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Abstract

We prove a descriptive theorem on the extrinsic geometry of an
embedded minimal surface of injectivity radius zero in a homo-
geneously regular Riemannian three-manifold, in a certain small
intrinsic neighborhood of a point of almost-minimal injectivity ra-
dius. This structure theorem includes a limit object which we call
a minimal parking garage structure on R3, whose theory we also
develop.

1. Introduction

This paper is devoted to an analysis of the extrinsic geometry of any
embedded minimal surface M in small intrinsic balls in a homogeneously
regular Riemannian three-manifold1 , such that the injectivity radius
function of M is sufficiently small in terms of the ambient geometry
of the balls. We carry out this analysis by blowing-up such an M at
a sequence of points with almost-minimal injectivity radius (we will
define this notion precisely in items 1, 2, 3 of the next theorem), which
produces a new sequence of minimal surfaces, a subsequence of which
has a natural limit object being either a properly embedded minimal
surface in R3, a minimal parking garage structure on R3 (we will study
this notion in Section 3) or possibly, a particular case of a singular
minimal lamination of R3 with restricted geometry, as stated in item 6
of the next result.
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1A Riemannian three-manifold N is homogeneously regular if there exists an ε > 0

such that the image by the exponential map of any ε-ball in a tangent space TxN ,
x ∈ N , is uniformly close to an ε-ball in R3 in the C2-norm. In particular, N has
positive injectivity radius. Note that if N is compact, then N is homogeneously
regular.
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In the sequel, we will denote by BM (p, r) (resp. BM (p, r)) the open
(resp. closed) metric ball centered at a point p in a Riemannian manifold
N , with radius r > 0. In the case M is complete, we will let IM : M →
(0,∞] be the injectivity radius function of M , and given a subdomain
Ω ⊂ M , IΩ = (IM )|Ω will stand for the restriction of IM to Ω. The
infimum of IM is called the injectivity radius of M .

Theorem 1.1 (Local Picture on the Scale of Topology). There exists
a smooth decreasing function δ : (0,∞)→ (0, 1/2) with limr→∞ r δ(r) =
∞ such that the following statements hold. Suppose M is a complete,
embedded minimal surface with injectivity radius zero in a homoge-
neously regular three-manifold N . Then, there exists a sequence of points
pn ∈M (called “points of almost-minimal injectivity radius”) and posi-
tive numbers εn = n IM (pn)→ 0 such that:

1: For all n, the closure Mn of the component of M∩BN (pn, εn) that
contains pn is a compact surface with boundary in ∂BN (pn, εn).
Furthermore, Mn is contained in the intrinsic open ball BM (pn,
rn
2 IM (pn)), where rn > 0 satisfies rn δ(rn) = n.

2: Let λn = 1/IM (pn). Then, λnIMn ≥ 1− 1
n on Mn.

3: The metric balls λnBN (pn, εn) of radius n = λnεn converge uni-
formly as n→∞ to R3 with its usual metric (so that we identify

pn with ~0 for all n).

Furthermore, exactly one of the following three possibilities occurs.

4: The surfaces λnMn have uniformly bounded Gaussian curvature
on compact subsets2 of R3 and there exists a connected, properly
embedded minimal surface M∞ ⊂ R3 with ~0 ∈ M∞, IM∞ ≥ 1

and IM∞(~0) = 1, such that for any k ∈ N, the surfaces λnMn

converge Ck on compact subsets of R3 to M∞ with multiplicity
one as n→∞.

5: After a rotation in R3, the surfaces λnMn converge to a mini-
mal parking garage structure3 on R3, consisting of a foliation L
of R3 by horizontal planes, with columns forming a locally finite
set S(L) of vertical straight lines (at least two lines). Moreover,
if there exists a bound on the genus of the surfaces λnMn, then
S(L) consists of just two lines l1, l2, the associated limiting pair of
multivalued graphs4 in λnMn nearby l1, l2 are oppositely handed

2As Mn ⊂ BN (pn, εn), the convergence {λnBN (pn, εn)}n → R3 explained in
item 3 allows us to view the rescaled surface λnMn as a subset of R3. The uniformly
bounded property for the Gaussian curvature of the induced metric on Mn ⊂ N
rescaled by λn on compact subsets of R3 now makes sense.

3For a description of a minimal parking garage structure, see Section 3.
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and given R > 0, for n ∈ N large depending on R, the surface
(λnMn) ∩BλnN (p, Rλn ) has genus zero.

6: There exists a nonempty, closed set S ⊂ R3, a minimal lamination
L of R3 − S and a subset S(L) ⊂ L which is closed in the subspace
topology, such that the surfaces (λnMn)−S converge to L outside
of S(L) and L has at least one nonflat leaf. Furthermore, if we let
∆(L) = S ∪ S(L) and let P be the sublamination of flat leaves in
L, then the following holds. P 6= Ø, the closure of every such flat
leaf is a horizontal plane, and if L ∈ P then the plane L intersects
∆(L) in a set containing at least two points, each of which are at
least distance 1 from each other in L, and either L∩∆(L) ⊂ S or
L ∩∆(L) ⊂ S(L).

For a more detailed description of cases 5 and 6 of Theorem 1.1, see
Propositions 4.20 and 4.30 below.

The results in the series of papers [8, 9, 10, 11, 12, 13] by Colding and
Minicozzi and the minimal lamination closure theorem by Meeks and
Rosenberg [36] play important roles in deriving the above compactness
result. We conjecture that item 6 in Theorem 1.1 does not actually
occur.

A short explanation of the organization of the paper is as follows.
In Section 2, we introduce some notation and recall the notion and
language of laminations, as well as a chord-arc property for embedded
minimal disks previously proven by Meeks and Rosenberg and based on
a similar one by Colding and Minicozzi. In Section 3, we develop the
theory of parking garage surfaces and limit parking garage structures,
a notion that appears in item 5 of the main Theorem 1.1. Section 4,
the bulk of this paper, is devoted to the proof of Theorem 1.1. Sec-
tion 5 includes some applications of Theorem 1.1. We refer the reader
to [23, 24, 25, 26, 27, 36, 38, 40] for further applications of Theo-
rem 1.1.

2. Preliminaries

Let M be a Riemannian manifold. Let BM (p, r) be the open ball
centered at a point p ∈ M with radius r > 0, for the underlying met-
ric space structure of M associated to its Riemannian metric. When
M is complete, the injectivity radius IM (p) at a point p ∈ M is the
supremum of the radii r > 0 of the open balls BM (p, r) for which the
exponential map at p is a diffeomorphism. This defines the injectivity

4This means that for i = 1, 2 and k ∈ N fixed (k ≥ 2), and for n large enough
depending on k, λnMn contains around li a pair of k-valued graphs (See Defini-
tion 4.10 for this concept) with opposite orientations, both spiraling together, and
the handedness of these k-graphs nearby l1 is opposite to the related one around l2.
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radius function, IM : M → (0,∞], which is continuous on M (see e.g.,
Proposition 88 in Berger [1]). The infimum of IM is called the injectivity
radius of M .

Definition 2.1. A codimension-one lamination of a Riemannian
three-manifold N is the union of a collection of pairwise disjoint, con-
nected, injectively immersed surfaces, with a certain local product struc-
ture. More precisely, it is a pair (L,A) satisfying:

1. L is a closed subset of N .
2. A = {ϕβ : D × (0, 1) → Uβ}β is an atlas of coordinate charts of N

(here D is the open unit disk in R2, (0, 1) is the open unit interval
and Uβ is an open subset of N); note that although N is assumed to
be smooth, we only require that the regularity of the atlas (i.e., that
of its change of coordinates) is of class C0, i.e., A is an atlas for the
topological structure of N .

3. For each β, there exists a closed subset Cβ of (0, 1) such that ϕ−1
β (Uβ∩

L) = D× Cβ.

We will simply denote laminations by L, omitting the charts ϕβ in A.
A lamination L is said to be a foliation of N if L = N . Every lamination
L naturally decomposes into a collection of disjoint, connected topolog-
ical surfaces (locally given by ϕβ(D × {t}), t ∈ Cβ, with the notation
above), called the leaves of L. As usual, the regularity of L requires
the corresponding regularity on the change of coordinate charts ϕβ. A
lamination L of N is said to be a minimal lamination if all its leaves are
(smooth) minimal surfaces. Since the leaves of L are pairwise disjoint,
we can consider the norm of the second fundamental form |σL| of L,
which is the function defined at every point p in L as |σL|(p), where L
is the unique leaf of L passing through p and |σL| is the norm of the
second fundamental form of L.

Definition 2.2. If {Σn}n is a sequence of complete embedded min-
imal surfaces in a Riemannian three-manifold N , consider the closed
set A ⊂ N of points p ∈ N such that for every neighborhood Up of p
and every subsequence of {Σn(k)}k, the sequence of norms of the sec-
ond fundamental forms of Σn(k) ∩Up is not uniformly bounded. By the
arguments in Lemma 1.1 of Meeks and Rosenberg [35] (see also Propo-
sition B.1 in [11]), after extracting a subsequence, the Σn converge on
compact subsets of N −A to a minimal lamination L′ of N −A that ex-
tends to a minimal lamination L of N−S, where S ⊂ A is the (possibly
empty) singular set of L, i.e., S is the closed subset of N such that L
does not admit a local lamination structure around any point of S. We
will denote by S(L) = A−S the singular set of convergence of the Σn to
L, i.e., those points of N around which L admits a lamination structure
but where the second fundamental forms of the Σn still blow-up.
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In this paper we will apply the Minimal Lamination Closure Theorem
in [36], which insures that if M is a complete, embedded minimal surface
of positive injectivity radius in a Riemannian three-manifold N (not
necessarily complete), then the closure M of M in N has the structure
of a C0,1-minimal lamination L with the components of M being leaves
of L. We will also use the following technical result from [36], which
generalizes to the manifold setting some of the results in [12].

Definition 2.3. Given a surface Σ embedded in a Riemannian three-
manifold N , a point p ∈ Σ and R > 0, we denote by Σ(p,R) the closure
of the component of Σ ∩BN (p,R) that passes through p.

Theorem 2.4 (Theorem 13 in [36]). Suppose that Σ is a compact,
embedded minimal disk in a homogeneously regular three-manifold N
whose injectivity radius function IΣ : Σ → [0,∞) equals the distance to
the boundary function dΣ(·, ∂Σ) (dΣ denotes intrinsic distance in Σ).
Then, there exist numbers δ′ ∈ (0, 1/2) and R0 > 0, both depending
only on N , such that if BΣ(x,R) ⊂ Σ− ∂Σ and R ≤ R0, then

Σ(x, δ′R) ⊂ BΣ(x,R/2).

Furthermore, Σ(x, δ′R) is a compact, embedded minimal disk in BN (x,
δ′R) with ∂Σ(x, δ′R) ⊂ ∂BN (x, δ′R).

3. Parking garage structures in R3

For a Riemannian surface M , KM will stand for its Gaussian cur-
vature function. In our previous paper [33] we proved the Local Pic-
ture Theorem on the Scale of Curvature, which is a tool that applies
to any complete, embedded minimal surface M of unbounded absolute
Gaussian curvature in a homogeneously regular three-manifold N , and
produces via a blowing-up process a nonflat, properly embedded min-
imal surface M∞ ⊂ R3 with normalized curvature (in the sense that

|KM∞ | ≤ 1 on M∞ and ~0 ∈ M∞, |KM∞ |(~0) = 1). The key ingredient
to do this is to find points pn ∈ M of almost-maximal curvature and
then rescale exponential coordinates in N around these points pn by√
|KM |(pn) → ∞ as n → ∞. We will devote the next section to ob-

tain a somehow similar result for an M whose injectivity radius is zero,
by exchanging the role of

√
|KM | by 1/IM , where IM : M → (0,∞]

denotes the injectivity radius function on M . We will consider this
rescaling ratio after evaluation at points pn ∈M of almost-minimal in-
jectivity radius, in a sense to be made precise in the first paragraph of
Section 4. One of the difficulties of this generalization is that the limit
objects that we can find after blowing-up might be not only properly
embedded minimal surfaces in R3, but also new objects, namely limit
minimal parking garage structures which we study below, and certain
kinds of singular minimal laminations of R3.
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Roughly speaking, a minimal parking garage structure is a limit object
for a sequence of embedded minimal surfaces which converges Cα, α ∈
(0, 1), to a minimal foliation L of R3 by parallel planes, with singular set
of convergence S(L) being a locally finite set of lines orthogonal to L,
called the columns of the limit parking garage structure, along which the
limiting surfaces have the local appearance of a highly-sheeted double
staircase. For example, the sequence of homothetic shrinkings 1

n H of
a vertical helicoid H converges to a minimal parking garage structure
that consists of the minimal foliation L of R3 by horizontal planes with
singular set of convergence S(L) being the x3-axis.

We remark that some of the language associated to minimal parking
garage structures, such as columns, appeared first in a paper of Traizet
and Weber [47], and the first important application of this type of struc-
ture appeared in [28] where we applied it to derive curvature estimates
for certain complete embedded minimal planar domains in R3. In [47],
Traizet and Weber produced an analytic method for constructing a one-
parameter family of properly embedded, periodic minimal surfaces in
R3, by analytically untwisting via the implicit function theorem a limit
configuration given by a finite number of regions on vertical helicoids
in R3 that have been glued together in a consistent way. They referred
to the limiting configuration as a parking garage structure on R3 with
columns corresponding to the axes of the helicoids that they glued to-
gether. Most of the area of these surfaces, just before the limit, consists
of very flat horizontal levels (almost-horizontal densely packed horizon-
tal planes) joined by the vertical helicoidal columns. One can travel
quickly up and down the horizontal levels of the limiting surfaces only
along the helicoidal columns in much the same way that some parking
garages are configured for traffic flow; hence, the name parking garage
structure. Parking garage structures also appear as natural objects in
the main results of the papers [11, 13, 39].

We now describe in more detail the notion of a parking garage surface.
Consider a possibly infinite, nonempty, locally finite set of points P ⊂ R2

and a collection D of open round disks centered at the points of P
such that the closures of these disks form a pairwise disjoint collection.
Let µ : H1(R2 − D) → Z be a group homomorphism such that µ takes
the values ±1 on the homology classes represented by the boundary
circles of the disks in D. Let Π: M → R2 − D be the infinite cyclic
covering space associated to the kernel of the composition of the natural
map from π1(R2 − D) to H1(R2 − D) with µ. It is straightforward
to embed M into R3 so that under the natural identification of R2

with R2 × {0}, the map Π is the restriction to M of the orthogonal
projection of R3 to R2 × {0}. Furthermore, in this embedding, we may
assume that the covering transformation of M corresponding to an n ∈
Z is given geometrically by translating M vertically by (0, 0, n). In
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Figure 1. Schematic representation of one of the “two
halves” M of a parking garage surface G with three
columns, two right-handed and one left-handed. The en-
tire surface G, not represented in the figure, is obtained
after gluing M with M + (0, 0, 1

2) and with an infinite
helicoidal strip inside each of the columns.

particular, M is a singly-periodic surface with boundary in ∂D × R.
M has exactly one boundary curve Γ on each vertical cylinder over the
boundary circle of each disk in D. We may assume that every such
curve Γ is a helix, see Figure 1. Let M(1

2) be the vertical translation

of M by (0, 0, 1
2). M ∪ M(1

2) is an embedded, disconnected periodic

surface in (R2 −D)×R with a double helix on each boundary cylinder
in ∂D × R.

Definition 3.1. In the above situation, we will call a (periodic) park-
ing garage surface corresponding to the surjective homomorphism µ to
the connected topological surface G ⊂ R3 obtained after attaching to
M ∪M(1

2) an infinite helicoidal strip in each of the solid cylinders in
D×R. Note that by choosing M appropriately, the resulting surface G
can be made smooth.

Since in minimal surface theory we only see the parking garage struc-
ture in the limit of a sequence of minimal surfaces, when the helicoidal
strips in the cylinders of D×R become arbitrarily densely packed, it is
useful in our construction of G to consider parking garages G(t) invari-
ant under translation by (0, 0, t) with t ∈ (0, 1] tending to zero. For t ∈
(0, 1], consider the affine transformation Ft(x1, x2, x3) = (x1, x2, tx3).
Then G(t) = Ft(G). Note that our previously defined surface G is G(1)
in this new setup. As t → 0, the G(t) converge to the foliation L of
R3 by horizontal planes with singular set of convergence S(L) consist-
ing of the vertical lines in P × R. Also, note that M depends on the
epimorphism µ, so to be more specific, we could also denote G(t) by
G(t, µ).
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Definition 3.2. In the sequel, we will call the above limit object
lim
t→0

G(t, µ) a limit parking garage structure of R3 associated to the sur-

jective homomorphism µ.

Next we remark on the topology of the ends of the periodic parking
garage surface G in the case that P is a finite set, where G = G(t, µ)
for some t and µ. Suppose D = {D1, . . . , Dn}. Then we associate to G
an integer index:

I(G) =
n∑

i=1

µ([∂Di]) ∈ Z.

Note that the index I(G) = I(G(t)) does not depend on the parameter
t, and, thus, it makes sense to speak about this index for a limit parking
garage structure limt→0G(t).

Consider the quotient orientable surface G/Z in R3/Z, where Z is
generated by translation by (0, 0, t). The ends of G/Z are annuli and
there are exactly two of them. If I(G) = 0, then these annular ends of
G/Z lift to graphical annular ends of G. If I(G) 6= 0, then the universal
cover of an end of G/Z has |I(G)| orientation preserving lifts to G, each
of which gives rise to an infinite-valued graph over its projection to the
end of R2 × {0}.

Lemma 3.3. Suppose that G is a periodic parking garage surface in
R3 with a finite set P ×R of n columns. Then, the following properties
are equivalent.

1) G has genus zero.
2) G has finite genus.
3) n = 1 (in which case G is simply connected and I(G) = ±1), or

n = 2 and I(G) = 0 (in which case G has an infinite number of
annular ends with two limit ends).

