire
paper to spell them out. It may be considered as a categorification of
Clemens’ identity p + p = k. Here we give only brief explanations.

(1) is mostly due to Li-Ruan, who in [22] pioneered the mathematical
study of conifold transitions in GW theory. The proof follows from
degeneration arguments and existence of flops (cf. Proposition 2.1).

For (2), we note that there are natural identifications of My with
the boundary of M ¢ consisting of equisingular deformations, and M x
with Mg \ © where the discriminant locus © is a central hyperplane
arrangement with axis My (cf. §3.3.2). Therefore, the VHS associated
to Y can be considered as a sub-VHS system of VMHS associated to
X (cf. Corollary 3.20), which is a regular singular extension of the VHS
associated to X.

With (3), we introduce the “linking data” of the holomorphic curves
in X°, which not only records the curve classes in X but also how the
curve links with the vanishing spheres | J; S;. The linking data on X can
be identified with the curve classes in Y by Ha(X°) = Hy(Y) (cf. Def-
inition 5.2 and (5.3)). We then proceed to show, by the degeneration
argument, that the virtual class of moduli spaces of stable maps to X°
is naturally a disjoint union of pieces labeled by elements of the linking
data (cf. Proposition 5.6). Furthermore, the Gromov—Witten invariants
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in Y is the same as the numbers produced by the component of the
virtual class on X labeled by the corresponding linking data. Thus,
the refined A model is really the “linked A model” and is equivalent to
the (usual) A model of Y (for non-extremal curves classes) in all gen-
era. The vanishing cycles from B(X) plays a key role in reconstructing
A(Y).

For (4), the goal is to reconstruct VHS on Mx from VHS on My
and A(Y). The deformation of X is unobstructed. Moreover, it is well
known that Def(X) = H'(Y°, Ty-). Even though the deformation of Y°
is obstructed (in the direction transversal to My ), there is a first order
deformation parameterized by H'(Y°, Ty-) which gives enough initial
condition to uniquely determine the degeneration of Hodge bundles on
M g near My . A technical result needed in this process is a short exact
sequence

0=V = HX)— H*(Y°) =0,

which connects the limiting mixed Hodge structure (MHS) of Schmid
on H3(X) and the canonical MHS of Deligne on H3(Y°) (cf. Proposi-
tion 6.1). Together with the monodromy data associated to the ODPs,
which is encoded in the relation matrix A of the extremal rays on Y, we
will be able to determine the VHS on M x near My . In the process,
an extension of Schmid’s nilpotent orbit theorem [34] to degenerations
with certain non-normal crossing discriminant loci is also needed. See
Theorem 3.14 for details.

0.2. Motivation and future plans. Our work is inspired by the fa-
mous Reid’s fantasy [30], where conifold transitions play a key role in
connecting irreducible components of moduli of Calabi—Yau threefolds.
Theorems 0.2 and 0.3 above can be interpreted as the partial exchange
of A and B models under a conifold transition. We hope to answer the
following intriguing question concerning with “global symmetries” on
moduli spaces of Calabi—Yau 3-folds in the future: Would this partial
exchange of A and B models lead to “full exchange” when one connects
a Calabi—Yau threefold to its mirror via a finite steps of extremal tran-
sitions? If so, what is the relation between this full exchange and the
one induced by “mirror symmetry”? To this end, we need to devise a
computationally effective way to achieve explicit determination of this
partial exchange. One missing piece of ingredients in this direction is
a blowup formula in the Gromov—Witten theory for conifolds, which
we are working on and have had some partial success. (For smooth
blowups with complete intersection centers, we have a fairly good solu-
tion in genus zero [19].)

More speculatively, the mutual determination of A and B models on
X and Y leads us to surmise the possibility of a unified “A + B model”
which will be invariant under any extremal transition. For example, the
string theory predicts that Calabi—Yau threefolds form an important
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ingredient of our universe, but it does not specify which Calabi—Yau
threefold we live in. Should the A + B model be available and proven
invariant under extremal transitions, one would then have no need to
make such a choice.

The first step of achieving this goal is to generalize Theorem 0.2 to
the full local theory, including the non-log part of the connections. We
note that the excess A model on H2(Y/X) can be extended to the (flat)
Dubrovin connection on Y while the excess B model on H3(X/Y) can
be extended to the (flat) Gauss-Manin connection on X. We hope to be
able to “glue” the complete A model on Y and the complete B model
on X as flat connections on the unified K&hler plus complex moduli.
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1. The basic exact sequence from Hodge theory

In this section, we recall some standard results on the geometry of
projective conifold transitions. Definitions and short proofs are mostly
spelled out to fix the notations, even when they are well known. Com-
bined with well-known tools in Hodge theory, we derive the basic exact
sequence, which is surprisingly absent in the vast literature on the coni-
fold transitions.

CONVENTION. In §1-2; all discussions are for projective conifold tran-
sitions without the Calabi—Yau condition, unless otherwise specified.
The Calabi—Yau condition is imposed in §3-5. Unless otherwise spec-
ified, cohomology groups are over Q when only topological aspect (in-
cluding weight filtration) is concerned; they are considered over C when
the (mixed) Hodge-theoretic aspect is involved. All equalities, when-
ever make sense in the context of mixed Hodge structure (MHS), hold
as equalities for MHS.

1.1. Preliminaries on conifold transitions. The results here are
mostly contained in [5] and are included here for readers’ convenience.

1.1.1. Local geometry. Let X be a smooth projective 3-fold and X
Y a projective conifold transition through X with nodes p1,...,pr as in
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§0.1. Locally analytically, a node (ODP) is defined by the equation
(1.1) o+l as+ 23 =0,

or equivalently uv — ws = 0. The small resolution ¢ can be achieved
by blowing up the Weil divisor defined by u = w = 0 or by u = s = 0,
these two choices differ by a flop.

Lemma 1.1. The exceptional locus of ¢ above each p; is a smooth
rational curve C; with N¢, )y = Op1(=1)®2. Topologically, Neyyy is a
trivial rank 4 real bundle.

Proof. Away from the isolated singular points p;’s, the Weil divisors
are Cartier and the blowups do nothing. Locally near p;, the Weil divisor
is generated by two functions u and w. The blowup Y C A% x P! is
defined by zgv — z15 = 0, in addition, to uv — ws = 0 defining X, where
(20 : 21) are the coordinates of P!. Namely we have u/w = s/v = 2/ 21.
It is now easy to see the exceptional locus near p; is isomorphic to P! and
the normal bundle is as described (by the definition of Op1(—1)). Since
oriented R*-bundles on P! = S? are classified by the second Stiefel-
Whitney class wy (via m(SO(4)) = Z/2), the last assertion follows
immediately. q.e.d.

Locally to each node p = p; € X, the transition X Y can be
considered as two different ways of “smoothing” the singularities in X:
deformation leads to X; and small resolution leads to Y. Topologically,
we have seen that the exceptional loci of 9 are Hle C;, a disjoint union
of k 2-spheres. For the deformation, the classical results of Picard,
Lefschetz and Milnor state that there are k vanishing 3-spheres S; = S3.

Lemma 1.2. The normal bundle Ng,/x, = T§. is a trivial rank 3 real
bundle.

Proof. From (1.1), after a degree two base change the local equation
of the family near an ODP is
24 222 ’t’262\/j19.
j=1"7
Let y; = eﬁ%j for j =1,...,4, the equation leads to
4

2 1412
(1.2) D=

Write Yj in terms of real coordinates y; = a;j + v/—1b;, we have |a|> =

|t|2 + |62 and @- b = 0, where @ and b are two vectors in RY. The
set of solutions can be identified with 7S, with the bundle structure
T*S, — S, defined by (@,b) — rd/|d| € S, where S, is the 3-sphere with
radius r = [t|. The vanishing sphere can be chosen to be the real locus
of the equation of (1.2). Therefore, Ng, /x, is naturally identified with
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the cotangent bundle 7*S,., which is a trivial bundle since S% = SU(2)
is a Lie group. q.e.d.

REMARK 1.3. The vanishing spheres above are Lagrangian with re-
spect to the natural symplectic structure on 7%S3. A theorem of Sei-
del and Donaldson [35] states that this is true globally, namely the
vanishing spheres can be chosen to be Lagrangian with respect to the
symplectic structure coming from the Kéhler structure of X;.

By Lemma 1.2, the § neighborhood of the vanishing 3-sphere S3 in
X, is diffeomorphic to the trivial disc bundle S? x D}.

By Lemma 1.1 the r neighborhood of the exceptional 2-sphere C; =
52 is D} x SZ, where § is the radius defined by 4mé* = fCi w for the
background Kahler metric w.

Corollary 1.4. [5, Lemma 1.11] On the topological level one can go
between Y and X; by surgery via

(53 x DY) = 82 x S = d(D* x S3).
REMARK 1.5 (Orientations on S3). The two choices of orientations
on 52 induces two different surgeries. The resulting manifolds Y and
Y’ are in general not even homotopically equivalent. In the complex

analytic setting the induced map Y --» Y’ is known as an ordinary
(Atiyah) flop.

1.1.2. Global topology.

Lemma 1.6. Define

p=13(X) - h(Y)) and p:=hAY) - R (X).

Then,
(1.3) p+p=k.

Proof. The Euler numbers satisfy

X(X) = kx(5%) = x(Y) — kx(5?).

