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LOOIJENGA’S CONJECTURE VIA INTEGRAL-AFFINE
GEOMETRY

Philip Engel∗

Abstract

A cusp singularity is a surface singularity whose minimal res-
olution is a cycle of smooth rational curves meeting transversely.
Cusp singularities come in naturally dual pairs. In 1981, Looi-
jenga proved that whenever a cusp singularity is smoothable, the
minimal resolution of the dual cusp is an anticanonical divisor
of some smooth rational surface. He conjectured the converse.
Recent work of Gross, Hacking, and Keel has proven Looijenga’s
conjecture using methods from mirror symmetry. This paper pro-
vides an alternative proof of Looijenga’s conjecture based on a
combinatorial criterion for smoothability given by Friedman and
Miranda in 1983.

1. Introduction

A cusp singularity (V , p) is the germ of a minimally elliptic surface
singularity such that the exceptional divisor of the minimal resolution
π : V → V is a reduced anticanonical cycle of smooth rational curves
meeting transversely:

π−1(p) = D = D1 + · · ·+Dn ∈ | −KV |.

The analytic germ of a cusp singularity is uniquely determined by the
self-intersections D2

i of the components of D. Cusp singularities come

in naturally dual pairs (V , p) and (V ′, p′), whose exceptional divisors D
and D′ are called dual cycles. For every pair of dual cusps, Inoue [7] con-
structs an associated hyperbolic Inoue surface – a smooth, non-algebraic,
compact complex surface whose only curves are the components of two
disjoint cycles D and D′. Contracting D and D′ produces a surface with
two dual cusp singularities and no algebraic curves.

By working out the deformation theory of the contracted hyperbolic
Inoue surface, Looijenga [9] proved that if the cusp with cycle D′ is
smoothable, then there exists an anticanonical pair (Y,D) – a smooth
rational surface Y with an anticanonical divisor D ∈ | − KY | whose
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components have the appropriate self-intersections. Conversely, Looi-
jenga conjectured that the existence of such an anticanonical pair (Y,D)
implies the smoothability of the cusp with cycle D′. Recently, work of
Gross, Hacking, and Keel proved Looijenga’s conjecture using methods
from mirror symmetry [5]. In this paper, we provide an alternative
proof of Looijenga’s conjecture.

In the first section, we review foundational material on cusp singu-
larities, hyperbolic Inoue surfaces, anticanonical pairs, and discuss the
main result of Friedman–Miranda [1]: The cusp with resolution D′ is
smoothable if there exists a simple normal crossings surface X0 =

⋃
Vi

satisfying certain combinatorial conditions.
We begin the second section by defining the notion of a triangulated

integral-affine surface (with singularities). Then, we associate a triangu-
lated integral-affine surface, called the pseudo-fan, to any anticanonical
pair (V,D) and describe two surgeries on the pseudo-fan that corre-
spond to blowing up a point on a component of D and smoothing a
node of D. We describe a natural triangulated integral-affine structure
on the dual complex Γ(X0) of a surface X0 satisfying the conditions of
Friedman–Miranda.

In the third section, we define two of surgeries on an integral-affine
surface S – an internal blow-up and a node smoothing. Both surg-
eries appear in Symington’s work [12] on almost toric fibrations of four-
dimensional symplectic manifolds. Assuming certain conditions, there
is a unique symplectic four-manifold Y with a Lagrangian torus fibra-
tion

(Y,D, ω)→ S,

which attains certain allowable singular fibers over the singular points
of S. An internal blow-up or node smoothing of S is the base of a
Lagrangian torus fibration of an internal blow-up or node smoothing
of (Y,D, ω), respectively. When S is a disc whose boundary satisfies

a negativity condition, we define an integral-affine completion Ŝ to a
sphere by attaching a cone C with a distinguished vertex v0 to the
boundary of S. Finally, we define the notion of an order k refinement
S[k] of an integral-affine surface S.

In the fourth section, we construct from an anticanonical pair (Y,D)
a surface X0 satisfying the conditions of the theorem of Friedman–
Miranda, thus, proving Looijenga’s conjecture:

1) We express (Y,D) as a sequence of internal blow-ups and node
smoothings of a toric surface (Y ,D). By performing the analogous
surgeries on a moment polygon S for (Y ,D), we produce the base
S of an almost toric fibration of a symplectic surface (Y,D, ω). We

complete to Ŝ and take an order k refinement Ŝ[k] which admits
a triangulation.
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2) We show that a neighborhood of every vertex vi of the triangula-

tion of Ŝ[k] with i 6= 0 is locally modeled by the pseudo-fan of an
anticanonical pair (Vi, Di). The cone point v0 is locally modeled
by the pseudo-fan of the hyperbolic Inoue pair (V0, D

′). By glu-
ing the surfaces Vi together, we produce a surface X0 whose dual
complex is Ŝ[k], as a triangulated integral-affine surface.

The construction of X0 may be phrased solely in terms of operations on
integral-affine surfaces – no results in symplectic geometry are necessary
for the proof, but they provide the primary motivation. Our construc-
tion is algorithmic, providing a simple normal crossings resolution of at
least one smoothing of any smoothable cusp singularity. We describe,
without proof, four modifications and generalizations of the construc-
tion and conclude by giving an example of the modified construction in
the charge three case Q(Y,D) = 3.

Our proof differs from the approach of Gross, Hacking, and Keel. Un-
like [5] this work relies on the main theorem of [1] to prove smoothability
of the dual cusp. This approach has advantages and disadvantages. The
delicate convergence arguments of [5] are avoided by using the defor-
mation theory of global simple normal crossings varieties. On the other
hand, the techniques of this paper can only see one-parameter smooth-
ings, because smoothings with a higher dimensional base need not have
SNC resolutions. The connection between the two proofs is still largely
unexplored. In terms of mirror symmetry and the Gross–Siebert pro-
gram, we use a “fan” construction which appears to be Legendre dual
to the “polytope” construction of [5]. For us, the fundamental piece of
data to prove smoothability of the dual cusp is the existence of (Y,D),
as a symplectic anticanonical pair.

Acknowledgements. I thank my advisor, Robert Friedman, for the
time he spent editing this paper, and for his numerous suggestions,
explanations, and clarifications. I thank Lucas Culler, who suggested
a simplifying modification of the original construction. I’d also like to
thank Mark Gross, Paul Hacking, and Sean Keel for their comments.
In addition, I thank Eduard Looijenga for our productive conversation.
Finally, I would like to thank the referee for their careful reading and
excellent suggestions.