Proof. The equivalence between items 1 and 2 holds since G is pe-
riodic. Clearly item 3 implies item 1. Finally, if item 3 does not hold
then either n ≥ 3 or G has two columns with the same handedness. In
any of these cases there exist at least two points x1, x2 ∈ P with asso-
ciated values µ([∂D1]) = µ([∂D2]) for the corresponding disks D1, D2

in D around x1, x2 (up to reindexing). Consider an embedded arc γ in
R2 − P joining x1 to x2. Then one can lift γ to two arcs in consec-
utive levels of the parking garage G joined by short vertical segments
on the columns over x1 and x2. Let γ̃ denote this associated simple
closed curve on G. Observe that if γ̃′ is the related simple closed curve
obtained by translating γ̃ up exactly one level in G (this means that
γ̃′ = γ̃+ (0, 0, t/2) if G = G(t, µ)), then γ̃ and γ̃′ have intersection num-
ber one. Thus, a small regular neighborhood of γ̃ ∪ γ̃′ on G has genus
one, which implies that item 1 does not hold. q.e.d.



THE LOCAL PICTURE THEOREM ON THE SCALE OF TOPOLOGY 517

Figure 2. Three views of a minimal parking garage sur-
face, constructed on a Riemann minimal example.

3.1. Examples of parking garage structures.

(B1) Consider the limit of homothetic shrinkings of a vertical helicoid.
One obtains in this way the foliation L of R3 by horizontal planes
with a single column, or singular curve of convergence S(L), being
the x3-axis. The related limit minimal parking garage surface G
has invariant I(G) = ±1; the word “minimal” is used because in
this case, the surface G is a minimal surface.

(B2) Let Rt, t > 0, be the classical Riemann minimal examples. These
are properly embedded, singly-periodic minimal surfaces with
genus zero and infinitely many planar ends asymptotic to hori-
zontal planes. Consider the limit of the Rt when the flux vector of
Rt along a compact horizontal section converges to (2, 0, 0). Note
that the surfaces Rt are invariant under a translation that only be-
comes vertical in the limit; in spite of this slight difference with the
theoretical framework explained above, where the surface G(t, µ)
is invariant under a vertical translation, we still consider the limit
minimal parking structure in this case. This limit minimal park-
ing garage structure G has two columns with opposite handedness
(see [28] for a proof of these properties) and so, G has invariant
I(G) = 0, see Figure 2. These examples (B1), (B2) correspond to
Case 3 of Lemma 3.3.

(B3) Consider the Scherk doubly-periodic minimal surfaces Sθ, θ ∈
(0, π2 ], with horizontal lattice of periods {((m + n) cos θ,
(m−n) sin θ, 0) | m,n ∈ Z}. The limit as θ → 0 of the surfaces Sθ
is a foliation of R3 by planes parallel to the (x1, x3)-plane, with
columns of the same orientation being the horizontal lines parallel
to the x2-axis and passing through Z × {0} × {0}. The related
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minimal parking garage structure of R3 has an infinite number of
columns, all of which are oriented the same way.

We refer the interested reader to [47] for further details and more
examples of parking garage structures that occur in minimal surface
theory.

Lemma 3.4. Every parking garage surface in R3 with a finite number
of columns is recurrent for Brownian motion.

Proof. Note that if G ⊂ R3 is a parking garage surface and we con-
sider the natural action of Z over G by vertical orientation preserving
translations, then the quotient surface G/Z has finite topology, exactly
two annular ends and quadratic area growth. In particular, G/Z is con-
formally a twice punctured compact Riemann surface. On the other
hand, since the covering Π: G→ G/Z is a normal covering, then there
is a natural homomorphism τ from the fundamental group of G/Z onto
the group of automorphisms Aut(Π) of this covering. Since Aut(Π) is
abelian, then τ factorizes through the first homology group H1(G/Z)
to a surjective homomorphism τ̃ : H1(G/Z) → Aut(Π). Furthermore,
each one of the two homology classes in H1(G/Z) given by loops on
G/Z around the ends applies via τ̃ on a generator of Aut(Π). In this
setting, Theorem 2 in Epstein [17] implies that G is recurrent; see the
first paragraph in Section 4 of [30] for details on this application of the
result by Epstein. q.e.d.

Remark 3.5. In Example (B3) above, the surface Sθ for any θ is not
recurrent for Brownian motion, but it is close to that condition, in the
sense that it does not admit positive nonconstant harmonic functions,
see [30].

We have already introduced the notation BN (p, r) for the open metric
ball centered at the point p with radius r > 0 in a Riemannian three-
manifold N . In the case N = R3, we will simplify B(p, r) = BR3(p, r)

and B(r) = B(~0, r).
Note that it also makes sense for a sequence of compact, embedded

minimal surfaces Mn ⊂ B(Rn) with boundaries ∂Mn ⊂ ∂B(Rn) such
that Rn → ∞ as n → ∞, to converge on compact subsets of R3 to a
minimal parking garage structure on R3 consisting of a foliation L of R3

by planes with a locally finite set of lines S(L) orthogonal to the planes
in L, where S(L) corresponds to the singular set of convergence of the
Mn to L. We note that each of the lines in S(L) has an associated + or
− sign corresponding to whether or not the associated forming helicoid
in Mn along the line is right or left handed. For instance, Theorem 0.9
in [13] illustrates a particular case of this convergence to a limit parking
garage structure on R3 when S(L) consists of two lines with associated
double staircases of opposite handedness.
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Remark 3.6. To study other aspects of how minimal parking garage
structures appear as the limit of a sequence of minimal surfaces in R3,
see Meeks [21, 22].

4. The Proof of Theorem 1.1

Let M ⊂ N be a complete, embedded minimal surface with injectivity
radius zero in a homogeneously regular three-manifold N . As N is
homogeneously regular, its injectivity radius is positive. After a fixed
constant scaling of the metric of N , we may assume that the injectivity
radius of N is greater than 1. The first step in the proof of Theorem 1.1
is to obtain special points p′n ∈ M , called points of almost-minimal
injectivity radius. To do this, first consider a sequence of points qn ∈M
such that IM (qn) ≤ 1

n (such a sequence {qn}n exists since the injectivity

radius of M is zero). Consider the continuous function hn : BM (qn, 1)→
R given by

(1) hn(x) =
dM (x, ∂BM (qn, 1))

IM (x)
, x ∈ BM (qn, 1),

where dM is the distance function associated to its Riemannian metric.
As hn is continuous and vanishes on ∂BM (qn, 1), then there exists p′n ∈
BM (qn, 1) where hn achieves its maximum value.

We define λ′n = IM (p′n)−1. Note that

(2) λ′n ≥ λ′ndM (p′n, ∂BM (qn, 1)) = hn(p′n) ≥ hn(qn) = IM (qn)−1 ≥ n.
Fix t > 0. Consider exponential coordinates centered at p′n in the
extrinsic ball BN (p′n,

t
λ′n

) (this can be done if n is sufficiently large).

After rescaling the ambient metric by the factor λ′n →∞ and identifying

p′n with the origin ~0, we conclude that the sequence {λ′nBN (p′n,
t
λ′n

)}n
converges to the open ball B(t) of R3 with its usual metric. Similarly, we
can consider {λ′nBM (p′n,

t
λ′n

)}n to be a sequence of embedded minimal

surfaces with boundary, all passing through p′n = ~0 with injectivity
radius 1 at this point.

Lemma 4.1. The injectivity radius function of λ′nM (i.e., of M en-
dowed with the rescaled metric by the factor λ′n) restricted to
λ′nBM (p′n,

t
λ′n

) is greater than some positive constant independent of n

large.

Proof. Pick a point zn ∈ BM (p′n,
t
λ′n

). Since for n large enough, zn
belongs to BM (qn, 1), we have

1

λ′nIM (zn)
=

hn(zn)

λ′ndM (zn, ∂BM (qn, 1))
(3)

≤ hn(p′n)

λ′ndM (zn, ∂BM (qn, 1))
=
dM (p′n, ∂BM (qn, 1))

dM (zn, ∂BM (qn, 1))
.
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By the triangle inequality, dM (p′n, ∂BM (qn, 1)) ≤ t
λ′n

+ dM (zn,

∂BM (qn, 1)) and so,

dM (p′n, ∂BM (qn, 1))

dM (zn, ∂BM (qn, 1))
≤ 1 +

t

λ′ndM (zn, ∂BM (qn, 1))

≤ 1 +
t

λ′n

(
dM (p′n, ∂BM (qn, 1))− t

λ′n

) = 1 +
t

λ′ndM (p′n, ∂BM (qn, 1))− t

(4)
(2)

≤ 1 +
t

n− t ,
which tends to 1 as n→∞, thereby proving the lemma. q.e.d.

4.1. A chord-arc property and the proof of items 1, 2, 3 of
Theorem 1.1. With the notation above, we define

(5) tn =

√
n

2
, M̃(n) = λ′nBM (p′n,

tn
λ′n

).

Since by (2) hn(p′n) ≥ n > tn, then tn
λ′n

< hn(p′n)
λ′n

= dM (p′n, ∂BM (qn, 1)).

Therefore, given any z ∈ BM (p′n,
tn
λ′n

), we have

dM (z, qn) ≤ dM (z, p′n) + dM (p′n, qn) <
tn
λ′n

+ dM (p′n, qn)

< dM (p′n, ∂BM (qn, 1)) + dM (p′n, qn) = 1,

that is, z ∈ BM (qn, 1). This last property lets us apply (3) and (4) to
conclude that for n large and z ∈ BM (p′n,

tn
λ′n

), we have

(6)
1

λ′nIM (z)
≤ 1 +

tn
n− tn

≤ 2;

hence, the injectivity radius function of the complete surface λ′nM is

greater than 1
2 at any point in M̃(n). This clearly implies that

(Inj) M̃(n) has injectivity radius at least 1
2 at points of distance

greater than 1
2 from its boundary.

Proposition 4.2. Given R1 > 0, there exists δ̃ = δ̃(R1) ∈ (0, 1
2)

such that for any R ∈ (0, R1] and for n sufficiently large, the closure

Σ(n, δ̃R) of the component of M̃(n) ∩Bλ′nN (p′n, δ̃R) passing through p′n
has ∂Σ(n, δ̃R) ⊂ ∂Bλ′nN (p′n, δ̃R) and satisfies

(7) Σ(n, δ̃R) ⊂ B
M̃(n)

(p′n,
R
2 ).

Furthermore, the function r ∈ (0,∞) 7→ δ̃(r) ∈ (0, 1
2) can be chosen so

that δ̃(r) is nonincreasing and r δ̃(r)→∞ as r →∞.

Proof. We will start by proving the following property.

(C) Given R1 > 0, there exists δ̃ = δ̃(R1) ∈ (0, 1
2) such that with the

notation of the lemma, the inclusion in (7) holds for all R ∈ (0, R1].
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Arguing by contradiction, suppose there exists a sequence δn ↘ 0 so that
Σ(n, δnRn) intersects the boundary of B

M̃(n)
(p′n,

Rn
2 ) for some Rn ≤ R1.

Observe that we can assume that the number R0 > 0 appearing in
Theorem 2.4 is not greater than 1

2 . For n sufficiently large, all points in

B
M̃(n)

(p′n, R0) are at intrinsic distance greater than 1
2 from the boundary

of M̃(n), and, thus, the injectivity radius property (Inj) implies that
B
M̃(n)

(p′n, R0) is topologically a disk whose injectivity radius function

coincides with the distance to its boundary function. This property
together with the fact that δn < δ′ for n large (here δ′ is the positive
constant that appears in Theorem 2.4) allow us to apply Theorem 2.4
to conclude that Rn > R0.

As Σ(n, δnRn) ∩ ∂B
M̃(n)

(p′n,
Rn
2 ) 6= Ø, then there exists a curve

γn : [0, 1] → Σ(n, δnRn) such that γn(0) = p′n, γn(1) ∈ ∂B
M̃(n)

(p′n,
Rn
2 )

and γn(t) ∈ B
M̃(n)

(p′n,
Rn
2 ) for all t ∈ [0, 1). In particular, the length of

γn is at least Rn
2 .

Consider the positive numbers τn =
1

δnRn
≥ 1

δnR1
→ ∞ and note

that the scaled surfaces τnΣ(n, δnRn) can be viewed as the closure of
the component of

τn[M̃(n) ∩Bλ′nN (p′n, δnRn)] = τnM̃(n) ∩Bτnλ′nN (p′n, 1)

that passes through p′n; recall that Bτnλ′nN (p′n, 1) can be taken arbitrar-
ily close to B(1) with its standard flat metric. Let γ̃n ⊂ τnΣ(n, δnRn) be

the related scaling of γn. Since the intrinsic distance from γ̃n(0) = ~0 =
p′n to γ̃n(1) in τnΣ(n, δnRn) is τnRn

2 = 1
2δn
→∞, then for n large there

exists a collection of points Qn = {qn1 , . . . , qnk(n)} ⊂ γ̃n ⊂ B(1) whose

intrinsic distances from each other in τnM̃(n) are diverging to infinity
and with k(n) → ∞ as n → ∞; here we are viewing B(1) as being
exponential coordinates for Bτnλ′nN (p′n, 1) and so, we can consider all of

the curves γ̃n to lie in the open unit ball in R3 with metrics converging
to the usual flat one. In particular, there are positive numbers rn →∞
such that

{B
τnM̃(n)

(qnk , rn) | k ∈ {1, . . . , k(n)}}

forms a pairwise disjoint collection of intrinsic balls contained in the

interior of τnM̃(n), and property (Inj) implies that

(Inj1) The intrinsic distance from each B
τnM̃(n)

(qnk , rn) to the boundary

of τnM̃(n) is at least 1 for n sufficiently large (this holds because

τn → ∞ and tn → ∞), and the injectivity radius of τnM̃(n) is
at least 2 at points of distance at least 2 from the boundary of

τnM̃(n).
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qnj′

qnj q∞
1

δ′R0

δ′R0

D′
n

˜D′
n

Dn

˜Dn

δ′R0
2

Figure 3. The disks D̃n, D̃
′
n are disjoint and become

close to q∞.

Since the number of points in Qn is diverging to infinity as n → ∞,
then after replacing by a subsequence, there exists a sequence of pairs of
points qnj 6= qnj′ ∈ Qn such that {qnj }n, {qnj′}n converge to the same point

q∞ ∈ B(1). By property (Inj1), B
τnM̃(n)

(qnj , 1), B
τnM̃(n)

(qnj′ , 1) are min-

imal disks that satisfy the hypotheses of Theorem 2.4. Therefore, the
closures Dn, D

′
n of the components of B

τnM̃(n)
(qnj , 1)∩Bτnλ′nN (qnj , δ

′R0),

B
τnM̃(n)

(qnj′ , 1) ∩ Bτnλ′nN (qnj′ , δ
′R0) passing respectively through qnj , q

n
j′

are disks with their boundaries in the respective ambient boundary
spheres, where δ′, R0 are defined in Theorem 2.4. For n large enough, we
may assume that the boundaries of extrinsic balls of radius at most 1 in
τnλ
′
nN are spheres of positive mean curvature with respect to the inward

pointing normal vector. The mean curvature comparison principle im-

plies that the respective components D̃n, D̃
′
n ofDn∩Bτnλ′nN (q∞, δ

′R0/2),
D′n ∩ Bτnλ′nN (q∞, δ

′R0/2) passing through the points qnj , q
n
j′ are disks

with their boundary curves in Bτnλ′nN (q∞, δ
′R0/2), see Figure 3.

As described in the proof of the minimal lamination closure theo-
rem in [36], the extrinsic5 one-sided curvature estimates for minimal
disks of Colding–Minicozzi (Corollary 0.4 in [11]) imply that there ex-
ists a constant C > 0 only depending on N such that the norm of

the second fundamental forms of the subdisks of D̃n, D̃
′
n in the smaller

ball Bτnλ′nN (q∞, δ
′R0/4) containing the respective points qnj , q

n
j′ , are

5One could instead use the intrinsic version of the one-sided curvature estimates
(Corollary 0.8 in Colding and Minicozzi [12]) to shorten this argument.
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bounded by C (see Theorem 7 in [36] for an exact statement of this
result). Since these subdisks have uniformly bounded second funda-
mental forms, a subsequence of these subdisks converges to a compact
minimal disk D(q∞) passing through q∞ with boundary in the bound-
ary of the ball B(q∞, δ

′R0/4) and the norm of the second fundamental
form of D(q∞) is everywhere bounded from above by C. A prolonga-
tion argument (see, for instance, the proof of Theorem 4.37 in Pérez and
Ros [42]) implies that D(q∞) lies in a complete, embedded minimal sur-
face M(∞) in R3 with its flat metric and with the norm of the second
fundamental form of M(∞) bounded from above by C; furthermore,
M(∞) must be proper in R3 by Theorem 2.1 in [37].

The above arguments also prove that for any fixed T > 0, for n
sufficiently large, the norms of the second fundamental forms of the
intrinsic balls B

τnM̃(n)
(qnj , T ), B

τnM̃(n)
(qnj′ , T ), are bounded from above

by 2C. By Lemma 3.2 in [33], for T sufficiently large, the boundary of
the component of B

τnM̃(n)
(qnj , T )∩Bτnλ′nN (qnj , 3) that passes through qnj

lies on the boundary of the ball Bτnλ′nN (qnj , 3). This is a contradiction
since for n sufficiently large, the curve γ̃n intersects this component, γ̃n
does not intersect the boundary of the component and γ̃n passes through
the point qnj′ 6∈ BτnM̃(n)

(qnj , T ). This contradiction proves Property (C).

Note that given R1 > 0, we can assume that the number tn given
by (5) satisfies tn >

R1
2 for n sufficiently large; this implies that given

R ∈ (0, R1], by definition of Σ(n, δ̃R), no points in Σ(n, δ̃R) are in the

boundary of M̃(n). Thus, the boundary ∂Σ(n, δ̃R) is contained in the

boundary of Bλ′nN (p′n, δ̃R), as stated in the first sentence of Proposi-
tion 4.2.