That is,
2 —2hH(X) 4+ 2h3(X) — h3(X) =2 — 2} (Y) + 2h%(Y) — K3 (Y) — 2k.

By the above surgery argument we know that conifold transitions pre-
serve my. Therefore, 3(h3(X) — R3(Y)) + (h2(Y) — h3(X)) = k. q.e.d.

REMARK 1.7. In the Calabi-Yau case, u = h?}(X) — h%2Y(Y) =
—Ah?! is the lose of complex moduli, and p = h1(Y)—hbH(X) = Apb!
is the gain of Kéhler moduli. Thus, (1.3) is really

A(RM = RN =k =LAy
In the following, we study the Hodge-theoretic meaning of (1.3).
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1.2. Two semistable degenerations. To apply Hodge-theoretic
methods on degenerations, we factor the transition X Y as a com-
position of two semistable degenerations X — A and ) — A.

The complex degeneration

f:X—=A

is the semistable reduction of X — A obtained by a degree two base
change X' — A followed by the blow-up X — X’ of all the four dimen-
sional nodes p; € X’. The special fiber Xy = U?:o X is a simple normal
crossing divisor with

P :Xg=2Y = Blﬂle{l?i}
being the blow-up at the nodes and with

X;=Q:2QcP, i=1,...k
being quadric threefolds. Let X Ul be the disjoint union of j + 1 inter-
sections from X;’s. Then the only nontrivial terms are X0 =Y 1L Qi
and X! = LL; £ where E; =Y NQ; = P! x P! are the 9 exceptional
divisors. The semistable reduction f does not require the existence of a

small resolution of Xj.
The Kdhler degeneration

XX

g:Y—=A
is simply the deformations to the normal cone Y = Bljj¢, 01 Y X A —
A. The special fiber Yy = U?:o Y; with

¢:Y9=Y =Bl (Y =Y
=1 g
being the blow-up along the curves C;’s and

Y, =E;2E:=Pu(0(-1)290), i=1,...,k
In this case the only non-trivial terms for YUl are Y10 =y 1L E; and
Yl = LI, E; where E; = ffﬂEi is now understood as the infinity divisor
(or relative hyperplane section) of 7; : E; — C; 2 PL.
1.3. Mixed Hodge structure and the Clemens—Schmid exact
sequence. We now apply the Clemens—Schmid exact sequence [6] to

the above two semistable degenerations. A general reference is [11]. We
will mainly be interested in H<3. The computation of H>?3 is similar.

1.3.1. The cohomology of H*(X)), with its canonical mixed Hodge
structure, is computed from the spectral sequence EJ'?(Xy) = Q4(X [p})
with dy = d, the de Rham differential, and then

EPI(X,) = Hq(X[p])’
with d; = ¢ being the combinatorial coboundary operator
6 HI(XPhy - go(xP+1),

The spectral sequence degenerates at Fo terms.



A+ B THEORY IN CONIFOLD TRANSITIONS 503

The weight filtration on H*(Xp) is induced from the increasing filtra-
tion on the spectral sequence W, := @q<m E*4. Therefore,

Gl (H7) = E7™™ G (H)) =0 for m <0 or m > j.
Since XV! # () only when j = 0,1, we have
H'~EY H'>E¢EY, H*>Ey'eEY? H°x~E)yoE)
The only weight 3 piece is ES’?’, which can be computed by
§: EYS = H3(XI0 — E1P = g3 (x),
Since Q;, E; and E; have no odd cohomologies, H3(XM) = 0 and
H3(XW) = H3(Y). We have, thus, ES® = H3(Y).

The weight 2 pieces, which is the most essential part, is computed
from

(1.4)

(X0 = (V) e @ HAQ) L (x) = D HX(E).
We have E;? = cok(dy) and ES? = ker(8). The weight 1 and weight 0
pieces can be similarly computed. For weight 1 pieces we have

Ey' = H'(XU) = H'(V) = H'(Y) = H'(X),
and Ezl’1 = 0. The weight 0 pieces are computed from & : HO(X ) —

HO(X[) and we have ES° = HO(Y) = HO(Y) = HO(X), and E,° = 0.
We summarize these calculations as

Lemma 1.8. There are isomorphisms of MHS:
H3(X) = H3(Y) @ cok(dy),

(Xo) = ker(ég)
H'(X) = H'(Y) = H'(Y) = H'(X),
H(Xy) = H' (V) = H(Y) = H(X).

In particular, H(Xy) is pure of weight j for j < 2.

1.3.2. Here we give a dual formulation of (1.4) which will be useful
later. Let £, ¢’ be the line classes of the two rulings of E =2 P! x P!, Then
H?(Q,7) is generated by e = [E] as a hyperplane class and e|g = £+
The map 02 in (1.4) is then equivalent to

(1.5) 8y HA(Y) — EB E;)/H*(Q:).

Since H2(Y) = <Z>*H2( ) & B, ([E]) and [Ej]ls, = —(6i + £), the
second component @Z L{[Ei]) lies in ker(d2) and &y factors through

k !
(1.6) O HA(Y EB E)/HY Qi) = €D, (t—6)
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(as Q-spaces). Notice that the quotient is isomorphic to @%_, (¢}) inte-
grally.

By reordering we may assume that ¢.¢; = [C;] and ¢*[Ci] = €; — £}
(cf. [18]). The dual of (1.6) then coincides with the fundamental class
map

0 @ ) — Hy(Y).
In general for a Q-linear map 19 : P — Z, we have im9* = (P/ ker9)* =
(im¥)*. Thus,
(1.7) dimg cok(d2) + dimg im(?J) = k.
We will see in Corollary 1.11 that dimcokd = p and dimimd = p.

This gives the Hodge theoretic meaning of p© + p = k£ in Lemma 1.6.
Further elaboration of this theme will follow in Theorem 1.14.

1.3.3. On ), the computation is similar and a lot easier. The weight 3
piece can be computed by the map H3(Y[?)) = H3(Y) — H3(YU) =0
the weight 2 piece is similarly computed by the map
2(y10)) 2y - (N g2(E
H? (v @ —>H (vlth @ile (E;).

Let h = 7*(pt) and £ = [E ]forw:E'—)]P’l. Then h|gp = ¢ and
€|p = €+ ¢'. In particular, the restriction map H?(E) — H?(E) is an
isomorphism and, hence, 0/ is surjective. The computation of pieces
from weights 1 and 0 is the same as for X;. We have, therefore, the
following lemma.

Lemma 1.9. There are isomorphisms of MHS:
H3 (Vo) = H3 (YD) = H3(Y),

H?(Vo) == ker(d3) = H*(Y),

H'(Vo) = H'(Y)= H'(Y) = H'(X),

H Vo) = H'(Y) 2 H'(Y) = H(X).

1.3.4. We denote by N the monodromy operator for both X and )
families. The map N induces the unique monodromy weight filtrations
W on H"™(X) which, together with the limiting Hodge filtration FJ3,
leads to Schmid’s limiting MHS [34, 37]. That is,

OCWO cWiycC---CWopq CWQn:Hn(X)
such that NW;, C Wj_5 and for £ > 0,
(1.8) LGV, =2GY,

on graded pieces. The induced filtration FL.GY := FaonWy/FENWi_4
defines a pure Hodge structure of weight k on GW Similar constructions
apply to H™(Y') as well.

I
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Lemma 1.10. We have the following exact sequences (of MHS) for
H? and H3:

0 — H3(Xy) = H3(X) 25 H3(X) — Hy(Xy) — 0,
0 — HO(X) = He(Xo) — H2(Xy) »H(X) 250,

0— H3()p) —H3(Y) 50,
0 — HYY) — He(Vo) — H2(Vo) —H2(Y) 25 0.

Proof. These follow from the Clemens—Schmid exact sequence, which
is compatible with the MHS. The other terms in the first sequence,
namely H'(X) — Hs(Xp) to the left end and H°(Xp) — H®(X) to the
right end, can be ignored since they induce isomorphisms, as can be
checked using MHS on Hjs(Xp). Similar comments apply to the third
sequence for H3(Y).

Note that the monodromy is trivial for ) — A since the punctured
family is trivial. For the second sequence, by Lemma 1.8, we know that
H?(Xp) is pure of weight 2. Hence, N on H?(X) is also trivial and
the Hodge structure does not degenerate. Indeed, if N # 0 then ker N
contains some part of weight < 2 by (1.8). q.e.d.

Corollary 1.11. (i) p = dimim(?¥) and p = dim cok(d2).
(i) H3(Y) = H3(Vo) = H3(Y) = H3(Y) = GrY H3(X).
(iii) Denote by K := ker(N : H3(X) — H3(X)). Then H3(Xp)
K. More precisely, Gry (H3(Xp)) = H3(Y) and Gr¥ (H3(Xp))
cok(d2).

1R

Proof. By Lemma 1.8, h?(Xy) = dimker(d2). It follows from the
second and the fourth exact sequences in Lemma 1.10 that h%(X) =
dimker(d2) +1 — (k +1). Rewrite (1.4) as

(1.9) 0 — ker(ds) — HA(X) 25 g2(x1) 5 cok(dy) — 0,

which implies dim ker(d2) 4+ 2k = dim cok(d2) + 2k + h2(Y).
Combining these two equations with (1.7), we have p = h%(Y) —
h?(X) = k — dimcok(d2) = dimim(dJ). This proves the first equation
for p in (i).
Combining the first equation in Lemma 1.9 and the third exact se-
quence in Lemma 1.10, we have

(1.10) H3(Y) = H3()o) = H3(Y).