2. Background

Let (V , p) be the germ of a cusp singularity. The exception divisor of
the minimal resolution

π−1(p) = D = D1 + · · ·+Dn

is a cycle of smooth rational curves meeting transversely. We define
`(D) := n to be the length of the cycle. Whenever n ≥ 3, we assume
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Di · Di±1 = 1, with indices taken mod n. If n = 1, then D is an
irreducible, nodal rational curve. If n = 2, then D is the union of two
smooth rational curves that meet transversely at two distinct points.
We define

di :=

{
−D2

i if n > 1,
2−D2

i if n = 1.

The analytic germ of a cusp singularity is uniquely determined by the
cycle d := (d1, . . . , dn), well-defined up to cyclic permutation and ori-
entation. As D is contractible, Artin’s contractibility criterion implies
that the intersection matrix [Di ·Dj ] is negative-definite. No component
of D is an exceptional curve, because it is a minimal resolution. The
negative-definite condition is then equivalent to

di ≥ 2 for all i,

di ≥ 3 for some i.

Cusp singularities arise in the classification of complex analytic sur-
faces. Amongst those of Type VII0 are the hyperbolic Inoue surfaces,
which have first Betti number b1 = 1 and Kodaira dimension κ = −∞.
For a construction, see [7]. The only curves on a hyperbolic Inoue
surface V are the components of two contractible cycles D and D′ of
rational curves satisfying D +D′ ∈ | −KV |. Both cycles can be blown
down to give a surface (V , p, p′) with two dual cusps. For any cusp
singularity p, there is a construction of V as the compactification of a
quotient of H × C by a discrete group action (hence, the terminology
“cusp”). Suppose that the cycle of negative self-intersections of D is

d = (d1, . . . , dn) = (a1 + 3, 2, . . . , 2︸ ︷︷ ︸
b1

, . . . , ak + 3, 2, . . . , 2︸ ︷︷ ︸
bk

),

with ai, bi ≥ 0. An explicit formula for the negative self-intersections of
the dual cycle D′ may be given from those of the original cycle D by
interchanging ai and bi:

d′ = (d′1, . . . , d
′
s) = (b1 + 3, 2, . . . , 2︸ ︷︷ ︸

a1

, . . . , bk + 3, 2, . . . , 2︸ ︷︷ ︸
ak

).

Let (V , p, p′) denote the (disconnected) germ of the two cusp singu-
larities on the doubly contracted hyperbolic Inoue surface V . Looijenga
[9] proves:

Theorem 2.1. V has a universal deformation which is semi-universal
for the germ (V , p, p′).

Suppose that p′ is smoothable. By Theorem 2.1, there exists a defor-
mation

π : V → ∆,
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over an analytic disc, with V0 = V , which keeps the germ (V , p) constant
while smoothing the germ (V , p′). Any fiber Vt with t 6= 0 is a surface
with a single cusp singularity p = pt. Simultaneously resolving the
singularities pt produces a family Y → ∆ whose central fiber is the
partially contracted hyperbolic Inoue surface with cusp singularity p′

and whose general fiber is a smooth surface. Any fiber Yt with t 6= 0 is
a simply connected surface with anticanonical divisor D, which by the
classification of surfaces must be rational. Hence, the following corollary
to Theorem 2.1:

Corollary 2.2. Suppose that D′ contracts to a smoothable cusp sin-
gularity. Then, D is the anticanonical divisor of some rational surface.

Looijenga conjectured the converse, which by the work of Gross,
Hacking, and Keel [5] on mirror symmetry for anticanonical pairs, is
now a theorem:

Theorem 2.3 (Looijenga’s Conjecture). If D is the anticanonical
divisor of some rational surface, then the cusp singularity associated to
D′ is smoothable.

Now we review some basic facts about rational surfaces with an anti-
canonical cycle D. Such surfaces are log generalizations of K3 surfaces:
They are simply connected surfaces with a global non-vanishing mero-
morphic 2-form with poles along a simple normal crossings divisor D:

Definition 2.4. An anticanonical pair or simply pair (Y,D) is a
rational surface Y with an anticanonical divisor D equal to a cycle of
rational curves

D = D1 + · · ·+Dn ∈ | −KY |,
meeting transversely. A negative-definite pair satisfies the additional
condition that the intersection matrix [Di · Dj ] is negative-definite. A
toric pair is a pair where Y is a toric surface and D is the toric boundary.

Let E be an exceptional curve on (Y,D) – by this we always mean
an exceptional curve of the first kind, i.e., E ∼= P1 with E2 = −1.
Contracting E gives a smooth anticanonical pair:

π : (Y,D)→ (Y ,D).

If E is a component of D, then E contracts to a node point of the cycle
D. In this case, we call π a corner blow-up. If E is not a component of
D, then E intersects D at one of its smooth points. Thus, E contracts to
a smooth point of the cycle D, in which case, we call π an internal blow-
up. Conversely, given any anticanonical pair, we can blow-up either a
corner or a smooth point of the cycle to produce a new anticanonical
pair. In addition to blowing up on D, we can smooth any node of D:
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Proposition 2.5. Let (V,D) be an anticanonical pair and let p be a
node of D. There exists a family of anticanonical pairs

(V,D)→ ∆,

over the disc whose central fiber is (V,D) such that D → ∆ is a smooth-
ing of the node p.

Proof. The proposition follows from Corollary 3.6 of [3], which proves
the result for any subset of the nodes of D. Roughly, the deformations
of (V,D) surject onto the deformations of D. q.e.d.

Definition 2.6. The charge of a cycle D or of a pair (Y,D) is defined
by the formula

Q(D) = Q(Y,D) := 12 +

n∑
i=1

(di − 3) = 12 +

n∑
i=1

(ai − bi).

The formula for the dual cusp D′ interchanges ai with bi and, thus,
Q(D) + Q(D′) = 24. The charge of an anticanonical pair (Y,D) is
essentially a measure of how far it is from being toric: All toric pairs
have charge zero, while all other anticanonical pairs have positive charge.

Remark 2.7. Let (Y,D) be a pair. An internal blow-up on Di

changes the cycle d by

(. . . , di, . . . ) 7→ (. . . , di + 1, . . . ),

and increases the charge by 1. A corner blow-up at Di ∩Di+1 changes
the cycle d by

(. . . , di, di+1, . . . ) 7→ (. . . , di + 1, 1, di+1 + 1, . . . ),

and keeps the charge constant. A node smoothing at Di∩Di+1 changes
the cycle d by

(. . . , di, di+1, . . . ) 7→ (. . . , di + di+1 − 2, . . . ),

and increases the charge by 1.