To finish the proof of Proposition 4.2, it remains to show that δ̃ =

δ̃(R1) can be chosen so δ̃(r) is nonincreasing and that r δ̃(r) → ∞ as

r → ∞. Property (C) lets us define for each r ∈ (0,∞), δ̂(r) as the

supremum of the values δ̃ ∈ (0, 1
2) such that for n sufficiently large, the

inclusion in (7) holds for this value of δ̃, for all R ≤ r. Note that the

function r 7→ δ̂(r) is nonincreasing. In order to complete the proof of

the proposition it suffices to show that limr→∞ r δ̂(r) =∞.
Arguing by contradiction, suppose that there exists a sequence rn →

∞ such that rn δ̂(rn) ≤ K, for some K ∈ (1,∞); in particular,

limr→∞ δ̂(r) = 0. By the definition of δ̂(r), it follows that after choosing
a subsequence,

(8) Σ(n, 2δ̂(rn)Rn) 6⊂ B
M̃(n)

(p′n,
Rn
2 ), for some Rn ∈ (R0, rn].

We claim that

(9) lim
n→∞

Rn =∞.
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Otherwise, after choosing a subsequence, we have Rn ≤ C ′ for some

C ′ > 1. Note that we may also assume that δ̂(rn) < 1
2 δ̂(C

′) for all
n ∈ N. But then,
(10)

Σ(n, 2δ̂(rn)Rn) ⊂ Σ(n, δ̂(C ′)Rn) ⊂ Σ(n, δ̂(Rn)Rn)
(7)
⊂ B

M̃(n)
(p′n,

Rn
2 ),

which contradicts (8). Therefore, (9) holds.

Now define τn =
1

δ̂(rn)Rn
. By property (Inj), the rescaled surfaces

τnM̃(n) have injectivity radius bounded from below by

τn
2

=
1

2δ̂(rn)Rn
≥ 1

2δ̂(rn)rn
≥ 1

2K
> 0

at points of distance at least τn/2 from its boundary. Furthermore, the
scaled surfaces

τnΣ(n, 2δ̂(rn)Rn)

can be viewed to be contained in the ball B(2). As in the previous case

where r = R1 was fixed, one can define curves γn in Σ(n, 2δ̂(rn)Rn) such

that the associated scaled curves γ̃n in τnΣ(n, 2δ̂(rn)Rn) have intrinsic
distances between the end points of γ̃n diverging to infinity and n→∞.
From straightforward modifications of the arguments in the first part
of the proof of this proposition, one arrives to a contradiction; for these
modifications one does not need that the injectivity radii of the surfaces

τnM̃(n) are at least 2 but just that they are bounded from below by

a uniform constant. This contradiction proves that limr→∞ r δ̂(r) =∞
and completes the proof of the proposition after redefining δ̃(r) by δ̂(r).

q.e.d.

Remark 4.3. In Proposition 4.2, the value of r 7→ δ̃(r) might de-
pend a priori on the homogeneously regular ambient manifold N where
the blow-up process on the scale of topology was performed or on the
complete minimal surface M with injectivity radius zero. In fact, this

δ̃(r) can be chosen independent upon N because the inclusion in (7) is
invariant under rescaling once the metric on the scaled manifold λ′nN
is sufficiently C2-close to a flat metric and the injectivity radius of λ′nN

is at least 1. A similar argument shows that δ̃(r) can be also chosen
independent of the minimal surface M .

We next continue with the proof of Theorem 1.1. Consider the nonin-

creasing function δ̃ : (0,∞)→ (0, 1
2) given by Proposition 4.2. The func-

tion δ : (0,∞)→ (0, 1
2) described in the statement of Theorem 1.1 can be

defined as any smooth decreasing function such that 1
2 δ̃(r) ≤ δ(r) ≤ δ̃(r)

for any r > 0. In particular, (7) holds true after replacing δ̃ by δ, and
r δ(r)→∞ as r →∞.
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Lemma 4.4. Items 1, 2, 3 of Theorem 1.1 hold.

Proof. By the last statement in Proposition 4.2, for k ∈ N, we can
pick values rk > 0 such that rk δ(rk) = k. In particular, Proposition 4.2
ensures that ∂Σ(n, k) ⊂ ∂Bλ′nN (p′n, k) and

(11) Σ(n, k) ⊂ B
M̃(n)

(p′n,
rk
2

),

for all n ≥ n(k), where n(k) ∈ N that can be assumed to tend to
infinity as k → ∞. Furthermore, we can also assume n(k) is chosen so
that k

n(k) → 0 as k →∞. Defining

εk =
k

λ′n(k)

= k IM (p′n(k))
(2)

≤ k

n(k)
,

then εk → 0 as k →∞. Finally, we define for every k ∈ N

(12) pk = p′n(k) and Mk =
1

λ′n(k)

Σ(n(k), k).

Then, item 1 of Theorem 1.1 follows directly from (11). Item 2 of the
theorem also holds from (6) after replacing by a further subsequence,
and item 3 of the theorem hold trivially since N is homogeneously reg-
ular and λk = 1/IM (pk) = λ′n(k) tends to ∞ as k →∞. This completes

the proof of the lemma, after replacing k by n. q.e.d.

From this point on in the proof, we will assume that the first three
items of Theorem 1.1 hold for the sequence of points pn ∈ M and we
will discuss two cases in distinct subsections, depending on whether or
not a subsequence of the surfaces λnBM (pn,

t
λn

) has uniformly bounded

Gaussian curvature (the bound could depend on t > 0). Before doing
this, we will state a property which will be useful in both cases.

Assertion 4.5. For n large, there exists an embedded geodesic loop
βn ⊂ λnMn of length two based at pn (smooth except possibly at pn)
which is homotopically nontrivial in λnMn.

Proof. Since the surfaces λnMn are minimal and the sectional cur-
vatures of the ambient spaces λnN are converging uniformly to zero,
then the Gauss equation implies that the exponential map exppn of
Tpn(λnMn) restricted to the closed metric ball of radius 2 centered at
the origin is a local diffeomorphism. As the injectivity radius of λnMn

at pn is 1, then exppn is a diffeomorphism when restricted to the open
disk of radius 1, and it fails to be injective on the boundary circle of
radius 1. Now it is standard to deduce the existence of a geodesic loop
βn as in the statement of the assertion, except for the property that βn
is homotopically nontrivial which we prove next.

Arguing by contradiction and after extracting a subsequence, as-
sume that βn is homotopically trivial in λnMn. Thus, βn bounds a
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disk Dn ⊂ λnMn. Observe that λnMn is contained in BλnN (pn, n)
(this follows from (12) and from Definition 2.3). Since the extrinsic
spheres ∂BλnN (pn, R) have positive mean curvature for n large with
respect to the inward pointing normal vector (because they are pro-
duced by rescaling of extrinsic balls of radius R/λn → 0 in the ho-
mogeneously regular manifold N) and Dn ⊂ BλnN (pn, n) with ∂Dn =
βn ⊂ BλnMn(pn, 2) ⊂ BλnN (pn, 2), then the mean curvature compari-
son principle implies Dn ⊂ BλnN (pn, 2). As the balls BλnN (pn, 2) are
converging uniformly to the flat ball B(2), and B(2) contains no closed
minimal surfaces without boundary, then the isoperimetric inequality
in [48] implies that there exists an upper bound A0 for the areas of the
disks Dn (here we are using Theorem 2.1 in [48] on the mean convex
balls BλnN (pn, 2) for n large, hence, the constant A0 does in principle
depend on n; the fact that A0 can be taken independently of n large
follows from the upper semicontinuous dependence of A0 on the ambient
Riemannian manifold with mean convex boundary, see the sentence just
before Corollary 2.4 in [48]). As the limsup of the sequence of numbers
maxDn KλnMn is nonpositive, then the Gauss–Bonnet formula gives

2π =

∫

Dn

KλnMn + α ≤
∫

Dn

KλnMn + π,

where α is the angle of βn at pn. The above inequality is impossible,
since as n→∞,
∫

Dn

KλnMn ≤ max
Dn

(KλnMn)A0 ≤ lim sup

(
max
Dn

KλnMn

)
A0 ≤ 0.

This contradiction proves that the embedded geodesic loop βn is homo-
topically nontrivial in λnMn. q.e.d.

4.2. The case of uniformly bounded Gaussian curvature on
compact subsets of R3.

Proposition 4.6. In the situation above, suppose that for every
t > 0, the surfaces λnBM (pn,

t
λn

) have uniformly bounded Gaussian
curvature. Then, item 4 of Theorem 1.1 holds.

Proof. In the special case that there exists C > 0 so that for every
t > 0 there exists n(t) ∈ N such that the surfaces λnBM (pn,

t
λn

), n ≥
n(t), have absolute Gaussian curvature bounded by C, then a complete
proof of this proposition can be found in Section 3 of [33]. We will next
modify some of those arguments in order to deal with the more general
current situation, where the bound C might depend on t > 0.

Fix t > 0. As by hypothesis the surfaces λnBM (pn,
t
λn

) have uni-
formly bounded Gaussian curvature, then they also have uniformly
bounded area by comparison theorems in Riemannian geometry
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(Bishop’s second theorem, see e.g., Theorem III.4.4 in Chavel [4]). Af-
ter extracting a subsequence, the compact surfaces λnBM (pn,

t
λn

) con-

verge on compact sets of R3 (possibly with integer nonconstant mul-
tiplicities) to an embedded, compact minimal surface with boundary

M∞(t) ⊂ B(t), with bounded Gaussian curvature, such that ~0 lies in

the interior of M∞(t). We claim that the intrinsic distance from ~0 to
∂M∞(t) is t. To see this, first note that this intrinsic distance is clearly
at most t, as t is the radius of λnBM (pn,

t
λn

). Let α be a minimizing

geodesic from ~0 to ∂M∞(t). For n large, one can lift α normally to

nearby arcs αn on λnBM (pn,
t
λn

), each of which starts at ~0 and has one

end point in ∂[λnBM (pn,
t
λn

)], so that their lengths converge as n→∞
to the length of α. Clearly the length of αn is at least t; hence, after
taking limits we deduce that the length of α is at least t, and our claim
is proved.

Consider an increasing sequence 1 = t1 < t2 < . . . with tm → ∞ as
m → ∞. For m = 1, consider the compact surface M∞(1) together
with the sequence of surfaces λnBM (pn,

1
λn

) that converges to it (after

passing to a subsequence). For this sequence, consider the correspond-
ing intrinsic balls λnBM (pn,

t2
λn

). After extracting a subsequence, these

surfaces converge to M∞(t2); in particular, M∞(1) ⊂M∞(t2). Repeat-
ing this argument and using a diagonal subsequence, one can construct
the surface

M∞ =
∞⋃

m=1

M∞(tm).

As the intrinsic distance from ~0 to ∂M∞(tm) is tm for every m ∈ N, then
M∞ is a complete, injectively immersed minimal surface in R3 without
boundary. Observe that for every m, the convergence of the limit of the
surfaces λnBM (pn,

tm
λn

) to M∞(tm) is one, as follows, for example, from

the arguments in the proof of Lemma 3.1 in [33] (higher multiplicity
produces a positive Jacobi function on M∞, hence, M∞ is stable and
so, M∞ is a plane, which contradicts the following assertion).

Assertion 4.7. M∞ is not a plane.

Proof. Consider for each n ∈ N large, the embedded geodesic loop
βn ⊂ λnMn of length two based at pn given by Assertion 4.5. Clearly,
βn ⊂ λnBM (pn,

1
λn

). As the surfaces λnBM (pn,
1
λn

) converge on com-

pact subsets of R3 to M∞(1), then the βn converge after passing to
a subsequence to an embedded geodesic loop β∞ ⊂ M∞(1), which is
impossible if M∞ were a plane. Hence, the assertion follows. q.e.d.

We next analyze the injectivity radius function of M∞. Fix m ∈ N .
Since M∞(tm) is compact and injectively immersed, then there exists
µ(tm) > 0 such that M∞(tm) admits a regular neighborhood U(tm) ⊂
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R3 of radius µ(tm) and we have a related normal projection

Πtm : U(tm)→M∞(tm).

In this setting, Lemma 3.1 in [33] applies6 to give the following prop-
erty:

Assertion 4.8. Given m ∈ N, there exists k ∈ N such that if n ≥
k, then λnBM (pn,

tm
λn

) is contained in U(tm+1) and λnBM (pn,
tm
λn

) is a

small normal graph over its projection to M∞(tm+1), i.e.,

(Πtm+1)|λnBM (pn,
tm
λn

) : λnBM (pn,
tm
λn

)→ Πtm+1

(
λnBM (pn,

tm
λn

)
)

is a diffeomorphism.

We now remark on some properties of the minimal surface M∞ ⊂ R3.
By Assertion 4.8, given m ∈ N there exists k ∈ N such that we can in-
duce the metric of λnBM (pn,

tm
λn

) to its projected image

Πtm+1

(
λnBM (pn,

tm
λn

)
)

through the diffeomorphism Πtm+1 . As the se-

quence {λnBM (pn
tm
λn

)}n converges to M∞(tm) with multiplicity one as
n → ∞, then using the continuity of the injectivity radius function
with respect to the Riemannian metric on a given compact surface (see
Ehrlich [16] and Sakai [44]) and inequality (4), we deduce that
(13)

(IM∞) |M∞(tm) = lim
n→∞

(IλnM ) |λnBM (pn,
tm
λn

) ≥ lim
n→∞

1

1 + tm
n−tm

= 1.

Hence, we conclude that IM∞≥1 everywhere on M∞, with IM∞(~0)=1.
Since M∞ ⊂ R3 is a complete embedded minimal surface in R3 with

positive injectivity radius, the minimal lamination closure theorem [36]
insures that M∞ is properly embedded in R3. This finishes the proof of
Proposition 4.6. q.e.d.

4.3. The case of Gaussian curvature not uniformly bounded.
Suppose now that the uniformly bounded Gaussian curvature hypoth-
esis in Proposition 4.6 fails to hold. It follows, after extracting a sub-
sequence, that for some fixed positive number t1 > 0, the maximum
absolute Gaussian curvature of the surfaces λ′nBM (pn,

t1
λn

) diverges to
infinity as n → ∞. To finish the proof of Theorem 1.1, it remains to
show that under this condition, items 5 or 6 hold.

6In Section 3 of [33], we had the additional hypothesis that M∞ has globally
bounded Gaussian curvature, hence, it is proper; nevertheless, the proof of Lemma 3.1
in [33] only uses that M∞(tm) is compact for each m ∈ N and that M∞ is not a plane

(or more precisely, that the convergence of the limit {λnBM (pn,
tm
λn

)}n → M∞(tm)

is one, which in turn follows from the fact that M∞ is not a plane), conditions which
are satisfied in our current setting.
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Definition 4.9. A sequence of compact embedded minimal surfaces
Σn in R3 with boundaries diverging in space, is called uniformly locally
simply connected, if there is an ε > 0 such that for any ambient ball B of
radius ε > 0 and for n sufficiently large, B intersects Σn in compact disks
with boundaries in the boundary of B (this definition is more restrictive
than the similarly defined notion in the introduction of [13], where ε
might depend on B).

We next return to the proof of Theorem 1.1. By the discussion in
the proof of Proposition 4.2 (also see Theorem 2.4), the sequence of
minimal surfaces λnMn can be considered to be uniformly locally simply
connected, as the metric balls containing the surfaces are converging to
R3 with the usual metric. Thus,

(ULSC) There exists ε1 ∈ (0, 1/2) such that for every ball B ⊂ R3 of
radius ε1, and for n sufficiently large, (λnMn) ∩ B consists of
disks with boundaries in ∂B.

In this situation, several results by Colding and Minicozzi [8, 9, 11, 13]
apply to describe the nature of both the surfaces λnMn in the sequence
and their limit objects after passing to a subsequence. We next briefly
explain this description, which can also be modified to work in the
setting of a homogeneously regular manifold (see, for instance, page 33
of [8] and [36]).

Definition 4.10. In polar coordinates (ρ, θ) on R2 − {0} with ρ >
0 and θ ∈ R, a k-valued graph on an annulus of inner radius r and
outer radius R, is a single-valued graph of a real-valued function u(ρ, θ)
defined over

(14) S−k,kr,R = {(ρ, θ) | r ≤ ρ ≤ R, |θ| ≤ kπ},
k being a positive integer.

By the one-sided curvature estimates for minimal disks as applied in
the proof of Theorem 0.1 in [11] (also see the proof of Theorem 0.9
in [13]), there exists a closed set S ⊂ R3, a nonempty minimal lami-
nation L of R3 − S which cannot be extended across any proper closed
subset of S, and a subset S(L) ⊂ L which is closed in the subspace topol-
ogy, such that after replacing by a subsequence, {λnMn}n has uniformly
bounded second fundamental form on compact subsets of R3 − ∆(L)
where ∆(L) = S ∪ S(L), and {λnMn}n converges Cα, α ∈ (0, 1), on
compact subsets of R3 −∆(L) to L.

Around each point p ∈ ∆(L), the surfaces λnMn have the following
local description. By (ULSC) and Theorem 5.8 in [9], there exists ε ∈
(0, ε1) such that after a rotation of R3 and extracting a subsequence,
each of the disks (λnMn) ∩ B(p, ε) contains a 2-valued minimal graph
defined on an annulus {(x1, x2, 0) | r2

n ≤ x2
1 +x2

2 ≤ R2} with inner radius
rn ↘ 0, for certain R ∈ (rn, ε) small but fixed.
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p

S(L)

p D(p)

C(p)

p D(p)

pm D(pm)

Figure 4. Left: Case (D1), in a neighborhood of a point
p ∈ S(L). Center: Case (D2-A) for an isolated point p ∈
S; in the picture, p is the end point of an arc contained
in S(L), although D(p, ∗) could also be the limit of two
pairs of multivalued graphical leaves, one pair on each
side. Right: Case (D2-B) for a nonisolated point p ∈ S.

(D1) If p ∈ S(L) (in particular, L admits a local lamination structure
around p), then after possibly choosing a smaller ε > 0, there
exists a neighborhood of p in B(p, ε) which is foliated by com-
pact disks in L ∩ B(p, ε), and S(L) intersects this family of disks
transversely in a connected Lipschitz arc. This case corresponds
to case (P) described in Section II.2 of [13]. In fact, the Lips-
chitz curve S(L) around p is a C1,1-curve orthogonal to the local
foliation (Meeks [21, 22]). See Figure 4 left.