This shows (ii) except the last equality. )
By Lemmas 1.10 and 1.8, K = H3(Xy) = H3(Y)®cok(d2) = H3(Y)®
cok(d2), where the last equality follows from (1.10). This proves (iii).



506 Y.-P. LEE, H.-W. LIN & C.-L. WANG

For the remaining parts of (i) and (ii), we investigate the non-trivial
terms of the limiting mixed Hodge diamond for H" := H"(X):
(1.11)

HY H?
HH3 H' H? ~|n HH? HYPH?,
HY H?
where HLH" = FL Gr)), H". The space H**(X) does not degen-

erate by [40] (which holds for degenerations with canonical singulari-
ties, and first proved in [39] for the Calabi—Yau case). We conclude
that Hi'H3 2 cok(dy) and Gry H3(X) = H3(Y). By definition p =
L(h3(X) — h3(Y)), hence, u = h3 H® = his' H? = dimcok(d2).  q.e.d.
1.3.5. We denote the vanishing cycle space V as the Q-vector space
generated by vanishing 3-cycles. We first define the abelian group V7
from

(1.12) 0 — Vg — H3(X,Z) — H3(X,Z) — 0,

and V := Vz ®z Q. The sequence (1.12) arises from the homology
Mayer—Vietoris sequence and the surjectivity on the right hand side
follows from the fact that Hy([J* $3,Z) = 0.

Lemma 1.12. Denote by H? := H3(X).

(i) H3(X) = K = H3(Xy) = W3 H3.

(i) V* = HZ?H? and V = HY'H? = cok(8) via Poincaré pairing.

Proof. Dualizing (1.12) over Q, we have

0— H3X) = H}X) > V* = 0.

The invariant cycle theorem in [1] then implies that H3(X) = ker N =
K = H3(X;). This proves (i).

Hence, we have the canonical isomorphism

V*~ H3(X)/H3(X) = GV H® = F2GYV H? = H2?H3.
Moreover, the non-degeneracy of the pairing (o, N3) on G} H? implies
HY'H? = NHZPH? = (H2PHP)* = V& = V.

This proves (ii). q.e.d.

REMARK 1.13 (On threefold extremal transitions). Most results in
§1.3 works for more general geometric contexts. The mixed Hodge dia-

mond (1.11) holds for any 3-folds degenerations with at most canonical
singularities [40]. The identification of vanishing cycle space V' via
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(1.12) works for 3—folds with only isolated (hypersurface) singularities.
Indeed, the exactness on the RHS holds for degenerations X — A such
that X is smooth and Xy has only isolated singularities. This follows
from Milnor’s theorem that the vanishing cycle has the homotopy type
of a bouquet of middle dimensional spheres [26, Theorem 6.5]. Hence,
Lemma 1.12 works for any 3-fold degenerations with isolated hypersur-
face canonical singularities.

Later on we will impose the Calabi-Yau condition on all the 3-folds
involved. If X 7Y is a terminal transition of Calabi—Yau 3-folds, i.e.,
Xo = X has at most (isolated Gorenstein) terminal singularities, then
X has unobstructed deformations [27]. Moreover, the small resolution
Y — X induces an embedding Def(Y) < Def(X) which identifies the
limiting/ordinary pure Hodge structures Gry H3(X) = H3(Y) as in
Corollary 1.11 (iii).

For conifold transitions all these can be described in explicit terms
and more precise structure will be formulated.

1.4. The basic exact sequence. We may combine the four Clemens—
Schmid exact sequences into one short exact sequence, which we call the
basic exact sequence, to give the Hodge-theoretic realization “p+p = k”
in Lemma 1.6.

Let A = (aj) € Myxu(Z) be a relation matrix for Cj’s, i.e.,

k
Zizlaij[Ci]:(), jzl,...,,u

give all relations of the curves classes [C;]’s. Similarly, let B = (b;;) €
Mj.»,(Z) be a relation matrix for S;’s:

k .
Zizlbij[&] =0, j=1,...,p

Theorem 1.14 (Basic exact sequence). The group of 2-cycles gener-
ated by exceptional curves C; (vanishing S* cycles) on'Y and the group
of 3-cycles generated by [S;] (vanishing S3 cycles) on X are linked by
the following weight 2 exact sequence

0— H*(Y)/H*(X —>@ E)/HXQ) 25V 0.
In particular, B = ker A' and A = ker B'.

Proof. From §1.3.2, cok(dy) = cok(dz) and (1.9) can be replaced by
(1.13)

0— H2(Y)/(ker &) = @ E)/H2(Q;) -5 cok(8) —

By Lemma 1.12 (ii), we have cok(d2) = V. To prove the theorem, we
need to show that H2(Y)/kerd = H(Y)/H?*(X), and D = B, C = A'.
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By the invariant cycle theorem [1], H?(X) = H?(X). Since H?(X)
injects to H2(Y') by pullback, this defines the embedding

v HA(X) — H*(Y),

and the quotient H2(Y)/H?(X).
Recast the relation matrix A of the rational curves C; in

0— Q= Q’“N@ 1) =25 im(9) — 0,

where S = cok(A) € M,y is the matrix for ¥, and im(«}) has rank p.
The dual sequence reads
(1.14)
t t

0 (md)” = (@) (@) =@ B (E)/HQ) @) 0
Compare (1.14) with (1.13), we see that (Q*)* = V. From the discussion
in §1.3.2, we have (im9)* = H?(Y)/H?*(X).

We want to reinterpret the map A’ : (Q¥)* — V in (1.14). This is
a presentation of V' by k generators, denoted by o;, and the relation
matrix of which is given by S*. If we show that o; can be identified with
S;i, then (Q)* 2V and B = S! = ker A is the relation matrix for S;’s.

Consider the following topological construction. For any non-trivial
integral relation S2% | ¢;[Ci] = 0, there is a 3-chain § in YV with 90 =
Zle a;C;. Under ¢ : Y — X, C; collapses to the node p;. Hence,
it creates a 3-cycle § = .0 € H3(X,Z), which deforms (lifts) to
v € H3(X,Z) in nearby fibers by the surjectivity in (1.12). Using the
intersection pairing on H3(X,Z), v then defines an element PD(y) in
H3(X,Z). Under the restriction V, we get PD(y) € V*.

It remains to show that (7.S;) = a;. Let U; be a small tubular

neighborhood of S; and U; be the corresponding tubular neighborhood
of Cj, then by Corollary 1.4,

U; =2 8(S? x D?) = §3 x §2 =~ 9(D* x C;) = 9U;.
Now 6; := 0 N U; gives a homotopy between a;[C;] (in the center of Ul)
and a; pt x [S?] (on OU;). Denote by ¢ : OU; — X and i : OU; — Y.
Then
(7.5 = (1. [ = (5. [PV = (7%.15%))°0"
= (a;[5%),[5%)"" = a.
The proof is complete. q.e.d.

REMARK 1.15. We would like to choose a preferred basis of the van-
ishing cocycles V* as well as a basis of divisors dual to the space of
extremal curves. These notations will fixed, henceforth, and will be
used in later sections.

During the proof of Theorem 1.14, we establish the correspondence
between A7 = (ayj,...,ax;)" and PD(v;) € V*, 1 < j < p, characterized
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by ai; = (7;.5;). The subspace of H3(X) spanned by +;’s is denoted
by V.

Dually, we denote by T1,...,7T, € H 2(Y') those divisors which form
an integral basis of the lattice in H2(Y) dual (orthogonal) to Ho(X) C
H5(Y). In particular, they form an integral basis of H?(Y)/H?(X). We
choose T}’s such that T} corresponds to the I-th column vector of the
matrix B via b; = (C;.T;). Such a choice is consistent with the basic
exact sequence since

(AtB)jl = Zk ) aﬂb Zf: a;j(C;. 1) = (Zam ) 1 =0,

for all j,I. We may also assume that the first p x p minor of B has full
rank.

2. Gromov—Witten theory and Dubrovin connections

In §2.1 the A model A(X) is shown to be a sub-theory of A(Y). We
then move on to study the genus 0 excess A model on Y/X associated
to the extremal curve classes in §2.2. As a consequence the (nilpotent)

monodromy is calculated in terms of the relation matrix B at the end
of §2.3.

2.1. Consequences of the degeneration formula for threefolds.
The Gromov—Witten theory on X can be related to that on Y by the
degeneration formula through the two semistable degenerations intro-
duced in §1.2.

In the previous section, we see that the monodromy acts trivially on
H(X)\ H?(X) and we have

H (X)=K>=HY)e H'H*(X) 2 H*(Y)& V.
There we implicitly have a linear map

(2.1) cHY (X)) — HI(Y)

mu

as follows. For j = 3, it is the projection

H (X)X H YY)V — H*(Y).

For j = 2, it is the embedding defined before and the case j = 4 is the

same as (dual to) the j = 2 case. For j =0,1,5,6, ¢ is an isomorphism.
The following is a refinement of a result of Li-Ruan [22]. (See also

[23].)
Propositlon 2.1. Let X NY be a projective conifold transition.
Given @ € (HZ2(X)/V)®" and a curve class 5 € NE(X)\{0}, we have

inv
-\ X _ -\W\Y
(22) <a>g,n,ﬁ - Zw*(v):ﬁu(a))g,n,'y'

If some component of @ lies in H®, then both sides vanish. Furthermore,
the RHS is a finite sum.
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Proof. A slightly weaker version of (2.2) has been proved in [22, 23].
We review its proof with slight refinements as it will be useful in §5.