Consider a smoothing family Y → ∆ whose central fiber is the par-
tially contracted hyperbolic Inoue surface with cusp singularity p′. Us-
ing the same methods as Kulikov [8] and Persson and Pinkham [10]
in their study of degenerations of K3 surfaces, Friedman and Miranda
[1] prove that after a finite base change and bi-meromorphic modifica-
tions on Y → ∆, we can produce a smooth family X → ∆ such that
D ∈ | −KX | is a divisor restricting to D on every fiber and the central
fiber is a simple normal crossings surface. In analogy with so-called
Type III degenerations of K3 surfaces, the central fiber

X0 =
n⋃
i=0

Vi,

of the family X → ∆ satisfies the following conditions:
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i. V0 is the hyperbolic Inoue surface with cycles D and D′. For i > 0,
the normalization Ṽi of each Vi is a smooth rational surface.

ii. Let Dij denote an irreducible double curve of X0 lying on Vi and
Vj (if Vi is not normal, we may have i = j). Define Di to be the

union of the double curves Dij contained in Vi. Let D̃i be the

inverse image of Di under the normalization map Ṽi → Vi. Then

(Ṽi, D̃i)

is an anticanonical pair for i > 0 and D0 = D′.
iii. (Triple Point Formula) Let Dij be a double curve joining the sur-

faces Vi and Vj . Then(
Dij

∣∣
Ṽi

)2
+
(
Dij

∣∣
Ṽj

)2
=

{
−2 if Dij is smooth,
0 if Dij is nodal.

iv. The dual complex of X0 is a triangulation of the sphere.

Definition 2.8. We call a surface X0 satisfying conditions i.–iv. a
Type III anticanonical pair (X0, D).

Conditions i.-iv. are the only combinatorial conditions necessary to
ensure that X0 smooths to an anticanonical pair (Y,D) in a family
X → ∆. The remaining condition, d-semistability, is analytic:

T 1
X0

:= Ext1OX0
(Ω1
X0
,OX0) ∼= Osing(X0).

Any Type III anticanonical pair has a topologically trivial deformation
to one which is d-semistable by [1], Lemma 2.6. Motivated by the result
of [2] in the case of Type III K3 surfaces, [1] prove that a d-semistable
Type III anticanonical pair (X0, D) smooths to an anticanonical pair
(Y,D). By a result of Shepherd-Barron [11], the union of the surfaces
Vi for i > 0 can be contracted to a point, assuming we also contract
the cycle D′ on V0. Thus, the existence of (X0, D) implies that D′ is
smoothable. Hence, the Friedman–Miranda criterion [1]:

Theorem 2.9. The cusp singularity associated to D′ is smoothable
if and only if there exists a Type III anticanonical pair (X0, D).

Notation 2.10. To simplify the notation, we will, henceforth, sup-
press the tildes on (Ṽi, D̃i) so that (Vi, Di) denotes a smooth anticanon-
ical pair. In addition, we introduce the convention

Dij = Dij

∣∣
Vi

and Dji = Dij

∣∣
Vj
,

so that Dij always denotes a curve on the smooth surface Vi. Then Dij

and Dji have equal image in X0 but may not be isomorphic. In fact,
the image of Dij in X0 is nodal if and only if exactly one of Dij or Dji

is nodal. We define

dij :=

{
−D2

ij if `(Di) ≥ 2,

2−D2
ij if `(Di) = 1.
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Then, the triple point formula states that dij + dji = 2 in all cases.

Proposition 2.11 (Conservation of Charge). Let (X0, D) be a
Type III anticanonical pair. Then,∑

Q(Vi, Di) = 24.

Proof. See [1], Proposition 3.7. q.e.d.

Conservation of charge is analogous to the Gauss–Bonnet formula,
where curvature and charge are equated: The sum of the charges is a
constant multiple of the Euler characteristic. Toric surfaces, which have
charge zero, are “flat” in some sense. This analogy will take a precise
form in the following section; we show that the dual complex Γ(X0) of
a Type III anticanonical pair X0 admits a natural integral-affine struc-
ture with singularities at the vertices corresponding anticanonical pairs
(Vi, Di) of positive charge. Imposing a singular, integral-affine “fan”
structure on the dual complex of a maximally unipotent degeneration
of a Calabi–Yau manifold plays a role in the Gross–Siebert program [6]
for proving the SYZ conjecture. For instance, the case of a Type III
degeneration of K3 surfaces is specifically discussed in [5].

3. Integral-affine surfaces and Type III anticanonical pairs

Before defining the integral-affine structure on Γ(X0), we give some
general definitions and propositions regarding integral-affine surfaces.
A basis triangle of R2 is a triangle of area 1

2 with integral vertices. The
edges of a basis triangle pairwise form a lattice basis.

Definition 3.1. A triangulated integral-affine surface with singular-
ities is a triangulated real surface S, possibly with boundary, such that
(1) the complement of the vertices {vi} ⊂ S of the triangulation ad-
mits an atlas of charts into R2 with transition functions valued in the
integral-affine transformation group SL2(Z)nZ2 and (2) the interior of
every triangle admits a chart to a basis triangle.

Note that all labeled basis triangles are equivalent, up to a unique
integral-affine transformation. An integral-affine surface with singular-
ities has a canonical orientation induced from the standard orientation
on R2. Let eij denote a directed edge of the triangulation of S going from
vi to vj and let fijk denote a triangle whose counterclockwise-ordered
vertices are vi, vj , and vk. Within an integral-affine chart containing
the interior of the edge eij , we may view eij as the vector vj − vi.

Remark 3.2. Because S is triangulated into basis triangles, the
boundary P is polygonal: There is a decomposition of the boundary
∂S = P1 + · · · + Pn such that each Pi is integral-affine equivalent to a
line segment between two lattice points. By convention, we assume that
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the boundary components Pi are maximal: The union of two distinct
boundary components is never integral-affine equivalent to a single line
segment between two lattice points.

If the atlas of integral-affine charts on S−{vi} extends to all vertices
vi, then we say that S is non-singular. For the remainder of the paper,
we will implicitly assume that an integral-affine surface has singularities
and we will specify when an integral-affine surface is non-singular.

Definition 3.3. Let Ssing denote the vertices of the triangulation of
S to which the integral-affine structure fails to extend.

Remark 3.4. Let S be an integral-affine surface with singularities.
A small contractible open subset U ⊂ S−Ssing has a chart φU : U → R2

which is uniquely defined up to integral-affine transformation. We can
then construct a developing map

φ : S−̃Ssing → R2,

from the universal cover of S−Ssing to R2 by gluing together local charts
φU and φV that agree on U ∩ V . The map φ is uniquely determined up
to post-composition with an element of SL2(Z) n Z2. The developing
map is equivalent to the data of the monodromy representation

M : π1(S − Ssing)→ SL2(Z) n Z2,

constructed from the parallel transport of the integral-affine structure
along a loop. We also make use of the less refined monodromy map
N : π1(S − Ssing) → SL2(Z) which projects onto the SL2(Z) part of
the monodromy.