(D2) If p ∈ S, then after possibly passing to a smaller ε, a subsequence
of the surfaces {(λnMn)∩B(p, ε)}n (denoted with the same indexes
n) converges Cα, α ∈ (0, 1), on compact subsets of B(p, ε)−∆(L)
to the (regular) lamination Lp = L∩B(p, ε) of B(p, ε)−Sp, where
Sp = S ∩ B(p, ε). Furthermore, Lp contains a limit leaf D(p, ∗)
which is a stable, minimal punctured disk with ∂D(p, ∗) ⊂ ∂B(p, ε)

and D(p, ∗)∩Sp = {p}, and D(p, ∗) extends to a stable, embedded
minimal disk D(p) in B(p, ε) (this is Lemma II.2.3 in [13]). By
Corollary I.1.9 in [11], there is a solid double cone7 Cp ⊂ B(p, ε)
with vertex at p and axis orthogonal to the tangent plane TpD(p),
that intersects D(p) only at the point p (i.e., D(p, ∗) ⊂ B(p, ε)−Cp)
and such that [B(p, ε)−Cp]∩∆(L) = Ø. Furthermore, for n large,
(λnMn)∩B(p, ε) has the appearance outside Cp of a highly-sheeted
double multivalued graph over D(p, ∗), see Figure 5.

In this local description of this case (D2), it is worth distinguishing
two subcases:

7A solid double cone in R3 is a set that after a rotation and a translation, can be
written as {(x1, x2, x3) | x21 + x22 ≤ δ2x23} for some δ > 0. A solid double cone in a
ball is the intersection of a solid double cone with a ball centered at its vertex.
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solid double
cone Cp

stable limit
disk D(p)

double multivalued
graph in λnMn

p

Figure 5. The local picture of disk-type portions of
λnMn around an isolated point p ∈ S. The stable min-
imal punctured disk D(p, ∗) appears in the limit lami-
nation Lp, and extends smoothly through p to a stable
minimal disk D(p) which is orthogonal at p to the axis
of the double cone Cp.

(D2-A): If p is an isolated point in S, then the limit leaf D(p, ∗) of
Lp is either the limit of two pairs of multivalued graphical leaves
in Lp (one pair on each side of D(p, ∗)), or D(p, ∗) is the limit on
one side of just one pair of multivalued graphical leaves in Lp; in
this last case, p is the end point of an open arc Γ ⊂ S(L)∩Cp, and
a neighborhood of p in the closure of the component of B(p, ε) −
D(p, ∗) that contains Γ is entirely foliated by disk leaves of Lp.
See Figure 4 center.

(D2-B): p is not isolated as a point in S. In this case, p is the limit
of a sequence {pm}m ⊂ S ∩ Cp. In particular, D(p) is the limit of
the related sequence of stable minimal disks D(pm), and D(p, ∗) is
the limit of a sequence of pairs of multivalued graphical leaves of
Lp ∩ [B(p, ε)− (Cp ∪ {D(pm)}m)]. Note that these singular points
pm might be isolated or not in S. See Figure 4 right.

We next continue with the proofs of items 5 and 6 of Theorem 1.1.
Since the maximum absolute Gaussian curvature of the surfaces
λnBM (pn,

t1
λn

) diverges to infinity as n→∞ and λnBM (pn,
t1
λn

) is con-

tained in λnMn for n sufficiently large, then ∆(L) is nonempty and
contains a point which is at an extrinsic distance at most t1 from the
origin in R3.

Lemma 4.11. Let p ∈ ∆(L). Then, there exists a limit leaf Lp of L
whose closure Lp in R3 is a plane passing through p. Moreover, the set

P ′ = {Lp | p ∈ ∆(L)}
is a nonempty, closed set of planes.
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Proof. The previous description (D1)–(D2) shows that there exists a
minimal disk D(p) passing through p such that D(p, ∗) = D(p)−{p} is
contained in a limit leaf L of L. As L is a limit leaf of L, then the two-

sided cover L̂ of L is stable (Meeks, Pérez and Ros [32, 31]). Consider

the union L̃ of L with all points q ∈ S such that the related punctured
disk D(q, ∗) defined in (D2) above is contained in L. Clearly, the two-

sided cover of L̃ is stable and, thus, the classification of complete stable
minimal surfaces in R3 (see e.g. do Carmo and Peng [15], Fischer–
Colbrie and Schoen [18] or Pogorelov [43]) implies that to prove the

lemma it remains to demonstrate that L̃ is complete.
Arguing by contradiction, suppose that there exists a shortest unit

speed geodesic γ : [0, l)→ L such that γ(0) ∈ L and p := limt→l− γ(t) ∈
S. Therefore, there exists δ > 0 such that γ(t) ∈ B(p, ε) for every
t ∈ [l − δ, l), where B(p, ε) is the closed ball that appears in (D2).
Note that by construction, γ(t) /∈ D(p, ∗) for every t ∈ [l − δ, l). As
D(p) separates B(p, ε), then γ([l − δ, l)) is contained in one of the two
half-balls of B(p, ε) − D(p), say in the upper half-ball (we can choose
orthogonal coordinates in R3 centered at p so that TpD(p) is the (x1, x2)-
plane). In particular, there cannot exist a sequence of {pm}m ⊂ S
converging to p in that upper half-ball (otherwise pm produces a related
diskD(pm) which is proper in the upper half-ball, such that the sequence
{D(pm)}m converges to D(p) as m → ∞; as γ(l − δ) lies above one of
these disks D(pk) for k sufficiently large, then γ([l − δ, l)) lies entirely
above D(pk), which contradicts that γ limits to p). Therefore, after
possibly choosing a smaller ε, we can assume that there are no points
of S in the closed upper half-ball of B(p, ε) −D(p) other than p. Now
consider the lamination L1 of B(p, ε)−{p} given by D(p) together with
the closure of L ∩ B(p, ε) in B(p, ε) − {p}. As the leaves of L1 are all
stable (if L is two-sided; otherwise its two-sided cover is stable), then
Corollary 7.1 in [34] implies that L1 extends smoothly across p, which
is clearly impossible. This contradiction proves the first statement in
the lemma.

We now prove the second statement of the lemma. Suppose that
{pm}m ⊂ ∆(L) and the related planes Lpm converge to a plane P ⊂ R3

as m→∞. Arguing by contradiction, we suppose that P ∩∆(L) = Ø.
Given m ∈ N, consider a closed disk D(qm, ε1) in P of radius ε1 > 0
centered at the orthogonal projection qm of pm over P , where ε1 ∈
(0, 1/2) was defined in Property (ULSC). As P lies in L (because L
is closed in R3 − S and P ∩ S = Ø) and P does not contain points of
∆(L), then qm is at positive distance from ∆(L); in particular, D(qm, ε1)
can be arbitrarily well-approximated by almost-flat closed disks Dn,m

in λnMn for n large. For m large, the component Ωn(pm) of (λnMn) ∩
B(qm,

ε1
2 ) that contains pm is a compact disk which is disjoint from
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the almost-flat compact disk Dn,m ∩ B(qm,
ε1
2 ) and, thus, Ωn(pm) lies

at one side of Dn,m ∩ B(qm,
ε1
2 ). As pm ∈ Ωn(pm) is arbitrarily close

to Dn,m ∩ B(qm,
ε1
2 ) (for m large), then we contradict the one-sided

curvature estimates for embedded minimal disks (Corollary 0.4 in [11]).
Now the proof of the lemma is complete. q.e.d.

In the sequel, we will assume that the planes in P ′ are hori-
zontal.

Recall that our goal in this section is to prove that items 5 or 6
of Theorem 1.1 occur. The key to distinguish which of these options
occurs will be based on the singular set S of L: If S = Ø (hence, L is a
lamination of R3) then item 5 holds, while if S 6= Ø then item 6 holds.
This distinction is equivalent to L = P or L 6= P. The arguments
to prove this dichotomy are technical and delicate; we will start by
adapting some of the arguments in the last paragraph of the proof of
Lemma 4.11 to demonstrate the following result.

Lemma 4.12. Every flat leaf of L lies in a plane in P ′, and no plane
in R3 is disjoint from L.

Proof. Arguing by contradiction, suppose L is a flat leaf in L which
does not lie in a plane in P ′. Hence, L does not intersect ∆(L). This
implies that L is a plane and arbitrarily large disks in L can be approx-
imated by almost-flat disks in the surfaces λnMn. Since these surfaces
have injectivity radius greater than 1/2 at points at distance at least
1/2 from their boundaries, then the one-sided curvature estimates for
minimal disks (Corollary 0.4 in [11]) imply that there are positive con-
stants δ and C, both independent of L, such that for R > 0 and for n
sufficiently large, the surface

(λnMn) ∩ {|x3 − x3(L)| < δ} ∩ B(~0, R)

has Gaussian curvature less than C. From here, we deduce that the
leaves of L ∩ {|x3 − x3(L)| < δ} have uniformly bounded Gaussian
curvature. From this bounded curvature hypothesis, the proof of Lemma
1.3 in [35] implies that {|x3 − x3(L)| < δ} ∩ L consists only of planes
of L; hence, the distance from L to ∆(L) is at least δ. Let L′ be the
minimal lamination of R3−S obtained by enlarging L by adding to it all
planes which are disjoint from L. Note that by the one-sided curvature
estimates in [11], each of the added on planes is also at a fixed distance
at least δ > 0 from ∆(L) and from leaves of L which are not flat, where
δ is the same small number defined previously. Hence, the planes of L′
which are not in P ′ form a both open and closed subset of R3, but R3

is connected. Hence, this set is empty.
Note that the arguments in the last paragraph also prove that no

plane in R3 − L is disjoint from L, which proves the lemma. q.e.d.
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Clearly, the closure of every flat leaf of L is an element of P ′ and
vice versa, which gives a bijection between P ′ and the collection P that
appears in the statement of item 6 of Theorem 1.1.

Lemma 4.13. Consider a point x ∈ ∆(L) and the plane Lx ∈ P ′
passing through x. Then, the distance between any two points in Lx ∩
∆(L) is at least 1.

Proof. Given any p ∈ Lx ∩ ∆(L), Lx contains the disk D(p) that
appears in description (D2) above. Since the sequence {λnMn}n is uni-
formly locally simply connected, the Colding–Minicozzi local picture
(D1)–(D2) of λnMn near a point of ∆(L) implies that there exists an
η > 0 so that for every pair of distinct points p, q ∈ Lx ∩ ∆(L), the
distance between p and q is at least η. Fix p ∈ Lx ∩∆(L) and take a
point q ∈ Lx∩∆(L) closest to p. Hence, ∆(L) only intersects the closed
segment [p, q] = {tp+ (1− t)q | t ∈ [0, 1]} at the extrema p, q. Using the
plane Lx as a guide, one can produce homotopically nontrivial simple
closed curves γn on the approximating surfaces λnMn which converge
with multiplicity 2 outside p, q to the segment [p, q] as n → ∞ (see,
for example the discussion just after Remark 2 in [29]). Our injectivity
radius assumption implies that the length of the γn is greater than or
equal to 2, which implies after taking n→∞ that the distance between
p and q is at least 1. This finishes the proof of the lemma. q.e.d.

Definition 4.14. Given p ∈ ∆(L), we assign an orientation number
n(p) = ±1 according to the following procedure. Outside a solid double
vertical cone Cp ⊂ B(p, ε) based at p, there exists a pair of multivalued
graphs contained in the approximating surface λnMn for n large, which,
after choosing a subsequence, are both right or left handed for n suffi-
ciently large (depending on p). Assign a number n(p) = ±1 depending
on whether these multivalued graphs in λnMn occurring nearby p are
right (+) or left handed (−).

We also define, given a plane P ∈ P ′,

|I|(P ) =
∑

p∈P∩∆(L)

|n(p)| = Cardinality(P ∩∆(L)) ∈ N ∪ {∞}.

By Lemma 4.13, the set P ∩ ∆(L) is a closed, discrete countable set.
After enumerating this set and applying a diagonal argument, it is pos-
sible to choose a subsequence of the λnMn so that locally around each
point p ∈ P ∩ ∆(L), there exists n(p) ∈ N such that λnMn contains
a pair of multivalued graphs around p with a fixed handedness for all
n ≥ n(p). This allows us to define consistently the number

I(P ) =
∑

p∈P∩∆(L)

n(p) ∈ Z, provided that P ∩∆(L) is finite.
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Our next step will be to study the local constancy of the quanti-
ties |I|(P ) and I(P ) when we vary the plane P ∈ P ′. Recall that
the sequence {λnMn}n is uniformly locally simply connected close, see
Property (ULSC).

Lemma 4.15. Given P ∈ P ′, there exists µ0 = µ0(P ) such that
if x ∈ P ∩ ∆(L), then for every P ′ ∈ P ′ with |x3(P ) − x3(P ′)| < µ0

there exists a unique point x′ ∈ P ′ ∩∆(L) ∩ B(x, ε) (this number ε > 0
was defined in Description (D1)–(D2)), and the handedness of the two
multivalued graphs occurring in (a subsequence of) the λnMn nearby x
coincides with the handedness of the two multivalued graphs occurring in
λnMn nearby x′ (note that, in particular, we do not need to change the
subsequence of the λnMn to produce a well-defined handedness at x′).
In particular, if |I|(P ) <∞, then |I|(P ′) = |I|(P ) and I(P ′) = I(P ).

Proof. We will start by proving the following simplified version of the
first sentence in the statement of the lemma.

Claim 4.16. Suppose P = {x3 = 0} ∈ P ′ and x = ~0 ∈ P ∩ ∆(L).
Then, there exists µ0 > 0 such that if P ′ ∈ P ′ and |x3(P ′)| < µ0, then
there exists a unique point x′ ∈ P ′ ∩∆(L) ∩ B(ε).

Proof of the Claim. Arguing by contradiction, assume that there ex-
ists a sequence P (m) of horizontal planes in P ′ of heights x3,m converg-
ing to 0 as m→∞, so that for each m ∈ N, the open disk P (m)∩B(ε)
does not contain any point in ∆(L). After passing to a subsequence, we
can assume that the P (m) converge to P on one of its sides, say from
above. By definition of P ′, every plane P (m) is the closure in R3 of a
limit leaf Lm of L. As for m fixed the intersection P (m) ∩ B(ε) ∩∆(L)
is empty, then the convergence of portions of the surfaces λnMn to
P (m) ∩ B(ε) = Lm ∩ B(ε) as n → ∞ is smooth; in particular, for n,m
large (but m fixed), (λnMn) ∩ B(ε/2) contains a component Ω1(m,n)
which is a compact, almost-horizontal disk of height arbitrarily close
to x3,m, with ∂Ω1(m,n) ⊂ ∂B(ε/2). On the other hand, as ~0 ∈ ∆(L)
then there exists a sequence of points yn ∈ λnMn converging to the
origin where the absolute Gaussian curvature of λnMn tends to infin-
ity. Let Ω2(n) be the component of (λnMn) ∩ B(ε/2) that contains
yn. In particular, Ω2(n) ∩ Ω1(m,n) = Ø for m fixed and large, and
for all n sufficiently large depending on m. Note that Ω2(n) is topo-
logically a disk and Theorem 2.4 ensures that Ω2(n) is compact with
boundary contained in ∂B(ε/2). As x3,m → 0 but ε is fixed, then
the one-sided curvature estimates for disks in [11] (see also Theorem 7
in [36]) applied to Ω1(m,n), Ω2(n) gives a contradiction if m,n are large
enough. This contradiction proves the claim, as the uniqueness of the
point x′ ∈ P ′∩∆(L)∩B(ε) in the last part of the statement of the claim
follows directly from Lemma 4.13. Now the claim is proved. q.e.d.
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We next continue the proof of Lemma 4.15. The existence part of the
first sentence in the statement of the lemma can be deduced from similar
arguments as those in the proof of the last claim; the only difference is
that in the argument by contradiction, the plane P cannot be assumed
to be {x3 = 0} but instead one assumes that there exist sequences
{Pm}m, {P ′m}m ⊂ P ′, {µm}m ⊂ R+ with µm ↘ 0 and xm ∈ Pm ∩
∆(L) so that |x3(Pm) − x3(P ′m)| < µm and P ′m ∩ ∆(L) ∩ B(xm, ε) =
Ø. The desired contradiction also appears in this case from the one-
sided curvature estimates for embedded minimal disks and we leave the
details to the reader. This finishes the proof of the first sentence in the
statement of the lemma.

It remains to show that if |I|(P ) < ∞, then we can choose µ0 > 0
sufficiently small so that |I|(P ′) < ∞ and |I|(P ) = |I|(P ′) and I(P ) =
I(P ′) for every P ′ ∈ P ′ with |x3(P ) − x3(P ′)| < µ0. As before, take
x ∈ P ∩ ∆(L). If x ∈ S(L), then Lemma 4.11 and the description
in (D1) of S(L) around x imply that after possibly choosing a smaller
µ0 > 0, L ∩ B(x, µ0) consists of a foliation by horizontal flat disks, and
S(L) ∩ B(x, µ0) consists of a Lipschitz curve passing through x which
is transverse to this local foliation by flat disks. By the main theorem
in Meeks [21], this Lipschitz curve is, in fact, a vertical segment with
x in its interior. In particular, every horizontal plane P ′ that intersects
B(x, µ0) also intersects S(L)∩B(x, µ0) at exactly one point x′, and the
handedness of the two multivalued graphs occurring in λnMn nearby x,
x′ coincide.

If x ∈ S, then similar arguments as in the last paragraph give the
same conclusion, following the local description in (D2) of L ∩ B(x, µ0)
together with the uniform locally simply connected property of {λnMn}n.
This completes the proof of Lemma 4.15. q.e.d.

Lemma 4.17. For a plane P ∈ P ′, the following properties are equiv-
alent:

1) L does not restrict to a foliation in any µ-neighborhood of P ,
µ > 0.