We follow the setup and argument in [18, §4] closely. By [18, §4.2],
a cohomology class a € H*(X)/V can always find a lift to

mu

(al)z =0 € H @

such that a; = 0 for all ¢ # 0. We apply J. Li’s algebraic version of
degeneration formula [21, 23] to the complex degeneration X ~» YUgrQ,

where
k
Q=1[_, @

is a disjoint union of quadrics ();’s and

E:= Zk_ E;.

One has Ky = ¢*Kg + E. The topological data (g,n, ) lifts to two
admissible trlples 'y on (Y, E) and I's on (Q, E) such that I'; has curve
class 4 € NE(Y), contact order y = (5.E), and number of contact
points p. Then

(3.e1(Y)) = ($7.e1(X)) = (3.E) = (B.er(X)) — .

The virtual dimension (without marked points) is given by

dr, = (F.1(Y)) + (dim X =3)(1 —g) + p—p=dg + p—2p,

where dg is the virtual dimension of the absolute invariant with curve
class # (without marked points). Since we chose the lifting (@)r_, of @
to have @; = 0 for all ¢ # 0, all insertions contribute to Y. If p % 0 then
p — 21 < 0. This leads to vanishing relative GW invariant on (?,E)
Therefore, p must be zero.

To summarize, we get

o - Y E
(2.3) (@ g5 = D5 o)yl | O rB)
Yu(§)=
such that
(2.4) bA=8, FE=0, d9=0.

Formula (2.3) also holds for a; a divisor by the divisor axiom.

We use a similar argument to compute <l_))>;/n7 via the Kéhler degen-

eration Y ~» Y U E, where E is a disjoint union of E; (cf. [18, Theo-
rem 4.10]). By the divisor equation we may assume that degb > 3 for
all j = 1,...,n. We choose the lifting (b)Z " 0 of b such that b; = 0 for
all i # 0. In the lifting 43 on Y and 49 on 7 : E = [[, E; — [, Cs, we
must have v = ¢,y1 + my2. The contact order is given by p = (71.E)
which has the property that p = 0 if and only if v1 = ¢*y (and, hence,
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v2 =0). If p # 0 we get dr, = dy + p — 2u < dy and the invariant is
zero. This proves

(2.5) B, = (05| 0

gmny T g,n,¢* )

with ¢.7 =7, ¥.E =0, 75 = 0.

To combine these two degeneration formulas together, we notice that
in the Kahler degeneration, ¥ € NE(Y) can have contact order u =
(7.F) = 0 if and only if 4 = ¢*y for some v € NE(Y) (indeed, for
v = ¢,7). Choose b = 1(@) and (2.2) follows. The vanishing statement
(of HY insertion) follows from the fundamental class axiom.

Now we proceed to prove the finiteness of the sum. (This is not stated
n [22].) For ¢ : Y — Y being the blow-up along Cy’s, the curve class
v € NE(Y) contributes a non-trivial invariant in the sum only if ¢*~
is effective on Y. By combining (1.6), (2.3) and (2.5), the effectivity of
¢*~y forces the sum to be finite. Equivalently, the condition that ¢*~ is
effective is equivalent to that 7 is F-effective under the flop Y --» Y.
(i.e., effective in Y and in Y’ under the natural correspondence [18]).
Recall that under the flop the flopping curve class in Y is mapped to
the negative flopping curve in Y’. Therefore, the sum is finite.  q.e.d.

REMARK 2.2. The phenomena (2.2), including finiteness of the sum,
were observed in [13] for Calabi—Yau hypersurfaces in weighted projec-
tive spaces from the numerical data obtained from the corresponding B
model generating function via mirror symmetry.

Corollary 2.3. Gromov-Witten theory on even cohomology
GWe(X) (of all genera) can be considered as a sub-theory of GW'(Y).
In particular, the big quantum cohomology Ting is functorial with respect
tov: H(X) — H(Y) in (2.1).

Proof. We first note that ¢ is an injection on H¢’. Proposition 2.1
then implies that all GW invariants of X with even classes can be re-
covered from invariants of Y. The only exception, H°, can be treated
by the fundamental class axiom. Therefore, in this sense that GIW’(X)
is a sub-theory of GW*e(Y).

In genus zero, this can be rephrased as functoriality. Observe that
the degeneration formula also holds for 3 = 0. For g = 0, this leads to
the equality of classical triple intersection (a, b, c)* = (¢(a), t(b),t(c))¥.
Since the Poincaré pairing on H¢(X) is also preserved under ¢, we see
that the classical ring structure on H¢’(X) are naturally embedded in
He(Y).

To see the functoriality of the big quantum ring with respect to ¢, we
note that (c(a).C;) = 0 for any a € H®’(X) and for any extremal curve
C; in Y. Furthermore, for the invariants associated to the extremal rays
the insertions must involve only divisors by the virtual dimension count.
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Hence, for generating functions with at least one insertion we also have

X B _ WY b ()
> e @FT =30 @)y O,

Note that the case of H? is not covered in Proposition 2.1, but it can
be treated by the fundamental class axiom as above. q.e.d.

REMARK 2.4. It is clear that the argument and conclusion hold even
if some insertions lie in H} (X)/V = H3(Y') by Proposition 2.1.

muv

The full GW theory is built on the full cohomology superspace H =
He@H*%  However, the odd part is not as well-studied in the literature
as the even one. In some special cases the difficulty does not occur.

Lemma 2.5. Let X be a smooth minimal 3-fold with H'(X) = 0.
The non-trivial primary GW invariants are all supported on H?(X)
and, hence, by the divisor axiom, reduced to the case without insertion.

More generally the conclusion holds for any curve class f € NE(X)
with c1(X).8 <0 for any 3-fold X with H'(X) = 0.

Proof. For n-point invariants, the virtual dimension of Mg,n (X,p) is
vdim = ¢1(X).6+ (dim X —3)(1 —g) + n < n.

Since the appearance of fundamental class in the insertions leads to
trivial invariants, we must have the algebraic degree dega; > 1 for all
insertions a;, i = 1,...,n. Hence, in fact we must have dega; = 1 for
all 7 and ¢;(X).6 = 0. q.e.d.

2.2. The even and extremal quantum cohomology. From now
on, we restrict to genus zero theory.

Let s = Y. sT. € H*(X) where T,’s form a basis of H?(X). Then
the genus zero GW pre-potential on H? (X ) is given by

(2.6) Y Y Jons oy +Zn”““>

n=0 BeNE(X) : B#0
where ng = <>070”3, and ¢° the (formal) Novikov variables.
F§¥(s) encodes the small quantum cohomology of X (and the big
quantum cohomology if X is minimal by Lemma 2.5), except in the

topological term s3/(3!) where we need the full s € H*(X).
Similarly, we have Fy (t) on H2(Y) where

_ 2 2
(2.7) t=s+uec HXY)=(H*X @@le’

Namely we identify s with «+(s) in H?(Y") and write u = - ulTy. FY
can be analytically continued across those boundary faces of the Kéhler
cone corresponding to flopping contractions. In the case of conifold
transitions Y \, X, this boundary face is naturally identified as the
Kaéhler cone of X.
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The following convention of indices on HY(Y") will be used:

e Lowercase Greek alphabets for indices from the subspace ¢(H“(X));

e lowercase Roman alphabets for indices from the subspace spanned
by the divisors 1;’s and exceptional curves Cj;’s;

e uppercase Roman alphabets for variables from H'(Y").

The generating function associated to an extremal curve C' = P! can be
derived from the well-known multiple cover formula

EC(t) = Zd:1 nlY gAlC1A(C:0) — Zd - qd[C] d(C.t)

as Nojy = Op1(—1)%2. Define

1
EY(t): %MZHEO ng(u)—i—g(t?’—u:g),

where Eg i) = EOC “(u) depends only on u. Then the degeneration
formula is equivalent to the following restriction

3

S u3 u3
FoX(s)—gz (Fg/(s—ku)—(;)_Eé/(u)+3!>

q’Y |—>q¢’* () ’

where ¢l€s are subject to the relations induced from the relations
among [C;]’s. More precisely, let A = (a;;) be the relation matrix and

define
) ._ ai;[Ci] _ —a;;[Ci]
r'j (Q) T Hai]‘ >0 q ’ Ha,-j <0 1 ’ ’

Then we have

Lemma 2.6.

1
Fg/(s+u): [FOX(S)—FES/(u)—i—?)'((s—i—u)?’—s:s—ug)] " )
: r;j(q)=0,1<j<pu

A splitting of variables of F" would imply that QH"(Y') decomposes
into two blocks. One piece is identified with QH®’(X), and another
piece with contributions from the extremal rays. However, the classical
cup product/topological terms spoil the complete splitting.

The structural coefficients for QH’(Y') are Cpgor = 8?%2 rFY. We
will determine them according to the partial splitting in Lemma 2.6.