Definition 3.5. Let eik be a directed edge in the interior of a trian-
gulated integral-affine surface. Let eij and ei` be the edges emanating
from vi directly clockwise and counterclockwise to eik. We define the
negative self-intersection dik of the edge eik by the formula

dikeik = eij + ei`,

where we view the edges as lattice vectors in some chart. Note that
dik is an integer because (eij , eik) and (eik, ei`) are both oriented lattice
bases and dik is independent of the choice of integral-affine chart.

Proposition 3.6. Let S be a triangulated integral-affine surface with
singularities. The formula dik + dki = 2 holds for all interior edges eik.

Proof. By working within an integral-affine chart, the formula reduces
to the following equivalence:

dik(vk−vi) = (vj−vi)+(v`−vi)⇐⇒ (2−dik)(vi−vk) = (vj−vk)+(v`−vk).

q.e.d.
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Figure 1. The integral-affine structure on the union of
f123 and f134 if d13 = −1.

We now show that the negative self-intersections of the edges uniquely
determine the integral-affine structure on S:

Proposition 3.7. A triangulated integral-affine surface S is uniquely
determined by the data of a collection of negative self-intersections dik
for each directed interior edge eik such that dik + dki = 2.

Proof. We construct a unique integral-affine surface S from the col-
lection of integers dik. We must declare each triangle fijk of S to be
integral-affine equivalent to a basis triangle. We now show that the
integral-affine structure extends to the interior of an edge in a unique
manner such that the negative self-intersection of eik is dik. Given a
chart for fijk there is a unique way to glue to it a basis triangle fik`
sharing the edge eik which satisfies dikeik = eij + ei` – this equation
specifies ei` = dikeik− eij . See Figure 1, for example. Note that eik and
ei` form an oriented lattice basis, so the triangle fik` formed by these
vectors is a basis triangle. By Proposition 3.6, gluing the triangles fk`i
and fkij along the directed edge eki using the integer dki results in the
same integral-affine structure on the quadrilateral fijk ∪ fik`. Thus, we
have defined an integral-affine structure on S − {vi}. q.e.d.

We now determine when the non-singular integral-affine structure on
S − {vi} extends to an interior vertex vi. But first, we require the
following definition:

Definition 3.8. Let (V,D) be an anticanonical pair with cycle com-
ponents D = D1 + · · ·+Dn. The pseudo-fan of (V,D) is a triangulated
integral-affine surface whose underlying triangulated surface is the cone
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over the dual complex of D. By Proposition 3.7, it suffices to declare
that the negative-self intersection of the directed edge ei pointing from
the cone point to the vertex corresponding to a component Di is

di =

{
−D2

i if n > 1,
2−D2

i if n = 1.

The imposed integral-affine structure has at most one singularity, at the
cone point. Compare to Section 0.3.1 and Lemma 1.3 of [5].

Proposition 3.9. The integral-affine structure on the pseudo-fan of
(V,D) extends to the cone point if and only if (V,D) is toric.

Proof. First suppose that (V,D) is a smooth, complete toric surface.
Then, the one-dimensional rays of the fan F are spanned by primitive
integral vectors ei such that (ei, ei+1) is an oriented lattice basis. By
Section 2.5 of [4], we have the equation

−D2
i ei = ei−1 + ei+1.

Thus, the polygon whose vertices are the endpoints of the vectors ei
forms a single chart for the pseudo-fan of (V,D). This integral-affine
structure visibly extends over the origin. See Figure 2.

Conversely, if the integral-affine structure on the pseudo-fan of (V,D)
extends to the cone point, then we may take a chart around the cone
point centered at the origin. The directed edges emanating from the
cone point generate the one-dimensional rays of the fan of some toric
surface. This toric surface is necessarily isomorphic to (V,D) because
the integers −D2

i determine the fan of (V,D) up to SL2(Z) equivalence.
Note that (V,D) is automatically toric because Q(V,D) = 0. q.e.d.

Consider a Type III anticanonical pair X0. The dual complex Γ(X0)
is a triangulation of S2 whose vertices vi correspond to components Vi,
whose directed edges eij correspond to double curves Dij , and whose
triangular faces fijk correspond to triple points Tijk.

Proposition 3.10. Let X0 be a Type III anticanonical pair. The dual
complex Γ(X0) has a triangulated integral-affine structure such that the
edge eij has negative self-intersection

dij :=

{
−D2

ij if `(Di) ≥ 2,

2−D2
ij if `(Di) = 1.

Furthermore, this integral-affine structure extends maximally to

Γ(X0)− {vi : Q(Vi, Di) > 0 or i = 0}.

Proof. The triple point formula states that dij + dji = 2, and so by
Proposition 3.7, we have the first statement. Proposition 3.9 plus the
fact thatQ(Vi, Di) = 0 if and only if a pair (Vi, Di) is toric imply that the
integral-affine structure fails to extend to vi with Q(Vi, Di) > 0. While



478 P. ENGEL

Figure 2. The integral-affine structure on the pseudo-
fan of the toric pair (P2,4) where 4 is a union of three
lines in P2 forming a triangle.

it is plausible that Q(V0, D0) = 0, the integral-affine structure does not
extend to the vertex v0 corresponding to V0 – if it did, d′ would be
the negative self-intersection sequence of the boundary components of
some toric surface. But D0 = D′ is negative-definite, whereas on a toric
surface, the boundary components span the Picard group, which has
indefinite intersection form. q.e.d.

Definition 3.11. Let v be a vertex of a triangulated integral-affine
surface. Denote by star(v) the union of the triangles containing v.

It is automatic from the definitions that for Γ(X0) we have an equal-
ity between the pseudo-fan of (Vi, Di) and star(vi) for all i. For conve-
nience, we extend Definition 3.8 to allow the pair (V0, D0), so that we
may also discuss the pseudo-fan of the hyperbolic Inoue surface.

We now record the effect of node smoothings and internal blow-ups
on the pseudo-fan:

Proposition 3.12. Let (Ṽ , D̃) be a deformation of an anticanonical

pair (V,D) such that D̃ is the smoothing of the node Di−1 ∩ Di. The

pseudo-fan of (Ṽ , D̃) is the result of the following surgery on the pseudo-
fan of (V,D): Collapse the triangular face with edges ei and ei+1 to a
single edge with negative self-intersection di + di+1 − 2.

Proposition 3.13. Let (Ṽ , D̃) be an internal blow-up of an anti-

canonical pair (V,D) on the component Di. The pseudo-fan of (Ṽ , D̃)
is the result of the following surgery on the pseudo-fan of (V,D): Keep
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the integral-affine structure fixed away from the edge ei and increase the
negative self-intersection of ei from di to di+1.

Proof. Both Propositions 3.12 and 3.13 follow immediately from Re-
mark 2.7. q.e.d.