2) ∆(L) ∩ P = S ∩ P .
3) S ∩ P 6= Ø.

Proof. That statement 1 implies 2 follows from the observation that
if there exists a point p in S(L) ∩ P , then there exists a small cylin-
drical neighborhood of p which is entirely foliated by horizontal disks
contained in planes of P, which in turn implies that there exists a slab
neighborhood of P which is foliated by planes in L, a contradiction.
Statement 2 implies 3 by definition of P ′. Finally, the description in
(D2-A), (D2-B) give that item 3 implies item 1. q.e.d.
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Proposition 4.18. Let x be a point in ∆(L) and let Px ∈ P ′ be the
horizontal plane that passes through x. If |I|(Px) < ∞ and I(Px) = 0,
then L is a foliation of R3 by horizontal planes.

Proof. Consider the largest closed horizontal slab W containing Px,
so that every plane P in W lies in P ′ and satisfies |I|(P ) = |I|(Px)
and I(P ) = I(Px) (we allow W to be just Px, to be R3 or a closed
halfspace of R3). If W = R3 then the proposition is proved. Arguing
by contradiction, suppose W has a boundary plane, which we relabel
as Px (since it has the same numbers |I|(Px), I(Px) as the original Px
by Lemma 4.15). Without loss of generality, we will assume Px is the
upper boundary plane of W . Since R3 −∪P ′∈P ′P ′ is a nonempty union
of open slabs or halfspaces, then one of the following possibilities occurs:

(F1) Px is not a limit of planes in P ′ from above. In this case, Px is the
boundary of an open slab or halfspace in R3 − ∪P ′∈P ′P ′.

(F2) Px is the limit of a sequence of planes Pm ∈ P ′ from above, such
that for every m, P2m ∪ P2m+1 is the boundary of an open slab
component of R3 − ∪P ′∈P ′P ′. Thus, Lemma 4.15 implies that for
m sufficiently large, Pm satisfies |I|(Pm) = |I|(Px) and I(Pm) =
I(Px).

In either of the cases (F1), (F2), we can relabel Px so that Px is the
bottom boundary plane of an open component of R3 − ∪P ′∈P ′P ′. By
Lemma 4.17, ∆(L) ∩ Px = S ∩ Px.

After the translation by vector −x, we can assume x = ~0 and Px =
{x3 = 0}. By the local description of L in (D2-A), there is a nonflat leaf
L of L which has the origin in its closure. Note that this implies that Px
is contained in the limit set of L. As by hypothesis Px ∩∆(L) is finite,
we can choose a large round open disk D ⊂ Px such that Px∩∆(L) ⊂ D.
Let

A = {(x1, x2) ∈ R2 | (x1, x2, 0) /∈ D}.
Choose µ > 0 small enough so that

(15) (A× [0, µ]) ∩ P ′ = A× {0}.
Claim 4.19. The surface Lµ = L ∩ {(x1, x2, x3) | 0 < x3 ≤ µ} is

connected. Furthermore, (A× (0, ε]) ∩ L = (A× (0, ε]) ∩ L.

Proof of the claim. The equality (15) together with a standard bar-
rier argument (see the proof of Lemma 1.3 in [35]) imply that if the
claim fails, then there exists a connected, nonflat, stable minimal sur-
face Σ in {(x1, x2, x3) | 0 < x3 ≤ µ}, such that its boundary ∂Σ is
contained in L ∩ {x3 = µ}, Σ is proper in {(x1, x2, x3) | 0 < x3 ≤ µ},
Σ is not contained in {x3 = µ} and Σ is complete outside the finite set
S ∩ {x3 = 0} in the sense that any proper divergent arc α in Σ of finite
length must have its divergent end point contained in S ∩ {x3 = 0}.
Since [Σ∩{(x1, x2, x3) | 0 ≤ x3 < µ}]∪(Px−S) is a minimal lamination
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of {(x1, x2, x3) | −1 < x3 < µ} outside of a finite set of points and
this lamination consists of stable leaves, then item 1 of Corollary 7.1
in [34] implies that this lamination extends to a minimal lamination of
{(x1, x2, x3) | −1 < x3 < µ}, which contradicts the maximum principle
for minimal surfaces at the origin. This finishes the proof of the claim.

q.e.d.

We next continue the proof of Proposition 4.18. Clearly, we may also
assume

∂Lµ ∩ {x3 = µ} 6= Ø,

by taking µ > 0 smaller. As Lµ is not flat and the injectivity radius
function of the surfaces λnMn is bounded from below by 1/2 away from
their diverging boundaries, then we can apply the intrinsic version of
the one-sided curvature estimates for minimal disks in [11] to λnMn to
conclude that the norm of the second fundamental form of the possibly
disconnected surfaces (A× [0, µ])∩(λnMn) is arbitrarily small if we take
µ sufficiently small. Thus, by choosing µ > 0 small enough, it follows
that each component G of (A × [0, µ]) ∩ L is locally a graph over its
projection to A×{0}, with boundary ∂G contained in ((∂A)× [0, µ])∪
(A× {µ}).

Note that so far in the proof of the proposition we have only used
that |I|(Px) <∞. Next we will use the second hypothesis I(Px) = 0 to
obtain the desired contradiction, which will follow from the invariance
of flux for ∇(x3|L).

Since I(Px) = 0, then Px ∩ ∆(L) = Px ∩ S consists of an even pos-
itive number of points p1, q1, p2, q2, . . . , pd, qd with n(pi) = −n(qi) for
each i = 1, . . . , d. Consider a collection {δ1, . . . , δd} of pairwise disjoint
embedded planar arcs in Px such that the end points of δi are pi, qi. For
i ∈ {1, . . . , d} fixed, construct a sequence {γi(m)}m of connection loops
in Lµ, as indicated in the proof of Lemma 4.13 (note that now the δi are
not necessarily straight line segments), i.e., each γi(m) consists of two
lifts of δi − [B(pi, εi(m)) ∪ B(qi, εi(m))] to adjacent sheets of Lµ over δi
joined by short arcs of length at most 3εi(m) > 0 near pi and qi, such
that the γi(m) converge as m→∞ with multiplicity 2 to δi and εi(m)→
0 as m→∞. It is possible to choose the indexing of these curves γi(m)
so that for every m ∈ N, the collection Γm = {γ1(m), γ2(m), . . . , γd(m)}
separates the connected surface Lµ into two components (this property
holds because the portion of Lµ sufficiently close to Px is topologically
equivalent to the intersection of a periodic parking garage surface with
a closed lower halfspace, hence, it suffices to choose all curves in the
collection Γm corresponding to closed curves at the same level in the
parking garage surface; for instance, in the particular case d = 1, the
surface Lµ is modeled by a suitable portion of a Riemann minimal ex-
ample, and each of the connection loops γ1(m) is a generator of the
homology of the approximating Riemann minimal example).



THE LOCAL PICTURE THEOREM ON THE SCALE OF TOPOLOGY 539

x = ~0

singular points in Px = {x3 = 0}

{x3 = µ}
Γmlocal graphs

over A× {0}

planes

in P ′

Figure 6. The collection of connection loops Γm dis-
connects Lµ into two components, one of which, denoted
by Lµm, is proper in x−1

3 ([0, µ]) (we have sketched Lµm
in red color). Note that the boundary of Lµm contains
curves lying in {x3 = µ}, and that ∂Lµm ∩ {x3 = µ} ⊂
∂Lµm+1 ∩ {x3 = µ} for all m ∈ N.

Recall that ∂Lµ∩{x3 = µ} 6= Ø, and that Lµ is separated by Γm into
two components; we will denote by Lµm the component of Lµ−Γm whose
nonempty boundary contains ∂Lµ ∩{x3 = µ}, see Figure 6. We remark
that Lµm lies above any horizontal plane P ′ ⊂ {x3 > 0} which is strictly
below ∂Lµm (since otherwise we would contradict that the portion of L
below P ′ is connected by Claim 4.19, as L−Lµm intersects the open slab
bounded by Px and P ′); in particular, equation (15) ensures that Lµm is
properly embedded in x−1

3 ([0, µ]); this is in contrast with L−Lµm, which
is nonproper and limits to Px.

As Lµm is a properly immersed minimal surface with boundary (in
fact, embedded) in a halfspace, then Theorem 3.1 in Collin, Kusner,
Meeks and Rosenberg [14] implies that Lµm is a parabolic surface, in the
sense that the harmonic measure on its boundary is full. Now consider
the scalar flux of a smooth tangent vector field X to Lµm across a finite
collection of compact curves or arcs α ⊂ ∂Lµm, defined as

F (X,α) =

∫

α
〈X, η〉,

where η is the exterior unit conormal vector to Lµm along α. Pick a
compact arc σ ⊂ ∂Lµ1 ∩ {x3 = µ}. Since σ ⊂ ∂Lµm ∩ {x3 = µ} for all
m ∈ N, then we conclude that

(16) F (∇x3, σ) ≤ F (∇x3, ∂L
µ
m ∩ {x3 = µ}),

where the right-hand-side of (16) must be understood as the limit of
F (∇x3, α) where α runs along an increasing exhaustion of ∂Lµm∩{x3 =
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µ} by compact curves or arcs. Also note that the left-hand-side of (16)
is a positive number by the maximum principle, which does not depend
on m.

For each m ∈ N fixed, let {Lµm,k | k ∈ N, k ≥ k0(m)} be a smooth

increasing compact exhaustion of Lµm such that each Lµm,k contains all

points of distance at most k from some previously chosen point in Lµm
and such that σ ∪ Γm ⊂ ∂Lµm,k0(m) (hence, σ ∪ Γm ⊂ ∂Lµm,k for all

k ≥ k0(m)). The boundary of Lµm,k is the disjoint union of the following

three pieces:

∂Lµm,k = ∂µ(m, k) ∪ Γm ∪ ∂∗(m, k),

where
∂µ(m, k) = ∂Lµm,k ∩ {x3 = µ},
∂∗(m, k) = ∂Lµm,k − [∂µ(m, k) ∪ Γm].

Consider the nonnegative harmonic function um = µ−x3 on the surface
Lµm. Let um,k be the harmonic function on Lµm,k defined by the bound-

ary values um,k = 0 on ∂∗(m, k), um,k = um on ∂Lµm,k−∂∗(m, k). Using

that um,k = 0 along ∂∗(m, k), um = um,k = 0 along ∂µ(m, k) and the
double Green’s formula, we have

F (um,k∇um,Γm) = F (um,k∇um, ∂Lµm,k) = F (um∇um,k, ∂Lµm,k)

(17) = F (um∇um,k,Γm) + F (um∇um,k, ∂∗(m, k)).

Also note that

F (um∇um,k,Γm) = F ((um − µ)∇um,k,Γm) + µF (∇um,k,Γm)

(18)
(?)
= F ((um−µ)∇um,k,Γm)−µF (∇um,k, ∂µ(m, k))−µF (∇um,k, ∂∗(m, k)),

where in (?) we have used the Divergence Theorem applied to um,k in
Lµm,k. From (17) and (18) we deduce that

F (um,k∇um,Γm)

= F ((um − µ)∇um,k,Γm)− µF (∇um,k, ∂µ(m, k))

+ F ((um − µ)∇um,k, ∂∗(m, k)).(19)

Equation (19) leads to a contradiction, as the following properties
hold:

(G1) The left-hand-side of (19) tends to zero as m, k →∞.
(G2) The first term in the right-hand-side of (19) tends to zero as

m, k →∞.
(G3) The second term in the right-hand-side of (19) is at least

1
2µF (∇x3, σ) > 0 for k large.

(G4) The third term in the right-hand-side of (19) is nonnegative.
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We next prove (G1)–(G4). As um−µ = −x3 ≤ 0 and 〈∇um,k, η〉 ≤ 0
along ∂∗(m, k) (this last inequality follows from the facts that um,k ≥ 0
in Lµm,k, um,k = 0 along ∂µ(m, k) and η is exterior to Lµm along its

boundary), then (G4) holds. Similarly, the fact that 〈∇um,k, η〉 ≤ 0
along ∂µ(m, k) implies that F (∇um,k, ∂µ(m, k)) ≤ F (∇um,k, σ). As Lµm
is a parabolic surface, then the functions um,k converge as k →∞ uni-
formly on compact subsets of Lµm to the bounded harmonic function um
(hence, their gradients converge as well). This implies that F (∇um,k, σ)
converges as k →∞ to F (∇um, σ) = −F (∇x3, σ), from where (G3) fol-
lows. Property (G2) also holds because

(G2.a) limk→∞ |(∇um,k)|Γm | = |(∇um)|Γm | ≤ 1,
(G2.b) Length(Γm) is bounded independently of m, and
(G2.c) um − µ = −x3 is arbitrarily small along Γm for m large.

Finally, (G1) holds because

F (um,k∇um,Γm)
(k→∞)−→ F (um∇um,Γm)

(m→∞)−→−µ lim
m→∞

F (∇x3,Γm) = 0,

where in the last equality we have used that the tangent plane to Lµ

becomes arbitrarily horizontal along Γm except along 2d subarcs of Γm
whose total length goes to zero as m → ∞. Now Proposition 4.18 is
proved. q.e.d.

As announced above, we next show that if S = Ø, then item 5 of
Theorem 1.1 holds. In fact, we will obtain a more detailed description
in the following result.

Proposition 4.20. If L is a regular lamination of R3, then L is
a foliation of R3 by parallel planes and item 5 of Theorem 1.1 holds.
Furthermore:

(A) S(L) contains a line l1 which passes through the closed ball of radius
1 centered at the origin, and another line l2 at distance one from
l1, and all of the lines in S(L) have distance at least one from each
other.

(B) There exist oriented closed geodesics γn ⊂ λnMn with lengths con-
verging to 2, which converge to the line segment γ that joins (l1 ∪
l2)∩{x3 = 0} and such that the integrals of the unit conormal vec-
tor of λnMn along γn in the induced exponential R3-coordinates of
λnBN (pn, εn) converge to a horizontal vector of length 2 orthogonal
to γ.

Proof. Since we are assuming S = Ø but the uniformly bounded
Gaussian curvature hypothesis in Proposition 4.6 fails to hold, then
∆(L) = S(L) 6= Ø and Lemma 4.17 implies that the Lipschitz curves in
S(L) go from −∞ to +∞ in height and, thus, L is a foliation of R3 by
planes. By the C1,1-regularity theorem for S(L) in [21], S(L) consists of
vertical lines, precisely one passing through each point in Pz∩S(L) (here
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z is any point in S(L)). The surfaces λnMn are now seen to converge on
compact subsets of R3 − S(L) to the minimal parking garage structure
on R3 consisting of horizontal planes, with vertical columns over the
points y ∈ Pz ∩ S(L) and with orientation numbers n(y) = ±1 in the
sense of Definition 4.14.

We next show that item (A) of the proposition holds. Note that since
the geodesic loops βn given in Assertion 4.5 all pass through pn, then
the limit set Lim({βn}n) of the βn contains the origin in R3. Since the
surfaces λnMn converge to the foliation of R3 by horizontal planes and
this convergence is Cα (actually C∞ tangentially to the leaves of the
limit foliation) away from S(L), for any α ∈ (0, 1), then Lim({βn}n)
consists of a connected, simplicial complex consisting of finitely many
horizontal segments joined by vertical segments contained in lines of
S(L); this complex could have dimension zero, in which case it reduces
to the origin. Clearly there exists a point q ∈ S(L)∩ Lim({βn}n), since

otherwise Lim({βn}n) contains a horizontal segment l with ~0 ∈ l, and
in this case one of the end points of l lie in S(L). As q ∈ S(L), then the
vertical line lq passing through q lies in S(L).

We claim that there exists a vertical line l contained in S(L) at dis-
tance one from lq. As S(L) is a closed set, Lemma 4.13 implies that
if our claim fails to hold then there exists η > 0 such that the vertical
cylinder of radius 1 + 2η with axis lq only intersects S(L) at lq. Con-
sider a sequence of points qn ∈ βn limiting to q and consider the related
extrinsic balls BλnN (qn, 1 + η). By the triangle inequality, the loop βn
is contained in (λnMn)∩BλnN (qn, 1+η) (as the length of βn is two and
the intrinsic distance between any two points in βn is at most one). By
the parking garage structure of the limit foliation, for n large each of the
surfaces (λnMn) ∩ BλnN (qn, 1 + η) contains a unique main component
∆n which is topologically a disk (this is the component that contains
qn). Therefore, βn ⊂ ∆n, which implies that βn is homotopically triv-
ial. This contradiction proves our claim. Note that these arguments
also imply that q lies in the closed ball of radius 1 centered at the ori-
gin. This claim together with Lemma 4.13 imply that item (A) of the
proposition holds. Also observe that we have completed the proof of
the first statement of Theorem 1.1 (the λnMn converge to a minimal
parking garage structure of R3 with at least two vertical lines in S(L)).

Since lq and l are at distance 1 apart, then there exist connection loops
γn on λnMn of lengths converging to 2 which converge as n → ∞ to a
horizontal line segment of length 1 joining lq and l. These connection
loops satisfy the properties in item (B) of the proposition (see [29] for
details).

To complete the proof of Proposition 4.20, it only remains to demon-
strate the last sentence of item 5 of Theorem 1.1 assuming that there
exists a bound on the genus of the surfaces λnMn. This follows from
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pk k0 m k

λkMk

Figure 7. The red portion of λkMk cannot enter into
the ball of radius k0, since it does not join to the blue
portions within the ball of radius m.

similar arguments as those in the proof of Lemma 3.3, since the surfaces
λnMn approximate arbitrarily well the behavior of a periodic parking
garage surface in R3. This finishes the proof of Proposition 4.20. q.e.d.