For FOX (s), the structural coefficients of quantum product are given
by

Cecr(s) 1= O B (5) = (LT T+ (BI(BTO)(BT) mis g7,

Recall that B = (b;,) with b;, = (C;.T},) is the relation matrix for the
vanishing 3-spheres. For E} (u), the triple derivatives are
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(2.8)
Clmn(u) = 6l3mnE(§/(u)

= (11-Tn ) +Zl'€—1 2;1(Ci'ﬂ)(ci-Tm)(Ci~Tn) qd[ci]ed(ci'u)

k
_ b B [C4] P )
= (1,7, T,) + E i bitbimbinf (¢~ exp E - bipuP).

Here f(q) = Y 4en ¢ = 0 =1+ (1:—11 is the fundamental rational
function with a simple pole at ¢ = 1 with residue —1 (cf. [18]). We note
that due to the existence of cross terms in Lemma 2.6, Cj,,,’s do not
satisfy the WDVV equations.

Denote by T¢ € H*(X) the dual basis of T.’s, and write 7%, 1 <1 < p
the dual basis of T)’s. Also Ty = Ty = 1 with dual 79 = 79 the
point class. Since H(Y) = «(H® (X)) @ (P)_, QT; & Pf_, QT") is
an orthogonal decomposition with respect to the Poincaré pairing on
H(Y'), we have four types of structural coefficients

ec(s) = Ceci(s),  Cpp(u) = Crmn (),
C?m - Cemn’ C;:rm - Cemnv

where the last two are constants. If we consider the topological terms
%(80)28(]/ + 893 ulu? where we relabel the indices by u = wu; and
sY = g, then a few more non-trivial constants Cooy' = 1, Crnn/o = Omn
are added.

2.3. The Dubrovin connection and monodromy. The Dubrovin
connection on TH®(Y) is given by V* = d — 13", dt¥ ® Tpx. By
Corollary 2.3, it restricts to the Dubrovin connection on TH®"(X). For
the complement with basis Tj’s and T%’s, we have

2V T™ = =5, TP,

p _
(29) ngle = = Zn:l Clmn(u)Tn - Ze ClmeTev
VT ==Y " ComnT™
€ n=1

Along u = Zle u!T} there is no convergence issue by the explicit
expression (2.8). Thus, we drop the Novikov variables, henceforth.

From (2.8), the degeneration loci ® consists of k& hyperplanes in
H2(Y):

p ,
D; :={v; := szl bipu? =0}, 1<i<k,
which is the Kéhler degenerating locus at which C; shrinks to zero vol-

ume. There is a monodromy matrix corresponding to D;, whose main
nilpotent block Ny = (Ni)mn) € Mpx, is the residue matrix of the

connection in (2.9). The divisor © = U§:1 D; is not normal crossing.
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Lemma 2.7. In terms of {T,,} and dual basis {T"}, the block N
s given by

1
Proof. Since dv; = Y_0_ by du', we get from (2.9) and (2.8) that
N(z),mn bzmbm 1?6% cvi 1’
which gives the result. q.e.d.
Corollary 2.8. In terms of {T,,} and dual basis {T"}, the nilpotent
monodromy at v = 0 along u' — 0 has its main block given by N; =

%BltBl, where By is obtained from B by setting those i-th rows to 0 if
by = 0.

Proof. This follows from Lemma 2.7, which can also be proved di-
rectly. To determine N ,,,, along u! — 0 at the locus u = 0, we compute

k k
1
Nl,mn - Z bi1bimbin R:es m = > Z bimbin = ;(B;Bl>mn
=1 b1 #0;i=1
This proves the result. q.e.d.

Corollary 2.9. The Dubrovin connection on X is the monodromy
invariant sub-system on'Y at u = 0.

3. Period integrals and Gauss—Manin connections

From this section and on, we assume the Calabi—Yau condition:
Kx=0x, HYO0x)=0.

Recall that the Kuranishi space Mg is smooth. In §3.1, we review
well known deformation theory of Calabi—Yau 3-folds with ODPs to
derive a local Torelli theorem for X. Identifying My with equisingular
deformations of X in M g, we show that periods of vanishing cycles serve
as (analytic) coordinates of M ¢ in the directions transversal to My-.
To study monodromy, the Bryant—Griffiths formulation is reviewed in
§3.2 and the asymptotics of (8-)periods near [X] is computed in §3.3.
The monodromy is determined explicitly in terms of the relation matrix
A (Corollary 3.19). The technical result (Theorem 3.14) is a version of
nilpotent orbit theorem with non-SNC boundary, which is also needed
in §6. Following these discussions, B(Y) is shown to be a sub-theory of
B(X) (Corollary 3.20).

3.1. Deformation theory. The main references for this subsection
are [15, 31], though we follow the latter more closely. Let Qg be the
sheaf of Kéhler differential and O g := Hom(g5, O5) be its dual. The
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deformation of X is governed by Ezt!(Qg,0¢). By local to global
spectral sequence, we have

0— HY(X,05) D Ext'(Qg,0%)

(3.1) _ _
— HY(X,&xt'(Qx,0%)) > H*(X,0%).

Since xt'(Q g, O¢) is supported at the ordinary double points p;’s, we
have H(X, Ext'(Qg,0%)) = @f L HO(0, .) by a local computation.

We rephrase the deformation theory on X in terms of the log defor-
mation on Y. Denote by F C Y the union of the exceptional divisors
of p: Y — X.

0Lemma 3.1. We have Rzﬁ*Kf, = 1@[({, = Kg and, hence, H)(Ky ) =
HO(Ky) = C.

Proof. Apply the Serre duality for the projective morphism ¢ and we
have R’l/J* v = (w* vOK ¢)V. Since X is normal rational Gorenstein,
we have ¢* v = Ox. This proves the first equation, from which the

first part of the second equation follows. The second part follows from
Kg=0g%. q.e.d.

Lemma 3.2. There is a canonical isomorphism
~ v
Q%(log E)2 Ky ® (Qp(log E)(—E)) " .

Proof. On Y, the isomorphism A3Qy (log E) = Q%/(E) leads to the
perfect pairing Q0 (log E)®Q?~/(log E) = Ky (F). Since Y is nonsingular
and F is a disjoint union of nonsingular divisors, all sheaves involved
are locally free. Hence, the lemma follows. q.e.d.

Lemma 3.3 ([31, Lemma 2.5]). There are canonical isomorphisms
Ly*Qg = 4" Qg = Qyp(log B)(—E),
where Lzﬁ* is the left-derived functor of the pullback map.

The first isomorphism follows from the facts that X is a local complete
intersection and an explicit two-term resolution of {2 ¢ exists. We sketch
the argument here and refer to [31] for details. Locally near a node,

defined by (1.1), one has an exact sequence 0 — O 25 04 5 Q= 0.
Pulling it back to Y, we see that w*(2w) O — 0% is injective on Y and,
therefore, higher left derived functors are zero.

The second isomorphism is obtained by a local calculation of the
blowing-up of an ordinary double point. If x; is the local equation
of the exceptional divisor F, explicit computation in [31] shows that
Q) ¢ is locally generated by dx; and x1dx; for ¢ # 1, which is exactly
Q5 (log E)(-E).
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Lemma 3.4 ([31, Proposition 2.6]). We have
RHom(Qg, Kx) = Rip.Q2 (log E).

In particular, Ext'(Qg, K) = H! (Q%,(log E)).

Proof. By Lemma 3.2,

Rip, Q% (log E) = Rip,Hom(Qy (log E)(—E), Ky).
By Lemma 3.3 and the projection formula, the RHS is isomorphic to
RHom(Qg, R Ks) = RHom(Qg, Kg),
with the last isomorphism coming from Rﬁ*K{/ = Ky in Lemma 3.1.
q.e.d.

From the general deformation theory, the first term H'(X,0¢) in
(3.1) parameterizes equisingular deformation of X. Thanks to the the-
orem of Kolldr and Mori [16] that this extremal contraction deforms
in families, this term parameterizes deformations of Y. Therefore, the
cokernel of X\ in (3.1), or equivalently the kernel of x, corresponds to
deformation of the singularities. Since the deformation of X is un-
obstructed [15], Def(X) has the same dimension as Def(X), which is
h*1(X). Comparing the Hodge number h*! of X and Y (cf. §1) we
have the dimker(k) = p.

Proposition 3.5. The sequence
0— HY(X,05) D Ext'(Qg,05) = V* >0
18 exact.
Proof. The residue exact sequence on Y is
0— Qp — Qp(log E) = 0p — 0.
Taking wedge product with Qg we get

res

0— Q% = Q2 (log E) — Qp — 0.
Part of the cohomological long exact sequence reads
HO(Qp) — H'(Q%) = H'(Q% (log E)) — H'(Qp) — H*(Q3%).
Since H'(FE) = 0, the first term vanishes. By Lemma 3.4, the third
term is equal to Ext!(Qg,O%). Indeed, it is not hard to see that this

exact sequence is equal to that in (3.1) (cf. [31, (3.2)]).
Using similar arguments as in §1.3.2, we have

0— HY Q%) — H Q% (log E)) —>@ ((4;—0)) =5

From (1.5) and Lemma 1.12 (ii) we have
277\ 02 K oy
H2(YV) 2 @izlqe, 7)) =V —0.
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Now by comparing the dual of the maps 52 and R, we see that ker(k) =
cok(02)* = V*. The proof is complete. q.e.d.

This proposition shows that the deformation of Y naturally embeds
to that of X, with the transversal direction given by the periods of the
vanishing cycles. Moreover, the above discussion also leads to important
consequences on the infinitesimal period relations on Y and on X.