If one begins with a toric surface (V,D), the SL2(Z) component of
monodromy around the cone point after either surgery is conjugate to(

1 1
0 1

)
.

In particular, monodromy of the pseudo-fan of an internal blow-up of a
toric surface is a shear along the edge ei corresponding to the component
receiving the blow-up.

4. Surgeries on integral-affine surfaces

We next describe surgeries on integral-affine surfaces that prove useful
in the next section when constructing a Type III anticanonical pair X0.
These surgeries are motivated by work of Symington [12] on almost
toric fibrations, with further details in Remark 4.1. For the remainder
of this section, let S denote a singular integral-affine surface which is
homeomorphic to a disc, so that the polygonal boundary ∂S is a circle.
That is, the boundary

∂S = P1 + · · ·+ Pn

is the union of a sequence of segments Pi put end-to-end, with each
segment integral-affine equivalent to a straight line segment between
two lattice points. We index the boundary components Pi such that
they go counterclockwise around S as i increases. Let

vi,i+1 := Pi ∩ Pi+1

denote a vertex of ∂S and let xi and yi denote the primitive integral
vectors emanating from vi,i+1 along Pi+1 and Pi, respectively. Thus,
yi+1 = −xi in a local chart on S containing the edge Pi. We further
assume that (xi, yi) is an oriented lattice basis. Consequently, the in-
terior angles at the vertices of P are less than π in any integral-affine
chart.

Remark 4.1. Let (X,ω) be a symplectic, toric surface – that is,
a compact symplectic 4-manifold equipped with a Hamilton two-torus
action. If we think of X as a complex toric surface, we can view the
Hamiltonian two-torus action as the action of S1×S1 ⊂ C∗×C∗. Recall
that there is a moment map

µ : (X,ω)→ S,

to a convex planar polygon S (including its interior) such that the toric
boundary components of X map to the components of ∂S. The general



480 P. ENGEL

fiber of µ is a Lagrangian torus, which degenerates on the edges of S
to a circle and on the vertices of S to a point. When [ω] ∈ H2(Y,Z)
is integral, the moment polygon can be taken to have integral vertices.
Then S satisfies the assumptions of this section – in particular, the
vectors xi and yi form an oriented lattice basis.

Following Symington [12], an almost toric fibration is a Lagrangian
fibration µ : (X,ω)→ S whose general fiber is a smooth 2-torus, which
undergoes symplectic reduction over the boundary ∂S, but whose in-
terior fibers may also degenerate to necklaces of spheres at some finite
set of points. The almost toric base S is a generalization of the mo-
ment polygon, and has a natural integral affine-linear structure, with
v ∈ Ssing whenever the fiber µ−1(v) is singular. The inverse image of
∂S is an anticanonical divisor of X in the sense of symplectic geometry.

If S is homeomorphic to a disc, then an almost toric fibration over S
is a symplectic anticanonical pair

(Y,D, ω)→ S,

which sends the components of D to the components of ∂S. Symington
defines two surgeries on S: An internal blow-up and a node smoothing
(in the terminology of [12], an almost toric blow-up and a nodal trade,
respectively). An internal blow-up of S on the boundary component
Pi is the base of an almost toric fibration of an internal blow-up of
(Y,D, ω) on the component Di, and an analogous statement holds for a
node smoothing.

Definition 4.2. Choose a chart of S containing a neighborhood of
the edge Pi. We define the negative self-intersection di of the boundary
component Pi by the formula

diyi = yi−1 − xi
(= yi−1 + yi+1).

If (Y,D, ω) → S is an almost toric fibration, then the negative self-
intersection of the edge Pi is equal to the negative self-intersection −D2

i
of the component of D fibering over Pi.

We do not define di by the formula diyi = yi−1 + yi+1 because yi+1 is
not a vector based at a point on Pi and, thus, may not be defined in our
chosen neighborhood of Pi. By extending our chart to a neighborhood
of Pi∪Pi+1, this definition would become valid. Note that Definition 4.2
fails when P has only one boundary component, as no neighborhood of
the single edge is contractible. This problem is resolved by working
in a chart on the universal cover of a neighborhood of the boundary
component.

Definition 4.3. We define an internal blow-up of S on the boundary
component Pi. First, delete a triangle T ⊂ S satisfying:
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Figure 3. An internal blow-up on Pi of size 2.

1) One edge of T is a proper subset of Pi.
2) The remainder of T lies in the interior of S − Ssing.
3) T is an integer multiple n of a basis triangle.

Let v be the unique vertex of T contained in the interior of S. Denote
by (e1, e2) the oriented lattice basis emanating from v along the edges of
T . See Figure 3. Glue the edge along e2 of S−T to the edge along e1 of
S−T via the unique affine-linear map which fixes v, maps e2 7→ e1, and
preserves the line containing Pi. The resulting integral-affine surface is
an internal blow-up of S on the boundary component Pi. Its singular
set is Ssing ∪ {v}. Call n the size of the surgery.

The gluing map is a shear transformation along the line through v
parallel to e2 − e1. An internal blow-up does not change the number of
boundary components because the lefthand and righthand pieces of Pi
are glued into a single line segment. After the surgery, (xj , yj) is still
an oriented lattice basis for all j because the internal blow-up does not
alter the integral-affine structure in the neighborhood of a vertex.

Definition 4.4. We define a node smoothing of S at Pi ∩ Pi+1. For
some n ∈ N, make a cut along the segment from vi,i+1 to a point

v := vi,i+1 + n(xi + yi)

lying in S − ∂S. See Figure 4. Glue the clockwise edge of the cut
(from the perspective of v) to the counterclockwise edge of the cut by
the shearing map which point-wise fixes the line containing the cut and
maps xi to −yi. The resulting integral-affine surface is a node smoothing
of S at Pi∩Pi+1. Its singular set is A∪{v}. Call n the size of the surgery.

Note that even though the gluing fixes the cut point-wise, it alters
the integral-affine structure along the cut. Let e1 := −xi − yi be the
primitive integral vector emanating from v along the cut, and let e2 be
any vector such that (e1, e2) is an oriented lattice basis. Then, in the
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Figure 4. A node smoothing of vi,i+1 of size 2.

(e1, e2) basis, the gluing map is(
1 1
0 1

)
.

The gluing is independent of the choice of e2 because it is a shear fixing
e1. The boundary of a node smoothing of S has one fewer edge than S:
After a node smoothing, the edges Pi and Pi+1 are straightened into a
single edge because the image of xi under the gluing map is −yi. As in
the case of the internal blow-up, (xj , yj) is still an oriented lattice basis
for all j 6= i after the surgery because the node smoothing does not alter
the integral-affine structure in the neighborhood of a vertex vj,j+1 such
that j 6= i. The vertex vi,i+1 ceases to exist after the surgery.