By Proposition 4.20, to finish the proof of Theorem 1.1 it remains
to demonstrate that item 6 holds provided that S 6= Ø, a hypothesis
that will be assumed for the remainder of this section. We will start
by stating a property to be used later. Recall that given R > 0 and
n ∈ N sufficiently large, Σ(n,R) denotes the closure of the component

of [λnBM (pn,
√
n

2λn
)]∩BλnN (pn, R) that contains pn, and that the surface

Mk that appears below was defined in equation (12) as a rescaling by
1/λk = 1/λ′n(k) of Σ(n(k), k), where n(k) was defined in the proof of

Lemma 4.4. The purpose of the next result is to show that given a
radius k0, all the components of λkMk in an extrinsic ball of that radius
centered at the origin (for k sufficiently large depending on k0) can be
joined within an extrinsic ball of a larger radius m(k0) independent of
k, see Figure 7.

Proposition 4.21. Given k0 ∈ N there exists m = m(k0) ∈ N such
that for any k ∈ N sufficiently large, we have

(20) (λkMk) ∩BλkN (pk, k0) ⊂ Σ(n(k),m).

Furthermore, the intrinsic distance in λkMk = Σ(n(k), k) from any
point in (λkMk) ∩ BλkN (pk, k0) to pk is not greater than some number
independent on k, for all such k.

Proof. To prove (20) we argue by contradiction. Suppose that for
some k0 ∈ N, there exist sequences {mk}k, {ak}k ⊂ N so that mk ↗∞,
mk < ak and for all k,

(21) (λakMak) ∩BλakN (pak , k0) 6⊂ Σ(n(ak),mk).
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Let Ω(k) be a component of BλakN (pak ,mk) − (λakMak) that contains

Σ(n(ak),mk) in its boundary ∂Ω(k), and so that ∂Ω(k) contains
another component ∆(k) different from Σ(n(ak),mk), with ∆(k) ∩
BλakN (pak , k0) 6= Ø, which can be done by (21). Observe that the

boundary of Ω(k) is a good barrier for solving Plateau problems in Ω(k)
(here we are using that since εk → 0, then the extrinsic balls BN (pk, εk)
have mean convex boundaries). Let Σ′(k) be a surface of least area in
Ω(k) homologous to Σ(n(ak),mk), and with ∂Σ′(k) = ∂Σ(n(ak),mk).
As for all k the surface Σ′(k) intersects BλakN (pak , k0), then by uni-
form curvature estimates for stable minimal surfaces away from their
boundaries we conclude that after passing to a subsequence, the Σ′(k)
converge as k →∞ to a nonempty (regular) minimal lamination L′ of R3

all whose leaves are complete, embedded, stable minimal surfaces, and,
therefore, all leaves of L′ are planes. To find the desired contradiction,
note that the following properties hold.

(H1) The sequence {Σ′(k)}k is locally simply connected in R3 (by uni-
form curvature estimates for stable minimal surfaces and by the
uniform graph lemma, see Colding and Minicozzi [6] or Pérez and
Ros [42]), as well as the sequence {λakMak}k.

(H2) For k large, the surface λakMak is unstable, and, thus, Σ′(k) and
λakMak only intersect along ∂Σ′(k) ⊂ ∂BλakN (pak ,mk), which
diverges to ∞ as k →∞.

By Property (H2), we deduce that the planes in L′ are either dis-
joint from L or they are leaves of L. In fact, Lemma 4.12 implies
that the first possibility cannot occur. Also note that as Σ′(k) inter-
sects BλakN (pak , k0) for all k, then L′ contains a plane Π that intersects

the ball B(k0). Properties (H1), (H2) insure that we can apply Theo-
rem 7 in [36] (or the one-sided curvature estimates by Colding and Mini-
cozzi [11]) to obtain uniform local curvature estimates for the surfaces
λakMak in a fixed size neighborhood of Π. As a consequence, Π cannot
lie in the collection P ′ defined in Lemma 4.11 and, thus, Lemma 4.12
gives a contradiction (hence, (20) is proved).

As for the last sentence in the statement of Proposition 4.21, take
rk0 ∈ (0,∞) such thatm(k0) = rk0 δ(rk0), where δ(r) is the function that
appears in the first sentence of Theorem 1.1. Applying Proposition 4.2

to R = R1 = rk0 (recall that equation (7) holds after replacing δ̃(r)
by δ(r), see the paragraph just before Lemma 4.4), for k sufficiently
large we have Σ(k,m(k0)) ⊂ B

M̃(k)
(pk, rk0/2) = BλkMk

(pk, rk0/2), from

where the last statement of the proposition follows. q.e.d.

Remark 4.22. Proposition 4.21 still holds if the limit object of the
surfaces λnMn is either a nonsimply connected, properly embedded min-
imal surface (case 4 of Theorem 1.1) or a minimal parking garage struc-
ture (case 5 of the theorem). To see why this generalization holds, note
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that the arguments in the proof of the last proposition still produce a
plane Π ⊂ R3 which is either disjoint from the limit set of the sequence
λnMn, or it is contained in this limit set. If case 4 of Theorem 1.1 occurs
for this sequence, then the halfspace theorem gives a contradiction. If
the λnMn converge to a minimal parking garage structure L of R3, then
it is clear that no plane in the complement of L can exist.

Also note that the constant m(k0) in Proposition 4.21 can be chosen
so that it does not depend on the homogeneously regular manifold or
on the surface M to which we apply it.

We next continue with the proof of item 6 of Theorem 1.1, provided
that S 6= Ø. Since the closures of the set of flat leaves is P ′ and P ′
is a lamination of R3 with no singularities, then there exists at least
one leaf of L which is not flat, so the first statement of item 6 holds.
By Lemmas 4.11 and 4.12, the sublamination P of flat leaves of L is
nonempty, the closure of every such planar leaf L1 is a horizontal plane
in the family P ′ defined in Lemma 4.11, and, hence, by definition of
P ′ we have that L1 intersects ∆(L) = S ∪ S(L). By Lemma 4.13,
the distance between any two points in L1 ∩ ∆(L) is at least 1. By
Lemma 4.17, L1 ∩∆(L) is either contained in S or in S(L). So in order
to conclude the proof of item 6 of Theorem 1.1 it remains to show the
following property.

Proposition 4.23. Given of leaf L1 of P, the plane L1 intersects
∆(L) in at least two points.

We next prove the proposition by contradiction through a series of
lemmas. Suppose that L1 ∈ P satisfies that L1 ∩ ∆(L) consists of a
single point x ∈ ∆(L). If x ∈ S(L), then Lemma 4.17 implies that
L restricts to a foliation of some ε-neighborhood of L1. Consider the
largest open horizontal slab or halfspace W containing L1 so that L
restricts to W as a foliation by planes. As S 6= Ø, then W 6= R3. By
Lemma 4.15, we can replace L1 by a flat leaf in the boundary of W and
after this replacement, we have |I|(L1) = 1 and L1 ∩ ∆(L) = L1 ∩ S.
Without loss of generality, we may assume that L1 is the top boundary
plane of W . Arguing as in the discussion of cases (F1) and (F2) in
the proof of Proposition 4.18, we can replace L1 by a bottom boundary
plane P of an open component C of R3−∪P ′∈P ′P ′ so that the distance
from L1 to P is less than the number µ0 = µ0(L1) given in Lemma 4.15
(note that P may be equal to L1).

Denote by L the nonflat leaf of L directly above P . After the trans-
lation by −x, we can assume that P = {x3 = 0} and x = ~0 ∈ S. We
next analyze several aspects of the geometry of L in a neighborhood of
P in C.

Given a regular value µ ∈ (0, ε) for x3 restricted to L (this number
ε > 0 appears in description (D1)–(D2) above), let
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Lµ := L ∩ {(x1, x2, x3) | 0 < x3 ≤ µ},
which is a connected surface with boundary for µ sufficiently small by
Claim 4.19.

Definition 4.24. Take a sequence of points qk ∈ Lµ converging to
~0 and numbers rk ∈ (0, |qk|/2]. For each k ∈ N, consider the function
fk : Lµ ∩ B(qk, rk)→ R given by

(22) fk(x) =
√
|KL|(x) · distR3(x, ∂[L ∩ B(qk, rk)]).

Let xk ∈ B(qk, rk) be a maximum of fk (note that fk is continuous and
vanishes at ∂[L ∩ B(qk, rk)]). The sequence {xk}k is called a blow-up
sequence on the scale of curvature if fk(xk)→∞ as k →∞.

Lemma 4.25. Suppose that {xk}k ⊂ Lµ is a blow-up sequence. Then,

after passing to a subsequence, the surfaces L(k) =
√
|KL|(xk)(Lµ−xk)

converge with multiplicity 1 to a vertical helicoid H ⊂ R3 whose axis is
the x3-axis and whose Gaussian curvature is −1 along this axis.

Proof. First observe that since the surfaces Mn have injectivity radius
function larger than or equal to 1/2, then the ball

Bk = B
(
xk,

1

2
distR3(xk, ∂B(qk, rk))

)

intersects Lµ in disks when k is sufficiently large. Also note that the ball√
|KL|(xk)(Bk−xk) is centered at the origin and its radius is fk(xk)/2,

which tends to ∞ as k → ∞ because {xk}n is a blow-up sequence.
Since the second fundamental form of the surfaces L(k) ∩ B (fk(xk)/2)
is uniformly bounded, then a subsequence of the L(k) (denoted in the
same way) converges to a minimal lamination L′ of R3 with a leaf L′

that is a complete embedded minimal surface that passes through the
origin with absolute Gaussian curvature 1 at that point. Standard ar-
guments then show that the multiplicity of the convergence of portions
of the L(k) to L′ is one. Therefore, a lifting argument of loops on
L′ implies that L′ is simply connected, hence, L′ is a helicoid with
maximal absolute Gaussian curvature 1 at ~0 and L′ is the only leaf
of L′. The fact that L′ is a vertical helicoid with axis the x3-axis (so
L′ = H) will follow from the description of the local geometry of Lµ

nearby xn; to see this, note that the blow-up points xk and the form-
ing helicoids in Lµ on the scale of curvature near xk for k large imply
the existence of pairs of highly sheeted almost-flat multivalued graphs
G1
n,k, G

2
n,k ⊂ Mn extrinsically close to xk for n sufficiently large (recall

that portions of the Mn converge to Lµ). These multivalued graphs
can be chosen to have any fixed small gradient over the plane perpen-
dicular to the axis of the helicoid L′. For n, k sufficiently large, these
multivalued graphs in Mn each contains a two-valued subgraph that ex-



THE LOCAL PICTURE THEOREM ON THE SCALE OF TOPOLOGY 547

tends to an almost-flat two-valued graph on a fixed scale (proportional
to the number ε > 0 that appears in description (D1)–(D2) above)
and collapse to a punctured disk. Since the punctured (x1, x2)-plane

P − {~0} is a leaf of the limit minimal lamination L, it then follows
that the helicoid L′ must be vertical. This completes the proof of the
lemma. q.e.d.

The next lemma gives that the same type of limit that appears in
Lemma 4.25 at a blow-up sequence on the scale of curvature in Lµ, also
appears when using a different notion of blow-up. Namely, when we
rescale Lµ around points with heights converging to zero where Lµ is
vertical.

Lemma 4.26. Consider a sequence of points yk ∈ Lµ with x3(yk)
converging to zero where the tangent planes TykL to Lµ are vertical.

Then, yk converge to ~0, the numbers sk :=
√
|KL|(yk) diverge to in-

finity and a subsequence of the surfaces L′(k) = sk(L
µ − yk) converges

on compact subsets of R3 to a vertical helicoid H containing the x3-axis
and with maximal absolute Gaussian curvature 1 at the origin. Further-
more, the multiplicity of the convergence of the surfaces L′(k) to H is
one.

Proof. We first show that the points yk tend to the origin as k →∞.
Arguing by contradiction, suppose after choosing a subsequence that for
k large yk lies outside a ball B centered at ~0. Note that for k large, the
injectivity radius function of L is bounded away from zero at the yk.
As these points are arbitrarily close to P , then the Gaussian curvature
of L at the yk blows up (otherwise L could be written locally as graphs
over vertical disks in TykL of uniform size by the uniform graph lemma,
which would contradict that L lies above {x3 = 0}) and one obtains a
contradiction to the one-sided curvature estimates of Colding–Minicozzi
(Corollary 0.4 in [11]). Therefore, yk → ~0. Another consequence of the
one-sided curvature estimates is that

(J) There exists δ > 0 such that if µ ∈ (0, δ), then the tangent plane to
Lµ at every point in Lµ ∩ {(x1, x2, x3) | x2

1 + x2
2 ≥ δ2x2

3} makes an
angle less than π/4 with the horizontal.

For k ∈ N fixed, let tk > 0 be the largest radius such that all points in
Lµ ∩ B(yk, tk) have tangent plane making an angle less than π/4 with
TykL; existence of tk follows from the fact that Lµ is proper in the slab
{0 < x3 ≤ µ}. Note that the following properties hold.

(K1) Lµ ∩ B(yk, tk) ⊂ {(x1, x2, x3) | x2
1 + x2

2 < δ2x2
3} (this follows from

(J)),

(K2) tk ≤ x3(yk) (otherwise, B(yk, tk)∩P contains a disk D ⊂ P −{~0}
which is the limit of a sequence of graphs inside Lµ∩B(yk, tk) over
D; this is clearly impossible by (K1)).
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By Property (K2), we have tk → 0 as k →∞. Consider the sequence
of translated and scaled surfaces

(23) L(k) =
2

tk
(Lµ − yk).

We claim that to prove the lemma it suffices to demonstrate that

(N) Every subsequence of the L(k) has a subsequence that converges
with multiplicity one to a vertical helicoid containing the x3-axis.

We will prove the lemma, assuming that Property (N) holds. Let
{L(ki)}i be a subsequence of the L(k) that converges with multiplicity

one to a vertical helicoid H′ containing the x3-axis. Then,
√
|KH′ |(~0) ∈

(0,∞) and

lim
i→∞

√
|KL(ki)|(~0) = lim

i→∞

tki
2

√
|KL|(yki).

Since limi→∞ tki = 0, this implies that the numbers ski :=
√
|KL|(yki)

diverge to infinity, and the sequence of surfaces

L′(ki) = ski(L
µ − yki) = ski

tki
2
L(ki)

converges with multiplicity one to H =
√
|KH′ |(~0)H′, and the proposi-

tion follows. Thus, it suffices to prove Property (N); there are two cases
to consider after choosing a subsequence.

Case (N.1). The sequence {L(k)}k has uniform local bounds of the

Gaussian curvature in R3.

In this case, standard arguments show that, after choosing a subse-
quence, the L(k) converge to a minimal lamination L∞ of R3. Observe
that if L1 is a nonflat leaf of L∞, then the multiplicity of convergence of
portions of the L(k) to L1 is one; in particular, L1 is simply connected
(since the injectivity radius function of the L(k) becomes arbitrarily
large at points in any fixed compact set of R3 as k →∞). On the other
hand, if the multiplicity of convergence of portions of the L(k) to a leaf
L2 of L∞ is greater than one, then L2 is stable, hence, a plane. By the
classification of simply connected, complete embedded minimal surfaces
in R3 (Meeks and Rosenberg [35] and Colding and Minicozzi [12]), we
conclude that every leaf of L∞ is either a plane or a helicoid. Clearly,
if L∞ contains a leaf which is a helicoid, then this is the only leaf of
L∞ and Property (N) is proved in this case. Since the leaf of L′ passing

through ~0 has a vertical tangent plane at ~0 but at some point in the
sphere ∂B(2) there exists a point on a leaf of L∞ whose tangent plane
makes an angle at least π/4 (by definition of tk), then L∞ contains a
leaf which is not a plane. This finishes Case (N.1).

Case (N.2). There exists x∞ ∈ R3 and points xk ∈ L(k) converging to

x∞ such that |KL(k)|(xk) ≥ k for all k ∈ N.
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We will show that this case cannot occur, by dividing it into two
subcases after replacing by a subsequence.

(N2.1): Suppose that x3(yk)
tk
→∞.

(N2.2): Suppose that x3(yk)
tk

converges to a numberD which is greater

than or equal to 1 (by Property (K2) above).

In case (N2.1) holds, we consider the sequence of compact embedded

minimal surfaces {L(k) ∩ B(Rk)}k, where Rk = x3(yk)
tk

. For k large,

every component of L(k) ∩ B(Rk) is a disk with boundary contained
in ∂B(Rk). As the supremum of the norm of the second fundamental
form of L(k) ∩ B(2|x∞|) tends to ∞ as k → ∞ (by assumption in this
case (N.2)), then Theorem 0.1 in Colding and Minicozzi [11] and Meeks’
regularity theorem [21] assure that after choosing a subsequence, the
L(k) converge as k → ∞ to a limit parking garage structure with one
column. Observe that by equation (23), points of L(k)∩B(1) correspond
to points of Lµ∩B(yk,

tk
2 ), and, thus, the tangent plane to L(k) at every

point in L(k) ∩ B(1) makes an angle less than π/4 with TykL. This
property implies that the inner product of the Gauss map of L(k) with
the unit normal vector to TykL is positive (up to sign) in L(k) ∩ B(1),
hence, L(k) ∩ B(1) is stable. Schoen’s curvature estimates [45] now
give that the norm of the second fundamental form of L(k) ∩ B(1) is
uniformly bounded. Since the tangent plane Π to L(k) at the origin is
vertical, then we conclude that the planes in the limit parking garage
structure are parallel to Π. As for the line l given by the singular set of
convergence of the L(k) ∩ B(Rk) to the limit parking garage structure,
note that by definition of tk, for large k the tangent plane to L(k) at
some point qk in the sphere ∂B(2) makes an angle at least π/4 with
Π; this implies that l is the straight line orthogonal to Π that passes
through the limit of the qk (after passing to a subsequence). By similar
arguments as those at the end of the proof of Lemma 4.25, we can find
pairs of highly sheeted almost-flat almost-vertical multivalued graphs
G1
n,k, G

2
n,k ⊂ Mn over portions of Π, and these multivalued graphs in

Mn contain two-valued subgraphs that extend to two-valued almost-
vertical multivalued graphs on a fixed scale. By the arguments at the
end of the proof of Lemma 4.25, these extended two-valued almost-
vertical multivalued graphs must be almost-horizontal, which gives a
contradiction. This finishes the case (N2.1).