Corollary 3.6. On Y, the natural map
H'((23(log E)(~E))") ® H(Ky) — H' (92 (log E))
s an tsomorphism.
Proof. This follows from Lemma 3.1 and Lemma 3.2. q.e.d.
Corollary 3.7. On X, the natural map
HY(RHom(Qx,0%)) @ H (K5) — Fxt'(Qx, Kg)
is an isomorphism. Indeed, both sides are isomorphic to Ext'(Qg,0¢).
Proof. This is a reformulation of Corollary 3.6 via Lemma 3.4. q.e.d.

REMARK 3.8. Since X is rational Gorenstein, RHom(Qg,O ) has
cohomology only in degrees 0 and 1. Indeed, R'Hom(Qg,0%) = O¢

and
k

i=1 Pi°

leHom(Q)-(, 0%) = 8:L‘t1(Q)-(, O%) = @
By a Leray spectral sequence argument, this gives (3.1) as well and
HY(RHom(Qx,0%)) = Ext' (Qg,0%).

Interpreting Corollary 3.7 as a local Torelli type theorem, we conclude
that the differentiation of any non-zero holomorphic sections of the
relative canonical bundle on any deformation parameter of X is non-
vanishing.

3.2. Vanishing cycles and the Bryant—Griffiths/Yukawa cubic
form. Recall the Gauss-Manin connection V&M on

H" = R"f,C® Og — S,

for a smooth family f: X — S is a flat connection with its flat sections
being identified with the local system R"f,.C. It contains the integral
flat sections R"f.Z. Let {6, € H,(X,Z)/(torsions)} be a homology
basis for a fixed reference fiber X = X, with cohomology dual basis 4;’s
in H"(X,Z). Then ¢, can be extended to (multi-valued) flat sections
in R"f,Z. For n € I'(S,H"), we may rewrite it in terms of these flat
frames with coefficients being the “multi-valued” period integrals “ |, 5, n’
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asn = >,,0, fsp n. For any local coordinate system (z;) in .S, since
VGM(S; =0, we get

0
GM _ *
Vil =Y g, [
p J Jop

Thus, as far as period integrals are concerned, we may simply regard
the Gauss—Manin connection as partial derivatives.

When the family contains singular fibers, by embedded resolution of
singularities we may assume that the discriminant loci ©® C S'is a normal
crossing divisor. It is well-known that the Gauss—Manin connection has
at worst regular singularities along © by the regularity theorem. Namely
it admits an extension to the boundary with at worst logarithmic poles.

Let X 7Y be a projective conifold transition, and V the correspond-
ing space of vanishing cycles. Since the vanishing spheres S; have trivial
normal bundles in X, we see that (5;.5;) = 0 for all ¢, 7, and, hence,
V is isotropic. Define V’ to be the subspace dual to V with respect
to the intersection pairing in H3(X), then V and V' are coisotropic.
Furthermore, we have

H3(X)=Hs(Y)® H3(Y)r =2 Hs(Y)aVaV,
from (the proof of) Theorem 1.14 and Remark 1.15. Let {’yj}yzl be a
basis of V' satisfying
PD(y)([Si]) = (7;-80) = aij, 1 <j<up,

where S;’s are the vanishing 3-spheres and A = (a;;) is the relation
matrix of the exceptional curves C;’s. Additionally, let {T'; }5:1 be the

basis of V' dual to {~; };‘:1 via intersection pairing. Namely (I';.y;) = 0.
Lemma 3.9. We may construct a symplectic basis of Hs(X):

g, a1, s B0, By By (0-Bp) = jp,
where h = h*1(X), with a;j =T, 1 < j < p.

Proof. Notice that V C Hs(X,Z) is generated by [S?]’s, and, hence,
is totally isotropic. Let W O V be a maximal isotropic subspace (of
dimension h + 1). We first select a; =T for 1 < j < p to form a basis
of V. We then extend it to aq,...,ap, and set ag = a1, to form a
basis of W.

To construct f, we start with any 6; such that (cy.6;) = 6. Such §;’s
exist by the non-degeneracy of the Poincaré pairing. We set 51 = d;.
By induction on [, suppose that 51,...,5; have been constructed. We
define

l
Biy1 = 0141 — Zp:1(5l+1-5p)ap~
Then it is clear that (541.8p) =0forp=1,...,1. q.e.d.
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With a choice of basis of H3(X), any n € H3(X,C) = C2(+D)
is identified with its “coordinates” given by the period integrals 7 =
( J a, > J 8, 77). Alternatively, we denote the cohomology dual basis by

ay and B so that of(ap) = djp = B (Bp). Then we may write

P
S e | e[
n= (e} n n
p=0 P a p By

The symplectic basis property implies that o, (I') = (I".8p) and B;(I") =
—(I'.ap) = (ap.I"). This leads to the following observation.

Lemma 3.10. For 1 < j < p, we may modify v; by vanishing cycles
to get v; = Bj. In particular, (y;.y) =0 for 1 < 4,1 < p and oaj(S;) =
(5i-85) = —aij-

Lemma 3.11. For alli=1,...,k, PD([S;]) = a;; PD(T;).

] 1

Proof. Comparing both sides by evaluating at «;’s and 3;’s for all [.
q.e.d.

Let © be the non-vanishing holomorphic 3-form on the Calabi—Yau
threefold. Bryant-Griffiths [3] showed that the a-periods z), = fap Q
form the projective coordinates of the image of the period map inside
P(H?) = P?"+1 a5 a Legendre sub-manifold of the standard holomorphic
contact structure. It follows that there is a holomorphic pre-potential

w(xo, . .., zp), which is homogeneous of weight two, such that u; = 38;- =
J

fﬁj Q. In fact,

_1\™" _1\"
(3.2) u=3 szo Tplp = 5 szo Tp ; Q
p

Hence, Q = Zgzo(% o, + up By). In particular,

* h *
6JQ = CK] + Zp:O Ujp 5p7 Q Z u]lp

By the Griffiths transversality, 0; € F' 2, 8]2lQ € F'. Hence, we have
the Bryant—Griffiths cubic form, which is homogeneous of weight —1:

Wit = (OmQ.05Q) = 0 (Q.059) — (Q.03,,Q) = —(2.0,,,9).

This is also known as Yukawa coupling in the physics literature.

For inhomogeneous coordinates z; = x;/xg, the corresponding formu-
lae may be deduced from the homogeneous ones by noticing that 0w is
homogeneous of weight 2 — |I| for any multi-index I.

Under a suitable choice of the holomorphic frames respecting the
Hodge filtration, the Bryant—Griffiths—Yukawa couplings determine the
VHS as the structural coefficients of the Gauss—Manin connection:
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Proposition 3.12. Let 1o = Q € F3, 7, = 9,Q € F?, 77 = B —
(xj/z0)B; € Flfor1<j<h, and 7° = Bs € FO. Then for1 <p,j <
h,

VapT() = Tp,

h m
Vaij = Zm:l Upim T
Vaij = 0pj 79,
VapTO =0.

(3.3)

Proof. We prove the second formula. Since u,; has weight 0, we have
the Euler relation g uy;o + Z 1 Tm Upjm = 0. Hence,

0,0, = Z Upim B+ upjo 55

h
= U —Z Upim T
Zm 1 pjm( BO) m=1 pym

It remains to show that 77 € F'. By the first Hodge-Riemann bilin-
ear relations, namely F! = (F3)+ and F? = (F?) in our case, it is
equivalent to showing that 77 € (F3)L. This follows from

j * Lj ox h * * €Ly
(7'379) = (6] - x—;ﬁo, szo(mpozp + Up/Bp)> = —Z; + —JIO = 0.

Zo
The remaining statements are clear. q.e.d.

3.3. Degenerations via Picard—Lefschetz and the nilpotent or-
bit theorem. Let X — A be a one parameter conifold degenera-
tion of threefolds with nonsingular total space X. Let Si,...,S; be
the vanishing spheres of the degeneration.. The Picard—Lefschetz for-
mula (see, e.g., [24, §3.B]) asserts that the monodromy transformation
T:H3(X)— H3(X) is given by

(3.4) To=o0+ Zle a([S:]) PD([S:]),

where o € H3(X ) It is unipotent, with associated nilpotent monodromy

=logT = Z T nm™/m.

We have seen that (5;.5;) = 0 for all i,j. Therefore, T'= I + N and
N2 =0 (cf. §1). The main purpose here is to generalize these to multi-
dimensional degenerations, and, in particular, to the local moduli M ¢
near [X].

3.3.1. VHS with simple normal crossing boundaries. Even though
the discriminant loci for the conifold degenerations are in general not

simple normal crossing (SNC) divisors, by embedded resolution of sin-

gularity they can in principle be modified to become ones. We will begin

our discussion in this case for simplicity.
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Let
X = A:=A"xXAY 5t:=(t59)
be a flat family of Calabi—Yau 3-folds such that Xy is smooth for

te A" = (AX) x AV
Namely, the discriminant locus is a SNC divisor:

D= ngl Z(t;)) = A\ A*.

Around each punctured disk ¢t; € A*, 1 < j < v, we assume the
monodromy 7 is unipotent with nilpotent N;. Note that N;N; = N|N;
since m (A*) 2 Z" is abelian.