Proposition 4.5. An internal blow-up of S on the boundary compo-
nent Pi transforms the negative self-intersections of the boundary com-
ponents as follows:

(. . . , di, . . . ) 7→ (. . . , di + 1, . . . ),

while smoothing the node Pi ∩ Pi+1 of S transforms the negative self-
intersections of the boundary components as follows:

(. . . , di, di+1, . . . ) 7→ (. . . , di + di+1 − 2, . . . ).

Proof. We omit the proof of the proposition. It follows from straight-
forward computations involving the gluing matrices and the vectors
xi and yi. Also, it is implicitly proven in [12], because the negative
self-intersection of Pi from Definition 4.2 is equal to the negative self-
intersection di of the component Di which maps to Pi under an almost
toric fibration. q.e.d.
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We now describe how to complete the disc S to a sphere when the
boundary is negative, in the appropriate sense:

Proposition 4.6. Let S be an integral-affine disc such that adjacent
edges of ∂S meet to form lattice bases and the negative self-intersections
of components Pi ⊂ ∂S satisfy

di ≥ 2 for all i,

di ≥ 3 for some i.

Then there is a natural embedding S ↪→ Ŝ into an integral-affine sphere
such that Ŝsing = Ssing ∪ {v0} for a distinguished point v0 ∈ Ŝ − S.

Proof. Let U ⊃ ∂S be a collar neighborhood of the boundary of S
containing no singular points. Note that π1(U) = Z. Consider the
developing map

φ : Ũ → R2,

from the universal cover of U to R2. The universal cover ∂̃S of the
boundary maps to an infinite lattice polygon in R2. Each edge Pi is
integral-affine equivalent to some interval [0,mi] on the x-axis, for a

unique mi ∈ N. Then φ(∂̃S) is an infinite sequence of vectors {mizi}i∈Z
put end-to-end, such that (zi+1,−zi) is an oriented lattice basis, and

dizi = zi−1 + zi+1,

for all i (the indices of mi and di are taken mod n). We call φ(∂̃S) a
discrete hyperbola. The interior angles of the discrete hyperbola are less
than π because (zi+1,−zi) is a lattice basis for all i ∈ Z. One possible

image of Ũ under the developing map is shown in Figure 5 with the
lower edge forming the discrete hyperbola.

We claim that the discrete hyperbola has two asymptotic lines L1 and
L2 which are the invariant lines of the monodromy transformation M :=
M(γ) associated to a counterclockwise loop γ around the boundary of
S. The change-of-basis from (zi,−zi−1) to (zi+1,−zi) is(

di −1
1 0

)
.

Therefore, the SL2(Z) part of the monodromy N := N(γ) is conjugate
in SL2(Z) to the product

n∏
i=1

(
di −1
1 0

)
,

because the counterclockwise monodromy is conjugate to the change-
of-basis from (z1,−z0) to (zn+1,−zn). By choosing a basis properly, we
may assume that N is equal to the above product. The full SL2(Z)nZ2

monodromy transformation is then

M · v = N · v +B,
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Figure 5. The image of the developing map of a collar
neighborhood of the boundary of S.

for some B ∈ Z2. Since (d1, . . . , dn) is negative-definite, trN > 2 and,
therefore, N has two distinct, irrational positive eigenvalues. We solve
the equation v = N · v +B to find the unique, rational fixed point

v0 := (I −N)−1B,

of M . Then L1 and L2 are the lines going through v0 parallel to the
eigenvectors of N .

The invariant line associated to the eigenvalue greater than one is sta-
ble, while the other invariant line is unstable. To prove that the discrete
hyperbola is asymptotic to L1 and L2, we note that the monodromy
transformation M sends the discrete hyperbola to itself by mapping

M : φ(P̃i) 7→ φ(P̃i+n).

Thus, the edges φ(P̃i) of the discrete hyperbola approach the stable
and unstable invariant lines of M as the index i approaches positive
and negative infinity, respectively. The discrete hyperbola bounds a
convex region because its interior angles are less than π. Any line going
though v0 between L1 and L2 eventually intersects this region, because
the discrete hyperbola approaches the eigenlines of M . Then, convexity
implies that the complement of this convex region is star-shaped at v0.

Let R denote the region bounded by L1, L2, and the discrete hyper-

bola, with partial boundary φ(∂̃S). Let L be any line going through v0
between L1 and L2 (for instance, we may assume L is a line through v0
and a vertex of the discrete hyperbola). Then the region bounded by

L, M · L, and φ(∂̃S) is a fundamental domain for the action of M on
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Figure 6. A fundamental domain for the action of M on R.

R, see Figure 6. The orbit space

C := {Mn : n ∈ Z}\R

inherits an integral-affine structure from R non-singular away from v0.
Furthermore, C is cone over ∂S such that Csing = {v0} and the orienta-
tions on C and S induce opposite orientations on ∂S. Then, we define
Ŝ to be the result of gluing C and S along their boundaries.

More precisely, we can form a quotient

{Mn : n ∈ Z}\(φ(Ũ) ∪R) = U ∪ C,

and U ∪ C glues to S along U to produce an integral-affine sphere Ŝ
such that Ŝsing = S ∪ {v0}. q.e.d.

We note that v0 may only have rational coordinates. Thus, even if S
admits a triangulation, Ŝ may not. Hence, we define:

Definition 4.7. Let S be an integral-affine surface. The order k
refinement S[k] is produced by post-composing the charts on S with
multiplication by k.

Note that S[k]sing and Ssing are naturally identified. We remark
without proof that the order k refinement of Γ(X0) corresponds to a
SNC resolution of the order k base change of X → ∆.

Remark 4.8. Let S be as in Proposition 4.6. Then the point v0 in
the definition of Ŝ may not be integral, but as it is rational, there exists
some k such that v0 lies at an integral point of Ŝ[k]. Then if S can be

triangulated into basis triangles, so can Ŝ[k] = S[k]∪C[k], as C[k] has a
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fundamental domain given by a lattice polygon, see Figure 6, and, thus,
can easily be triangulated into basis triangles.

5. A proof of Looijenga’s conjecture

In this section, we present the construction of a Type III anticanonical
pair (X0, D) from an anticanonical pair (Y,D), thus, proving Looijenga’s
conjecture. But first, we need:

Proposition 5.1. Every anticanonical pair (Y,D) can be expressed
as a sequence of node smoothings and internal blow-ups starting with a
toric pair (Y ,D).