Finally, suppose case (N2.2) occurs. By the application of a diagonal-
type argument to the doubly indexed sequence of surfaces {Mn−yk}n,k∈N
where n is chosen to go to infinity sufficiently quickly in terms of k that
also goes to infinity, we can produce a sequence

Λn(k) =

{
2

tk
(Mn(k) − yk)

}

k∈N
,

such that the following properties hold.
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(O1) The injectivity radius function of 2
tk

(Mn(k) − yk) can be made

arbitrarily large for k large at every point a any fixed ball in
R3 (this follows from Property (Inj) just before the statement of
Proposition 4.2 after rescaling by 2/tk).

(O2) There exists a (possibly empty) closed set S∞ ⊂ R3 and a minimal
lamination L∞ of R3−S∞ such that the surfaces 2

tk
(Mn(k)−yk)−

S∞ converge to L∞ outside of some singular set of convergence
S(L∞) ⊂ L∞, and if we call ∆(L∞) = S∞∪S(L∞), then ∆(L∞) 6=
Ø (this property holds by similar arguments as those that prove
the first part of item 1.1 of Theorem 1.1, which are still valid since
we have property (O1)).

(O3) Through every point in ∆(L∞) there passes a plane which contains
a planar leaf of L∞ and which intersects ∆(L∞) in exactly one
point (two or more points would produce connection loops in the
surfaces 2

tk
(Mn(k)− yk) for k large, in contradiction with property

(O1) above).
(O4) By our hypotheses in Case (N2.2), we deduce that one of the leaves

of L∞ is contained in the plane {x3 = −2D}. In particular, the
planes mentioned in property (O3) are horizontal.

(O5) L∞ contains a sublamination L̂∞ which is a limit as k → ∞ of
the surfaces L(k).

By property (O1), it follows from our previous arguments in this
paper that every nonflat leaf Z of L∞ is simply connected. Furthermore,
the injectivity radius function of such a Z at any point z ∈ Z is equal
to the intrinsic distance from z to boundary of the metric completion Z
of Z, where the points of this metric completion correspond to certain
(singular) points in S∞. Observe that such a Z cannot be complete
(otherwise, by the discussion in Case (N.1), Z would be a helicoid which
is impossible by (O3) or (O4)).

We next show that there exists a nonflat Z1 of L∞ that passes through
the origin. Since the norms of the second fundamental forms of the
surfaces 2

tk
(Mn(k) − yk) are uniformly bounded in the ball of radius 1

centered at the origin, there is a leaf Z1 of L∞ passing through ~0 with
vertical tangent plane T~0Z1. Since the flat leaves of L are horizontal,
then Z1 cannot be flat. By the last paragraph, Z1 is not complete, hence,
there exists p0 ∈ S∞ in the metric completion of Z1. By Property (O3),
the punctured horizontal plane Π0 = {x3 = x3(p0)} − {p0} is a leaf of
L∞. By the same arguments and the connectedness of Z1, there is at
most one other point p1 in the metric completion of Z1, and in this case
the plane Π1 = {x3 = x3(p1)}−{p1} is a leaf of L∞ (if no such p1 exists,
then Z1 is properly embedded in the upper open halfspace determined
by the plane Π0). Without loss of generality, we can assume that if Π1

exists, then x3(p1) > x3(p0).
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Given δ > 0, consider the conical region

C+(δ) = {(x1, x2, x3) | (x1−x1(p0))2+(x2−x2(p0))2 < δ2(x3−x3(p0))2},
with vertex p0. Suppose that no p1 exists. In this case, the injectivity
radius function InjZ1(x) at any point x ∈ Z1 is equal to the intrinsic
distance function in Z1 from x to p0, which in turn is at least |x− p0|.
Therefore, InjZ1 grows at least linearly with the extrinsic distance in
Z1 to p0. If p1 exists, the same property can be proven for δ > 0
sufficiently small with minor modifications, since for such δ, there exists
a = a(δ) > 0 such that C+(δ) also contains p1 (if p1 exists) and

(24) min{|x− p0|, |x− p1|} ≥ a |x− p0|,
for all x ∈ x−1

3 ([x3(p0), x3(p1)]) − C+(δ). This scale invariant lower
bound on InjZ1 together with the intrinsic version of the one-sided curva-
ture estimate by Colding–Minicozzi (Corollary 0.8 in [12]) imply that for
δ > 0 sufficiently small, the intersection of Z1 with x−1

3 ([x3(p0), x3(p1)])−
C+(δ) consists of two multivalued graphs whose gradient can be made
arbitrarily small (in terms of δ). The same scale invariant lower bound
on InjZ1 is sufficient to apply the arguments in page 45 of Colding–
Minicozzi [13]; especially see the implication that property (D) there
implies property (D1). In our current setting, property (D) is the
scale invariant lower bound on InjZ1 , and property (D1) asserts that
Z1 − C+(δ1) consists of a pair of ∞-valued graphs for some δ1 > 0
small, which can be connected by curves of uniformly bounded length
arbitrarily close to p0. The existence of such ∞-valued graphs over the
punctured plane contradicts Corollary 1.2 in [7]. This contradiction
rules out Case (N2.2), which finishes the proof of Lemma 4.26. q.e.d.

The following corollary is an immediate consequence of Lemma 4.26.

Corollary 4.27. Given ε1, R > 0, there exists an ε2 ∈ (0, ε1) such
that the following holds. Let

γ = {y ∈ Lµ ∩ B(ε2) | TyL is vertical }.
Then for any y ∈ γ, there exists a vertical helicoid Hy with maximal
absolute Gaussian curvature 1 at the origin8 such that the connected
component of

√
|KL|(y)[Lµ−y]∩B(R) containing the origin is a normal

graph u over its projection Ω ⊂ Hy, and

B(R− 2ε1) ∩Hy ⊂ Ω ⊂ B(R+ 2ε1) ∩Hy, ‖u‖C2(Ω) ≤ ε1.

Three immediate consequences of Corollary 4.27 when ε2 is chosen
sufficiently small are:

8Observe that for y1, y2 ∈ γ, the helicoids Hy1 , Hy2 coincide up to a rotation
around the x3-axis.
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(P1) The set γ in Corollary 4.27 can be parameterized as a connected
analytic curve γ(t) where t ∈ (0, t0] is its positive x3-coordinate,
and limt→0 γ

′(t) = (0, 0, 1).
(P2) Given t ∈ (0, t0], let f(t) ∈ R be the angle that the vertical

plane Tγ(t)L makes with the positive x1-axis, that is, (− sin f(t),
cos f(t), 0) is the unit normal vector to Tγ(t)L up to a choice of

orientation. Note that Tγ(t)L rotates infinitely often as t ↘ 0+,
and, consequently, the angle function f(t) can be considered to be
a smooth function of the height that tends to +∞ as t↘ 0+ if the
forming helicoid Hγ(t) is left-handed, or to −∞ if Hγ(t) is right-
handed. In the sequel we will suppose that this last possibility
occurs (after a possible reflection of Lµ in the (x1, x3)-plane). Also
observe that f(t) is determined up to an additive multiple of 2π,
and so, we do not loose generality by assuming that f(t) < 0 for
each t ∈ (0, t0]. Since for the right-handed vertical helicoid H the
corresponding angle function fH is negative linear, then we con-
clude that after choosing t0 > 0 small enough, f ′ > 0 is bounded
away from zero and f ′′/f ′ is bounded from above in (0, t0].

(P3) For any t ∈ (0, t0], Lµ ∩ Tγ(t)L contains a small smooth arc αγ(t)

passing through γ(t) that is a graph over its projection to the hor-
izontal line x−1

3 (t) ∩ Tγ(t)L. Since for t > 0 small the point γ(t) is
a point of almost-maximal curvature in a certain ball centered at
γ(t), then the forming double multivalued graph around αγ(t) in
Lµ extends sideways almost horizontally in Tγ(t)L by the extension
results in Colding and Minicozzi (Theorem II.0.21 in [8], note also
that Lµ − γ consists of stable pieces), until exiting the solid verti-
cal cone C~0 given by description (D2) before Lemma 4.11, whose

vertex is the singular point x = ~0 ∈ S. This allows us to extend
αγ(t) in the vertical plane Tγ(t)L until it exits C~0. Once αγ(t) exits
C~0, then the almost-horizontal nature of Lµ outside C~0 for µ > 0
small that comes from curvature estimates, insures that αγ(t) can
be extended in Lµ ∩ Tγ(t)L as an almost-horizontal arc, until it
possibly intersects the plane {x3 = µ}. The number of intersec-
tion points of this extended arc αγ(t) with {x3 = µ} is zero, one
or two. If αγ(t) never intersects {x3 = µ} (respectively, if αγ(t) in-
tersects {x3 = µ} exactly once), then αγ(t) defines a proper open
(respectively, half-open) arc in {0 < x3 ≤ µ}∩Tγ(t)L

µ. Otherwise,
αγ(t) is a compact arc with its two end points at height µ.

We next show that for t0 > 0 sufficiently small and for all t ∈ (0, t0],
the number of intersection points of αγ(t) with {x3 = µ} is two. Arguing
by contradiction, suppose that for some t1 ∈ (0, t0] small, αγ(t1) is not a
compact arc. Then, there exists t2 ∈ (0, t1) such that for all t ∈ (0, t2],
αγ(t) is an open proper arc in {0 < x3 < µ} ∩ Tγ(t)L, which is a graph
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over the horizontal line x−1
3 (t) ∩ Tγ(t)L. It follows that the surface

(25) Σ(t2) =
⋃

t∈(0,t2]

αγ(t)

is a proper subdomain of Lµ, Σ(t2) is topologically a disk with connected
boundary and when intersected with the domain x−1

3 ([0, µ]) ∩ {x2
1 +

x2
2 ≥ 1}, is an ∞-valued graph. This minimal surface Σ(t2) cannot

exist by the flux arguments in [7] (specifically see Corollary 1.2 and the
paragraph just after this corollary). Thus, we may assume that αγ(t) is a
compact arc for all t ∈ (0, t2] and t2 > 0 sufficiently small. Observe that
αγ(t) is transversal to {x3 = µ} at the two end points of αγ(t) (because
µ was a regular value of x3 in L), for all t ∈ (0, t2].

By the above discussion, for t2 > 0 sufficiently small, Σ(t2) is a union
of the compact arcs αγ(t), t ∈ (0, t2]. Let Γ1(t),Γ2(t) be the end points of
αγ(t), t ∈ (0, t2]. Hence, for i = 1, 2, t ∈ (0, t2] 7→ Γi(t) is an embedded
proper arc in L ∩ {x3 = µ} that spins infinitely often, and Γ1,Γ2 are
imbricated (they rotate together). The boundary of Σ(t2) is connected
and consists of αγ(t2) ∪ Γ1 ∪ Γ2. Consider the piecewise smooth surface

Σ̂(t2) obtained by adding to each αγ(t) the two disjoint halflines lt,1, lt,2
in x−1

3 (µ)∩Tγ(t)L that start at Γ1(t),Γ2(t), respectively, for all t ∈ (0, t2].

Observe that Σ(t2) is a subdomain of Σ̂(t2), that Σ̂(t2) fails to be smooth

precisely Γ1 ∪ Γ2, and that Σ̂(t2) fails to be embedded since for certain
values t < t′ ∈ (0, t2], the added halflines lt,1, lt′,1 satisfy lt,1 ⊂ lt′,1,

and, similarly, for the halflines lt,2, lt′,2. Both problems for Σ̂(t2) can be
easily overcome (actually embeddedness is not strictly necessary in what
follows) by slightly changing the construction, as we now explain. For
each t ∈ (0, t2], enlarge slightly αγ(t) to a compact arc α̂γ(t) ⊂ L∩Tγ(t)L,

so that if we call Γ̃1(t), Γ̃2(t) ∈ L ∩ x−1
3 ((µ, µ+ 1]) to the end points of

α̂γ(t), then the following properties hold.

(Q1) For i = 1, 2, the correspondence Γi(t) 7→ Γ̃i(t) defines a smooth
map that goes to zero as t ↘ 0. In other words, the curve t ∈
(0, t2] 7→ Γ̃i(t) is asymptotic to the planar curve t ∈ (0, t2] 7→ Γi(t)
as t↘ 0.

(Q2) x3 ◦ Γ̃1(t) = x3 ◦ Γ̃2(t) is strictly increasing as a function of t ∈
(0, t2].

Now add to each α̂γ(t) the two disjoint halflines l̃t,1, l̃t,2 in x−1
3 (x3(Γ̃1(t)))∩

Tγ(t)L that start at Γ̃1(t), Γ̃2(t), respectively, for all t ∈ (0, t2]. By prop-
erty (Q2) above, the piecewise smooth surface

Σ̃(t2) =
⋃

t∈(0,t2]

[
α̂γ(t) ∪ l̃t,1 ∪ l̃t,2

]
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C~0
γ

~0

αγ(t){x3 = µ}

double multigraph

Tγ(t)L
vertical

around γ(t)

{x3 = µ}
αγ(t2)

αγ(t′2)

Tγ(t′2)L

Tγ(t2)L

{x3 = 0}

Figure 8. Top: The arc αγ(t) ⊂ Lµ∩Tγ(t)L starts form-
ing in the double multivalued graph around the point
γ(t), extends sideways until exiting the solid cone C~0 and
eventually intersects {x3 = µ}. Bottom: Schematic rep-
resentation of a compact portion of the surface Σ(t2) ⊂
Lµ, foliated by arcs αγ(t) in a compact range t ∈ [t′2, t2],
0 < t′2 < t2.

is embedded and fails to be smooth precisely along Γ̃1∪Γ̃2. Now smooth

Σ̃(t2) by rounding off the corners along Γ̃1 ∪ Γ̃2 in a neighborhood of
these curves that is disjoint from Σ(t2), and relabel the resulting smooth

embedded surface as Σ̃(t2). Furthermore, the above smoothing process

can be done so that the tangent spaces to Σ̃(t2) form an angle less than
π/4 with the horizontal. Observe that Σ(t2) is a proper subdomain of

Σ̃(t2), see Figure 8. We denote by α̃γ(t) ⊂ Σ̃(t2) ∩ Tγ(t)L the smooth

proper arc that extends αγ(t). Thus, Σ̃(t2) is foliated by these arcs α̃γ(t),
t ∈ (0, t2].

Now consider the ruled surface

(26) R(t2) =
⋃

t∈(0,t2]

(
x−1

3 (t) ∩ Tγ(t)L
)
.
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The vertical projection Π: Σ̃(t2)→ R(t2) defined by Π(x, y, z) = (x, y, t)
if (x, y, z) ∈ α̃γ(t), is a quasiconformal diffeomorphism; near γ, this

property follows from the fact that both Σ̃(t2), R(t2) can be rescaled
around γ(t) to produce the same vertical helicoid, and away from γ

because the tangent planes to both Σ̃(t2), R(t2) form a small angle with
the horizontal for t2 sufficiently small.

The next lemma shows that the surface R(t2) is quasiconformally
diffeomorphic to a closed halfplane in C. Note that the hypotheses of
Lemma 4.28 hold for R(t2), see items (P1), (P2) above.

Lemma 4.28. Let Γ: (0, 1]→ R2 be a smooth curve and f : (0, 1]→
(−∞, 0) be a C2 function. Consider the ruled surface R ⊂ R3 parame-
terized by X : R× (0, 1]→ R3,
(27)
X(µ, z) = (Γ(z), 0) + (µ cos f(z), µ sin f(z), z), (µ, z) ∈ R× (0, 1].

If |Γ′| is bounded, limz→0+ f(z) = −∞, f ′ is bounded away from zero and
f ′′/f ′ is bounded from above, then R is quasiconformally diffeomorphic
to the closed lower half of a vertical helicoid.

Proof. Consider the diffeomorphism ψ : x−1
3 ((0, 1])→ x−1

3 ((0, 1]) given
by

ψ(p, z) = (p− Γ(z), z), (p, z) ∈ R2 × (0, 1].

As |Γ′| is bounded, then ψ is quasiconformal; this means that there exists
ε ∈ (0, 1) such that given two unitary orthogonal vectors a, b ∈ R3, we
have

ε ≤ |ψ∗(a)|
|ψ∗(b)|

≤ 1

ε
,

〈ψ∗(a), ψ∗(b)〉
|ψ∗(a)| |ψ∗(b)|

∈ [−1 + ε, 1− ε],

where ψ∗ denotes the differential of ψ at any point of x−1
3 ((0, 1]). There-

fore, after composing with ψ, we may assume in the sequel that Γ(z) = 0
for all z ∈ (0, 1].

Let H = {(x, y, z) ∈ R3 | y = x tan z} be the standard vertical
helicoid. Consider a map φ : R→ H of the form

φ(X(µ, z)) = (µ̂ cos f(z), µ̂ sin f(z), f(z)) , (µ, z) ∈ R× (0, 1],

where µ̂ = µ̂(µ, z) is to be defined later. We will find a choice of µ̂
for which φ is a quasiconformal diffeomorphism from R onto its im-
age; which is the lower half of H obtained after intersection of H with
x−1

3 ((−∞, f(1)]). Observe that a global choice of an orthonormal ba-
sis for the tangent bundle to R is {Xµ,

1
|Xz |Xz}. By definition, φ is

quasiconformal if the following two properties hold.

(R1)
|φ∗( 1

|Xz |Xz)|
|φ∗(Xµ)| is bounded and bounded away from zero (uniformly

on M).
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(R2)
〈φ∗(Xµ), φ∗(

1
|Xz |Xz)〉2

|φ∗(Xµ)|2 |φ∗( 1
|Xz |Xz)|2

∈ [0, 1− ε] uniformly on M , for some ε ∈

(0, 1).

A direct computation gives

φ∗(Xµ) = µ̂µ(cos f, sin f, 0),
φ∗(Xz) = µ̂z(cos f, sin f, 0) + µ̂f ′(− sin f, cos f, 0) + (0, 0, f ′(z)),

where µ̂µ = ∂µ̂
∂µ , µ̂z = ∂µ̂

∂z . Hence,

|φ∗(Xµ)|2 = (µ̂µ)2,
|φ∗(Xz)|2 = (µ̂z)

2 + [1 + µ̂2](f ′)2,
〈φ∗(Xµ), φ∗(Xz)〉 = µ̂µµ̂z.