If for any t = (¢, s) we assume that X acquires at most canonical sin-
gularities, then N;F3 |p, = 0 and Nj2 = 0 for each j (cf. Remark 1.13).
Different N; may define different weight filtration W; and each bound-
ary divisor Z(t;) corresponds to different set of vanishing cycles. In our
case, the structure turns out to be simple. For any n; e N, 1 < j <,
the degeneration along the curve

y(w) = (t(w), s(w)) = (W™, ..., w"™,sg)

has monodromy

v . v
N, =logT, = log Hj:1 Tj"J = Zj:l n;Nj.

Hence, Ng =0 for any (n1,...,n,) € N”. That is, N;N; = 0 for all j, 1.

For conifold degenerations, this is clear from the Picard—Lefschetz
formula (3.4). Indeed, (S;,.S;,) = 0 for all 7,4y implies N;N; = 0 for
all 7,1.

Let z; = logt;/2my/—1 € H (the upper half plane), zN := > i=1%Nj,
and let 2 denote (the class of) a relative Calabi-Yau 3-form over A, i.e.,
a section of F®. By Schmid’s nilpotent orbit theorem [34] (cf. [39, 40]),
a natural choice of €) takes the form

Q(t) = e“Na(t) = =N (GO(S) + Z?Zl a;(s)tj + - )
= a(t) + zNa(t) € F?,

where a(t) is holomorphic, Njag(s) = 0 for all j.

In order to extend the theory of Bryant—Griffiths to include the
boundary points of the period map, namely to include ODP degenera-
tions in the current case, we need to answer the question if the a-periods
0;(t) := fFj Q(t) may be used to replace the degeneration parameters

(3.5)

tj for 1 < j < wv. For this purpose we need to work on the local moduli
space M x.

3.3.2. Extending Yukawa coupling towards non-SNC bound-
ary. As in §3.1, X has unobstructed deformations and Mg = Def(X)
is smooth. Since X admits a smoothing to X, dim My is exactly



A+ B THEORY IN CONIFOLD TRANSITIONS 523

h = h*1(X). The discriminant loci ® C Mg is in general not a SNC
divisor. Comparing with the local A model picture on Y/X in §2.3,
the discriminant loci ® is expected to the union of k& hyperplanes. (We
intentionally use the same notation ©.)

Recall Friedman’s result [8] on partial smoothing of ODPs. Let A =
[AY) ..., A" be the relation matrix. For any r € C*, the relation vector
Ar) =30, Al gives rise to a (germ of) partial smoothing of those
ODP’s p; € X with A(r); # 0. Thus, for 1 < i < k, the linear equation

(3.6) w; = a1y + o+ ar, =0

defines a hyperplane Z(w;) in C*.

The small resolution ¢ : Y — X leads to an embedding My C Mg
of codimension p. As germs of analytic spaces we, thus, have Mg =
A" x My 3 (r,s). Along each hyperplane D' := Z(w;)an x My, there
is a monodromy operator T() with associated nilpotent monodromy
N® =1ogT®. A degeneration from X to X; with [X;] € D’ a general
point (not in any D with i/ # i) contains only one vanishing cycle
[S3] + p;. We summarize the above discussion in the following lemma.

Lemma 3.13. Geometrically a point (r,s) € D' corresponds to a
partial smoothing X, of X for which the i-th ordinary double point p;
remains singular. Hence, for r generic, the degeneration from X to
X, has only one vanishing sphere S? . Moreover, the Picard—Lefschetz
formula (3.4) says that for any o € H3(X),

NWa = (o([57])) PD([S7]).

Even though the embedded resolution brings he discriminant locus to
a SNC divisor, some information might be lost in this process. There-
fore, we choose to analyze the period map directly by way of the follow-
ing nilpotent orbit theorem. We call the configuration ® = Ule D' C
M 5 a central hyperplane arrangement with axis My following the usual
convention.

Theorem 3.14. Consider a degeneration of Hodge structures over
A x M with discriminant locus ® being a central hyperplane arrange-
ment with azis M. Let T be the monodromy around the hyperplane
Z(w;) with quasi-unipotency m;, N® :=log((T™W)™) /m;, and suppose
that the monodromy group T' generated by T ’s is abelian. Let D de-
note the period domain and D its compact dual. Then the period map
¢ AF x M\ D — D/T takes the following form

k m; log w; ()
¢(r,5) = exp (; T\/_—lN Y(r, s),

where ¥ : A" x M — D is holomorphic and horizontal.
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Proof. We prove the theorem by induction on g € N. The case p =
1 is essentially the one variable case (or SNC case) of the nilpotent
orbit theorem. The remaining proof consists of a careful bookkeeping
on Schmid’s derivation of the multi-variable nilpotent orbit theorem
from the one variable case (cf. [34, §8], especially Lemma (8.34) and
Corollary (8.35)).

The essential statement is the holomorphic extension of

k

m; logw; .
3.7 s)i=exp | =) ——2=—NO .s) €D,
CRON(NY xp< > e >¢<rs>
over the locus ®. For p ¢ {0} x M, we can find a neighborhood U,
of p so that the holomorphic extension to U, is achieved by induction.
Notice that the commutativity of N(®)’s is needed in order to arrange
¥ (r, s) into the form (3.7) with smaller x. Namely,

m; logw; . m; logw; .
— _ E TS T (9) _ E 0TS T ar(d) )
V= exp 2y —1 P 2myv/—1 ¢
w; (p)=0 w;(p)#0

Let Rs1/9 :={(r,s) | || > 5 }. Then we have a unique holomorphic
extension of ¢ over R>y/5. By the Hartog’s extension theorem we get
the holomorphic extension to the whole space A* x M. The statement
on horizontality follows from the same argument in [34, §8]. q.e.d.

REMARK 3.15. (i) Let ® = Ule D' C CH be a central hyperplane
arrangement with axis 0. Then C* \ D can be realized as (C*)¥ N L
for L ¢ CF being a u dimensional subspace. Since 71 ((C*)F) = ZF,
a hyperplane theorem argument shows that 71 (C* \ ©) = ZF, hence,
abelian, if g > 3. However, for u = 2, m1(C?\ D) is not abelian if k > 3.
Indeed, the natural C* fibration C?\ Ule Dt — P\ {p1,...,px} leads
to

0—m(C*)2Z— m(C\ D) -2+ -0,

where the RHS is a & — 1 free product of Z.

(ii) Theorem 3.14 is applicable to the conifold transitions since the
monodromy representation is abelian and m; = 1 for all 4. This follows
from the Picard-Lefschetz formula (3.4) and the fact [S;].[S;] = 0 for
all vanishing spheres.

Proposition 3.16. There is a holomorphic coordinate system (r,s) €
C" in a neighborhood of [X] € Mg such that s € Ch=# is a coordinate
system of My near [X] and rj; = frj Q, 1 <j < pu, are the a-periods of
the vanishing cycles. Moreover, the section §(r, s) takes the form

m k
Z « w; log w;

j=1 i=1
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Here h.o.t. denotes terms in V- which are at least quadratic inr, . . . T
and w; = a1+ -+ Ay = fS, Q defines the discriminant locus D’
for1<i<Ek.

Proof. By Theorem 3.14 and the fact N1 N(2) = 0, we may write

k
log w; ;
Q(r,s) = exp (Z N(’)> a(r,s)
— 2rv—1

(3.8)

where a(r, s) = ao(s) + Y5 aj(s)rj + O(r?) is holomorphic in 7, s.
By Lemma 3.13, all a periods 6; := faz ) vanish on the logarithmic

terms in (3.8). In particular, 6;(r, s)’s are single-valued functions. By
Corollary 3.7 and Remark 3.8 (the local Torelli property), the h x h

matrix
(Omb0)} ey = ( /a | 8mQ>

is invertible for small . Moreover, along r = 0, the off-diagonal block
with 1 < 1 < p (i.e., with oy = T'; being the vanishing cycles) and
w+1<m < h (ie., with differentiation in the s direction) vanishes.
Hence, the first p x u block

(@975 = ( /n 9)

is also invertible for small r. Thus, by the inverse function theorem,
01,...,0, and s form a coordinate system near [X] € M x.

Now we replace r; by the a-period 6; for j = 1,...,u. In order for
Theorem 3.14 to be applicable, we need to justify that the discriminant
locus D' is still defined by linear equations in r;’s. This follows from
Lemma 3.11:

/S_ Q = (Q,PD([S}])) = — 25:1 aij (2, PD(I)))

= E a ;575 = —W
= =1 ijTj = '

Denote by h.o.t be terms in V1 which are at least quadratic in rj’s.
The above choice of coordinates implies that

Iz ko p
log w; ;
0= + I'r;+hot. + NOT
wlo) 4 T ot 32 SN

Then
123 ) 123
Z N( )Fj’l“j = _ijl aij'rj PD([Sz]) = —w; PD([SZ])

j=1
by Lemma 3.13 and Lemma 3.10. The proof is complete. q.e.d.
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Consequently, one obtains the asymptotic forms of S-periods and
Bryant—Griffiths form in terms of the above coordinate system (r,s).
For B-periods

k

w; log w;

up(r,s) = / Q= up(s) +hot. — ——= [ PD([Si)),
P ; P ; 2mv/—1 Jg,

since Q(s) = ap(s). Thus,

1
up(r, s) = up(s) + Z i ngl aijp +hot. for 1 <p <y,
up(r, 8) = up(s) + h.o.t. for p > p.
The Bryant—Griffiths form is then obtained by taking two more deriva-
tives. For 1 < p,m,n < u, we get

b logw; 4+ 1
Upm = O(1) + Z — " Qpim,
P 2my/—1

and
(3.9) tpmn = O + Y ——— L i
: pmn g 271'\/—7111)@‘ ipWim tin -

REMARK 3.17. The specific logarithmic function in Proposition 3.16,
which is written in terms of linear combinations of a-periods, had ap-
peared in the literature in examples, such as those studied in [4, p.89]
where there are 16 vanishing spheres with a single relation. To our
knowledge, it has not been studied in this generality.