Proof. First, we express (Y,D) as a sequence of corner and internal
blow-ups of a minimal anticanonical pair (Y0, D0). We factor the blow-
down to (Y0, D0) into maps α and β

(Y,D)
α−→ (Y1, D1)

β−→ (Y0, D0),

such that α consists only of interior blow-ups, while β consists only of
corner blow-ups, cf. Remark 2.6 of [3]. By direct examination (see
Lemma 3.2 of [1]), every minimal anticanonical pair (Y0, D0) is a node
smoothing of a minimal toric anticanonical pair, i.e., there is a family
of anticanonical pairs with cycle D0 that degenerates to a toric pair.
Performing all the corner blow-ups of β on this family expresses (Y1, D1)
as a node smoothing of a toric pair (Y ,D). Thus, (Y,D) is the result
of interior blow-ups and node smoothings on (Y ,D). q.e.d.

Theorem 5.2 (Looijenga’s Conjecture). If D is the anticanonical
divisor of some rational surface, then the cusp singularity associated to
D′ is smoothable.

Proof. Let (Y,D) be an anticanonical pair. We express (Y,D) as
a sequence of node smoothings and internal blow-ups on a toric pair
(Y ,D). From this data, we construct a Type III anticanonical pair X0:

Construction: Let S be a moment polygon for (Y ,D) with integral
vertices. Then S is an integral-affine disc with no singularities, such
that (xi, yi) is an oriented lattice basis. The components P i ⊂ ∂S of

the boundary have negative self-intersections −D2
i for all i, in the sense

of Definition 4.2. In fact, we may simply choose a polygon S with this
property, should we wish to avoid an appeal to symplectic geometry.

For each internal blow-up or node smoothing of (Y ,D) applied to pro-
duce (Y,D), we perform an associated internal blow-up or node smooth-
ing surgery on the integral-affine surface S. Assume that all surgeries
have size 1, i.e., internal blow-ups remove a single basis triangle and
node smoothings have cuts of minimal length, as in the example below.
We are applying Q(Y,D) surgeries of fixed size, but S may be chosen
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Figure 7. A moment polygon S for Y .

to be arbitrarily large (e.g., by scaling). Thus, we can ensure, and, in
fact, we require, that S can accommodate all the necessary surgeries.
We denote the resulting integral-affine surface by S.

By Proposition 4.5, the negative self-intersections of the boundary
components Pi ⊂ ∂S are equal to the negative self-intersections di of
the components of D. By Remark 4.1, S is the base of an almost
toric fibration of a symplectic rational surface (Y,D, ω). For example,
Figure 7 is a moment polygon S for the toric surface

(P1 × P1, D1 +D2 +D3 +D4).

Figure 8 demonstrates 18 surgeries on S corresponding to four internal
blow-ups on D1, two internal blow-ups on D2, six internal blow-ups on
D3, five internal blow-ups on D4 and a node smoothing of D1 ∩ D2.
After the surgeries, the integral-affine surface S is the almost toric base
of a negative-definite anticanonical pair (Y,D, ω) with d = (d1, d2, d3) =
(4, 6, 5). The charge of (Y,D) is 18, because each surgery increases the
charge by 1.

The surgeries retain the property that (xi, yi) is an oriented lattice
basis, and, hence, ∂S satisfies the conditions of Proposition 4.6. Thus,
we may complete S to a sphere Ŝ = S ∪ C. Note that S admits a
triangulation into basis triangles, for instance, we may triangulate the
polygonal fundamental domain shown in Figure 8. By Remark 4.8, we
may take an order k refinement Ŝ[k] such that Ŝ[k] admits a triangu-
lation into basis triangles. Now that we have established the existence
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Figure 8. An almost toric base S for Y .

of such a triangulation, we choose amongst all of them the one which
attains the minimal possible number of edges emanating from v0.

Let vi be a vertex of the triangulation of Ŝ[k] which is non-singular.
Then star(vi) is the pseudo-fan of some toric surface (Vi, Di). Now
suppose that vi ∈ S[k]sing is a singular point not equal to v0. Each

such singularity vi is introduced by a surgery on S. Let vi ∈ S denote
the pre-image of vi ∈ S. In the case of an internal blow-up, one of the
triangular faces of star(vi) is collapsed by the surgery, whereas in the
case of a node smoothing, the integral-affine structure along an edge of
star(vi) is changed. In fact:

1) An internal blow-up on S corresponds to a node smoothing on
star(vi) by Proposition 3.12 and Definition 4.3.

2) A node smoothing on S corresponds to an internal blow-up on
star(vi) by Proposition 3.13 and Definition 4.4.

We conclude that there is an anticanonical pair (Vi, Di) whose pseudo-
fan is star(vi) for all i 6= 0.

Finally, we consider v0. The monodromy N = N(γ) of a counter-
clockwise loop around the boundary ∂S is equal to the monodromy of a
clockwise loop around v0. Thus, the monodromy of a counterclockwise
loop around v0 is N−1.

Lemma 5.3. The pseudo-fan of (V0, D
′) is isomorphic to star(v0).

Proof. Let d0 = (d01, . . . , d0r) denote the negative self-intersections
of the edges (e01, . . . , e0r) emanating from v0. We claim that d0i ≥ 2 for
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all i. First, we show that d0i ≤ 0 is impossible. Suppose for the sake of
contradiction that d0i ≤ 0. Then the formula

d0ie0i = e0(i−1) + e0(i+1)

implies that the angle ∠(vi−1v0vi+1) subtended by star(v0) between
e0(i−1) and e0(i+1) is at least π in any integral-affine chart. But, by
the definition of the integral-affine structure on C from Proposition 4.6,
the image of the developing map of star(v0) lies within the region R.
Thus, d0i ≤ 0 is impossible, because the image of the developing map of
star(v0) subtends an angle less than π – it subtends the angle formed
at v0 by L1 and L2.

If d0i = 1, then the union of the two triangles containing e0i is
integral-affine equivalent to the unit square. But then we may alter
the triangulation by flipping the diagonal of this square, thus, decreas-
ing the total number of edges emanating from v0. This contradicts our
assumption that the number of edges emanating from v0 is minimal.
Hence, d0i ≥ 2 for all i. If d0i = 2 for all i, then the image of developing
map subtends an angle of exactly π, which is also impossible. Hence,
d0i ≥ 3 for some i. Thus, d0 is negative-definite. We remark that similar
ideas arise when constructing minimal resolutions of non-smooth toric
surfaces, see Section 2.6 of [4].

The developing map, when restricted to the boundary of star(v0),
maps to an infinite lattice polygon lying in R and bounded by L1 and L2.
Because d0 is negative-definite, the angles of this infinite lattice polygon
are less than π, and, thus, it bounds a convex region. Furthermore, the
image of the developing map of star(v0) contains no lattice points in
its interior because it is a union of basis triangles containing v0. See
Figure 9. This uniquely characterizes the image of the developing map
of star(v0): It is the region between L1 and L2 in the complement of the
convex hull of the lattice points between L1 and L2. We say star(v0)
has property (?).