Thus,

(28)
|φ∗( 1

|Xz |Xz)|2

|φ∗(Xµ)|2 =
(µ̂z)

2 + [1 + µ̂2](f ′)2

[1 + µ2(f ′)2](µ̂µ)2
,

(29)
〈φ∗(Xµ), φ∗(

1
|Xz |Xz)〉2

|φ∗(Xµ)|2 |φ∗( 1
|Xz |Xz)|2

=
(µ̂z)

2

(µ̂z)2 + [1 + µ̂2](f ′)2
.

To simplify the last two expressions, we will take µ̂(µ, z) = µf ′(z) (note
that this choice of µ̂ makes φ a diffeomorphism onto its image, as f ′

does not vanish). The right-hand-side of (28) transforms into

(30) E(µ, z) := 1 +
µ2

1 + µ2(f ′)2

(
f ′′

f ′

)2

,

which is greater than or equal to 1 and bounded from above under our
hypotheses on f ′ and f ′′/f ′, thereby giving (R1). As for the right-hand-
side of (29), a direct computation shows that it equals

(31)
µ2(f ′′)2

(f ′)2[1 + µ2(f ′)2] + µ2(f ′′)2
= 1− 1

E(µ, z)
.

As E(µ, z) is bounded from above, we conclude that the last expression
is bounded away from 1 (below 1), and (R2) is also proved. Therefore,
φ is a quasiconformal diffeomorphism from R onto the lower half of a
vertical helicoid, with the choice µ̂(µ, z) = µf ′(z). q.e.d.

Lemma 4.29. Let Σ be a simply connected surface which is quasi-
conformally diffeomorphic to a closed halfplane in C. Then, Σ is con-
formally diffeomorphic to a closed halfplane.

Proof. Suppose the lemma fails. Since Σ is simply connected, then Σ
can be conformally identified with closed unit disk D = {z ∈ C | |z| ≤ 1}
minus a closed interval I ⊂ ∂D that does not reduce to a point. Let
Σ∗ = (C∪{∞})− I be the simply connected Riemann surface obtained
after gluing Σ with a copy of itself along ∂Σ (by the identity function
on ∂Σ). Thus, by the Riemann mapping theorem, Σ∗ is conformally
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diffeomorphic to the open unit disk D. On the other hand, the quasicon-
formal version of the Schwarz reflection principle (see e.g., Theorem 3.6
in [20]) implies that Σ∗ is quasiconformally diffeomorphic to the surface
obtained after doubling a closed halfplane along its boundary, which is
C. In particular, we deduce that C is quasiconformally diffeomorphic
to D, which is a contradiction (see e.g., Corollary 1 in [49]). q.e.d.

Proof of Proposition 4.23. As the minimal surface Σ(t2) defined in

(25) can be considered to be a proper subdomain of the surface Σ̃(t2)

defined immediately before (26), and Σ̃(t2) is conformally diffeomorphic
to a closed halfplane (by Lemmas 4.28 and 4.29), then Σ(t2) is a para-
bolic surface. The restriction of the x3-coordinate function to Σ(t2) is a
bounded harmonic function with boundary values greater than or equal
to m = min{x3(q) | q ∈ αγ(t2)} > 0. In particular, the parabolicity of
Σ(t2) insures that

m = min
∂Σ(t2)

x3 ≤ x3 ≤ max
∂Σ(t2)

x3,

which contradicts that Σ(t2) contains points at height arbitrarily close
to zero. Now Proposition 4.23 is proved. q.e.d.

Note that Proposition 4.23 finishes the proof of item 6 of Theorem 1.1
(see the paragraph just after the statement of Proposition 4.23). There-
fore, the proof of Theorem 1.1 is complete.

We next prove some additional information about case 6 of Theo-
rem 1.1.

Proposition 4.30. Suppose that S 6= Ø (hence, item 6 of Theo-
rem 1.1 holds). Then:

(A) ∆(L) = S ∪ S(L) is a closed set of R3 which is contained in the
union of planes

⋃
L∈P L. Furthermore, every plane in R3 inter-

sects L.
(B) There exists R0 > 0 such that the sequence

{
Mn ∩BM (pn,

R0
λn

)
}
n

does not have bounded genus.
(C) There exist oriented closed geodesics γn ⊂ λnMn with uniformly

bounded lengths which converge to a line segment γ in the closure
of some flat leaf in P, which joins two points of ∆(L), and such
that the integrals of λnMn along γn in the induced exponential R3-
coordinates of λnBN (pn, εn) converge to a horizontal vector orthog-
onal to γ with length 2 Length(γ).

Proof. ∆(L) is closed in R3 since S is closed in R3 and S(L) is closed
in R3 − S. Lemma 4.11 implies that ∆(L) is contained in

⋃
L∈P L.

Every plane in R3 intersects L by Lemma 4.12, and so item (A) of the
proposition holds.

We next prove item (B). Consider a plane P ∈ P ′ such that P ∩ S 6=
Ø. By Proposition 4.23, P intersects ∆(L) in at least two points. If
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this intersection consists of exactly two points with opposite orienta-
tion numbers, then Proposition 4.18 implies that L is a foliation of
R3, which contradicts that S 6= Ø. Therefore, there exist two points
x1, x2 in P ∩ S with the same orientation number. In this setting,
we can adapt the arguments in the proof of Lemma 3.3 to conclude
that BλnN (x1, 2dn)∩ (λnMn) has unbounded genus for n large enough,
where dn is the extrinsic distance in λnN from x1 to x2 (note that
dn converges as n → ∞ to |x1 − x2|). Finally, take k0 ∈ N so that
BλnN (x1, 2dn)∩ (λnMn) is contained in BλnN (pn, k0), for all n ∈ N. By
Proposition 4.21, each point in BλnN (x1, 2dn)∩(λnMn) is at an intrinsic
distance not greater than some fixed number R0 (depending on k0) from
pn, for all n sufficiently large. After coming back to the original scale,
this implies that the surfaces Mn ∩ BM (pn,

R0
λn

) do not have bounded

genus. This finishes the proof of item (B) of the proposition.
Finally, item (C) follows from applying to the plane P that appears

in the previous paragraph the arguments in the proof of Lemma 4.13.
This concludes the proof of the proposition. q.e.d.

Remark 4.31. The techniques used to prove Theorem 1.1 have other
consequences. For example, suppose {Mn}n is a sequence of compact

embedded minimal surfaces in R3 with ~0 ∈ Mn whose boundaries lie
in the boundaries of balls B(Rn), where Rn → ∞. Suppose that there
exists some ε > 0 such that for any ball B in R3 of radius ε, for n
sufficiently large, Mn ∩B consists of disks, and such that for some fixed
compact set C, there exists a d > 0 such that for n large, the injectivity
radius function of Mn is at most d at some point of Mn ∩ C. Then the
proof of Theorem 1.1 shows that, after replacing by a subsequence, the
Mn converge on compact subsets of R3 to one of the following cases:

(4.29.a) A properly embedded, nonsimply connected minimal surface
M∞ in R3. In this case, the convergence of the surfaces Mn to
M∞ is smooth of multiplicity one on compact sets of R3.

(4.29.b) A minimal parking garage structure of R3 with at least two
columns.

(4.29.c) A singular minimal lamination L of R3 with properties similar
to the minimal lamination described in item 6 of Theorem 1.1
and in Proposition 4.30.

Remark 4.32. In [27], we will apply Theorem 1.1 under slightly
weaker hypotheses for the embedded minimal surface M appearing in
it, namely M is not assumed to be complete, but instead we will suppose
that M satisfies the following condition.

Suppose M is an embedded minimal surface, not necessarily complete
and possibly with boundary, in a homogeneously regular three-manifold
N . Observe that the injectivity radius IM (p) ∈ (0,∞] at any interior
point p ∈ M still makes sense, although the exponential map expp is
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no longer defined in the whole TpM . We endow M with the structure

of a metric space with respect to the intrinsic distance dM , and let M
be the metric completion of (M,dM ). In the sequel we will identify M
with its isometrically embedded image in M . Given an interior point
p ∈ M , we define dM (p, ∂M) > 0 to be the distance in M from p to
∂M = M − Int(M). Consider the continuous function f : Int(M) →
(0,∞) given by

f(p) =
min{1, dM (p, ∂M)}

IM (p)
.

Suppose that f is unbounded. Then, the conclusions in Theorem 1.1
hold, i.e., exist points pn ∈ Int(M) and positive numbers εn =
nIM (pn)→ 0 such that items 1,. . . , 6 of Theorem 1.1 hold.

To prove this version of Theorem 1.1 in the case that either M is
incomplete or ∂M 6= Ø, then one must replace the points qn ∈M with
IM (qn) ≤ 1

n that appeared in the first paragraph of Section 4 by points
qn ∈ Int(M) such that f(qn) ≥ n, and then change the function hn
defined in (1) by the expression

hn(x) =
dM (x, ∂BM (qn,

1
2dM (qn, ∂M)))

IM (x)
, x ∈ BM (qn,

1
2dM (qn, ∂M)).

From this point on, the above proof of Theorem 1.1 works without
changes.

5. Applications

Definition 5.1. Given a complete embedded minimal surfaceM with
injectivity radius zero in a homogeneously regular three-manifold, a local
picture of M on the scale of topology is one of the blow-up limits that can
occur when we apply Theorem 1.1 to M , namely a nonsimply connected
properly embedded minimal surface M∞ ⊂ R3 as in item 4 of that
theorem, a minimal parking garage structure in R3 with at least two
columns as in item 5 or a minimal lamination L of R3−S as in item 6,
obtained as a limit of M under blow-up around points of almost-minimal
injectivity radius.

Similarly, given a complete embedded minimal surface M with un-
bounded second fundamental form in a homogeneously regular three-
manifold, a local picture of M on the scale of curvature is a nonflat
properly embedded minimal surface M∞ ⊂ R3 of bounded Gaussian
curvature, obtained as a limit of M under blow-up around points of
almost-maximal second fundamental form, in the sense of Theorem 1.1
in [33].

An immediate consequence of Theorem 1.1 in the Introduction and
of the uniqueness of the helicoid [35] is the following statement.

Corollary 5.2. Let M be a complete embedded minimal surface with
injectivity radius zero in a homogeneously regular three-manifold. If a
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properly embedded minimal surface M∞ ⊂ R3 is a local picture of M
on the scale of topology (i.e., M∞ arises as a blow-up limit of M as
in item 4 of Theorem 1.1) and M∞ does not have bounded Gaussian
curvature, then every local picture of M∞ on the scale of curvature is a
helicoid.

5.1. The set of local pictures on the scale of topology. Given 0 <
a ≤ b, consider the set Ba,b of all complete embedded minimal surfaces

M ⊂ R3 with |KM | ≤ b and |KM |(p) ≥ a at some point p ∈ B(1).
Since complete embedded nonflat minimal surfaces in R3 of bounded
absolute Gaussian curvature are proper [37] and properly embedded
nonflat minimal surfaces in R3 are connected [19], then the surfaces in
Ba,b are connected and properly embedded. The topology of uniform

Ck-convergence on compact subsets of R3 is metrizable on the set Ba,b
(see Section 5 of [33] for a proof of this fact in a slightly different context,
for a = b = 1). Sequential compactness (hence, compactness) of Ba,b
follows immediately from uniform local curvature and area estimates
(area estimates come from the existence of a tubular neighborhood of
fixed radius, see [37]). By the regular neighborhood theorem in [37]
or [46], the surfaces in Ba,b all have cubical area growth, i.e.,

R−3 Area(M ∩ B(R)) ≤ C,
for all surfaces M ∈ Ba,b and for all R > 1, where C = C(b) > 0 depends
on the uniform bound of the curvature.

The next corollary follows directly from the above observations, the
Local Picture Theorem on the Scale of Curvature (Theorem 1.1 in [33])
and the Local Picture Theorem on the Scale of Topology (Theorem 1.1
in this paper).

Corollary 5.3. Suppose M is a complete, embedded minimal surface
with injectivity radius zero in a homogeneously regular three-manifold,
and suppose M does not have a local picture on the scale of curvature
which is a helicoid. Then, there exist positive constants a ≤ b depending
only on M , such that every local picture of M on the scale of topology
lies in Ba,b (in particular, every such local picture of M on the scale of
topology arises from item 4 in Theorem 1.1). Furthermore, the set

B(M) = {local pictures of M on the scale of topology}
is a closed subset of Ba,b (thus, B(M) is compact), and there is a con-
stant C = C(M) such that every local picture on the scale of topology
has area growth at most CR3.

Remark 5.4. With the notation of Theorem 1.1 in this paper, if
M has finite genus or if the sequence {λnMn}n has uniformly bounded
genus in fixed size intrinsic metric balls, then item 6 of that theorem does
not occur, since item (B) of Proposition 4.30 does not occur. This fact



THE LOCAL PICTURE THEOREM ON THE SCALE OF TOPOLOGY 561

will play a crucial role in our forthcoming paper [25], when proving a
bound on the number of ends for a complete, embedded minimal surface
of finite topology in R3, that only depends on its genus. Also in [27], we
will apply Theorem 1.1 to give a general structure theorem for singular
minimal laminations of R3 with a countable number of singularities.

5.2. Complete embedded minimal surfaces in R3 with zero flux.
Recall that a nonflat minimal immersion f : M → R3 has zero flux if
the integral of the unit conormal vector around any closed curve on M
is zero. By the Weierstrass representation, a nonflat minimal immersion
f : M → R3 has nonzero flux if and only if f : M → R3 is the unique
isometric minimal immersion of M into R3 up to rigid motions.

The results described in the next corollary to Theorem 1.1 over-
lap somewhat with the rigidity results for complete embedded constant
mean curvature surfaces by Meeks and Tinaglia described in [41].

Corollary 5.5. Let M ⊂ R3 be a complete, embedded minimal sur-
face with zero flux. Suppose that M is not a plane or a helicoid. Then,
M has infinite genus and one of the following two possibilities hold:

1) M is properly embedded in R3 with positive injectivity radius and
one end.

2) M has injectivity radius zero and every local picture of M on the
scale of topology is a properly embedded minimal surface with one
end, infinite genus and zero flux.

Proof. First suppose that M is properly embedded in R3. As M has
zero flux, then the main result in Choi, Meeks and White [5] insures
that M has one end. We claim that M has infinite genus. Otherwise, by
classification of properly embedded minimal surfaces with finite genus
and one end, then M is a helicoid with handles, in particular, M is
asymptotic to the helicoid (Bernstein and Breiner [2]). We next show
that in this case, M has nonzero flux, which contradicts the hypothesis:
as M is a helicoid with handles, then after rotation we can assume that
M is asymptotic to a vertical helicoid whose axis is the x3-axis. Consider
the intersection Γt of M with the horizontal plane {x3 = t}. For every
t ∈ R, Γt is a proper 1-dimensional analytic set with two ends which
are asymptotic to the ends of a straight line; this result can be deduced
from the analytic results described in either [2] or [23]. For |t| large,
Γt consists of a connected, proper planar arc asymptotic to a straight
line. However, since M is not simply connected (because M is not a
plane or helicoid, Meeks and Rosenberg [35]), there exists a lowest plane
{x3 = T} such that ΓT is not a proper arc. In particular, ΓT is a limit
of proper arcs Γt, t↗ T . By the maximum principle, ΓT is a connected,
1-dimensional analytic set asymptotic to a straight line. Since ΓT is not
an arc, then x3 : M → R has a critical point of negative index on ΓT .
As ΓT only has two ends, then standard topological arguments imply
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that ΓT contains a piecewise smooth loop that bounds a horizontal disk
on one side of M . By the maximum principle, the unit conormal vector
of M along this loop lies in the closed upper (or lower) hemisphere and
it is not everywhere horizontal. Thus, the flux of M along this loop
is not zero, which is a contradiction. Therefore, M has infinite genus
provided that it is proper.

Finally, suppose that M satisfies the hypotheses of Corollary 5.5.
If the injectivity radius of M is positive, then M is proper by Theo-
rem 2 in [36] and so, Corollary 5.5 holds by the arguments in the last
paragraph. Otherwise, the injectivity radius of M is zero and, thus,
Theorem 1.1 applies. Note that cases 5 and 6 of Theorem 1.1 cannot
occur since in those cases the flux of the approximating surface λnMn

(with the notation of Theorem 1.1) is not zero by item (B) of Proposi-
tion 4.20 and item (C) of Proposition 4.30, but M has zero flux. Hence,
every local picture of M on the scale of topology is a properly embedded
minimal surface M∞ ⊂ R3. Note that M∞ has zero flux since M has
zero flux. By arguments in the first paragraph of this proof, M∞ has
infinite genus. Finally, observe this last property together with a lifting
argument shows that M also has infinite genus in this case. q.e.d.

Remark 5.6. If M ⊂ R3 is a complete embedded minimal surface
that admits an intrinsic isometry I : M → M which does not extend
to an ambient isometry of R3, then M must have zero flux (because
the only isometric minimal immersions from M into R3 are associated
minimal surfaces to M by Calabi [3]). Since the associated surfaces to
a helicoid which are not congruent to it are not embedded, then such an
M cannot admit a local picture on the scale of curvature which is a heli-
coid. Therefore, eitherM has positive injectivity radius (so it is properly
embedded in R3 by Theorem 2 in [36]) and its Gaussian curvature is
bounded (otherwise one could blow-up M on the scale of curvature to
produce a limit helicoid by Theorem 1.1 in [33], which is a contradic-
tion), or M has injectivity radius zero and Corollaries 5.3 and 5.5 imply
that every local picture of M on the scale of topology is a nonsimply
connected, properly embedded minimal surface with bounded Gaussian
curvature and zero flux. The authors believe that this observation could
play an important role in proving the classical conjecture that intrinsic
isometries of complete embedded minimal surfaces in R3 always extend
to ambient isometries, and more generally, to prove that a complete
embedded minimal surface in R3 does not admit another noncongruent
isometric minimal embedding into R3.
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