3.3.3. Monodromy calculations. As a simple consequence, we de-
termine the monodromy N (I) towards the coordinate hyperplane Z(r;)
at » = 0. That is the monodromy associated to the one parameter de-
generation y(r) along the r-coordinate axis (1, € A and r; = 0if j # ).
Let I; = {i | aj; # 0} and let A; be the matrix from A by setting the
i-th rows with ¢ € I; to 0.

Lemma 3.18. The sphere S vanishes in Z(r;) along transversal one
parameter degenerations v if and only if i € I, i.e., a; # 0.

Proof. The curve v lies in D* = Z(w;) if and only if a; = 0. Thus,
for those i € I;, the ODP p; is always present on X, along the curve
~. In particular, the vanishing spheres along ~ are precisely those S;
with ¢ € 1. q.e.d.

To calculate the monodromy N (1), recall that (cf. Lemma 3.10) I'; =
o = —PD(f;). The Picard-Lefschetz formula (Lemma 3.13) then says
that

NS =Y (03 PD(S]) PD(S ) =~ Y,

el aij PD([SZ] ) .
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Corollary 3.19. For1 <p<pu,

NOTS ==Y ai(SiBy) =Y asjaiy = (A{A)p,

B i€l iely
while forp =0 or p+1 < p < h we have fﬁpN(l)F;f =0.

Corollary 3.20. The B(Y) is a sub-theory of B(X) by settingr = 0
and taking the monodromy invariant sub-system. In fact, ao(s) repre-
sents the family of Calabi—Yau 3-forms Q(s) over My and the o, [
periods along it gives the VHS on'Y .

3.3.4. On topological logarithmic Gauss—Manin connection. We
study the topological logarithmic Gauss—Manin connection associated to
our conifold degenerations. That is, we seek a topological frame of the
bundle R37,C of a local family 7 : X — M 5 near the Calabi-Yau coni-
fold [X]. By Lemma 1.12 and the Hodge diamond (1.11), part of the
frame comes naturally from H3(Y'), while the remaining part is modeled
on V* and V. By the same procedure as in the proof of Proposition 3.16,

the topological frame modeled on V* =2 HZ?H?3 can be chosen to be

k
log w; i N
vj := exp <Z 2W\/_71N( )> I;

i=1

(3.10)

k k
logw; - (; log w;
=T* + NOD* =% — ai: PD([S)]),

J ;27( /1 J J ;271_ /1 vy ([ l])
for 1 < j < u. Notice that the correction terms lie in the lower weight
piece HL'H3 and v; is independent of s. Moreover, v; is singular along
Dt if and only if a;; # 0, i.e., S; vanishes in Z(r?) by Lemma 3.18.

On V = HL'H3, we choose the (constant) frame by
(3.11)

k

, log w; ; .

v = exp ( E N(Z)> PD(F]) = PD(PJ)7 1< <.
P 2my/—1

From (3.6), (3.10) and Lemma 3.11, it is easy to determine the Gauss—
Manin connection on this partial frame in the special directions 0/0r)’s:

27T\/—1 ws

1 zk: ju: AipAimQin
= _— v .
2w/ —1 4 wj

i=1 n=1

k
VG v = 5 3 %%~ 4y, PD([S)]))
(3.12) =

Proposition 3.21. Near [X] € Mg, VEM s regular singular along
D"’s and smooth elsewhere. The connection matriz P on the block V* @
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V' takes the form
k

k B
dw; - dw; .
P = E w; & P! = E AZ & E Qim Ain 'Un & (Um) 5
i=1

w
i=1

m,n=1

where P; is a constant matriz in the topological frame vy, ’s and v™’s.

Note that there are no higher order terms in r;’s and VEM g block-
diagonalized, in contrast to results in (3.9) and the discussions in §6
where holomorphic frames are considered.

4. Local transitions between A(Y) and B(X)

The basic exact sequence in Theorem 1.14 provides a Hodge theoretic
realization of the numerical identity pu + p = k.

Now H?(Y)/H?*(X) ® C = C” is naturally the parameter space of
the extremal Gromov—Witten invariants of the Kéhler degeneration 1 :
Y — X, and V* ® C = CH is naturally the parameter space of periods
of vanishing cycles of the complex degeneration from X to X. Both
of them are equipped with flat connections induced from the Dubrovin
and Gauss—Manin connections respectively. Thus, it is natural to ask if
there is a D module lift of the basic exact sequence.

We rewrite the basic exact sequence in the form

H2(Y)/Hi(X)=Cr —B-ch <2 yvrecr,

with A*B = 0. This simply means that C* is an orthogonal direct sum
of the two subspaces im(A) and im(B). Let A = [Al,A...,A“], B =
[Bl,...,B], and consider the invertible matrix S = (s;) == [A,B] €

Mj.x(Z), namely sé- =a;; for 1 < j < p and SZH =b;; for 1 < j <p.
Denote the standard basis of C* by ey, ..., e with dual coordinates

y1,...,ys. Let el,... ¥ be the dual basis on ((Ck)v. We consider the

standard (trivial) logarithmic connection on the bundle C* @ (C*)Y over
C* defined by

k
1 dyi ;

4.1 —d+-S Y g (dwe

(4.1) Vit Y PeEed),

where z is a parameter. It is a direct sum of &k copies of its one dimen-
sional version. We will show that the principal (logarithmic) part of the
Dubrovin connection over C* (cf. (2.8)) as well as the Gauss—-Manin con-
nection on C* (cf. (3.9)) are all induced from this standard logarithmic
connection through the embeddings defined by B and A respectively.
Recall the basis T, ..., T, of C* with coordinates u!,...,u”, and the
frame T1,...,T,, T, ..., T? on the bundle C* & (C”)" over C”. Notice
that T} corresponds to the column vector BY = S#17,1 < j < p. Let Tj
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correspond to the column vector A7 = S7 for 1 < j < p with dual T9’s
Then i i

Tj = Zizl bij € = Zi:l S:H‘j €i;
and dually

i N\ j & p ]
€= Zj, 8 T + Z lH‘J - Zj:l ai; 7 + Zj:l b” T
Denote by P the orthogonal projection

P:CFa (CHY - CP o (CP)V.
Using (4.1) we compute the induced connection V¥ near 0 € C?:
k P
Vi Tn = Z Ly Ditbirm (Vesen)

p k

_ - dbzm i _ 1 bzlbzmbm ™"

We compare it with the one obtained in (2.8) and (2.9):

1< i -
Vi Tm =~ > ((Tl.Tm.Tn) + Zb“bimb,-nl%q> ",
i=1 '

n=1

(4.2)

N

where
P

¢; = exp Z bipu? = exp v;.
p=1
The principal part near u; =0, 1 <1 < p, gives

722 zlbzmbm ™"

n=1 i=1

which coincides with (4.2) by setting v; = y; for 1 < i < p. We summa-
rize the discussion in the following;:

~ Theorem 4.1. Let X 7Y be a projective conifold transition through

X with k ordinary double points. Let the bundle C* @ (C*)Y over C*
be equipped with the standard logarithmic connection defined in (4.1).
Then

(1) The connection induced from the embedding B : CP — CF defined
by the relation matrix of vanishing 3 spheres for the degeneration
from X to X gives rise to the logarithmic part of the Dubrovin
connection on H*(Y)/H?*(X).

(2) The connection induced from the embedding A : C* — CF defined
by the relation matriz of extremal rational curves for the small
contraction Y — X gives rise to the logarithmic part of the Gauss—
Manin connection on V*, where V is the space of vanishing 3-
cycles.
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Part (1) has just been proved. The proof for (2) is similar (by setting
z = 2my/—1 and w; = y;, cf. (3.9)) and is omitted. We remark that
the two subspaces B(C?) and A(C*) are, indeed, defined over Q and
orthogonal to each other, hence, A and B determine each other up to
choice of basis.

5. From A(X)+ B(X) to A(Y) + B(Y)

In this section, we prove Theorem 0.3 (3). The main idea is to refine
the GW invariants on X to respect the linking data on the vanishing
cycles. The GW theory of Y can then be reconstructed from the linked
GW theory of X.

5.1. Overview.

5.1.1. B(X) = B(Y). This is explained in §3: The VHS on Y is con-
tained in the logarithmic extension of VHS on X as the monodromy
invariant sub-theory along My C M. This is the easy part.

5.1.2. A(X) 4+ B(X)cassicat = A(Y). What we already know about
A(Y") consists of the following three pieces of data:
(1) A(X), which is given,
(2) the extremal ray invariants on divisors {T;}/_, determined by the
relation matrix B of the vanishing 3-spheres, and
(3) the cup product on H?(Y). Since Y comes from surgeries on X
along the vanishing spheres, this is determined classically.

The