Let d = (d1, . . . , dn) and d′ = (d′1, . . . , d
′
s). The following matrices

are conjugate in SL2(Z):

r∏
i=1

(
0 −1
1 d0i

)
∼ N−1 =

[
n∏
i=1

(
di −1
1 0

)]−1
∼

s∏
i=1

(
0 −1
1 d′i

)
,

where the last similarity is a general fact about dual cycles, see [7].
That is, the monodromy of star(v0) is conjugate to the monodromy of
the pseudo-fan of (V0, D

′). By post-composing with an integral-affine
transformation, we may assume that these monodromies are equal and
that the developing map of the pseudo-fan of (V0, D

′) maps into the
region between L1 and L2. Since d′ is negative-definite, the image of
the developing map of the pseudo-fan of (V0, D

′) is also characterized
by property (?). Since the monodromy acts the same on these images,



490 P. ENGEL

Figure 9. The image of the developing map of star(v0).

the pseudo-fan of (V0, D
′) and star(v0) are isomorphic, as triangulated

integral-affine surfaces. q.e.d.

For every vertex vi with i 6= 0 of the triangulation of Ŝ[k], we have
found an anticanonical pair (Vi, Di) whose pseudo-fan is star(vi). In
addition, we have proved that the pseudo-fan of (V0, D

′) is star(v0).
Consider the union of the surfaces

X0 :=
⋃

vi∈Ŝ[k]

(Vi, Di),

where we identify Dij with Dji so that nodes of Di are identified with
nodes of Dj . By Remark 3.6, X0 satisfies the triple point formula. So
X0 satisfies all the assumptions of a Type III anticanonical pair (X0, D).
Theorem 2.9 implies that the cusp with resolution D′ is smoothable.

q.e.d.

We now describe without proof a number of modifications of the
construction, which still produce a Type III anticanonical pair X0 but
in which various conditions are weakened.

Modification 5.4. We need not assume that the singularities in-
troduced in the surgeries on S are distinct. The number of surgeries
in which the vertex vi is involved (either as the vertex of a triangle
removed from S for an internal blow-up, or as the end of a cut for a
node smoothing) is equal to the charge Q(Vi, Di) of the anticanonical
pair whose pseudo-fan is star(vi). In addition, the edges of the triangles
removed for internal blow-ups may overlap, and may also overlap cuts
for node smoothings.

Modification 5.5. We assumed that for every component of D, the
length of the associated boundary component of S was positive. This
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assumption is unnecessary – some may have length zero (but at least
three edges must have positive length, because S must have nonempty
interior to make surgeries).

Modification 5.6. The internal blow-ups on a boundary component
of S decrease its length. After the surgeries, we may allow some of
the boundary components of S to have length zero. When only some
of the boundary components have length zero, we continue with the
construction by applying the developing map to a collar neighborhood
of the boundary, even though (xi, yi) may cease to be a lattice basis.

Modification 5.7. If, after the surgeries, all the boundary compo-
nents have length zero, then S has no boundary, and is already home-
omorphic to a sphere. Then we may triangulate S directly to produce
the dual complex Γ(X0) of a Type III anticanonical pair.

Remark 5.8. Modification 5.7 is always possible, thus, eliminating
the need for the completion process described in Proposition 4.6, but
the construction is significantly more delicate.

We now present an example incorporating Modifications 5.4, 5.5,
and 5.7 of the construction of X0:

Example 5.9. Let (Y,D) be a negative-definite anticanonical pair
such that Q(Y,D) = 3. It can be shown that all negative-definite anti-
canonical pairs withQ(Y,D) = 3 have three disjoint internal exceptional
curves, which can be blown down to a toric surface

π : (Y,D)→ (Y ,D).

We call (Y ,D) a toric model. Let Da1 , Da2 , and Da3 be the three
components of D that receive the internal blow-ups. Up to scaling by
Z, there is a unique moment polygon S of the toric model in which
the boundary components P a1 , P a2 , and P a3 are the only edges with
nonzero length.

To construct S, we perform internal blow-ups on the three boundary
components of S. To do so, we must delete a multiple of a basis triangle
from each of the edges. For any anticanonical pair (Y,D) of charge
three, it can be proven that S has room to perform internal blow-ups
that decrease the lengths of all three edges to zero. So ∂S is empty,
and S may be directly triangulated into basis triangles, from which we
construct X0.

Consider the cusp singularity D′ with cycle d′ = (6, 9). The dual
cycle is given by the formula

d = (3, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2).

There are two distinct deformation families of pairs with anticanonical
cycle D. The deformations preserve the classes of exceptional curves,
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Figure 10. Moment polygons for (iY , iD).

Figure 11. Almost toric bases for (iY,D).

so each deformation family is associated to a different toric model. Let
(iY,D) with i = 1, 2 be two anticanonical pairs representing these two
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Figure 12. Two Type III anticanonical pairs (iX0, D).

deformation families. The cycles of negative self-intersections of the two
toric models are

1d = (3, 2, 1, 2, 3, 1, 2, 2, 2, 2, 1),

2d = (3, 2, 2, 1, 3, 2, 1, 2, 2, 2, 1).

By blowing down exceptional curves in iD, we can draw fans for
(iY , iD), from which we can construct moment polygons iS for i = 1, 2.
Using Modification 5.5, we choose a moment polygon 1∂S whose only
boundary components of positive length are 1P 3,

1P 6, and 1P 11, while
the only components of 2∂S of positive length are 2P 4,

2P 7, and 2P 11

as in Figure 10.
We perform three internal blow-ups on iS by deleting a multiple of a

basis triangle resting on each of the three edges, then gluing the remain-
ing two edges of each triangle. Furthermore, using Modification 5.7, we
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choose surgeries large enough to reduce the length of the boundary
to zero. The resulting integral affine surfaces iS are shown Figure 11.
Because iS has no boundary, we immediately triangulate it into basis
triangles, and construct the simple normal crossings surface iX0 whose
dual complex is iS. Note that Modification 5.4 has been applied to 1S
as two singularities introduced by surgeries overlap. The triangulations
of iS and the surfaces iX0 are shown in Figure 12. The hyperbolic Inoue
pair (V0, D

′) is the outer face in both illustrations.
The surface iX0 smooths to give a family iX → ∆ of surfaces over

the disc whose general fiber is a pair with anticanonical cycle D. It is a
natural question to ask whether the general fiber of iX is deformation-
equivalent to (iY,D). In later work, we provide an affirmative answer
to this question, verifying Conjecture 6.1 of [1]. To prove smoothability
of the cusp D′ = (6, 9), Friedman and Miranda exhibited the special
fiber 1X0. The surface 2X0 is the alternative special fiber with 50 triple
points that they conjectured to exist.
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